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Principle of SMALL representations being used for SEVERAL
points:

◮ The Standard Model Gauge Group

◮ Dimension of Space-time

◮ That we have Gauge symmetry (a bit more doubtfull)

◮ That we have “Small” representations of say Fermions



What is then new ?:

◮ Group-volume discussion to justify some ad hoc rules

◮ Various attempts to include the Lorentz or Poincare group as
being selected in the same game, thus obtaining the
dimension of space-time! (for practical purposes; i.e. we hope
to get 4 or 3+1 even if there should exist extra dimensions.
Then one should just find a way of saying that dimensions
would collaps or compactify somehow down to th dimension
favoured by our principle.)

◮ Group of Gauge transformations co ntinue on next slide



What is new, continued

◮ Considering the group of all gauge transformations rather
than what is usually called the “gauge group”: The full group
of gauge transformations for a “gauge group” - in usual sense
- being G is rather ×xG (x) = G × G × · · · × G × G , where
we have taken one with G isomorphic group G (x) for every
point x in space-time, G (x) ≈ G . It is suggested that we then
use the same representation for the “full” group of gauge
transformations ×xG (x) and even extend this group by the

reparametrizations of the x-space-time. But if we could
extend the group, ×xG (x) → (Diff4 extended with ×xG (x)),
then we would have made a bigger group than the one we
started with have the same representation space. That
should be more preferable from our principle!?
Would we have “derived” the gauge symmetry of general
relativity from our principle!?



Plan of talk:

◮ 1. Introduction: Sizes of representations.

◮ 2. Review and modern version of the winning Gauge group,
essentially CA/CF

◮ 3. Main new point: Also dimension of space time gets
predicted almost in the same way.

◮ 4. Can we say a gauge transformation has an exceptionally
“small” representation by “cheeting” with Taylor expansion?

◮ Conclusion: Remarkably how much of Standad Model from
just “small representations” !



Review, Gauge Group
We shall review my earlier Bled-talk og work with Don Bennett on
seeking to adjust the rules of a game between Lie groups, so that
the winner of that game - the Lie group, that obtains the highest
value fir the “goal quantity” - becomes the Standard Model Group.
Now I shall put it so that we in the contruction and justification
for this “goal quantity” think mainly on the volume of the space of
representation matrices for a representation F making this volume
minimal and compared it to the volume of a certain standard
representation - which we have problem to construct in a nice way
-, which is for semi-simple groups the adjoint representation.
For a simple Lie algebra our “goal quantity”, that is the quantiy to
be maximized, is the ratio of the quadratic Casimir CA for the
adjoint representation and that of a representation F , i.e. CF , to
be chosen so as to make CF minimal under the constraint that F

be still faithfull. The last means that you select the representation
F of the group G considered so as to maximize CA/CF the
faithfulness constraint. For the simple Lie algebra we use as the
“goal quantity” this ratio CA/CF . For other cases I have to explain



Don Bennett and I earlier presented a quantity “close to
CA/CF” which maximized leads to the Standard Model

Group.

I should like to somewhat give a physical interpretation and
starting point for this quanity by first telling about a natural metric
on unitary representation spaces:
Let U(g) be a unitary representation matrix of an element g

of a group G , i.e. g ∈ G . Then we can define a metric ds on
the representation space VF to which U(g) ∈ VF belongs by

ds2 = Tr(dU+dU), (1)

where dU is an infinitesimal matrix, dU ∈ VF

Especially we can consider the length ds(g , g + dg) of the image
under the representation U : G → VF of an infintesimal step g to
g + dg in the group G ,

ds(g , g + dg)2 = Tr((U(g + dg) − U(g))(U(g + dg) − U(g)))

= Tr((
∑

i

∂U

∂gi

)(
∑

j

∂U

∂gj

)dgj)) (2)



Volume of the N-representation of U(N)

As an example to tell, that we can just calculate the volume of a
given representation image of the group in the specified metric

ds2 = Tr(dU+dU), (3)

I give you the volume of the “defining representation” for U(N):

Vol(U(N), “defining repr.”) =
∏

i=1,3,...,2N−3,2N−1;

Area(S i − unitsphere

=
∏

i=1,3,...2N−3,2N−1

2π(i+1)/2

Γ((i + 1)/2)
=

2Nπ(N2+N)/2

∏

i=1,3,...,2n−1 Γ((i + 1)/2)

Here Area(S i − unitsphere) stands for the surface area of the unit
sphere imbedded in i + 1 dimensinal space as
{~x ∈ Ri+1|vecx2 = 1} and thus having itself i dimensions.
Remember that the complexwise N-diemsional representation space
for the N-plet is realwise 2N-dimensional.



Reminder: What is a Quadratic Casirmir ?

If a basis of the Lie algebra for a Lie group is

A1, A2, ...,Ah; (6)

where h is the dimension of the Lie algebra, its representations
under a representation ρ could be denoted

ρ(A1), ρ(A2), ..., ρ(Ah); (7)

and the quadratic Casimir operator would be

Cρ =
∑

i=1,2,...,h

ρ(Ai )
2 (8)

and on irreducible representations ρ the quadratic Casimir Cρ

would have the same eigenvalue whatever the vector (state) in the
representation ρ it may act on. So for irreducible representations
the quadratic Casimir is effectively just a number Cρ.
Of course the normalization of Cρ depends on the normalization of
the Lie algebra basis vectors A1, A2, ...,Ah, but if we divide Cρ for
one irreducible representation ρ by that for another one ρ′ say, i.e.
Cρ′ , we get a number Cρ/Cρ′ , not depending on this normalization.



Relation between quadratic Casimirs and Distances in
Representations

For a given infinitesimal shift g −− > g + dg we have in each of
its representations, such as ρ and ρ′, the corresponding
infinitesimal shifts Uρ → Uρ + dUρ and Uρ′ → Uρ′ + dUρ′ .
With the definition of distance ds by

ds2 = Tr(dU†dU) (9)

we would get
ds2

ρ/ds2
ρ′ = Cρ/Cρ′ , (10)

where we thought of irreducible representations and denoted the
quadratic Casimirs Cρ and Cρ′ respectively.
For two faithful representations - i.e. which assigns only one
element to each element in the group - the ratio of the volumes of
the images of the of the group into the representations would be
given as

Vol(Image inρ)

Vol(Image inρ′)
= (

Cρ

Cρ′
)h/2, (11)

where h is the dimension of the Lie group.



Our Ratio of Adjoint to “Simplest” (or smallest) Quadratic
Casimirs CA/CF :

For the simple Lie gruops in infinite series:

CA

CF

|An
=

2(n + 1)2

n(n + 2)
=

2(n + 1)2

(n + 1)2 − 1
=

2

1 − 1
(n+1)2

(12)

CA

CF vector

|Bn
=

2n − 1

n
= 2 −

1

n
(13)

CA

CF spinor

|Bn
=

2n − 1
2n2+n

8

=
16n − 8

n(2n + 1)
(14)

CA

CF

|Cn
=

n + 1

n/2 + 1/4
=

4(n + 1)

2n + 1
(15)

CA

CF vector

|Dn
=

2(n − 1)

n − 1/2
=

4(n − 1)

2n − 1
(16)

CA

CF spinor

|Dn
=

2(n − 1)
2n2−n

8

=
16(n − 1)

n(2n − 1)
(17)

(18)



For the simple special Lie groups:

CA

CF

|G2 =
4

2
= 2 (19)

CA

CF

|F4 =
9

6
=

3

2
(20)

CA

CF

|E6 =
12
26
3

=
18

13
(21)

CA

CF

|E7 =
18
57
4

=
72

57
=

24

19
(22)

CA

CF

|E8 =
30

30
= 1 (23)



Notation for the Lie group names

◮ n is the rank of the Lie algebra; it means the dimension of
biggest Abelian subalgebra.

◮ An is the SU(n + 1), i.e. unitary Lie groups.

◮ Bn The odd dimensional orthogonal group SO(2n + 1) or its
covering group Spin(2n + 1).

◮ Cn are symplectic Lie groups.

◮ Dn the even dimensional orthogonal groups SO(2n) or the
corresponding Spin(2n).

◮ G2, F4, E6, E7, E8 are special Lie groups.

◮ vector alludes to that we have attempted with the vector
representation as to be the representation F that should be
chosen to be the “smallest”.

◮ spinor correspondingly mean we attempt with the spinro
representation as F . The cross over as to which is smallest
occur for SO(8).



Extension of CA/CF to Semisimple Groups

If we have a semi-simple group G1 × G2 × · · · × Gq represented by
the reducible representation F1 ⊕ F2 ⊕ ... ⊕ Fq the metric in this
full reducible representation ds is given as

ds2 = ds2
1 + ds2

2 + ... + ds2
q (24)

where the (ds1, ds2, ..., dsq) are the infinitesimal distances for the
shift dg = (dg1, dg2, ..., dgq) in the semisimple group projected
into the simple components of this group (locally).
If we would like to construct a quantity to be a “replacement” for
CA/CF for the simple group to be applicable for the semisimple
one G1 × G2 × · · · × Gq and to keep the same relation to the
volume ratio

Vol(Image inρ)

Vol(Image inρ′)
= (

Cρ

Cρ′
)h/2, (25)

we must choose

“CA/CF repl.′′(G1×G2×· · ·×Gq) = CA/CF |
h1/h

G1
∗CA/CF |

h2/h

G2
∗· · ·CA/CF |

hq/h

Gq
.

(26)



We shall choose the replacement for CA/CF to be in
the semisimple case:

“CA/CF repl.′′(G1×G2×· · ·×Gq) = CA/CF |
h1/h

G1
∗CA/CF |

h2/h

G2
∗· · ·CA/CF |

hq/h

Gq
,

(27)

where CA/CF |
h1/h

G1
etc. are the ratios CA/CF for the simple

invariant subgroups G1 etc. taken to the powers h1/h etc. of their
weight hi/h counted in group dimension hi relative to the full
semi-simple group. Here hi is the dimension of the simple
subgroup Gi and the dimension of the semi-simple group
G1 × G2 × · · · × Gq is called h = h1 + h2 + ... + hq.
That is to say we take in the semi-simple case the logarithmic
average of the quantities CA/CF for the individual simple invariant
subgroups weighted with their dimensions, i.e. each having the
weight hi/h.



Interpretation as Logarithmic Averaging

The quantity we suggest to use instead of CA/CF for semisimple
Lie groups “CA/CF repl.′′(G1 × G2 × · · · × Gq) can be argued for as
giving the h/2’th root of the volume ratio Vol(A)/Vol(F ) of the
the representation image in the adjoint representation to that in
the F -representation (chosen) to make this ratio maximal.(h is the
total dimension of the semi-simple group). But it can also be
concidered a “logarithmic averaging of the CA/CF ’s for the simple
invariant subgroups Gi weighted with the Lie algebra dimensions”,

“CA/CF repl.′′(G1×G2×· · ·×Gq) = exp(
∑

i=1,2,...,q

dim(Gi )

h
∗ln(GA/CF |Gi

)).

(28)



Our Most ad hoc Rule: Abelian Subgroup

Our problem is -if we use the volume of the (faithful) image of the
group - that we do not truly know what means the “adjoint”
representation of a group with abelian invariant subgroups.
What to do, when asked for the adjoint representation of a U(1)
invariant subgroup?
We choose to choose a U(1) counted with such a size, that it
means the same volume for the “adjoint” representation as if we
have a specified size say 2π together with the simple groups being
taken as the images in the adjoint representations (i.e. with for say
SU(N) the N center-elements identified to only one).
In specified representations we can use our metric to even calculate
the size of the abelian invariant subgroups it is only the concept of
an “adjoint” representation, that makes no sense for these U(1)
invariant subgroups.



The Question of the U(1) Charges, the ratio e2
A/e2

F replacing
CA/CF .

An Abelian group representation is charaterized by its “charge” e,
which would be called eF if the representation is called F and so
on.
The in practise most important effect of the group rather than Lie
algebra is the (quantiztion rule) for the representations, so it would
be easiest for us to extract the e2

A/e2
F effectively from the

quantization rule for the U(1)-group, when we have some
complicated group like say the Standard Model one
S(U(2) × U(3)) with Lie algebra as U(1) × SU(2) × SU(3).
The Adjoint reprsentations of the simple groups such as say SU(3)
leads by exponentiation to a group isomorphic to SU(3)/Z3, and
can not allow any special fractional charge representation for the
abelian group(s).
But e.g. the triplet representation of U(3) is accompagnied by the
abelian charge being 1/3 of what it is for the adjoint
representation.



It might be nice to have in mind what the significance of e.g. the
factor 3 in the “charge ratio” eA/eF due to the SU(3) contributes,
namely a factor 9 before the 12th root is taken. Indeed

9
1
12 = 1.200936955. This means that obtaining the charge ratio

due to the SU(3) rather than there being no factor with SO(5)
(≈ Spin(5)) - not even a new Z2 to divide out when we already
have done so using SU(2)- we gain 20% in the goal quantity. The
only 4.343315332% advantage of the semi-simple SO(5) over the
SU(3) when combined to SU(2) × Spin(5) and SU(2) × SU(3)
respectively is thus rather easily overshadowed by the effect of the
eA/eF from the SU(3), which is of the order of 20 % in the goal
quantity.



U(2) = U(1) × SU(2)/Z2, obtains the goal quantiy

“CA/CF replacement forU(2)′′ =

(

22 ∗ (
8

3
)3

)
1
4

= 2.951151786.

(29)



Indeed the advange of the Standard Model group over the so
closely competing U(2) (which would physically be that there were
no strong interactions, but only the Weinberg Salam Glashow
model say) is by (2.957824511

2.951151786 − 1) ∗ 100% = .2261058%



“CA/CF replacement forU(1)′′ = (1)1 = 1 (30)

“CA/CF replacement for(U(1) × SU(2))/Z ′′
2 =(31)

(

22 ∗ (8/3)3
)

;(32)
1
4 (33)

= 2.951151786 ;(34)

“CA/CF replacement for(U(1) × SU(2) × SU(3))/Z ′′
6 =(35)

=
(

62 ∗ (8/3)3 ∗ (9/4)8
)

1
12 (36)

= 2.957824511 ;(37)

“CA/CF replacement for(U(1) × SU(2) × SU(3) × SU(5))/Z ′′
30 =(38)

(

62 ∗ (8/3)3 ∗ (9/4)8 ∗ (25/12)24
)

1
36 =(39)

= 2.341513375 .(40)

(41)

We see that in this series of the most promising candidates with
given centers of the covering groups for the simple Lie algebras the
Standard Model lies at the (flat) maximum.



Dimension of Space-time,Also

The main point of my progress since last year is to say:
The choice of dimesionality of space time, that nature have
made, - at least 3+1 for practical purpose - can be considered
also a choice of a group, - and even a gauge group if we invoke
general relativity -namely say the Lorentz group or the
Poincare group. So if we have “game” or a “goal quanity”
selecting by letting it be maximal the gauge group of the Standard
Model, it is in principle possible to ask:
Which among the as Lorentz or Poincare group applicable
groups get the highest “goal quanity” score? Which
dimension wins the competition among Lorentz or Poincare
groups?.



Continuation of start of section on “Space-time dimension,
Also”:

We would of course by extrapolation from the gauge group story
(= previous work(with Don)) expect that Nature should againhave
chosen the “winner”.
It is my point now that - with only very little cheat - I can claim
that indeed Nature has chosen that dimension d = 4
(presumably meant to be the practical one, we see, and not
necessarily the fundamental dimension, since our quantity could
represent some stability against collapsing the dimension)that
gives the biggest score for the Poincare group! (for the
Lorentz groups d = 4 and d = 3 share the winner place !)



Development of Goal Quatities for dimension fitting.

In the present talk we shall ignore antropic principle arguments for
what space time dimension should be and seek to get a statement
that the experimental number of dimensions just maximizes some
quantity, that is a relativly simple function of the group structure
of say the Lorentz group, and which we then call a “goal quantity”.



Making a “goal quantity” for Dimension a Two step
Proceedure:

◮ 1) We first use the proposals in my work with Don Bennett to
give a number - a goal quantity - for any Lie group.

◮ 2) We have to specify on which group we shall take and use
the procedure of the previous work;shall it be the Lorentz
group?, its covering group ? or somehow an attempt with the
Poincare group ? :



Developping a “Goal quantity” for “predicting”(fitting) the
Space Time dimension

A series of four proposals:

◮ a. Just take the Lorentz group and calculate for that the
Dynkin index or rather the quantity which we already used as
goal quantity in the previous work CA/CF . ( Simple except for
dimension d = 2 or smaller semi-simple Lorentz groups).



Second Development Proposal, b.

◮ b. We supplement in a somewhat ad hoc way the above a.,
i.e. CA/CF by taking its d+1

d−1 th power. The idea behind this
proposal is that we think of the Poincare group instead of as
under a. only on the Lorentz group part, though still in a
crude way. This means we think of a group, which is the
Poincare group, except that we for simplicity ignore that the
translation generators do not commute with the Lorentz group
part. Then we assign in accordance with the ad hoc rule used
for the gauge group the Abelian sub-Lie-algebra a formal
replacement 1 for the ratio of the quadratic Casimirs CA/Cf :
I.e. we put “CA/CF |

′′
Abelean formal = 1. Next we construct an

“average” averaged in a logarithmic way (meaning that we
average the logathms and then exponentiate again) weighted
with the dimension of the Lie groups over all the dimensions
of the Poincare Lie group. Since the dimension of the Lorentz
group for d dimensional space-time is d(d−1)

2 while the

Poincare group has dimensiond(d−1)
2 + d = d(d+1)

2 the
logarithmic averageing means that we get



Continuing the b.-proposal.

That is to say we shall make a certain ad hoc partial inclusion of
the Abelian dimensions in the Poincare groups.
To be concrete we here propose to say crudely: Let the poincare
group have of course d “abelian” genrators or dimensions. Let the
dimension of the Lorentz group be dLor = d(d − 1)/2; then the
total dimension of the Poincare group is
dPoi = d + dLor = d(d + 1)/2. If we crudely followed the idea of
weighting proposed in the previous article [?] as if the d “abelian”
generators were just simple cross product factors - and not as they
really are: not quite usual by not commuting with the Lorentz
generators - then since we formally are from this previous article
suggested to use the as if number 1 for the abelian groups, we
should use the quantity

(CA/CF )|
dLor
dPoi

Lor = (CA/CF )|
d−1
d+1

Lor (43)

as goal quantity.



◮ c. We could improve the above proposals for goal quantities
a. or b. by including into the quadratic Casimir CA for the
adjoint representation also contributions from the translation
generating generators, so as to define a quadratic Casimir for
the whole Poincare group. This would mean that we for
calculating our goal quantity would do as above but

Replace :CA → CA + CV , (44)

where CV is the vector representation quadratic Casimir,
meaning the representation under which the translation
generators transform under the Lorentz group. Since in the
below table we in the lines denoted “no fermions” have taken
the “small representation” F to be this vector representation
V , this replacement means, that we replace the goal quantity
ratio CA/CF like this:

(S)O(d), “no spinors”:

CA/CF = CA/CV → (CA + CV )/CF = CA/CF + 1

Spin(d), “with spinors”:

CA/CF → (CA + CV )/CF



◮ d. To make the proposal c. a bit more “fair” we should at
least say: Since we in c. considered a representation which
were only faithfull w.r.t. the Lorentz subgroup of the Poincare
group we should at least correct the quadratic Casimir -
expected crudely to be “proportinal” to the number of
dimensions of the (Lie)group - by a factor d+1

d−1 being the ratio
of the dimension of the Poincare (Lie)group, d + d(d − 1)/2
to that of actually faithfully represented Lorentz group
d(d − 1)/2. That is to say we should before forming the ratio
of the improved CA meaning CA + CV (as calculated under c.)
to CF replace this CF by d+1

d−1 ∗ CF , i.e. we perform the
replacement:

CF → CF ∗
d(d − 1)/2 + d

d(d − 2)/2
= CF ∗

d + 1

d − 1
. (51)

Inserted into (CA + CV )/CF from c. we obtain for the in this
way made more “fair” approximate “goal quantity”

“goal quantity”|no spinor = (CA/CF + 1) ∗
d − 1

d + 1

“goal quantity”| = (1 + (C /C )|−1 ) ∗ C /C ∗
d



The reader should consider these different proposals for a quantity
to maximize (= use as goal quantiy) as rather closely related
versions of a quantity suggested by a perhaps a bit vague idea
being improved successively by treating the from our point of view
a bit more difficult to treat Abelian part (the translation part of
the Poincare group) at least in an approximate way. One should
have in mind, that this somewhat vague basic idea behind is: The
group selected by nature is the one that counted in a
“normalization determined from the Lie algebra of the group” can
be said to have a faithfull representation (F ) the matrices of which
move as little as possible, when the group element being
represented move around in the group.
Let me at least clarify a bit, what is meant by this statement:
We think by representations as usual on linear representations, and
thus it really means representation of the group by means of a
homomorphism of the group into a group of matrices. The
requirement of the representation being faithful then means, that
this group of matrices shall actually be an isomorphic image of the
original group. Now on a system of matrices we have a natural
metric, namely the metric in which the distance between two



But let us stress that you can also look at the present work and
the previous one in the following phenomenological philosophy:
We wonder, why Nature has chosen just 4 (=3+1) dimensions and
why Nature - at the present experimentally accessible scale at least
- has chosen just the Standard Model group S(U(2) × U(3))?
Then we speculate that there might be some quantity
characterizing groups, which measures how well they “are suited ”
to be the groups for Nature. And then we begin to seek that
quantity as being some function defined on the class of abstract
groups - i.e. giving a number for each abstract (Lie?) group - of
course by proposing for ourselves at least various versions or ideas
for what such a relatively simple function defined on the abstract
Lie groups could be. Then the present works - this paper and the
previous one[?] - represents the present status of the search: We
found that with small variations the types of such functions
representing the spirit of the little motion of the “best” faithful

representation,i.e. essentially the largest CA/CF , turned out truly
to bring Natures choices to be (essentially) the winners.
In this sense we may then claim that we have found by
phenomenology that at least the “direction” of a quantity like



Di- Lorentz Ratio Ratio c.-quan- d−1
d+1 d.-quan-

men- group, CA/CF CA/CF as tity tity
sion covering for spinor no spinor max c) max d)

21 U(1) -(for- -(for- 4 1/3 4/3
mally 2) mally 1) =1.33

3 spin(3) 8
3 = 2.67 1 16

3 = 5.3 2
4

8
3 = 2.67

4 Spin(4) 8
3

4
3

14
3

3
5

14
5

SU(2)× =2.67 =4.67
SU(2) =2.8

5 Spin(5) 12
5 = 2.4 3

2 = 1.5 4 4
6

8
3 = 2.67

6 Spin(6) 32
15

8
5 = 1.6 52

15 = 3.5 5
7

52
21 = 2.5

d Spin(d) 8(2n−1)
n(2n+1) = 2 − 1/n = 8(3d−5)

d(d−1)
d−1
d+1

8(3d−5)
d(d+1)

odd 16(d−2)
d(d−1) 2 − 2

d−1

d Spin(d) 16(d−2)
d(d−1)

4(n−1)
2n−1

8(3d−5)
d(d−1)

d−1
d+1

8(3d−5)
d(d+1)

even = 2d−4
d−1

d Spin(d) ≈ 16/d → 2 ≈ 24/d → 1 ≈ 24/d

∞ → 0

d Spin(d) ≈ 16/d → 2 ≈ 24/d → 1 ≈ 24/d



Caption:
We have put the goal-numbers for the third proposal c in which I
(a bit more in detail) seek to make an analogon to the number
used in the reference [?] in which we studied the gauge group of
the Standard Model. The purpose of c. is to approximate using
the Poincare group a bit more detailed, but still not by making a
true representation of the Poincare group. I.e. it is still not truly
the Poincare group we represent faithfully, but only the Lorentz
group, or here in the table only the covering group Spin(d) of the
Lorentz group. However, I include in the column marked “c., max
c)” in the quadratic Casimir CA of the Lorentz group an extra term
coming from the structure constants describing the
non-commutativity of the Lorentz group generators with the
translation generators CV so as to replace CA in the starting
expression of ours CA/CF by CA + CV . In the column marked “d.,
max d) ” we correct the ratio to be more “fair” by counting at
least that because of truly faithfully represented part of the
Poincare group in the representations, I use, has only dimension
d(d − 1)/2 (it is namely only the Lorentz group) while the full
Poincare group - which were already in c. but also in d. used in



Di- Lorentz Ratio Ratio c.- d.-
men- group CF/CA CA/CF quantity quantity
sion (covering) for spinor “no spinor” max c) max d)

22 U(1) -(f.: 2) -(f.: 1) 4 4/3=1.33

3 spin(3) 8
3 = 2.67 1 16

3 = 5.33 8
3 = 2.67

4 Spin(4) 8
3 = 2.67 4

3
14
3 = 4.67 14

5 = 2.8
= SU(2)
×SU(2)

5 Spin(5) 12
5 = 2.4 3

2 = 1.5 4 8
3 = 2.6667

6 Spin(6) 32
15

8
5 = 1.6 52

15 = 3.47 52
21 = 2.4762

d odd Spin(d) 8(2n−1)
n(2n+1) 2 − 1/n = 8(3d−5)

d(d−1)
8(3d−5)
d(d+1)

= 16(d−2)
d(d−1) 2 − 2/(d − 1)

d even Spin(d) 16(d−2)
d(d−1)

4(n−1)
2n−1 = 2d−4

d−1
8(3d−5)
d(d−1)

8(3d−5)
d(d+1)

d odd Spin(d) ≈ 16/d → 2 ≈ 24/d ≈ 24/d →
→ ∞

d even Spin(d) ≈ 16/d → 2 ≈ 24/d ≈ 24/d →
→ ∞


