How compact objects challenge our view about dark matter in the Universe

(work with Ilídio Lopes)

(Based on arXiv: 1706.07272, 1709.06643 1904.07191, 1904.07195)

Grigoris Panotopoulos

CENTRA-IST, U. de Lisboa

22nd Bled Workshop, July 6-14, 2019, Bled, Slovenia

Plan

- Introduction/Motivation
- Relativistic stars in GR (M-R profile, oscillations of pulsating stars)
- Impact of (bosonic) dark matter on strange quark stars
- Radial and nonradial oscillations of BSs made of ULRDM
- Conclusions

Cornerstones of Modern Theoretical Physics

QFT and Group Theory fermions bosons u С t quarks charm up top photon par ticulas d b gluon S down strange bottom de Intera Ve νμ VT leptons electron-Z-boson nuon-neutring tau-neutrino neutrinc ção μ e Т electron muon W-bosons tau

Higgs-boson

Einstein's General Relativity

 $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu}$ μν

Dark Matter

Frantz Zwicky 1933 Virial theorem in Coma cluster

Galaxy rotation curves

Observed vs. Predicted Keplerian

Today's picture of the universe

3 independent data sets coincide

Concordance cosmological model!

Combination of data

 $\Omega_B = 0.04$

 $\Omega_{DM} = 0.27$

 $\Omega_X = 0.69 \quad \Omega_M = 0.31$

Matter power spectrum

(Accelerating) expansion history

Popular candidate: WIMPs

Today's relic density $\Omega_{DM}h^2 = \frac{3 \times 10^{-27} cm^3/s}{\langle \sigma v \rangle}$ Observations suggest

$$\Omega_{DM}h^2 \sim 0.1$$

WIMP reaction rate Γ Expansion rate of the Universe H $\Gamma = n \langle \sigma v \rangle$ Freeze-out $\Gamma = H$

Self-Interacting DM: A solution to the low scale crisis?

ΛCDM very successful at large scales
BUT: Some problems at low scales

Missing satellite problem
 Observed MW satellites ~ 10
 Simulations based on collisionless DM predict ~ 500 satellites

2. Cusp/Core problem

Cusp/Core Problem

- If you parameterize density profile as $\rho(r) \propto r^{-\alpha}$
 - Observations show α ~ 0 (constant-density core)
 - Simulations predict $1 \le \alpha \le 1.5$ (central cusp)

Ultra-light repulsive scalar DM Real scalar field with self-interaction potential (pNGB associated with SSB of global symmetry @ F) $\mathcal{L} = (1/2)(\partial \phi)^2 - V(\phi)$ Expand around minimum $V(\phi) \simeq (1/2)m^2\phi^2 + \frac{1}{24}\frac{m^2}{F^2}\phi^4 + \dots$ $\lambda = \frac{m^2}{F^2} > 0$ Ignore higher order terms

Repulsive forces

DM searches

Collider searches (Tevatron, LHC)

Indirect searches

Direct detection searches

sermi

Fermi Gamma-ray Space Telescope Large Area Telescope

Multiwavelength Notes (mostly LAT)

Dave Thompson Fermi LAT Multiwavelength Coordinator

Compact stars: Ultra high densities

White dwarfs

Neutron stars

Total Temperature (K)100010001932: Discovery of neutron1934: NS are predicted to existExtreme conditions1967: Pulsars are discoveredIdeal to constrain new physics1968: NS are identified

Quark stars vs neutron stars

Made of de-confined quarks

Nucleons are not elementary

More stable configuration \rightarrow Less energy May explain the observed SLSN

SN versus SLSN

100 times brighter

1000 times less frequent

Part I: Impact of SIBDM on SQS

A: Mass-to-radius profile

B: Radial oscillations

Exterior solution

Einstein's field equation in vacuum r > R

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi T_{\mu\nu} = 0 \qquad (G_N = 1)$$

Make the ansatz for the metric

$$ds^2 = -f(r)dt^2 + g(r)dr^2 + r^2d\Omega^2$$

Schwarzschild solution

 $f(r) = g(r)^{-1} = 1 - \frac{2M}{r}$ M is the mass of the star

Interior solution of a star

Einstein's field equations r < R

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi T_{\mu\nu}$$
 (G_N = 1)

$$T^{\mu}_{\nu} = diag(-\rho, p, p, p)$$
 EoS $p(\rho)$

Make the ansatz for metric

$$ds^{2} = -e^{2A(r)}dt^{2} + e^{2\lambda(r)}dr^{2} + r^{2}d\Omega^{2}$$
$$e^{-2\lambda(r)} = 1 - \frac{2m(r)}{r}$$

Structure equations

 $m'(r) = 4\pi r^2 \rho(r)$

$$p'(r) = -[p(r) + \rho(r)] \frac{m(r) + 4\pi p(r)r^3}{r^2(1 - \frac{2m(r)}{r})}$$

with initial conditions 0 < r < R

$$m(0) = 0 \qquad p(0) = p_c$$

Continuity on the surface

Condition 1p(r=R) = 0Condition 2M = m(r=R)determines the radiusdetermines the mass

Mass-radius diagram

Blue curve: Strange star

Red curve: Neutron star

DM effect: two-fluid formalism

ordinary (quark) matter + dark matter EoSs: $p_s(\rho_s)$ $p_{\chi}(\rho_{\chi})$

 $m'(r) = 4\pi r^2 \rho(r)$ $\rho = \rho_s + \rho_\chi$

$$p'_{s}(r) = -(p_{s}(r) + \rho_{s}(r)) \frac{m(r) + 4\pi p(r)r^{3}}{r^{2}(1 - \frac{2m(r)}{r})} \qquad p = p_{s} + p_{s}$$

$$p_{\chi}'(r) = -(p_{\chi}(r) + \rho_{\chi}(r)) \frac{m(r) + 4\pi p(r)r^3}{r^2(1 - \frac{2m(r)}{r})}$$

Define the sources

1. Ordinary matter: De-confined u, d, s quarks

$$p_{s} = \frac{1}{3}(\rho_{s} - 4B) + \frac{3\alpha}{\pi^{2}}\mu^{2}$$

$$\alpha = -\frac{m_{s}^{2}}{6}$$

$$\mu^{2} = -\alpha + \sqrt{\alpha^{2} + \frac{4\pi^{2}}{9}(\rho_{s} - B)}$$

Massless limit: Linear EoS

$$m_s \to 0 \quad p_s = \frac{1}{3}(\rho_s - 4B)$$

B: MIT bag constant m_s : mass of s quark

Bose-Einstein Condensate

5th state of matter formed in ultra cold bosonic systems Predicted in 1924-1925

Condition: matter wave overlap

$$d \sim n^{-1/3} \ \lambda_{DB} = \sqrt{\frac{2\pi}{mT}}$$

No Pauli's principle No thermal fluctuations Giant matter wave

 $T \to 0$

 $N \gg 1$

S.N. Bose

(1894 - 1974)

Condensed dark matter

Dilute, ultracold gas of bosons: easy to model

1. Repulsive short-range interaction

$$U = \frac{4\pi a}{m} \delta(r - r') = g\delta(r - r') \to \sigma = 4\pi a^2$$

m: Mass a: Scattering length

2. BEC is decribed by a single macroscopic wave-function

$$i\frac{\partial\Psi(t,r)}{\partial t} = \left(-\frac{\nabla^2}{2m} + V_{ext}(r) + g|\Psi(t,r)|^2\right)\Psi(t,r)$$

Gross-Pitaevskii Equation \rightarrow EoS: $P = \frac{2\pi a}{m^3}\rho^2$

Condensed DM impact on SQSs

Different DM amounts (5-10)%

Asteroseismology (or sounding the interior of stars)

(a) An earthquake sends out waves in all directions. Seismic rays are perpendicular to wave fronts.

(b) Seismic waves travel at different velocities in different rock types. After a given time, the wave will have traveled farther in basalt than in sandstone.

(c) P-waves travel faster in solid iron alloy than in liquid, such as molten iron alloy.

(d) Both P-waves and S-waves can travel through a solid, but only P-waves can travel through a liquid.

Seismic Waves

Each earthquake differs in location, depth and the amount of energy released. Each type of seismic wave moves at a different speed with a different type of motion. P-waves and S-waves travel through Earth's interior.

Study the vibrating modes of stars

Powerful tool to probe the interior of stars Oscillation frequencies \rightarrow very sensitive to internal composition and structure

NASA Kepler launched in 2009

European CoRoT launched in 2006

Oscillation spectra

Seismic parameters Properties of the star

e.g. Large frequency spacing

 $\begin{aligned} \Delta \nu_{n,l} &= \nu_{n+1,l} - \nu_{n,l} \approx \left[2 \int_0^R \frac{dr}{c_s(r)} \right] \\ \text{Mean density of star} \end{aligned}$ (Higher excited modes) Frequency at the peak

 u_{max}

Perturbation theory

$$g = g_0 + \Delta g \qquad \Delta g \ll g_0$$

Background Perturbation

Perturbe Einstein's equations and linearize

$$\Delta g(t, r, \theta, \phi) = e^{-i\omega t} R(r) Y_l^m(\theta, \phi)$$

Simplest case: Radial oscillations l = 0 = m

Do not couple to metric perturbations

$$\Delta g(t,r) = e^{-i\omega t} R(r)$$

Equations for perturbations

$$\eta'(r) = \xi \left[\omega^2 r \frac{P+\epsilon}{P} e^{\lambda - A} - \frac{4P'}{P} - 8\pi (P+\epsilon) r e^{\lambda} + \frac{r(P')^2}{P(P+\epsilon)} \right]$$

$$+\eta \left[-\frac{\epsilon P'}{P(P+\epsilon)} - 4\pi (P+\epsilon) r e^{\lambda} \right]$$

$$\gamma = \left(\frac{dP}{d\epsilon}\right) \left(1 + \frac{\epsilon}{P}\right)$$

 $\omega \rightarrow \text{Eigenvalue}$

Boundary conditions

At the center

 $r = 0 \qquad \qquad \eta(0) = -3\gamma(0)\xi(0)$

At the surface

r = R

$$\eta(R) = \xi(R) \left[-4 + (1 - 2M/R)^{-1} \left(-\frac{M}{R} - \frac{\omega^2 R^3}{M} \right) \right]$$

Satisfied only for discrete ω_n n = 0, 1, 2, ...

Number of nodes in a boundary value problem

Recall quantum harmonic oscillator

Ground state: 0 nodes

1st excited state: 1 node

Second excited state: 2 nodes

etc

Radial Oscillations: Frequencies

mode	Compact star's models				
order n	No DM	1^{st} DM	2^{nd} DM		
0	2.35	2.47	2.60		
1	7.60	7.77	7.99		
2	12.06	12.31	12.62		
3	16.38	16.71	17.12		
4	20.65	21.06	21.57		
5	24.89	25.38	25.99		
• • •	•••	•••	• • •		
10	45.96	46.85	47.96		
11	50.17	51.14	52.34		
• • •	•••	• • •	• • •		
18	79.55	81.08	82.99		
19	83.74	85.36	87.36		
$M=1.77~M_{\odot}$					
$R = 10.94 \ km$					

Radial oscillations: Eigenfunctions

Part II: Oscillations of pulsating BSs made of ULRDM

A: Radial oscillations

B: Non radial oscillations

Pulsating (Newtonian) boson stars

Structure equations

$$m'(r) = 4\pi r^2 \rho$$
$$p'(r) \simeq -\rho \, \frac{m(r)}{r^2}$$

 $p = K\rho^{2}$ EoS: $K = \frac{1}{(2\Lambda)^{4}}$ $\Lambda = \sqrt{mF}$ Lane-Emden equation

$$\frac{d}{dx}\left(x^2\frac{d\theta}{dx}\right) = -x^2\theta$$

 $\theta(0) = 1 \qquad \theta'(0) = 0$

$$x = \frac{r}{a}$$
 $\theta = \frac{\rho}{\rho_a}$

 $a = \sqrt{K/2\pi}$

35

Radial oscillations: equation for the perturbation

Replace

$$\xi \to \zeta \qquad \zeta'' - \frac{G}{f^2}\zeta' + \left(\frac{\omega^2}{f^2} - \frac{H}{f^2}\right)\zeta = 0$$

 $\zeta(0) = 0 = \zeta(R)$ $f \simeq c_s$ NR limit

H(r),G(r): Known quantities from the background Schrödinger-like equation

 $\frac{d^2\psi}{d\tau^2} + \left[\omega^2 - U_l(\tau)\right]\psi = 0$

36

Radial oscillations: Frequencies

radial	frequency	
order	ν_n	$F \sim 10^{16} \ GeV$
n	(mHz)	
0	0.8457	GUT scale
1	1.7426	
2	2.5456	0
3	3.3155	$m \sim 10^{-\circ} eV$
4	4.0676	
5	4.8110	Ultra-light DM
6	5.5579	
7	6.3032	11 10 10 -14 11
8	7.0359	$M = 1.9 \times 10^{-11} M_{\odot}$
9	7.7774	
10	8.5076	$R = 6.9 \ km$

 $\omega_0=\sqrt{M/R^3}=2.74~mHz$ 37

Radial oscillations: Main numerical results

Non-radial oscillations

$$\zeta''(r) + \left(\frac{2}{r} + \frac{2\rho'(r)}{\rho(r)}\right)\zeta'(r) + \left(\frac{\omega_{n,l}^2}{c_s^2} - \frac{l(l+1)}{r^2}\right)\zeta(r) = 0$$

Angular degree l = 1, 2, 3, ...Schrödinger-like equation

$$\frac{d^2\psi}{d\tau^2} + \left[\omega^2 - U_l(\tau)\right]\psi = 0$$

 $\psi(r=R) = 0$ BC: $\psi(r=0) = 0$

 $F \sim 10^{16} GeV$ GUT scale $m \sim 10^{-8} eV$ Ultra-light DM

39

Frequencies

1.1

overtones	$ u_{1,n} $	$ u_{2,n}$	$ u_{3,n}$
n	(mHz)	(mHz)	(mHz)
0	0.8441	0.8457	1.3274
1	1.7409	1.7426	2.2288
2	2.5397	2.5456	3.0588
3	3.3096	3.3155	3.8555
4	4.0657	4.0676	4.6332
5	4.8140	4.8110	5.3990
6	5.5576	5.5579	6.1568
7	6.2980	6.3032	6.9090
8	7.0362	7.0359	7.6571
9	7.7727	7.7774	8.4021
10	8.5081	8.5076	9.1448
11	• • •	9.5719	9.8855
12		10.3079	10.6248
13		11.0432	11.3628
14		11.7777	12.0999
15		• • •	12.8361
16			13.5716
17			14.3066
18			

40

Numerical results II

Acoustic potential

Eigenfunctions

Frequency differences

Conclusions

- Dark matter is an essential ingredient of standard cosmological model (don't know if it is fermionic or bosonic)
- Strange stars are hypothetical compact stars that can explain super-luminous supernovae
- We have integrated the structure equations assuming a twofluid system (quarks + bosonic DM) for 2 DM models → M-R profile
- We have integrated the equations for the perturbations to compute the frequencies and the eigenfunctions
- Adding more DM the frequencies increase
- Radial and non radial oscillations of BSs made of ULRDM

Thank you for your attention!

2.2 33