Unitarization and resonances in $W_L W_L$ and hh scattering

Felipe J. Llanes-Estrada

Universidad Complutense de Madrid July 12th, 2015 based on PRL**114** (2015) 22, 221803; PRD**91** (2015) 7, 075017; JHEP**1402** (2014) 121; JPG**41** (2014) 025002 in coll. with Antonio Dobado and Rafael L. Delgado, and on D.Barducci *et al.* PRD**91** (2015) 9, 095013.

Workshop Bled 2015: What comes beyond the Standard Model

Content

The Higgs and nothing more yet

Nonlinear Electroweak Symmetry Breaking Sector

A few well-known resonances

Coupled channel resonance

Outline

The Higgs and nothing more yet

Nonlinear Electroweak Symmetry Breaking Sector

A few well-known resonances

Coupled channel resonance

The boson and the gap

Very narrow... (visible $\Gamma \rightarrow expt.$ resolution)

It clearly fits the Bled 2015 criterion

F. J. Llanes-Estrada Unitarization and resonances in W₁ W₁ and hh scattering

The boson and the gap

F. J. Llanes-Estrada Unitarization and resonances in W₁ W₁ and hh scattering

The boson and the gap

WW spectrum from ATLAS (1506.00962)

$t\bar{t}$ spectrum from CMS (1506.0306)

The boson and the gap

- Option 1: the SM is largely right, no new particles below e.g. GUT scale
- Option 2 (a wish?): new physics at ~ few TeV.
 Then...
- Quantum corrections $\delta M_h \propto \Lambda_{\rm NP}^2$; perhaps a symmetry argument sets them to 0?

The boson and the gap

- Option 1: the SM is largely right, no new particles below e.g. GUT scale
- Option 2 (a wish?): new physics at ~ few TeV.
 Then...
- Quantum corrections $\delta M_h \propto \Lambda_{\rm NP}^2$; perhaps a symmetry argument sets them to 0?

The boson and the gap

- Option 1: the SM is largely right, no new particles below e.g. GUT scale
- Option 2 (a wish?): new physics at ~ few TeV.
 Then...
- Quantum corrections $\delta M_h \propto \Lambda_{\rm NP}^2$; perhaps a symmetry argument sets them to 0?

Outline

The Higgs and nothing more yet

Nonlinear Electroweak Symmetry Breaking Sector

A few well-known resonances

Coupled channel resonance

Plato or Aristotle?

There are beautiful things we do not (yet) see that you could include in your model

You should include only those things that are seen

Plato or Aristotle?

Greece should pay its debts in full cutting and saving as necessary

The economy will collapse and we will not be able to repay anything

Particle content

- Electroweak sector:
 3 long. vector bosons W[±]_L, Z_L, Higgs h
- Hadron physics: 3π , 4K, η

Global Symmetries

Local symmetries cannot be broken (Elizur's theorem); Electroweak symmetry breaking is about a global symmetry, just like QCD.

- Electroweak sector: $SU(2) \times SU(2) \rightarrow SU(2)_{custodial}$
- Hadron physics: $SU(2)_{\text{left}} \times SU(2)_{\text{right}} \rightarrow SU(2)_{\text{Isospin}}$

(Note I am skipping all the U(1)'s)

If additionally the Higgs is a Goldstone boson itself

This work: nonlinear realization of low-E Lagrangian (a bit more general than SM Higgs-weak-doublet structure)

Global Symmetries

- ▶ Minimum composite Higgs models: $SO(5) \rightarrow SO(4) \simeq SU(2) \times SU(2) \rightarrow SU(2)$ Higgs doublet; (W_L^{\pm}, Z_L, h)
- Dilaton models (now disfavored by hyy, hgg couplings)

(Agashe, Contino and Pomarol, NPB**719**, 165, 2005; Goldberger, Grinstein and Skiba, PRL 100 (2008) 111802; Giardino *et al.* JHEP 1405 (2014) 046.)

/□ ▶ < 글 ▶ < 글

Effective Lagrangian for EWSBS (massless particles)

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + \sum_{D>4} \sum_k rac{c_k^D}{\Lambda_{ ext{NP}}^{D-4}} O_k^{(D)}$$

- D=5: only Weinberg L-violating operator, nothing to do with WW
- D=6: 1149 operators that respect L (R. Alonso et al. JHEP 1404 (2014) 159.)
- ► Forget flavor: concentrate on *WW*
- It is most convenient to use massless
 Goldstone-bosons instead of massive W's

The Higgs and nothing more yet Nonlinear Electroweak Symmetry Breaking Sector A few well-known resonances

Coupled channel resonance

Here the "convenient" Goldstone version of $W_L W_L$

(Automated by Madrid grad student Rafael L. Delgado)

F. J. Llanes-Estrada Unitarization and resonances in W_LW_L and hh scattering

Effective Lagrangian for EWSBS (massless particles)

$$\mathcal{L} = \frac{1}{2} \left(1 + 2a\frac{h}{v} + b\left(\frac{h}{v}\right)^2 \right) \partial_\mu \pi^a \partial^\mu \pi^b \left(\delta_{ab} + \frac{\pi^a \pi^b}{v^2} \right) + \frac{1}{2} \partial_\mu h \partial^\mu h \\ + \frac{4a_4}{v^4} \partial_\mu \pi^a \partial_\nu \pi^a \partial^\mu \pi^b \partial^\nu \pi^b + \frac{4a_5}{v^4} \partial_\mu \pi^a \partial^\mu \pi^a \partial_\nu \pi^b \partial^\nu \pi^b + \frac{g}{v^4} (\partial_\mu h \partial^\mu h)^2 \\ + \frac{2d}{v^4} \partial_\mu h \partial^\mu h \partial_\nu \pi^a \partial^\nu \pi^a + \frac{2e}{v^4} \partial_\mu h \partial^\nu h \partial^\mu \pi^a \partial_\nu \pi^a$$

► Equivalence Theorem (between scattering amplitudes with π Goldstone bosons and longitudinal component of vector bosons): $A(\pi\pi) = A(W_L W_L) + O(m_W^2/s)$

• To be used in energy region $m_W^2 \ll s \ll (4\pi v)^2$

Effective Lagrangian for EWSBS (massless particles)

$$\mathcal{L} = \frac{1}{2} \left(1 + 2a\frac{h}{v} + b\left(\frac{h}{v}\right)^2 \right) \partial_\mu \pi^a \partial^\mu \pi^b \left(\delta_{ab} + \frac{\pi^a \pi^b}{v^2} \right) + \frac{1}{2} \partial_\mu h \partial^\mu h \\ + \frac{4a_4}{v^4} \partial_\mu \pi^a \partial_\nu \pi^a \partial^\mu \pi^b \partial^\nu \pi^b + \frac{4a_5}{v^4} \partial_\mu \pi^a \partial^\mu \pi^a \partial_\nu \pi^b \partial^\nu \pi^b + \frac{g}{v^4} (\partial_\mu h \partial^\mu h)^2 \\ + \frac{2d}{v^4} \partial_\mu h \partial^\mu h \partial_\nu \pi^a \partial^\nu \pi^a + \frac{2e}{v^4} \partial_\mu h \partial^\nu h \partial^\mu \pi^a \partial_\nu \pi^a$$

► Equivalence Theorem (between scattering amplitudes with π Goldstone bosons and longitudinal component of vector bosons): $A(\pi\pi) = A(W_L W_L) + O(m_W^2/s)$

• To be used in energy region $m_W^2 \ll s \ll (4\pi v)^2$

Amplitude structure

I, J-projected amplitudes

$$A_{IJ}(s) = \frac{1}{64 \pi} \int_{-1}^{1} d(\cos \theta) P_J(\cos \theta) A_I(s, t, u)$$

Chiral-momentum expansion

$$A_{I}^{J}(s) = A_{IJ}^{(0)}(s) + A_{IJ}^{(1)}(s) + \dots$$

$$A_{IJ}(s) = Ks + \left(B(\mu) + D\log\frac{s}{\mu^2} + E\log\frac{-s}{\mu^2}\right)s^2 + \mathcal{O}$$

Unitarity is only satisfied perturbatively.,

ChPT in terms of Goldstone bosons not really usable

- At low *E*, small *p* (ChPT converges) but $\pi \neq W_L$
- At high *E*, $\pi \simeq W_L$ but *p* high (not convergent)

Solution: employ Unitarized ChPT at the TeV scale

- \blacktriangleright Reliable at somewhat higher $E \checkmark$
- Equivalence theorem $\pi \simeq W_L$ \checkmark

ChPT in terms of Goldstone bosons not really usable

- At low *E*, small *p* (ChPT converges) but $\pi \neq W_L$
- At high E, $\pi \simeq W_L$ but p high (not convergent)

Solution: employ Unitarized ChPT at the TeV scale

- \blacktriangleright Reliable at somewhat higher E \checkmark
- Equivalence theorem $\pi \simeq W_L$ 🗸

We use three unitarization methods

Some technical improvements:

- ▶ 2-subtraction derivation of IAM (for m = 0)
- New solution for the once-iterated N/D method, separating L and R cuts (at the expense of losing 11-channel)
- Improved K-matrix: unitary, also analytic

IJ	00	02	11	20	22	
Method	Any	N/D, IK	IAM	Any	N/D, IK	

When all three can be used, good qualitative agreement.

We use three unitarization methods

Some technical improvements:

- ▶ 2-subtraction derivation of IAM (for m = 0)
- New solution for the once-iterated N/D method, separating L and R cuts (at the expense of losing 11-channel)
- Improved K-matrix: unitary, also analytic

IJ	00	02	11	20	22
Method	Any	N/D, IK	IAM	Any	N/D, IK

When all three can be used, good qualitative agreement.

We use three unitarization methods

Some technical improvements:

- ▶ 2-subtraction derivation of IAM (for m = 0)
- New solution for the once-iterated N/D method, separating L and R cuts (at the expense of losing 11-channel)
- Improved K-matrix: unitary, also analytic

IJ	00	02	11	20	22
Method	Any	N/D, IK	IAM	Any	N/D, IK

When all three can be used, good qualitative agreement.

The Inverse Amplitude Method

$$A_{IJ} = \frac{\left(A_{IJ}^{(0)}\right)^2}{A_{IJ}^{(0)} - A_{IJ}^{(1)}}$$

- Dispersion relation for A(s): exact but useless
- ▶ Dispersion relation for $A^{(0)} + A^{(1)}$: trivial
- ► The trick is to write one for (A⁽⁰⁾)²/A
 (Truong; Dobado, Herrero and Truong)

The Inverse Amplitude Method

$$A_{IJ} = \frac{\left(A_{IJ}^{(0)}\right)^2}{A_{IJ}^{(0)} - A_{IJ}^{(1)}}$$

- Dispersion relation for A(s): exact but useless
- Dispersion relation for $A^{(0)} + A^{(1)}$: trivial
- ► The trick is to write one for $\frac{(A^{(0)})^2}{A}$ (Truong; Dobado, Herrero and Truong)

The Inverse Amplitude Method

$$A_{IJ} = \frac{\left(A_{IJ}^{(0)}\right)^2}{A_{IJ}^{(0)} - A_{IJ}^{(1)}}$$

- Dispersion relation for A(s): exact but useless
- Dispersion relation for $A^{(0)} + A^{(1)}$: trivial

► The trick is to write one for $\frac{(A^{(0)})^2}{A}$ (Truong; Dobado, Herrero and Truong)

The Inverse Amplitude Method

$$A_{IJ} = \frac{\left(A_{IJ}^{(0)}\right)^2}{A_{IJ}^{(0)} - A_{IJ}^{(1)}}$$

- Dispersion relation for A(s): exact but useless
- Dispersion relation for $A^{(0)} + A^{(1)}$: trivial

► The trick is to write one for $\frac{(A^{(0)})^2}{A}$ (Truong; Dobado, Herrero and Truong)

A word on the parameters

- Standard Model: a = b = 1
- Higgsless EW-symmetry sector: a = b = 0 (ruled out)
- Dilaton model: $a^2 = b = \xi^2 = v^2/f^2$ (disfavored)
- Composite Higgs model: $a = \sqrt{1-\xi}$, $b = 1 2\xi$ (open)

A word on the parameters

F. J. Llanes-Estrada Unitarization and resonances in $W_L W_L$ and hh scattering

Gell-Mann's totalitarian principle

Everything not forbidden is compulsory

The most general effective Lagrangian deviates from the Standard Model, and requires either new physics or it becomes strongly interacting (new physics!)

 The Standard Model is a fine-tuned, zero measure case (but renormalizable)

Gell-Mann's totalitarian principle

Everything not forbidden is compulsory

- The most general effective Lagrangian deviates from the Standard Model, and requires either new physics or it becomes strongly interacting (new physics!)
- The Standard Model is a fine-tuned, zero measure case (but renormalizable)

The moment $a \neq 1$ or $b \neq a^2$, strong coupling

$$A_0^0 = \frac{1}{16\pi v^2} (1-a^2)s$$

$$A_1^1 = \frac{1}{96\pi v^2} (1-a^2)s$$

$$A_2^0 = -\frac{1}{32\pi v^2} (1-a^2)s$$

$$M^0 = \frac{\sqrt{3}}{32\pi v^2} (a^2-b)s$$

A word on the parameters

$$\mathcal{L} = \frac{1}{2} \left(1 + 2\mathbf{a}\frac{\mathbf{h}}{\mathbf{v}} + \mathbf{b}\left(\frac{\mathbf{h}}{\mathbf{v}}\right)^2 \right) \partial_\mu \pi^a \partial^\mu \pi^b \left(\delta_{ab} + \frac{\pi^a \pi^b}{\mathbf{v}^2} \right) + \frac{1}{2} \partial_\mu h \partial^\mu h \\ + \frac{4\mathbf{a}_4}{\mathbf{v}^4} \partial_\mu \pi^a \partial_\nu \pi^a \partial^\mu \pi^b \partial^\nu \pi^b + \frac{4\mathbf{a}_5}{\mathbf{v}^4} \partial_\mu \pi^a \partial^\mu \pi^a \partial_\nu \pi^b \partial^\nu \pi^b + \frac{\mathbf{g}}{\mathbf{v}^4} (\partial_\mu h \partial^\mu h)^2 \\ + \frac{2\mathbf{d}}{\mathbf{v}^4} \partial_\mu h \partial^\mu h \partial_\nu \pi^a \partial^\nu \pi^a + \frac{2\mathbf{e}}{\mathbf{v}^4} \partial_\mu h \partial^\nu h \partial^\mu \pi^a \partial_\nu \pi^a$$

Image: A mathematical states and a mathem

э

Outline

The Higgs and nothing more yet

Nonlinear Electroweak Symmetry Breaking Sector

A few well-known resonances

Coupled channel resonance

The scalar-isoscalar σ

Unitarization and resonances in $W_L W_L$ and hh scattering

Scalar-isoscalar: independence of unitarization method

 $\pi\pi \rightarrow \pi\pi$ $hh \rightarrow hh$ $\pi\pi \rightarrow hh$ Unitarization + analyticity in complex plane \rightarrow scalar resonance (a=0.88, b=3, μ =3 TeV)

- ∢ ≣ ▶

< 67 ▶

The Higgs and nothing more yet Nonlinear Electroweak Symmetry Breaking Sector A few well-known resonances

Vector-isovector resonance: the ρ

F. J. Llanes-Estrada

Unitarization and resonances in $W_I W_I$ and hh scattering

Vector-isovector resonance: the ρ

A word on Composite Higgs Models

Generally, both vector and axial resonances. We worked in two versions of the model

- m_a finite: indep. variables are $f, m_\rho, \Gamma_\rho, g_{\rho\pi\pi}$.
- $m_a \to \infty$: $g_{\rho\pi\pi} = \sqrt{2}m_{\rho}/f$ and there is a KSFR relation $\Gamma_{\rho\pi\pi} = \frac{m_{\rho}^3}{192\pi f^2}$.

A word on Composite Higgs Models

Generally, both vector and axial resonances. We worked in two versions of the model

- m_a finite: indep. variables are $f, m_\rho, \Gamma_\rho, g_{\rho\pi\pi}$.
- $m_a \to \infty$: $g_{\rho\pi\pi} = \sqrt{2} m_{\rho}/f$ and there is a KSFR relation $\Gamma_{\rho\pi\pi} = \frac{m_{\rho}^3}{192\pi f^2}$.

A word on Composite Higgs Models

Generally, both vector and axial resonances. We worked in two versions of the model

- m_a finite: indep. variables are $f, m_\rho, \Gamma_\rho, g_{\rho\pi\pi}$.
- $m_a \to \infty$: $g_{\rho\pi\pi} = \sqrt{2} m_{\rho}/f$ and there is a KSFR relation $\Gamma_{\rho\pi\pi} = \frac{m_{\rho}^3}{192\pi f^2}$.

A word on Composite Higgs Models

A couple of useful relations,

- ▶ Partial wave in the scalar channel $a_0^0(s) = K_1 s + K_2 \left[\left(\frac{m_\rho^2}{s} + 2 \right) \log \left(1 + \frac{s}{m_\rho^2} \right) - 1 \right]$
- ▶ Inelastic $\pi\pi \rightarrow hh$ scattering not independent $(a^2 b) = (1 a^2)$

More on the ρ : a word on Composite Higgs Models

Coupling a ρ -like state to the low-energy particles improves unitarity: the σ recedes to higher mass.

- Narrow resonance \rightarrow KSFR relation in EFT
- Tree-level resonance \rightarrow EFT matching
- $\succ \Gamma^{\text{IAM}} = \frac{M_{\text{IAM}}^3}{96\pi v^2} (1 \mathbf{a}^2)$
- For $M\sim 2$ TeV, $\Gamma\sim 0.2$ TeV, get a ~ 0.73
- In tension with ATLAS' a|_{2σ} > 0.88 at 4-5σ level (but careful with instrumental resolution, it could be narrower than measured)
- ▶ What with the ZZ channel...

- \blacktriangleright Narrow resonance \rightarrow KSFR relation in EFT
- \blacktriangleright Tree-level resonance \rightarrow EFT matching
- $\mathbf{F}^{\mathrm{IAM}} = \frac{M_{\mathrm{IAM}}^3}{96\pi v^2} (1 \mathbf{a}^2)$
- For $M\sim 2$ TeV, $\Gamma\sim 0.2$ TeV, get a ~ 0.73
- In tension with ATLAS' a|_{2σ} > 0.88 at 4-5σ level (but careful with instrumental resolution, it could be narrower than measured)
- ▶ What with the ZZ channel...

- Narrow resonance \rightarrow KSFR relation in EFT
- Tree-level resonance \rightarrow EFT matching

$$\Gamma^{\mathrm{IAM}} = \frac{M_{\mathrm{IAM}}^3}{96\pi v^2} (1 - \mathbf{a}^2)$$

- For $M\sim 2$ TeV, $\Gamma\sim 0.2$ TeV, get a ~ 0.73
- In tension with ATLAS' a|_{2σ} > 0.88 at 4-5σ level (but careful with instrumental resolution, it could be narrower than measured)
- ▶ What with the ZZ channel...

- Narrow resonance \rightarrow KSFR relation in EFT
- Tree-level resonance \rightarrow EFT matching

$$\blacktriangleright \Gamma^{\text{IAM}} = \frac{M_{\text{IAM}}^3}{96\pi v^2} (1 - \mathbf{a}^2)$$

- \blacktriangleright For $M\sim 2$ TeV, $\Gamma\sim 0.2$ TeV, get a ~ 0.73
- In tension with ATLAS' a|_{2σ} > 0.88 at 4-5σ level (but careful with instrumental resolution, it could be narrower than measured)
- ▶ What with the ZZ channel...

- Narrow resonance \rightarrow KSFR relation in EFT
- Tree-level resonance \rightarrow EFT matching

$$\Gamma^{\mathrm{IAM}} = \frac{M_{\mathrm{IAM}}^3}{96\pi v^2} (1 - \mathbf{a}^2)$$

- For $M\sim 2$ TeV, $\Gamma\sim 0.2$ TeV, get $\mathbf{a}\sim 0.73$
- In tension with ATLAS' a|_{2σ} > 0.88 at 4-5σ level (but careful with instrumental resolution, it could be narrower than measured)
- ▶ What with the ZZ channel...

- \blacktriangleright Narrow resonance \rightarrow KSFR relation in EFT
- Tree-level resonance \rightarrow EFT matching

$$\Gamma^{\mathrm{IAM}} = \frac{M_{\mathrm{IAM}}^3}{96\pi v^2} (1 - \mathbf{a}^2)$$

- For $M\sim 2$ TeV, $\Gamma\sim 0.2$ TeV, get $\mathbf{a}\sim 0.73$
- In tension with ATLAS' a|_{2σ} > 0.88 at 4-5σ level (but careful with instrumental resolution, it could be narrower than measured)
- What with the ZZ channel...

Other options?

Scalar-isoscalar: what is with WZ? misreconstruction of mass?

- Scalar-isotensor: a = 1.05, $a_4 = 1.25 \times 10^{-4}$
- ▶ In this case I = 2, W^+W^+
- For the time being, need more data

→ 3 → 4 3

A 10

Other options?

- Scalar-isoscalar: what is with WZ? misreconstruction of mass?
- Scalar-isotensor: $a = 1.05, a_4 = 1.25 \times 10^{-4}$
- ▶ In this case I = 2, W^+W^+
- For the time being, need more data

→ 3 → < 3</p>

Other options?

- Scalar-isoscalar: what is with WZ? misreconstruction of mass?
- Scalar-isotensor: $a = 1.05, a_4 = 1.25 \times 10^{-4}$
- In this case I = 2, W^+W^+
- For the time being, need more data

Other options?

- Scalar-isoscalar: what is with WZ? misreconstruction of mass?
- Scalar-isotensor: a = 1.05, $a_4 = 1.25 \times 10^{-4}$
- In this case I = 2, W^+W^+
- For the time being, need more data

The Higgs and nothing more yet Nonlinear Electroweak Symmetry Breaking Sector A few well-known resonances

Coupled channel resonance

Repulsive scalar-isotensor wave

F. J. Llanes-Estrada

Unitarization and resonances in $W_I W_I$ and hh scattering

Isotensor channel: repulsive for $a^2 < 1$

a = 0.88 (The LO amplitude has opposite sign as the scalar)

That's my sign of $1 - a^2$, if you don't like it...

$$egin{aligned} &\mathcal{A}_0^0 \propto +(1-a^2) \ &\mathcal{A}_2^0 \propto -(1-a^2) \end{aligned}$$

Isotensor channel: attractive for $a^2 > 1$

a = 1.15

- Hadron physics just does not work this way, but there could be a W⁺W⁺ "exotic" resonance... only then, no σ.
- Remember that the spin-orbit interaction has opposite sign in atomic and in nuclear physics.

Tensor isoscalar f_2

F. J. Llanes-Estrada

Electroweak sector: can also produce f_2

э

Tensor-isotensor channel

- Nothing there in hadron physics (no exotic, doubly charged tensor meson)
- ▶ Large enough *a*⁴ can produce such a resonance
- But $M_{22} > M_{11}$ so the ρ will be found first

< ∃ >

Tensor-isotensor channel

- Nothing there in hadron physics (no exotic, doubly charged tensor meson)
- ► Large enough *a*₄ can produce such a resonance
- But $M_{22} > M_{11}$ so the ρ will be found first

30.00

Tensor-isotensor channel

- Nothing there in hadron physics (no exotic, doubly charged tensor meson)
- Large enough a₄ can produce such a resonance
- But $M_{22} > M_{11}$ so the ρ will be found first

Oh NO! HE'S GOING TO SHOW THEM ALL!

- Don't worry, that's it. With NLO we have two powers of s;
 - We cannot reach partial waves with J > 2
- Except... I can still go on with the coupled channels to *hh*

A 3 3 4 4

Oh NO! HE'S GOING TO SHOW THEM ALL!

- Don't worry, that's it. With NLO we have two powers of s;
 We cannot reach partial waves with J > 2
- Except... I can still go on with the coupled channels to *hh*

Oh NO! HE'S GOING TO SHOW THEM ALL!

- Don't worry, that's it. With NLO we have two powers of s;
 - We cannot reach partial waves with J > 2
- Except... I can still go on with the coupled channels to hh

Outline

The Higgs and nothing more yet

Nonlinear Electroweak Symmetry Breaking Sector

A few well-known resonances

Coupled channel resonance

Coupled channel resonance

Example in hadron physics: $\phi N \rightarrow K^* \Lambda$ by Oset and Ramos, EPJA**44** (2010) 445, Khemchandani *et al* PRD**83** (2011) 114041. Perhaps more fun,

- $C_2 O_2 \rightarrow C_2 O_2$ weak... Van der Waals interaction
- \blacktriangleright CO CO \rightarrow CO CO weak... dipole-dipole interaction, but
- $C_2 O_2 \rightarrow CO CO$ strong! combustion!

- 4 同 ト 4 ヨ ト 4 ヨ ト

Coupled channel resonance

Example in hadron physics: $\phi N \rightarrow K^* \Lambda$ by Oset and Ramos, EPJA**44** (2010) 445, Khemchandani *et al* PRD**83** (2011) 114041. Perhaps more fun,

- $C_2 \ O_2 \rightarrow C_2 \ O_2$ weak... Van der Waals interaction
- CO CO \rightarrow CO CO weak... dipole-dipole interaction, but
- $C_2 O_2 \rightarrow CO CO$ strong! combustion!

- 4 同 ト 4 ヨ ト 4 ヨ ト

Coupled channel resonance

Example in hadron physics: $\phi N \rightarrow K^* \Lambda$ by Oset and Ramos, EPJA**44** (2010) 445, Khemchandani *et al* PRD**83** (2011) 114041. Perhaps more fun,

- $C_2 O_2 \rightarrow C_2 O_2$ weak... Van der Waals interaction
- ▶ CO CO \rightarrow CO CO weak... dipole-dipole interaction, but

• $C_2 O_2 \rightarrow CO CO$ strong! combustion!

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Coupled channel resonance

Example in hadron physics: $\phi N \rightarrow K^* \Lambda$ by Oset and Ramos, EPJA**44** (2010) 445, Khemchandani *et al* PRD**83** (2011) 114041. Perhaps more fun,

- $C_2 O_2 \rightarrow C_2 O_2$ weak... Van der Waals interaction
- ▶ CO CO \rightarrow CO CO weak... dipole-dipole interaction, but
- $C_2 O_2 \rightarrow CO CO$ strong! combustion!

Coupled channel resonance

Here, for I = 0, two channels: *hh* and $W_L W_L$

Coupled channel resonance

 $a^2 = 1 \neq b = 2$

pole in the second Riemann sheet

Motion of pole in the complex plane

Motivation: no bound on b

э

Motivation: no bound on b

Because it hasn't been seen below about 700 GeV...

 $b\in (-1,3)$

Swipe parameter space: here a_4 and a_5

- ▶ a = 0.90, b = a² PRD **91** (2015) 075017
- From left, clockwise, IJ = 00, 11, 20
- Excluding resonances
 M_S < 700 GeV, M_V < 1.5 TeV

Generic conclusions

- A generic Electroweak Symmetry Breaking Sector of the SM is strongly coupled and there are hadron analogies.
- ▶ BSM scenarios with $m_{\sigma} \sim 1$ TeV, $m_{\rho} \sim 2$ TeV, and other resonances higher up, perfectly viable.
- The theory reach is 4πv ~ O(3)TeV and the LHC run II can falsify it.

Specific conclusions

- Unitarization methods agree qualitatively in predicting similar resonances for same parameter set
- ▶ In CHM $\frac{\partial m_{\sigma}}{\partial m_{\rho}} < 0$ (while in generic theories, because of unitarity in A_0^0 , the inequality is reversed).
- Possible coupled-channel resonance in $W_L W_L \rightarrow hh$ proposed.
- First bound on the b parameter, $b \in (-1,3)$

- 4 同 ト 4 戸 ト 4 戸

Set out to map this parameter space at the LHC

The world as understood in 1490

And perhaps we'll come to a new shore

F. J. Llanes-Estrada Unitarization and resonances in W_LW_L and hh scattering

- 4 同 🕨 - 4 目 🕨 - 4 目

Unitarization and resonances in $W_L W_L$ and hh scattering

Felipe J. Llanes-Estrada

Universidad Complutense de Madrid July 12th, 2015 based on PRL**114** (2015) 22, 221803; PRD**91** (2015) 7, 075017; JHEP**1402** (2014) 121; JPG**41** (2014) 025002 in coll. with Antonio Dobado and Rafael L. Delgado, and on D.Barducci *et al.* PRD**91** (2015) 9, 095013.

Workshop Bled 2015: What comes beyond the Standard Model

The three unitarization methods

$$\begin{split} A^{\text{IAM}}(s) &= \frac{[A^{(0)}(s)]^2}{A^{(0)}(s) - A^{(1)}(s)} \\ &= \frac{A^{(0)}(s) + A_L(s)}{1 - \frac{A_R(s)}{A^{(0)}(s)} - \left(\frac{A_L(s)}{A^{(0)}(s)}\right)^2 + g(s)A_L(s)} \\ A^{\text{N/D}}(s) &= \frac{A^{(0)}(s) + A_L(s)}{1 - \frac{A_R(s)}{A^{(0)}(s)} + \frac{1}{2}g(s)A_L(-s)} \\ A^{\text{IK}}(s) &= \frac{A^{(0)}(s) + A_L(s)}{1 - \frac{A_R(s)}{A^{(0)}(s)} + g(s)A_L(s)}. \end{split}$$

э

Independence on the renormalization scale

1-Loop divergences absorbed in NLO a_4 , a_5 ... counterterms \checkmark

But we may plot A_0^0 , a = 1, b = 2, NLO set to zero for all μ .

F. J. Llanes-Estrada Unitarization and resonances in W_LW_L and hh scattering

Resonances in $W_L W_L \rightarrow W_L W_L$ due to a and a_4 parameters

- ▶ b = a² PRD **91** (2015) 075017
- From left, clockwise, IJ = 00, 11, 20
- Excluding resonances
 M_S < 700 GeV, M_V < 1.5 TeV

Resonances in $W_L W_L \rightarrow W_L W_L$ due to *a* and *b* parameters

- From left, clockwise, IJ = 00, 11, 20
- Excluding resonances
 M_S < 700 GeV, M_V < 1.5 TeV
- Constraint over *b* even without data about $W_L W_L \rightarrow hh$ and $hh \rightarrow hh$ scattering processes.

Unitarization and resonances in $W_I W_I$ and *hh* scattering

Resonances in $W_L W_L \rightarrow W_L W_L$ due to *b*, *g*, *d* and *e* parameters

Effective Theory, PRD **91** (2015) 075017, isoscalar channels (I = J = 0)

∃ → < ∃</p>

IAM derivation

A. Dobado and J. R. Peláez, PRD56, 3057 (1997)

$$\begin{aligned} A_{IJ}^{(0)} &= a_0 + a_1 s \\ A_{IJ}^{(1)} &= b_0 + b_1 s + b_2 s^2 + \frac{s^3}{\pi} \int_{(M_\alpha + M_\beta)^2}^{\infty} \frac{\operatorname{Im} A_{IJ}^{(1)}(s') ds'}{s'^3 (s' - s - i\epsilon)} + LC(A_{IJ}^{(1)}) \\ \frac{A_{IJ}^{(0)2}}{A_{IJ}} &\simeq a_0 + a_1 s - b_0 - b_1 s - b_2 s^2 \\ &- \frac{s^3}{\pi} \int_{(M_\alpha + M_\beta)^2}^{\infty} \frac{\operatorname{Im} A_{IJ}^{(1)}(s') ds'}{s'^3 (s' - s - i\epsilon)} - LC(A_{IJ}^{(1)}) + PC \simeq A_{IJ}^{(0)} - A_{IJ}^{(1)} \\ A_{IJ} \simeq \frac{A_{IJ}^{(0)2}}{A_{IJ}^{(0)} - A_{IJ}^{(1)}} \end{aligned}$$

F. J. Llanes-Estrada Unitarization and resonances in W_LW_L and hh scattering

IAM derivation

A. Dobado and J. R. Peláez, PRD56, 3057 (1997)

$$\begin{aligned} A_{IJ}^{(0)} &= a_0 + a_1 s \\ A_{IJ}^{(1)} &= b_0 + b_1 s + b_2 s^2 + \frac{s^3}{\pi} \int_{(M_\alpha + M_\beta)^2}^{\infty} \frac{\mathrm{Im} A_{IJ}^{(1)}(s') ds'}{s'^3(s' - s - i\epsilon)} + LC(A_{IJ}^{(1)}) \\ \frac{A_{IJ}^{(0)2}}{A_{IJ}} &\simeq a_0 + a_1 s - b_0 - b_1 s - b_2 s^2 \\ &- \frac{s^3}{\pi} \int_{(M_\alpha + M_\beta)^2}^{\infty} \frac{\mathrm{Im} A_{IJ}^{(1)}(s') ds'}{s'^3(s' - s - i\epsilon)} - LC(A_{IJ}^{(1)}) + PC \simeq A_{IJ}^{(0)} - A_{IJ}^{(0)} \\ A_{IJ} \simeq \frac{A_{IJ}^{(0)2}}{A_{IJ}^{(0)} - A_{IJ}^{(1)}} \end{aligned}$$

F. J. Llanes-Estrada Unitarization and resonances in W_LW_L and hh scattering

IAM derivation

A. Dobado and J. R. Peláez, PRD56, 3057 (1997)

$$\begin{array}{lll} \mathcal{A}_{IJ}^{(0)} &=& a_0 + a_1 s \\ \mathcal{A}_{IJ}^{(1)} &=& b_0 + b_1 s + b_2 s^2 + \frac{s^3}{\pi} \int_{(M_\alpha + M_\beta)^2}^{\infty} \frac{\mathrm{Im} \mathcal{A}_{IJ}^{(1)}(s') ds'}{s'^3(s' - s - i\epsilon)} + \mathcal{LC}(\mathcal{A}_{IJ}^{(1)}) \end{array}$$

$$\frac{A_{IJ}^{(0)2}}{A_{IJ}} \simeq a_0 + a_1 s - b_0 - b_1 s - b_2 s^2$$

$$- \frac{s^3}{\pi} \int_{(M_\alpha + M_\beta)^2}^{\infty} \frac{\text{Im} A_{IJ}^{(1)}(s') ds'}{s'^3 (s' - s - i\epsilon)} - LC(A_{IJ}^{(1)}) + PC \simeq A_{IJ}^{(0)} - A_{IJ}^{(1)}$$

$$A_{IJ} \simeq \frac{A_{IJ}^{(0)2}}{A_{IJ}^{(0)} - A_{IJ}^{(1)}}$$

F. J. Llanes-Estrada Unitarization and resonances in W₁ W₁ and hh scattering

IAM derivation

A. Dobado and J. R. Peláez, PRD56, 3057 (1997)

$$\begin{array}{lll} \mathcal{A}_{IJ}^{(0)} &=& a_0 + a_1 s \\ \mathcal{A}_{IJ}^{(1)} &=& b_0 + b_1 s + b_2 s^2 + \frac{s^3}{\pi} \int_{(M_\alpha + M_\beta)^2}^{\infty} \frac{\mathrm{Im} \mathcal{A}_{IJ}^{(1)}(s') ds'}{s'^3(s' - s - i\epsilon)} + \mathcal{LC}(\mathcal{A}_{IJ}^{(1)}) \end{array}$$

$$\begin{aligned} \frac{A_{IJ}^{(0)2}}{A_{IJ}} &\simeq a_0 + a_1 s - b_0 - b_1 s - b_2 s^2 \\ &- \frac{s^3}{\pi} \int_{(M_\alpha + M_\beta)^2}^{\infty} \frac{\mathrm{Im} A_{IJ}^{(1)}(s') ds'}{s'^3(s' - s - i\epsilon)} - LC(A_{IJ}^{(1)}) + PC \simeq A_{IJ}^{(0)} - A_{IJ}^{(1)} \\ &A_{IJ} \simeq \frac{A_{IJ}^{(0)2}}{A_{IJ}^{(0)} - A_{IJ}^{(1)}} \end{aligned}$$

F. J. Llanes-Estrada Unitarization and resonances in W_LW_L and hh scattering