since 1887

Phenomenological Studies of models

 with a pseudo Nambu Goldstone BosonTetsuo Shindou Division of Liberal-Arts, Kogakuin University

The Standard Model

The Higgs boson was discovered in 2012
\&
Its properties are consistent with a SM Higgs boson
The SM seems to be established
However, it's not the end of the story
We still require the NP beyond the SM

- Baryon asymmetry of the Universe?

What's the Dark Matter?
Origin of tiny neutrino mass?

* Charge quantization? «Unified theory ? (Hierarchy problem)
- Some excess might be found (muon g-2, ...)

Elementary or Composite?

The Higgs sector is not understood yet

What is the origin of spin-0 scalar?
it What is the dynamics of the Higgs behind?
Is Higgs boson elementary or composite?
The answer to this question determines the direction to the Grand Unified Theory

* Elementary Scalar \longrightarrow SUSY? GUT over grand desert?
* Composite State \longrightarrow Rich field before GUT?

Modern CHM (Higgs=pNGB) is an attractive example

Higgs boson as NGB

Higgs boson is identified with pNGB, so that it can be much lighter than the composite scale.

Symmetry breaking: $\mathrm{G} \rightarrow \mathrm{H} \quad f$:symmetry breaking scale

$$
\vec{\Phi}(x)=e^{i \theta^{\hat{a}} \hat{T}^{\hat{a}}} \vec{F} \quad\left\{T^{A}\right\}=\left\{T^{a}, \hat{T}^{\hat{a}}\right\}
$$

Construction of composite Higgs models

Identify G/H

- GSM is embedded in H
- G/H contains at least one SU(2)L doublet

Determine Fermion
 Representation

The quarks\&leptons are part of large multiplets

Compute
Coleman-Weinberg potential

$$
\begin{gathered}
\text { vev } \quad \mathrm{G} / \mathrm{H}(\text { coset) generators } \\
\Sigma=\Sigma_{0} \exp \left(-i T^{\hat{a}} h^{\hat{a}} \sqrt{2} / f\right) \\
\mathcal{L}=\frac{1}{2}\left(P_{T}\right)^{\mu \nu}\left[\Pi_{0}\left(q^{2}\right) \operatorname{tr}\left(A_{\mu} A_{\nu}\right)+\Pi_{1}\left(q^{2}\right) \Sigma A_{\mu} A_{\nu} \Sigma^{t}\right]
\end{gathered}
$$

$$
\begin{aligned}
\mathcal{L}= & \sum_{r=q, u, d} \bar{\Psi}_{r} p\left[\Pi_{0}^{r}(p)+\Pi_{1}^{r}(p) \Gamma^{i} \Sigma_{i}\right] \Psi_{r} \\
& +\sum_{r=u, d} \bar{\Psi}_{q}\left[M_{0}^{r}(p)+M_{1}^{r}(p) \Gamma^{i} \Sigma_{i}\right] \Psi_{r}
\end{aligned}
$$

G and H

Higgs boson is identified with pNGB associated with the spontaneous breaking of global symmetry $\mathrm{G} \rightarrow \mathrm{H}$

- Gsm is embedded in H (the gauge coupling breaks G)
- G/H contains at least one SU(2)L doublet NGB(4 d.o.f)

There are many possibilities of choosing G and H

minimal	G	H	nNG	see e.g.
	SO(5)	SO(4)	4	Agashe et al., NPB719,165, Contino et al., PRD75,055014
DM(SM+S)	SO(6)	SO(5)	5	Grispaios et al., JHEP0904,070
2HDM	SO(6)	$\mathrm{SO}(4) \mathrm{xSO}(2)$	8	Mrazek et al., NPB853,1
	SO(9)	SO(8)	8	Beruzzo et al., JHEP1305,153
	\ldots	\ldots	\ldots	\ldots

In this talk, we focus on the MCHM: $\mathrm{SO}(5) / \mathrm{SO}(4)$

Example: MCHM4

Agashe et al., NPB719,165
it $\mathrm{SO}(5) / \mathrm{SO}(4): 4 \mathrm{NG}$ Bosons (Higgs sector is SM-like)

$$
\begin{aligned}
& \Sigma=\frac{\sin (h / f)}{f}\left(h^{1}, h^{2}, h^{3}, h^{4}, h \cot (h / f)\right), \quad h=\sqrt{h^{\hat{a}} h^{\hat{a}}} \\
& H=\binom{-h^{1}+i h^{2}}{h^{3}+i h^{4}} \text { Physical Higgs }
\end{aligned}
$$

is Matters are part of 4-dim representation of $\mathrm{SO}(5)$

$$
\Psi_{q}=\binom{q_{L}}{Q_{L}}, \quad \Psi_{u}=\binom{q_{R}^{u}}{\binom{u_{R}}{d_{R}^{\prime}}}, \quad \Psi_{d}=\binom{q_{R}^{u}}{\binom{u_{R}^{\prime}}{d_{R}}} \quad \text { non-dynamical }
$$

Coleman-Weinberg potential:

$$
V \simeq \alpha \cos \frac{h}{f}-\beta \sin ^{2} \frac{h}{f}
$$

$$
\alpha=2 N_{C} \int \frac{d^{4} p}{(2 \pi)^{4}}\left(\frac{\Pi_{1}^{u}}{\Pi_{0}^{u}}-2 \frac{\Pi_{1}^{q}}{\Pi_{0}^{q}}\right), \quad \beta=\int \frac{d^{4} p}{(2 \pi)^{4}}\left(2 N_{C} \frac{\left|M_{1}^{u}\right|^{2}}{\left(-p^{2}\right)\left(\Pi_{0}^{q}+\Pi_{1}^{q}\right)\left(\Pi_{0}^{u}-\Pi_{1}^{u}\right)}-\frac{9}{8} \frac{\Pi_{1}}{\Pi_{0}}\right)
$$

The Higgs coupling

hVV, hhVV

The effective Lagrangian is

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}=P^{\mu \nu}[\frac{1}{2}\left(\frac{f^{2} \sin ^{2}(h / f)}{4}\right)\left(B_{\mu} B_{\nu}+W_{\mu}^{3} W_{\nu}^{3}-2 W_{\mu}^{3} B_{\nu}\right)+\left(\frac{f r \sin ^{2}(h / f)}{4}\right) W_{\mu}^{+} W_{\nu}^{-} \\
&+\left.\frac{p^{2}}{2}\left(\Pi^{\prime}(0) W_{\mu}^{a} W_{\nu}^{a}+\left(\Pi_{0}^{\prime}(0)+\Pi_{0}^{X \prime}(0)\right) B_{\mu} B_{\nu}\right)+\cdots\right], \quad P^{\mu \nu}=\eta^{\mu \nu}-\frac{p^{\mu} p^{\nu}}{p^{2}} \\
& h=\langle h\rangle+\hat{h} \\
& P^{\mu \nu} \frac{f^{2} \sin ^{2}(h / f)}{4} W_{\mu}^{+} W_{\nu}^{-} \simeq \frac{v^{2}}{4} W_{\mu}^{+} W_{\nu}^{-}+\frac{v}{2} \sqrt{1-\xi \hat{h} W_{\mu}^{+} W_{\nu}^{-}+\frac{1-2 \xi}{4} \hat{h}^{2} W_{\mu}^{+} W_{\nu}^{-}} \\
& \text {here, } v=f \sin \frac{\langle h\rangle}{f}=246 \mathrm{GeV}, \xi \equiv \frac{v^{2}}{f^{2}}=\sin ^{2} \frac{\langle h\rangle}{f}
\end{aligned}
$$

The deviations are controlled by the parameter ξ
The hVV\&hhVV couplings are determined by G/H and independent of matter sector

The Higgs coupling

Higgs potential In MCHM $4 \quad V \simeq \alpha \cos \frac{h}{f}-\beta \sin ^{2} \frac{h}{f}$

$$
\begin{aligned}
\left.\frac{\partial V}{\partial h}\right|_{\hat{h}=0} & =-\frac{\sin (\langle h\rangle / f)}{f}(\alpha+\beta \cos (\langle h\rangle / f))=0 \\
\left.\frac{\partial^{2} V}{\partial h^{2}}\right|_{\hat{h}=0} & =\frac{2 \beta}{f^{2}}\left[1-\frac{\alpha^{2}}{4 \beta^{2}}\right] \equiv M_{h}^{2} \quad \begin{array}{l}
\text { Deviation from } \\
\text { the SM prediction }
\end{array} \\
\left.\frac{\partial^{3} V}{\partial h^{3}}\right|_{\hat{h}=0} & =\frac{3 M_{h}^{2}}{v} \sqrt{1-\xi} \equiv \lambda_{h h h}
\end{aligned}
$$

Top Yukawa coupling

$$
\mathcal{L} \simeq M^{t} \sin \frac{h}{f} \bar{t}_{L} t_{R}=M_{t} \bar{t}_{L} \bar{t}_{R}+\frac{M_{t} \sqrt{1-\xi}}{v} \hat{h} \bar{t}_{L} t_{R}-\frac{M_{t} \xi_{\hat{h}^{2}}^{2 v^{2}} \bar{h}_{L} t_{R}}{}
$$

Deviation from the SM prediction

Matter representation

There are variations of the $\mathrm{SO}(5) / \mathrm{SO}(4)$ model, due to matter representations

In general, $q_{L}, u_{R}, d_{R}, \ell_{L}, e_{R}$ can independently embedded into $\mathrm{SO}(5)$ multiplets such as 1 -, 4 -, 5 -, 10 -, 14-dim rep.

We consider typical examples:
MCHM4 MCHM5 MCHM14
All the matter fermions are embedded into 4 -, 5- or 14-rep.
For simplicity, we ignore the extra heavy particles
Higgs
125 GeV

Lagrangian for Matter sector

MCHM_{4}

$$
\mathcal{L}_{\text {eff }}^{\text {matter }}=\sum_{r=q, u, d} \bar{\Psi}_{r}^{(4)} \notin\left[\Pi_{0}^{r}(p)+\Pi_{1}^{r}(p) \Gamma^{i} \Sigma_{i}\right] \Psi_{r}^{(4)}+\sum_{r=u, d} \bar{\Psi}_{q}^{(4)}\left[M_{0}^{r}(p)+M_{1}^{r}(p) \Gamma^{i} \Sigma_{i}\right] \Psi_{r}^{(4)},
$$

MCHM $_{5}$

$$
\begin{aligned}
\mathcal{L}_{\text {eff }}^{\text {matter }}= & \sum_{r=t_{L}, t_{R}, b_{L}, b_{R}} \bar{\Psi}_{r}^{(5)}\left[\not p \Pi_{0}^{r}+\Sigma^{\dagger} p p \Pi_{1}^{r} \Sigma\right] \Psi_{r}^{(5)} \\
& +\bar{\Psi}_{t_{L}}^{(5)}\left[M_{0}^{t}+\Sigma^{\dagger} M_{1}^{t} \Sigma\right] \Psi_{t_{R}}^{(5)}+\bar{\Psi}_{b_{L}}^{(5)}\left[M_{0}^{b}+\Sigma^{\dagger} M_{1}^{b} \Sigma\right] \Psi_{b_{R}}^{(5)}+\text { h.c. } .
\end{aligned}
$$

MCHM_{14}

$$
\begin{aligned}
\mathcal{L}_{\text {eff }}^{\text {matter }}= & \sum_{r=q_{L}, t_{R}, b_{R}}\left[\bar{\Psi}_{r}^{(14)} p \not \Pi_{0}^{r} \Psi_{r}^{(14)}+\left(\Sigma \bar{\Psi}_{r}^{(14)}\right) \not p \Pi_{1}^{r}\left(\Psi_{r}^{(14)} \Sigma^{\dagger}\right)+\left(\Sigma \bar{\Psi}_{r}^{(14)} \Sigma^{\dagger}\right) \not p \Pi_{2}^{r}\left(\Sigma \Psi_{r}^{(14)} \Sigma^{\dagger}\right)\right] \\
& +\bar{\Psi}_{q_{L}}^{(14)} M_{0}^{t} \Psi_{t_{R}}^{(14)}+\left(\Sigma \bar{\Psi}_{q_{L}}^{(14)}\right) M_{1}^{t}\left(\Psi_{t_{R}}^{(14)} \Sigma^{\dagger}\right)+\left(\Sigma \bar{\Psi}_{q_{L}}^{(14)} \Sigma^{\dagger}\right) M_{2}^{t}\left(\Sigma \Psi_{t_{R}}^{(14)} \Sigma^{\dagger}\right) \\
& +\bar{\Psi}_{q_{L}}^{(14)} M_{0}^{b} \Psi_{b_{R}}^{(14)}+\left(\Sigma \bar{\Psi}_{q_{L}}^{(14)}\right) M_{1}^{b}\left(\Psi_{b_{R}}^{(14)} \Sigma^{\dagger}\right)+\left(\Sigma \bar{\Psi}_{q_{L}}^{(14)} \Sigma^{\dagger}\right) M_{2}^{b}\left(\Sigma \Psi_{b_{R}}^{(14)} \Sigma^{\dagger}\right)+\text { h.c. }
\end{aligned}
$$

Deviation pattern in MCHMs

Model	κ_{V}	$\kappa_{h h h}$	κ_{t}	$\kappa_{h h V V}$	$c_{h h h h}$	$c_{h h t t}$
MCHM4		$1-\frac{1}{2} \xi$	$1-\frac{1}{2} \xi$		$1-\frac{7}{3} \xi$	$-\xi$
MCHM5	$1-\frac{1}{2} \xi$	$1-\frac{3}{2} \xi$	$1-\frac{3}{2} \xi$	$1-2 \xi$	$1-\frac{25}{2} \xi$	-4ξ
MCHM14		$1-\frac{9 M_{1}^{t}+64 M_{2}^{t}}{6 M_{1}^{t}+16 M_{2}^{t}} \xi$			$-\frac{4\left(3 M_{1}^{t}+23 M_{2}^{t}\right)}{3 M_{1}^{t}+8 M_{2}^{t}} \xi$	

$\star \ln \mathrm{MCHM} 4, \quad \mathrm{Kv}=\mathrm{K}_{\mathrm{t}}\left(=\mathrm{K}_{\mathrm{b}}\right)$
\star In MCHM14, the deviation of top Yukawa coupling depend on the ratio of two form factors $\mathrm{M}_{1}{ }^{\mathrm{t}} \mathrm{M}_{2}{ }^{\mathrm{t}}$ besides the parameter ξ

Decay Branching Ratio

S.Kanemura, K. Kaneta, N.Machida, S. Odori, TS, PRD94

For MCHM4, $\mathrm{BR}_{\text {мснм }} / \mathrm{BR}_{\text {sm }}=1$ for all the decay modes

$$
\kappa_{h X X}=\sqrt{1-\xi} \longrightarrow \Gamma(h \rightarrow X X) / \Gamma_{\mathrm{SM}}(h \rightarrow X X)=1-\xi
$$

Mode	bb	WW	ZZ	$\gamma \gamma$
BRsm	0.55	0.23	0.027	0.0024

Phenomenology at LHC

1. single Higgs boson production
2. double Higgs boson production
3. gg to ZH

Constraints on $\boldsymbol{\xi}$

How strong the compositeness parameter is constrained?
is Electroweak Precision Test
Correction to S-parameter and $\Delta \rho$ leads to

$$
\xi \lesssim 0.25
$$

* LHC

For extracting the constraint from the data, we utilize the signal strength

$$
\mu=\frac{\sigma(\operatorname{prod}) \cdot \operatorname{Br}(h \rightarrow F F)}{\sigma(\operatorname{prod})_{\mathrm{SM}} \cdot \operatorname{Br}(h \rightarrow F F)_{\mathrm{SM}}}
$$

Constraints from LHC Run-I

$$
\mu_{F}^{X X} \simeq \kappa_{t}^{2} \frac{\mathrm{BR}(h \rightarrow X X)}{\operatorname{BR}(h \rightarrow X X)_{\mathrm{SM}}}
$$

	$\mu_{F}^{\gamma \gamma}$	$\mu_{F}^{W W}$	$\mu_{F}^{Z Z}$
MCHM $_{4}$	$\xi<0.31$	$\xi<0.40$	$\xi<0.24$
MCHM $_{5}$	$\xi<0.23$	$\xi<0.23$	$\xi<0.15$
MCHM $_{14}$	$\xi<0.07$	$\xi<0.07$	$\xi<0.04$

Double Higgs production at LHC

Double Higgs production provides crucial hint to explore the Higgs sector

is The dominant process is Gluon Fusion

* It has sensitivity to the contact interaction $h h \bar{t}_{L} t_{R}$ as well as the Higgs self coupling $h h h$
is Vector Boson Fusion (VBF) is subdominant process
iv It provides information on the HVV and HHVV couplings
single Higgs boson production

Gluon Fusion Process

Certain level of cancellation

Model	$\kappa_{h h h}$	κ_{t}	$c_{h h t t}$
MCHM $_{4}$	$1-\frac{1}{2} \xi$	$1-\frac{1}{2} \xi$	$-\xi$
MCHM $_{5}$	$1-\frac{1}{2} \xi$	$1-\frac{3}{2} \xi$	-4ξ
		$+\mathcal{O 3} 2$	
y			$\mathcal{O}\left(\xi^{2}\right)$

New coupling in MCHMs

Enhancement

$\mathrm{pp} \rightarrow \mathrm{hhX} \rightarrow \gamma \gamma \mathrm{bb}$

$\gamma \gamma \mathbf{b b}$ mode is the most clean mode for hh production

Vector Boson Fusion Process

In the SM, unitarity cancellation occurs
In the MCHMs, the unitarity cancellation is spoiled

$$
\mathcal{A} \simeq A_{0}+\frac{g^{2}\left(c_{h h V V}-\kappa_{V}^{2}\right)}{4 m_{W}^{2}} \hat{s}
$$

The perturbative unitarity will be restored at higher energy scale M by heavy resonance contribution ("delayed unitarity")

Vector Boson Fusion Process

S.Kanemura, K. Kaneta, N.Machida, S. Odori, TS, PRD94

Delayed unitarity \qquad Large enhancement

Exclusive modes

Degeneracy between MCHM5 and MCHM14 is resolved

$g g$ to ZH
 $$
g g \rightarrow Z h
$$

In the SM, there is a strong cancellation between diagrams

This cancellation is kept, only if relevant scale factors of couplings are universal like MCHM4

But in models with non-universal scale factors as MCHM5, we expect significant enhancement...

Double Higgs Production at e+e- Collider

Double Higgs production at e+e- Collider

T. Double Higgs production at e+e- collider is also important process to explore the Higgs sector
is There are two processes of production
t The double-Higgs-strahlung process
w W-fusion process

Z Strahlung ee \rightarrow Zhh

Model	κ_{V}	$c_{h h V V}$	$\kappa_{h h h}$
MCHM $_{4}$	$1-\frac{1}{2} \xi$	$1-2 \xi$	$1-\frac{1}{2} \xi$
			$\mathcal{O}\left(\xi^{2}\right)$

The relevant couplings are suppressed

The cross section is always suppressed

The production cross section

$\mathrm{ee} \rightarrow \mathrm{hh} \nu v$

Production Cross Section

Production Cross Section

$\sigma / \sigma_{\mathrm{SM}}$ for energy scan

Comparing with a 2 HDM

MCHM case shows different behaviour from
a 2 HDM with large contribution to hhh coupling

Summary

We discuss how to probe MCHMs at collider experiments
iz $\mathrm{gg} \rightarrow$ Zh process can be useful to distinguish models
~Double Higgs production process is interesting

* MCHM shows specific behaviour in the production cross section
* In particular, interesting behaviour appears in the energy scan at e+e-collider

To solve problems in SM

~ Framework of CHM may be able to solve hierarchy problem
~ But the other problems in the SM cannot be solved in MCHMs (Neutrino mass, DM, BAU, etc)

e.g. A Model by Chala, Nardini, Sobolev

PRD94,055006
$\mathrm{SO}(7) / \mathrm{SO}(6) \rightarrow 6$ NGBs (1 doublet +2 singlets)

- Two step 1st order EWPT (strong enough)
- DM candidate

Toward UV completion

In this talk, we ignore the heavy resonances

But they can significantly affect some phenomena

In order to study phenomenology with such resonances, some UV picture should be taken into account.
(Especially, in the case of flavour phenomenology)

- What resonances are there?
- How is the spectrum?
- How is the flavour structure?
- ...

Fermion mass and interaction

There are two manners
comp. sector

Scalar operator of dim. d which carries Higgs quantum number

Running down to a scale μ

$$
m_{t} \sim \lambda v\left(\frac{\mu}{\Lambda}\right)^{d-1} \quad(d-1>0)
$$

$$
y_{t}=\sqrt{2} \frac{m_{t}}{v} \sim \lambda\left(\frac{\mu}{\Lambda}\right)^{d-1}
$$

It is often difficult to provide a large top Yukawa coupling
$d=1$ is O.K. but it is nothing but a elementary scalar case ...

Partial Composite scenario

Linear type: $\quad \mathcal{L} \supset \frac{\lambda_{L}}{\Lambda^{d_{L}-5 / 2}} \bar{q}_{L} \mathcal{O}_{L}+\frac{\lambda_{R}}{\Lambda^{d_{R}-5 / 2}} \bar{t}_{R} \mathcal{O}_{R}$
Fermionic operator of dim. $\boldsymbol{d}_{L, R}$ which carries quark quantum number

The top mass at a scale μ
$m_{t} \sim \lambda_{L} \lambda_{R} v\left(\frac{\mu}{\Lambda}\right)^{d_{L}+d_{R}-5}$

No direct coupling to composite sector (only through mixing terms)

This framework is called a partial composite scenario

Toward UV completion

There are several (not many) attempts to construct a UV complete model of CHMs based on partial compositeness

SUSY	Caracciolo,Parolini,Serone(2013)
5Dim (4DCHM)	De Curtis, Redi, Tesi(2011)
TC fermion\&scalar	Sannino, Strumia, Test, Vigiani (2016) Gacciapaglia, Gertov, Sannino, Thomsen (2017)
Gauge theory	Ferretti (2013),(2014), (2016)

Backup

The University was established in 1887

In the physics group: 5 faculties (incl. me)
[2 Particle theorists
1 ILC experimentalist
2 Astrophysicists (Theorist \& ALMA)

Coset: $\mathrm{SO}(7) / \mathrm{SO}(6)$
$\longrightarrow 6$ NGBs (4 of them are identified with SM-like Higgs)
at least at the (unsuppressed) leading order. In particular, if we want κ to lead to a two-step EWPT and η to be a DM candidate without conflicting with Higgs searches (see Secs. IV and V), the following conditions must hold: (i) $\eta \rightarrow-\eta$ is an unbroken symmetry; (ii) $\mu_{\kappa}^{2}<0$; and (iii) the physical masses of h and κ are such that $m_{h}<2 m_{\kappa}$, which is favored by $\lambda_{h \kappa} \gtrsim \lambda_{h}$.

In order to realise such a situation
SM fermions are embedded to 7 and 27 of $\mathrm{SO}(7)$

$$
\begin{align*}
& B_{R}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & i \gamma b_{R} & b_{R}
\end{array}\right)^{\mathrm{T}}, \tag{20}\\
& Q_{L}^{b}=\frac{1}{\sqrt{2}}\left(\begin{array}{lllllll}
-i t_{L} & t_{L} & i b_{L} & b_{L} & 0 & 0 & 0
\end{array}\right)^{\mathrm{T}}, \tag{21}\\
& Q_{L}^{t}=\frac{1}{2}\left(\begin{array}{cccccc}
\mathbf{0}_{6 \times 6} & & & & & \\
& & & & & \\
b_{L} \\
& & & & & \\
i t_{L} \\
& & & & & -t_{L} \\
& & & & & 0 \\
i b_{L} & b_{L} & i t_{L} & -t_{L} & 0 & 0 \\
& 0 & 0
\end{array}\right), \\
& Q_{L}^{c}=\frac{1}{2}\left(\begin{array}{ccccccc}
\mathbf{0}_{5 \times 5} & & & & & \zeta s_{L} & i s_{L} \\
& & & & & -i \zeta s_{L} & s_{L} \\
& & & & & \zeta c_{L} & i c_{L} \\
& & & & & i \zeta c_{L} & -c_{L} \\
& & & & & 0 & 0 \\
s_{L} & -i \zeta s_{L} & \zeta c_{L} & i \zeta c_{L} & 0 & 0 & 0 \\
i s_{L} & s_{L} & i c_{L} & -c_{L} & 0 & 0 & 0
\end{array}\right)
\end{align*}
$$

$$
\begin{aligned}
\mathcal{L}_{\sigma}= & \mathcal{L}_{\text {kinetic }}+\frac{1}{2} \frac{\left(h \partial_{\mu} h+\eta \partial_{\mu} \eta+\kappa \partial_{\mu} \kappa\right)^{2}}{f^{2}-h^{2}-\eta^{2}-\kappa^{2}} \\
V= & -\frac{1}{2} \mu_{h}^{2} h^{2}+\frac{1}{2} \mu_{\eta}^{2} \eta^{2}+\frac{1}{2} \mu_{\kappa}^{2} \kappa^{2} \\
& +\frac{1}{4} \lambda_{h} h^{4}+\frac{1}{4} \lambda_{\kappa} \kappa^{4}+\frac{1}{4} \lambda_{h \eta} h^{2} \eta^{2}+\frac{1}{4} \lambda_{h \kappa} h^{2} \kappa^{2} . \\
\mathcal{L}_{y}= & -\sum_{q=t, b, c} y_{q} \bar{q} q h\left[1-\frac{1}{f^{2}}\left(h^{2}+\eta^{2}+\kappa^{2}\right)\right]^{\frac{1}{2}} \\
& -i \frac{h}{f} \kappa\left[\gamma y_{b} \bar{b} \gamma_{5} b+\zeta y_{c} \bar{c} \gamma_{5} c\right],
\end{aligned}
$$

$$
\begin{aligned}
V= & -\frac{1}{2} \mu_{h}^{2} h^{2}+\frac{1}{2} \mu_{\eta}^{2} \eta^{2}+\frac{1}{2} \mu_{\kappa}^{2} \kappa^{2} \\
& +\frac{1}{4} \lambda_{h} h^{4}+\frac{1}{4} \lambda_{\kappa} \kappa^{4}+\frac{1}{4} \lambda_{h \eta} h^{2} \eta^{2}+\frac{1}{4} \lambda_{h \kappa} h^{2} \kappa^{2} .
\end{aligned}
$$

Two Regimes:

Regime I: $\alpha_{c, 2}=-\alpha_{c, 1}$. This is the most natural scenario since the size of these two coefficients is expected to be similar, and it still allows for $\lambda_{h \kappa} \gtrsim \lambda_{h}$, contrary to the case $\alpha_{c, 2}=\alpha_{c, 1}$.
Regime II: $\left|\alpha_{c, 2}\right| \ll\left|\alpha_{c, 1}\right| \sim\left|\alpha_{t, i} / \zeta^{2}\right|$. As we will see, accounting for the DM relic density observation will completely fix the mass of η and its interactions with nuclei in this case. ${ }^{4}$
in Regime I we obtain

$$
\begin{gather*}
\mu_{\eta}^{2}=\frac{1}{3} f^{2}\left[\frac{7}{4} \lambda_{h}+\frac{1}{4} \lambda_{h \kappa}-4 \lambda_{h} \xi\right], \tag{30}\\
\lambda_{h \eta}=\lambda_{h}, \tag{31}
\end{gather*}
$$

while in Regime II we get

$$
\begin{gather*}
\mu_{\eta}^{2}=\frac{2}{3} \lambda_{h} f^{2}(1-2 \xi), \tag{32}\\
\lambda_{h \eta}=\lambda_{h}, \tag{33}
\end{gather*}
$$

Annihilation processes:

$$
\begin{gather*}
\sigma(\eta \eta \rightarrow h h) v_{0} \sim \frac{1}{m_{\eta}^{2}}\left[\lambda_{h}-\frac{4 m_{\eta}^{2}}{f^{2}}\right]^{2} \tag{35}\\
\sigma(\eta \eta \rightarrow \kappa \kappa) v_{0} \sim \frac{1}{m_{\eta}^{2}}\left[\frac{4 m_{\eta}^{2}}{f^{2}}\right]^{2} \tag{36}\\
\sigma(\eta \eta \rightarrow t \bar{t}) v_{0} \sim \frac{1}{m_{\eta}^{2}}\left[\frac{m_{t} m_{\eta}}{f^{2}}\right]^{2} \tag{37}
\end{gather*}
$$

FIG. 2. Value of f leading to $\Omega_{\eta}=\Omega_{\mathrm{DM}}$ as a function of $\lambda_{h \kappa}$ in Regime I (dashed blue line) and Regime II (solid green line). The masses m_{η} corresponding to two extreme points are also depicted.

FIG. 4. Main diagrams contributing to the scattering of DM particles by nuclei.

Concerning direct detection experiments, the two main diagrams contributing to the scattering between DM particles and nuclei are depicted in Fig. 4. The corresponding cross section can be parametrized as [22]

$$
\begin{equation*}
\sigma=\lambda_{h}^{2} \frac{f_{N}^{2}}{4 \pi} \frac{\mu_{r}^{2} m_{n}^{2}}{m_{h}^{4} m_{\eta}^{2}}\left[1+\frac{m_{\eta}^{2}}{f^{2}}\right], \tag{56}
\end{equation*}
$$

where m_{n} is the nucleon mass, μ_{r} is the reduced mass of the system (with $m_{\eta} \gg m_{n}$)

$$
\begin{equation*}
\mu_{r}=\frac{m_{\eta} m_{n}}{m_{\eta}+m_{n}} \sim m_{n} \sim 1 \mathrm{GeV} \tag{57}
\end{equation*}
$$

and $f_{N} \sim 0.3$ [54-56]. For the considered ranges of parameter values, Eq. (56) yields $\sigma \sim 10^{-46}-10^{-45} \mathrm{~cm}^{2}$, depending on the actual value of f. These values are around 1 order of magnitude below the Large Underground Xenon (LUX) experiment bound in the DM mass range $730-960 \mathrm{GeV}$ [57]. However, it will definitely be reachable in the new round of data and experiments [58]. ${ }^{11}$

EWPT

Two step phase transition:

$$
\begin{aligned}
v_{1}= & (v, 0,0) \\
v_{2}= & \left(0, v_{\kappa}, 0\right) \\
& (h, \kappa, \eta)
\end{aligned}
$$

$$
\begin{aligned}
& (0,0,0) \rightarrow v_{2}\left(T^{\prime}\right), \quad v_{2}\left(T_{n}\right) \rightarrow v_{1}\left(T_{n}\right) \quad\left(T^{\prime}>T_{n}\right) \\
& \left|v_{1}\left(T_{n}\right)\right| / T_{n}>1 . \quad: \text { necessary for EWBG }
\end{aligned}
$$

FIG. 3. Scatter plot of the parameter space exhibiting a strong EWPT in Regime I (left panel) and Regime II (right panel). The region in green indicates the points for which $V_{1 \mathrm{~L}}(h, \kappa ; T=0)$ has a local minimum at v_{1} (the contrary in the white area) and such a minimum is deeper than the one at v_{2} (the contrary in the orange area). The points on the left of the black dashed line are unfavored by the Higgs searches. The filled (empty) circles correspond to EWPTs with bubbles expanding (not expanding) at the speed of light. For some parameter points the outcome is not determined because of numerical instabilities in CosmoTransitions, as commented in footnote 9 .

eLISA sensitivity

FIG. 5. The identified first-order EWPTs of Regime I (left panel) and Regime II (right panel) in the $\{\alpha, \beta / H\}$ plane. Empty blue circles and filled red circles represent the EWPTs with a nonrunaway and a runaway behavior, respectively. eLISA in the N2A5M5L6 experimental design can test the nonrunaway EWPTs in the (either purple or blue) region on the right of the green curve and the runaway EWPTs in the (purple) region on the right of the red curve.

Measurements at LHC RUN-I

ATLAS-CONF-2015-044

Parameter	ATLAS+CMS Measured	ATLAS+CMS Expected uncertainty	ATLAS Measured	CMS Measured
$10-$ parameter fit of μ_{F}^{f} and μ_{V}^{f}				
$\mu_{V}^{\gamma \gamma}$	$1.05_{-0.41}^{+0.44}$	${ }_{-0.38}^{+0.42}$	$0.69_{-0.58}^{+0.64}$	$1.37_{-0.56}^{+0.62}$
$\mu_{V}^{Z Z}$	$0.48_{-0.91}^{+1.37}$	${ }_{-0.84}^{+1.16}$	$0.26_{-0.91}^{+1.60}$	$1.44_{-2.30}^{+2.32}$
$\mu_{V}^{W W}$	$1.38_{-0.37}^{+0.41}$	${ }_{-0.35}^{+0.38}$	$1.56_{-0.46}^{+0.52}$	$1.08_{-0.58}^{+0.65}$
$\mu_{V}^{\tau \tau}$	$1.12_{-0.35}^{+0.37}$	${ }_{-0.36}^{+0.38}$	$1.29_{-0.53}^{+0.58}$	$0.87_{-0.45}^{+0.49}$
$\mu_{V}^{b b}$	$0.65_{-0.29}^{+0.30}$	${ }_{-0.30}^{+0.32}$	$0.50_{-0.37}^{+0.39}$	$0.85_{-0.44}^{+0.47}$
$\mu_{F}^{\gamma \gamma}$	$1.19_{-0.25}^{+0.28}$	${ }_{-0.23}^{+0.25}$	$1.31_{-0.34}^{+0.37}$	$1.01_{-0.31}^{+0.34}$
$\mu_{F}^{Z Z}$	$1.44_{-0.34}^{+0.38}$	${ }_{-0.25}^{+0.29}$	$1.73_{-0.45}^{+0.51}$	$0.97_{-0.42}^{+0.54}$
$\mu_{F}^{W W}$	$1.00_{-0.20}^{+0.23}$	${ }_{-0.19}^{+0.21}$	$1.10_{-0.26}^{+0.29}$	$0.85_{-0.25}^{+0.28}$
$\mu_{F}^{\tau \tau}$	$1.10_{-0.58}^{+0.61}$	${ }_{-0.53}^{+0.56}$	$1.72_{-1.13}^{+1.24}$	$0.91_{-0.64}^{+0.69}$
$\mu_{F}^{b b}$	$1.09_{-0.89}^{+0.93}$	${ }_{-0.86}^{+0.91}$	$1.51_{-1.08}^{+1.15}$	$0.10_{-1.86}^{+1.83}$

$\mu_{V}^{X X} \quad: \mathrm{VBF}+\mathrm{VH} \quad \mu_{F}^{X X} \quad: \mathrm{ggF}+\mathrm{tth}$

Finger printing of MCHM

Kanemura,Kaneta,Machida, TS, PRD91,115016

$Q-U-D$,	$h V V$	$h h V V$	$h h h$	$h h h h$	$h u u$	$h d d$	$h h u u$	$h h d d$
MCHM_{4}	$\sqrt{1-\xi}$	$1-2 \xi$	$\sqrt{1-\xi}$	$1-\frac{7}{3} \xi$	$\sqrt{1-\xi}$	$\sqrt{1-\xi}$	$-\xi$	$-\xi$
MCHM_{5}	$\sqrt{1-\xi}$	$1-2 \xi$	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	$\frac{1-28 \xi / 3+28 \xi^{2} / 3}{1-\xi}$	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	-4ξ	-4ξ
MCHM_{10}	$\sqrt{1-\xi}$	$1-2 \xi$	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	$\frac{1-28 \xi / 3+28 \xi^{2} / 3}{1-\xi}$	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	-4ξ	-4ξ
MCHM $_{14}$	$\sqrt{1-\xi}$	$1-2 \xi$	H_{1}	H_{2}	F_{3}	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	F_{6}	-4ξ
MCHM $_{5-1-10}$	$\sqrt{1-\xi}$	$1-2 \xi$	0	no EWSB 0	$\sqrt{1-\xi}$	$\sqrt{1-\xi}$	$-\xi$	$-\xi$
MCHM $_{5-5-10}$	$\sqrt{1-\xi}$	$1-2 \xi$	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	$\frac{1-28 \xi / 3+28 \xi^{2} / 3}{1-\xi}$	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	$\sqrt{1-\xi}$	-4ξ	$-\xi$
MCHM $_{5-10-10}$	$\sqrt{1-\xi}$	$1-2 \xi$	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	$\frac{1-28 \xi / 3+28 \xi^{2} / 3}{1-\xi}$	$\sqrt{1-\xi}$	$\sqrt{1-\xi}$	$-\xi$	$-\xi$
MCHM $_{5-14-10}$	$\sqrt{1-\xi}$	$1-2 \xi$	H_{1}	H_{2}	F_{5}	$\sqrt{1-\xi}$	F_{8}	$-\xi$
MCHM $_{10-5-10}$	$\sqrt{1-\xi}$	$1-2 \xi$	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	$\frac{1-28 \xi / 3+28 \xi^{2} / 3}{1-\xi}$	$\sqrt{1-\xi}$	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	$-\xi$	-4ξ
MCHM $_{10-14-10}$	$\sqrt{1-\xi}$	$1-2 \xi$	H_{1}	H_{2}	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	-4ξ	-4ξ
$\mathrm{MCHM}_{14-1-10}$	$\sqrt{1-\xi}$	$1-2 \xi$	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	$\frac{1-28 \xi / 3+28 \xi^{2} / 3}{1-\xi}$	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	-4ξ	-4ξ
$\mathrm{MCHM}_{14-5-10}$	$\sqrt{1-\xi}$	$1-2 \xi$	H_{1}	H_{2}	F_{4}	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	F_{7}	-4ξ
MCHM $_{14-10-10}$	$\sqrt{1-\xi}$	$1-2 \xi$	H_{1}	H_{2}	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	-4ξ	-4ξ
MCHM $_{14-14-10}$	$\sqrt{1-\xi}$	$1-2 \xi$	H_{1}	H_{2}	F_{3}	$\frac{1-2 \xi}{\sqrt{1-\xi}}$	F_{6}	-4ξ

Finger printing of MCHM

$$
\begin{aligned}
& F_{3} \equiv \frac{1}{\sqrt{1-\xi}} \frac{3(1-2 \xi) M_{1}^{t}+2\left(4-23 \xi+20 \xi^{2}\right) M_{2}^{t}}{3 M_{1}^{t}+2(4-5 \xi) M_{2}^{t}}, \\
& F_{4} \equiv \sqrt{1-\xi} \frac{M_{1}^{t}+2 M_{2}^{t}(1-3 \xi)}{M_{1}^{t}+2 M_{2}^{t}(1-\xi)}, \\
& F_{5} \equiv \sqrt{1-\xi} \frac{M_{1}^{t}-M_{2}^{t}(4-15 \xi)}{M_{1}^{t}-M_{2}(4-5 \xi)}, \\
& F_{6} \equiv-4 \xi \frac{3 M_{1}^{t}+(23-40 \xi) M_{2}^{t}}{3 M_{1}^{t}+2(4-5 \xi) M_{2}^{t}}, \\
& F_{7} \equiv-\xi \frac{M_{1}^{t}+2 M_{2}^{t}(7-9 \xi)}{M_{1}^{t}+2 M_{2}^{t}(1-\xi)}, \\
& F_{8} \equiv-\xi \frac{M_{1}^{t}-M_{2}^{t}(34-45 \xi)}{M_{1}^{t}-M_{2}(4-5 \xi)} . \\
& H_{1}=1-\frac{3 \xi}{2}-\frac{5 \xi^{2}}{8}+\frac{1}{3 m_{h}^{2}}\left(-\frac{21 m_{h}^{2}}{16}+\frac{48 \gamma}{v^{2}}\right) \xi^{3}, \\
& H_{2}=1-\frac{25 \xi}{2}+\xi^{2}+\frac{1}{3 m_{h}^{2}}\left(3 m_{h}^{2}+\frac{288 \gamma}{v^{2}}\right) \xi^{3} .
\end{aligned}
$$

With 14-rep the Higgs potential has the form of

$$
V \simeq \alpha \sin ^{2} \frac{h}{f}+\beta \sin ^{4} \frac{h}{f}+\gamma \sin ^{6} \frac{h}{f}
$$

In the cases of

$$
\left(\mathrm{q}_{\mathrm{L}}, \mathrm{t}_{\mathrm{R}}\right)=(14,14),(14,5),(5,14),
$$

the mass terms includes

$$
\begin{aligned}
\mathcal{L}_{\text {matter }}= & \bar{\Psi}_{q_{L}} M_{0}^{t} \Psi_{t_{R}} \\
& +\left(\Sigma \bar{\Psi}_{q_{L}}\right) M_{1}^{t}\left(\Psi_{t_{R}} \Sigma^{\dagger}\right) \\
& +\left(\Sigma \bar{\Psi}_{q_{L}} \Sigma^{\dagger}\right) M_{2}^{t}\left(\Sigma \Psi_{t_{R}} \Sigma^{\dagger}\right)
\end{aligned}
$$

Delayed Unitarity

Including decay of h

$\mathrm{ee} \rightarrow \mathrm{hh} \nu \nu$

$\mathrm{ee} \rightarrow \mathrm{hh} \nu \nu$

$\mathrm{ee} \rightarrow \mathrm{hh} v \nu$

Including decay of h

$\sqrt{s} \mathrm{GeV}$

The degeneracy of MCHM5 and MCHM14 are solved

Including decay of h

$\sqrt{s} \mathrm{GeV}$

Table 6.2. Expxected accuracies $\Delta g_{i} / g_{i}$ for Higgs boson couplings for a completely model independent fit assuming theory errors of $\Delta F_{i} / F_{i}=0.5 \%$

Mode	ILC(250)	ILC(500)	ILC(1000)	ILC(LumUp)
$\gamma \gamma$	18%	8.4%	4.0%	2.4%
$g g$	6.4%	2.3%	1.6%	0.9%
$W W$	4.9%	1.2%	1.1%	0.6%
$Z Z$	1.3%	1.0%	1.0%	0.5%
$t \bar{t}$	-	14%	3.2%	2.0%
$b \bar{b}$	5.3%	1.7%	1.3%	0.8%
$\tau^{+} \tau^{-}$	5.8%	2.4%	1.8%	1.0%
$c \bar{c}$	6.8%	2.8%	1.8%	1.1%
$\mu^{+} \mu^{-}$	91%	91%	16%	10%
$\Gamma_{T}(h)$	12%	5.0%	4.6%	2.5%

CHM with DM

Composite Scalar Dark Matter

Michele Frigerio ${ }^{a}$, Alex Pomarol ${ }^{b}$, Francesco Riva ${ }^{c}$ and Alfredo Urbano ${ }^{d}$
${ }^{a}$ CNRS, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier, FRANCE \& Université Montpellier 2, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier, FRANCE ${ }^{b}$ Departament de Fisica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, SPAIN ${ }^{c}$ IFAE, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, SPAIN ${ }^{d}$ Laboratoire de Physique Théorique de l'École Normale Supérieure, 24 rue Lhomond, F-75231 Paris, FRANCE

Abstract

We show that the dark matter (DM) could be a light composite scalar η, emerging from a TeV -scale strongly-coupled sector as a pseudo Nambu-Goldstone boson (pNGB). Such state arises naturally in scenarios where the Higgs is also a composite pNGB, as in $O(6) / O(5)$ models, which are particularly predictive, since the low-energy interactions of η are determined by symmetry considerations. We identify the region of parameters where η has the required DM relic density, satisfying at the same time the constraints from Higgs searches at the LHC, as well as DM direct searches. Compositeness, in addition to justify the lightness of the scalars, can enhance the DM scattering rates and lead to an excellent discovery prospect for the near future. For a Higgs mass $m_{h} \simeq 125 \mathrm{GeV}$ and a pNGB characteristic scale $f \lesssim 1 \mathrm{TeV}$, we find that the DM mass is either $m_{\eta} \simeq 50-70 \mathrm{GeV}$, with DM annihilations driven by the Higgs resonance, or in the range $100-500 \mathrm{GeV}$, where the DM derivative interaction with the Higgs becomes dominant. In the former case the invisible Higgs decay to two DM particles could weaken the LHC Higgs signal.

