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N.S. Mankoč Bořstnik, H.B.Nielsen
21st workshop ”What comes beyond the standard models?”

Bled 23 June - 1 July 2018



Some publications:

I Singapore talk 2018.
Bled talk 2017, [arXiv:1802.05554v1v2] (arXiv:1806.01629
whole proceedings) with H.B.F. Nielsen.
Bled discussion 2017, [arxiv:1805.06318] (arXiv:1806.01629
whole proceedings),With D. Lukman



More than century ago quantum mechanics postulated the
existence of fermions and bosons, postulating for creation and
annihilation operators the anticommutation relations

{b̂αi (~x), b̂β†j (~x ′)}+|ψoc > = δijδ(~x − ~x ′)|ψoc > ,

{b̂αi (~x), b̂βj (~x ′)}+|ψoc > = 0 ,

{b̂α†i (~x), b̂β†j (~x ′)}+|ψoc > = 0 ,

b̂α†i (~x) |ψoc > = |ψαi > ,
b̂αi (~x) |ψoc > = 0 ,

|ψoc > is the vacuum state.



The standard model, which offered an elegant new step in
understanding the origin of fermions and bosons, just kept
this assumption.



There are many phenomena, to which the spin-charge-family
theory is offering the explanation:

I The appearance of quarks and leptons and their charges,

I The appearance of the vector gauge fields and their
charges,

I The appearance of the scalar gauge fields and their
charges,

I The appearance of the dark matter,

I The appearance of matter-antimatter asymmetry,

There are also the not yet understood phenomena to which
the spin-charge-family theory might offer the right explanation:

I The appearance of the dark energy,

I The number of (non) observed dimension of space time,

I many other phenomena, like why nature has made a
choice of the Clifford rather than the Grassmann
algebra, although both offer the anticommutation
relations for spinors.



Let me discuss this topic — the description of fermions in
the second quantized theory in Grassmann in comparison
with Clifford space.

It might help to understand better the appearance of
fermions, beside the project fermionization of the
Kalb-Ramond fields.



A simple action for a spinor which carries in d = (13 + 1) only
two kinds of spins (no charges) and for gauge fields:

S =

∫
ddx E Lf +∫
ddx E (αR + α̃ R̃)

I

Lf =
1

2
(ψ̄ γap0aψ) + h.c.

p0a = f αap0α +
1

2E
{pα,Ef αa}−

p0α = pα −
1

2
Sabωabα −

1

2
S̃abω̃abα



I The Einstein action for a free gravitational field is assumed to
be linear in the curvature

Lg = E (αR + α̃R̃),

R = fα[afβb] (ωabα,β − ωcaαω
c

bβ),

R̃ = fα[afβb] (ω̃abα,β − ω̃caαω̃
c

bβ),

with E = det(eaα)
and f α[af βb] = f αaf βb − f αbf βa.



o Let us pay attention on the fermion — spinor part of the
action.

o In the spin-charge-family theory only the Clifford algebra
appears, but with the two kinds of the Clifford algebra

operators: γa and γ̃a,

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+,
{γa, γ̃b}+ = 0,

(γ̃aB : = i(−)nBBγa ) |ψ0 >,

(B = a0 + aaγ
a + aabγ

aγb + · · ·+ aa1···adγ
a1 . . . γad )|ψ0 >

(−)nB = (+1,−1), when the object B has a Clifford even or odd
character, respectively.
|ψ0 > is a vacuum state on which the operators γa apply.



One could use γ̃a instead of γa to generate vectors

The two kinds of the Clifford algebra form two kind of the
Lorentz generators:

Sab := (i/4)(γaγb − γbγa),

S̃ab := (i/4)(γ̃aγ̃b − γ̃bγ̃a),

{Sab, S̃cd}− = 0.

I γa are used to describe the spin and the charges of
spinors,
γ̃a must be used to describe families of spinors.

I States described by the Clifford algebra carry spin and
correspondingly charges and family charges in
fundamental representations.

Phys. Lett. B 292, 25-29 (1992),
J. Math. Phys. 34, 3731-3745 (1993),
Mod. Phys. Lett. A 10, 587-595 (1995)



Let us now have a look into Grassmann space.

I A vector {θa} = (θ0, θ1, θ2, θ3, θ5, . . . , θd)
represents a point in d-dimensional Grassmann space of
anticommuting coordinates θa,
{θa, θb}+ = θaθb + θbθa = 0, (a = 0, 1, 2, 3, 5, . . . , d),

I A linear vector space has 2d states, (θai )2 = 0, for any
ai ∈ (0, 1, 2, 3, 5, . . . , d).

B =
d∑

k=0

aa1a2...ak θ
a1θa2 . . . θak |φog > , ai ≤ ai+1 ,

|φog > is the vacuum state, here assumed to be
|φog >= |1 >, ∂

∂θa |φog >= 0 for any θa.

I The left derivative ∂
∂θa

on B(θ) is

∂

∂θa
B(θ) =

∂B(θ)

∂θa
, pθa = i

∂

∂θa
, {pθa, θb}+ = iηab



I Let:
θ†a = ∂

∂θa
ηaa = −ipθaηaa ,

∂
∂θa

†
= −iθaηaa ,

I Sab = (θapθb − θbpθa) .

I One finds two superposition of θa and pθa

γa = (θa − i pθa) , γ̃a = i (θa + i pθa) ,

Sab = Sab + S̃ab ,

Sab =
i

4
(γaγb − γbγa) S̃ab =

i

4
(γ̃aγ̃b − γ̃bγ̃a) ,



I

{dθa, θb}+ = 0,

∫
dθa = 0 ,

∫
dθaθa = 1 ,∫

ddθ θ0θ1 · · · θd = 1 ,

ddθ = dθd . . . dθ0 , ω = Πd
k=0(

∂

∂θk
+ θk) .

I Norm in Grassmann space

< B|C > =

∫
ddxddθa ω < B|θ >< θ|C >

=
d∑

k=0

∫
ddx b∗b1...bk cb1...bk .

|φog >= |1 >.



I Norm in Clifford space follows from the norm in
Grassmann space

I

< F|G > =

∫
ddxddθa ω < F|γ >< γ|G >

=
d∑

k=0

∫
ddx b∗b1...bk cb1...bk ,

since γa can be expressed by θa.

I We could as well forget on ”Grassmann norm” and
choose different |ψoc > to define norm.



In Clifford space the action for a free massless object,
Lorentz invariant, is well known
o

A =

∫
ddx

1

2
(ψ†γ0 γapaψ) + h.c. ,

pa = i ∂
∂xa

, leading to the equations of motion
o

γapa|ψα > = 0 ,

γapaγ
bpb|ψαi > = papa|ψαi >= 0 ,

fulfilling also the Klein-Gordon equation.
o γ0 appears paying attention that

Sab† γ0 = γ0 Sab, S†γ0 = γ0S−1, S = e−
i
2
ωab(S

ab+Lab).



In Grassmann space we again require that the action for a
free massless object is Lorentz invariant.
o

A =
1

2
{
∫

ddx ddθ ω (φ†(1− 2θ0
∂

∂θ0
) θapaφ)}+ h.c . ,

o We use the integral over θa coordinates, with the weight
function ω.
o The operator (1− 2θ0 ∂

∂θ0
) takes care of the Lorentz invariance.

Sab† (1− 2θ0 ∂
∂θ0

) = (1− 2θ0 ∂
∂θ0

) Sab,

S† (1− 2θ0 ∂
∂θ0

) = (1− 2θ0 ∂
∂θ0

) S−1,

S = e−
i
2
ωab(L

ab+Sab).
o The action leads to the equations of motion θapa|φθi >= 0,
∂
∂θa pa|φ

θ
i >= 0,

o {θapa, ∂
∂θb

pb}+|φθi >= papa|φθi >= 0.



I We can start with the creation operators as products of d
2

creation operators
b̂θ†aibi = 1√

2
(θai ± εθbi ).

I Then the corresponding annihilation operators have d
2 factors

of b̂θaibi = 1√
2

( ∂
∂θai ± ε

∗ ∂
∂θbi

), ε = i , if ηaiai = ηbibi and

ε = −1, if ηaiai 6= ηbibi .

I In d = 2(2n + 1), n is a positive integer, we can start with the
state

|φθ11 >= (
1√
2

)
d
2 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd)|1 > .

The state is the eigenstate of the Cartan subalgebra,
with the integer eigenvalues.

I The rest of states, belonging to the same Lorentz
representation, follows from the starting state by the
application of the operators Scf .



In d = 2(2n + 1) we have

b̂θ1†j = (
1√
2

)
d
2
−1 (θ0θ3 + iθ1θ2)(θ5 + iθ6) · · · (θd−1 + iθd) ,

b̂θ1j = (
1√
2

)
d
2
−1 (

∂

∂θd−1
− i

∂

∂θd
) · · · ( ∂

∂θ3
∂

∂θ0
− i

∂

∂θ2
∂

∂θ1
) .

· · ·



It is not difficult to see that these creation and annihilation
operators fulfill the anticommutation relations for fermions.

{b̂θi , b̂
θ†
j }+|φog > = δij |φog > ,

{b̂θi , b̂θj }+|φog > = 0 |φog > ,

{b̂θ†i , b̂
θ†
j }+|φog > = 0 |φog > ,

b̂θ†j |φog > = |φj >

b̂θj |φog > = 0 |φog > .

It is not difficult to see either that the number of all creation
operators of an odd Grassmann character in
d = 2(2n + 1)-dimensional space is equal to
d!

d
2
! d
2
!
.



Formulation of creation and annihilation operators in Clifford
space goes equivalently as in Grassmann space.
Making a choice of the Cartan subalgebra eigenstates of Sab

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

[k]: =
1

2
(1 +

i

k
γaγb) ,

where k2 = ηaaηbb, recognizing that the Hermitian conjugate

values of
ab

(k) and
ab

[k] are

ab

(k)

†

= ηaa
ab

(−k),
ab

[k]

†

=
ab

[k] .

The corresponding eigenvalues of Sab and S̃ab, are

Sab
ab

(k) =
1

2
k

ab

(k) , Sab
ab

[k]=
1

2
k

ab

[k]

S̃ab
ab

(k) =
k

2

ab

(k) , S̃ab
ab

[k]= −k

2

ab

[k] .



We find in d = 2(2n + 1) that from the starting state with
products of odd number of only nilpotents

|ψ1
1 > |2(2n+1) =

03

(+i)
12

(+)
35

(+) · · ·
d−3 d−2

(+)
d−1 d

(+) |ψoc > ,

having correspondingly an odd Clifford character,
all the other states of the same Lorentz representation,

there are 2
d
2
−1 members,

follow by the application of Scd on the starting state.

The operators S̃cd generate states with different eigenstates
of the Cartan subalgebra (S̃03, S̃12, S̃56, · · · , S̃d−1 d), we call
the eigenvalues of their eigenstates the ”family” quantum
numbers.
There are 2

d
2
−1 families, each with 2

d
2
−1 familiy members.



The vacuum state

|ψoc > =
03

[−i ]
12

[−]
56

[−] · · ·
d−1 d

[−] +
03

[+i ]
12

[+]
56

[−] · · ·
d−1 d

[−] +
03

[+i ]
12

[−]
56

[+] · · ·
d−1 d

[−] + · · · |0 > ,
for d = 2(2n + 1),

There is

2
d
2
−1 2

d
2
−1

number of creation operators, defining the orthonormalized states
when applying on the vacuum state and the same number of
annihilation operators S̃ab connect members of different families,
Sab generates all the members of one family.



I decuplet S9 10 S11 12 S13 14 τ4 τ33 τ38

1 (θ9 + iθ10)(θ11 + iθ12)(θ13 + iθ14) 1 1 1 −1 0 0

2 (θ9 + iθ10)(θ11θ12 + θ13θ14) 1 0 0 − 1
3

+ 1
2

+ 1
2
√

3

3 (θ9 + iθ10)(θ11 − iθ12)(θ13 − iθ14) 1 −1 −1 + 1
3

+1 + 1√
3

4 (θ9θ10 + θ11θ12)(θ13 + iθ14) 0 0 1 − 1
3

0 − 1√
3

5 (θ9 − iθ10)(θ11 − iθ12)(θ13 + iθ14) −1 −1 −1 + 1
3

0 − 2√
3

6 (θ11 + iθ12)(θ9θ10 + θ13θ14) 0 1 0 − 1
3

− 1
2

+ 1
2
√

3

7 (θ9 − iθ10)(θ11 + iθ12)(θ13 − iθ14) −1 1 −1 + 1
3

−1 + 1√
3

8 (θ9θ10 − θ11θ12)(θ13 − iθ14) 0 0 −1 + 1
3

0 + 1√
3

9 (θ9θ10 − θ13θ14)(θ11 − iθ12) 0 −1 0 + 1
3

+ 1
2

− 1
2
√

3

10 (θ9 − iθ10)(θ11θ12 − θ13θ14) −1 0 0 + 1
3

− 1
2

− 1
2
√

3

II decuplet S9 10 S11 12 S13 14 τ4 τ33 τ38

1 (θ9 − iθ10)(θ11 − iθ12)(θ13 − iθ14) −1 −1 −1 +1 0 0

2 (θ9 − iθ10)(θ11θ12 + θ13θ14) −1 0 0 + 1
3

− 1
2

− 1
2
√

3

3 (θ9 − iθ10)(θ11 + iθ12)(θ13 + iθ14) −1 1 1 − 1
3

−1 − 1√
3

4 (θ9θ10 + θ11θ12)(θ13 − iθ14) 0 0 −1 + 1
3

0 + 1√
3

5 (θ9 + iθ10)(θ11 + iθ12)(θ13 − iθ14) 1 1 −1 − 1
3

0 + 2√
3

6 (θ11 − iθ12)(θ9θ10 + θ13θ14) 0 −1 0 + 1
3

+ 1
2

− 1
2
√

3

7 (θ9 + iθ10)(θ11 − iθ12)(θ13 + iθ14) 1 −1 1 − 1
3

+1 − 1√
3

8 (θ9θ10 − θ11θ12)(θ13 + iθ14) 0 0 1 − 1
3

0 − 1√
3

9 (θ9θ10 − θ13θ14)(θ11 + iθ12) 0 1 0 − 1
3

− 1
2

+ 1
2
√

3

10 (θ9 + iθ10)(θ11θ12 − θ13θ14) 1 0 0 − 1
3

+ 1
2

+ 1
2
√

3

Table: The creation operators of the decuplet and the antidecouplet of
the orthogonal group SO(6) in Grassmann space are presented.



I τ4 τ33 τ38

singlet (θ9 + iθ10)(θ11 + iθ12)(θ13 + iθ14) −1 0 0

triplet 1 (θ9 + iθ10)(θ11θ12 + θ13θ14) − 1
3

+ 1
2

+ 1
2
√

3

2 (θ9θ10 + θ11θ12)(θ13 + iθ14) − 1
3

0 − 1√
3

3 (θ11 + iθ12)(θ9θ10 + θ13θ14) − 1
3

− 1
2

+ 1
2
√

3

sextet 1 (θ9 + iθ10)(θ11 − iθ12)(θ13 − iθ14) 1
3

+1 + 1√
3

2 (θ9 − iθ10)(θ11 − iθ12)(θ13 + iθ14) 1
3

0 − 2√
3

3 (θ9 − iθ10)(θ11 + iθ12)(θ13 − iθ14) 1
3

−1 + 1√
3

4 (θ9θ10 − θ11θ12)(θ13 − iθ14) 1
3

0 + 1√
3

5 (θ9θ10 − θ13θ14)(θ11 − iθ12) 1
3

+ 1
2

− 1
2
√

3

6 (θ9 − iθ10)(θ11θ12 − θ13θ14) 1
3

− 1
2

− 1
2
√

3

II τ4 τ33 τ38

antisinglet (θ9 − iθ10)(θ11 − iθ12)(θ13 − iθ14) +1 0 0

antitriplet 1 (θ9 − iθ10)(θ11θ12 + θ13θ14) + 1
3

− 1
2

− 1
2
√

3

2 (θ9θ10 + θ11θ12)(θ13 − iθ14) + 1
3

0 + 1√
3

3 (θ11 − iθ12)(θ9θ10 + θ13θ14) + 1
3

+ 1
2

− 1
2
√

3

antisextet 1 (θ9 − iθ10)(θ11 + iθ12)(θ13 + iθ14) − 1
3

−1 − 1√
3

2 (θ9 + iθ10)(θ11 + iθ12)(θ13 − iθ14) − 1
3

0 + 2√
3

3 (θ9 + iθ10)(θ11 − iθ12)(θ13 + iθ14) − 1
3

+1 − 1√
3

4 (θ9θ10 − θ11θ12)(θ13 + iθ14) − 1
3

0 − 1√
3

5 (θ9θ10 − θ13θ14)(θ11 + iθ12) − 1
3

− 1
2

+ 1
2
√

3

6 (θ9 + iθ10)(θ11θ12 − θ13θ14) − 1
3

+ 1
2

+ 1
2
√

3

Table: The creation operators in Grassmann space of the decuplet of
Table 1 are arranged with respect to the SU(3) and U(1) subgroups of
the group SO(6) into a singlet, a triplet and a sextet.
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τ 38
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I We have learned in the present study that one can use either
Grassmann or Clifford space to express the internal degrees of
freedom of fermions in any even dimensional space.

I In both spaces the creation operators and their Hermitian
conjugated annihilation operators fulfill the anticommutation
relation requirements, needed for fermions, provided that they
are expressed as odd products of either Grassmann (θa,
(θa)† = ∂

∂θa
ηaa.

I Or Clifford objects, either
γa = (θa + ∂

∂θa
).

γa† = γaηaa,
or
γ̃a = i(θa − ∂

∂θa
),

and correspondingly
γ̃a† = γ̃aηaa.



I But while in the Clifford case states appear in the
fundamental representations of the Lorentz group, carrying
half integer spins, the states in the Grassmann case are in
adjoint representations of the Lorentz group with integer spin.

I The Clifford case, offering two kinds of the Clifford objects, γa

and γ̃a, enables to describe besides the spin degrees of
freedom of fermion fields also their family degrees of freedom.

I The Grassmann case offers only one kind of objects.

I Assuming that ”nature has both choices” for describing the
internal degrees of freedom of fermion fields, the question
arises why Grassmann choice is not chosen, or better, why the
Clifford choice is chosen.



I In the case that spin degrees in d ≥ 5 manifest as charges in
d = (3 + 1), fermions in the Grassmann case manifest charges
in the adjoint representations — singlets, sextets, also color
triplets.

I In the Clifford case — this is used in the spin-charge-family
theory, which takes the Lorentz group SO(13, 1) — the spin
and charges appear in the fundamental representations of the
corresponding groups, offering also the family degrees of
freedom.
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