
i
i

“proc20Vol1” — 2020/12/6 — 22:10 — page I — #1 i
i

i
i

i
i

BLEJSKE DELAVNICE IZ FIZIKE LETNIK 21, ŠT. 1
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Preface

The series of annual workshops on ”What Comes Beyond the Standard Models?”
started in 1998 with the idea of Norma and Holger for organizing a real workshop,
in which participants would spend most of the time in discussions, confronting
different approaches and ideas. Workshops have taken place in the picturesque
town of Bled by the lake of the same name, surrounded by beautiful mountains
and offering pleasant walks and mountaineering. This year 2020 we still had a
workshop in July, but without personal conversations all day and late at night, even
between very relaxing walks and mountaineering due to COVID-19 pandemic.
We have, however, a very long tradition of videoconferences (cosmovia), enabling
discussions and explanations with laboratories all over the world. This enables us
to have this year the total virtual workshop, resembling Bled workshops as much
as possible.
In our very open minded, friendly, cooperative, long, tough and demanding
discussions several physicists and even some mathematicians have contributed.
Most of topics presented and discussed in our Bled workshops concern the pro-
posals how to explain physics beyond the so far accepted and experimentally
confirmed both standard models — in elementary particle physics and cosmology
— in order to understand the origin of assumptions of both standard models and
be consequently able to propose new theories, models and to make predictions for
future experiments.
Although most of participants are theoretical physicists, many of them with their
own suggestions how to make the next step beyond the accepted models and
theories, experts from experimental laboratories were and are very appreciated,
helping a lot to understand what do measurements really tell and which kinds of
predictions can best be tested.
The (long) presentations (with breaks and continuations over several days), fol-
lowed by very detailed discussions, have been extremely useful, at least for the
organizers. We hope and believe, however, that this is the case also for most of
participants, including students. Many a time, namely, talks turned into very
pedagogical presentations in order to clarify the assumptions and the detailed
steps, analyzing the ideas, statements, proofs of statements and possible predic-
tions, confronting participants’ proposals with the proposals in the literature or
with proposals of the other participants, so that all possible weak points of the
proposals, those from the literature as well as our own, showed up very clearly.
The ideas therefore seem to develop in these years considerably faster than they
would without our workshops.
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This year neither the cosmological nor the particle physics experiments offered
much new, as also has not happened in the last two years, which would offer
new insight into the elementary particles and fields and also into cosmological
events, although a lot of work and effort have been put in, and although there
are some indications for the existence of the fourth family to the observed three,
due to the fact that the existence of the fourth family might explain the existing
experimental data better, what is mentioned in this proceedings, as we did in
the last year proceedings. Also the newest analyses of the data from LHC and
other experiments has not changed the situation much. Of particular interest is the
observed gravitational waves signal triggered by black holes of around 150 solar
masses. These measurements are of the central interest of many a contribution in
this proceedings.
However, there are more and more cosmological evidences, which require the
new step beyond the standard model of the elementary fermion and boson fields.
Understanding the universe through the cosmological theories and theories of the
elementary fermion and boson fields, have, namely, so far never been so dependent
on common knowledge and experiments in both fields.
We are keeping expecting that new cosmological experiments and new experi-
ments in laboratories together will help to resolve the open questions in both
fields.
On both fields there appear proposals which should explain assumptions of
these models. Most of them offer small steps beyond the existing models. The
competition, who will have right, is open.
The new data might answer the question, whether laws of nature are elegant (as
predicted by the spin-charge-family theory and also — up to the families — other
Kaluza-Klein-like theories and the string theories) or ”she is just using gauge
groups when needed” (what many models assume, also some presented in this
proceedings). Can the higgs scalars and the Yukawa couplings be guessed by
small steps from the standard model case, or they originate in gravity in higher
dimensions as also the vector and scalar gauge fields do?
Is there only gravity as the interacting field, which manifests in the low energy
regime all the vector gauge fields as well as the scalar fields, those observed so
far and those predicted by the spin-charge-family theory, with the scalar colour
triplets included ? Should correspondingly gravity be a quantized field like all the
vector and the scalar gauge fields — possibly resulting from gravity — are?
Is masslessness of all the bosons and fermions, with scalar bosons included, es-
sential, while masses appear at low energy region due to interactions and breaks
of symmetries? Do the observed fermion charges indeed origin from spins of
fermions in higher dimensions? What is then the dimension of space-time? Infinite,
or it emerges from zero? One of contributions discusses also this problem. Does
”nature use” odd Clifford algebra to describe fermions, what leads to anticommu-
tation relations for second quantized fermions, explaining the Dirac’s postulates,
making already the creation operators for single fermion state anticommuting?
What ”forces” fermions to appear in families? How many families do we have and
what is their relation to the observed ones? What are reasons for breaking symme-
tries — discrete, global and local? Is The Lorentz invariant really violated? Does
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the symmetry between fermions and antifermions manifest also in the presence of
gravity?
Do the baryons of the stable family, decoupled from the observed ones, and pre-
dicted by the spin-charge-family theory (or can follow from heterotic string model),
contribute to the dark matter? Do new stable quarks constitute neutral particles
like neutrons, or form negatively charged particles, bound with primordial helium
in dark atoms? How close are the additional new fermions, added to quarks and
leptons of the standard model ”by hand”, to the stable fifth family of the spin-
charge-family theory? Are also the charged ”nucleons” ofOHe’s atoms explainable
with the stable nucleons of the fifth family? Is the dark matter explainable within
the standard model? Or does the dark matter manifest in dark stars, which are a
kind of black holes?
What are indeed the black holes? If they ought to be created in the primordial
time during the inflation (early matter stages or phase transitions), what kind
of fermions and antifermions should contribute to the creation of black holes,
massless (that is before the electroweak transition) or massive? What did cause the
inflation? If there are singularities inside a black hole what is the status of fermions
and fields inside the black hole? Do they make phase transitions into massless
state within the black hole, loosing identity they have in d = (3+ 1)? Do we really
understand black holes inside the the horizon?
We discussed these and many other open topics during Bled workshop 2020. Like
it is the new idea of theory of strings, represented by particle objects, which do
not develop in time.
The DAMA/LIBRA experiment convinced us again that the group in Gran Sasso
do measure the dark matter particles scattering on the nuclei of their measuring
apparatus. It is expected that sooner or latter other laboratories will confirm the
DAMA/LIBRA results. This has not yet happened and our discussions clarified
the reasons for that.
Although cosmovia served the discussions all the time (and we are very glad that
we did have in spite of pandemia the 23rd workshop), it was not like previous
workshops. Discussions were fiery and sharp, at least during some talks. But this
was not our Bled workshop. Effective discussions require the personal presence of
the debaters, as well as of the rest of participants, which interrupt the presentations
with questions all the time. As students need personal discussions with a good
teacher, Internet discussions can never replace the real one.
Let us point out that we still succeeded to discuss the open problems on present
understanding of the elementary particle physics and cosmology in the fully
online regime, trying to save the most important feature of Bled Workshops - their
free streaming discussion resulting in the comprehensive view on the discussed
phenomena and ideas.
And let us add that due to the on line presentations we have students participants,
who otherwise would not be able to attend the Bled conference, the travel expenses
are too high for them. Their presentations are published in the second part of the
proceedings, together with the invited talks, which came at the very last moment.
The organizers strongly hope that next year the covid-19 will be defeated, this is
the hope for the whole world, for the young generation in particular and for all
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of us, with the Bled workshop 2021 included. Let us meet at Bled! (This year’s
experience made us to think on more practical videoconferencing tools, like Zoom
to facilitate extension of our discussions online.)
Since, as every year, also this year there has been not enough time to mature the
discussions into the written contributions, only two months, authors can not really
polish their contributions. Organizers hope that this is well compensated with
fresh contents.
Questions and answers as well as lectures enabled by M.Yu. Khlopov via Virtual
Institute of Astroparticle Physics (viavca.in2p3.fr/site.html) of APC have in ample
discussions helped to resolve many dilemmas. Google Analytics, showing more
than 242 thousand visits to this site from 154 countries, indicates world wide
interest to the problems of physics beyond the Standard models, discussed at
Bled Workshop. At XXIII Bled Workshop VIA streaming made possible to webcast
practically all the talks.
The reader can find the records of all the talks delivered by cosmovia since Bled
2009 on viavca.in2p3.fr/site.html in Previous - Conferences.
Most of the talks can be found on the workshop homepage
http://bsm.fmf.uni-lj.si/.
Having a poet among us, we kindly asked Astri to contribute a poem for our
proceedings. It is our pleasure that she did listen us and send two poems. We
publish both, in each volume one.
Let us conclude this preface by thanking cordially and warmly to all the partici-
pants, present through the teleconferences at the Bled workshop, for their excellent
presentations and also, in spite of all, for really fruitful discussions.

Norma Mankoč Borštnik, Holger Bech Nielsen, Maxim Y. Khlopov,
(the Organizing comittee)

Norma Mankoč Borštnik, Holger Bech Nielsen, Dragan Lukman,
(the Editors)

Ljubljana, December 2020
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Predgovor (Preface in Slovenian Language)

Vsakoletne delavnice z naslovom ,,Kako preseči oba standardna modela, koz-
mološkega in elektrošibkega” (”What Comes Beyond the Standard Models?”) sta
postavila leta 1998 Norma in Holger z namenom, da bi udeleženci v izčrpnih
diskusijah kritično soočali različne ideje in teorije. Delavnice domujejo v Plemljevi
hiši na Bledu ob slikovitem jezeru, kjer prijetni sprehodi in pohodi na čudovite
gore, ki kipijo nad mestom, ponujajo priložnosti in vzpodbudo za diskusije.
Tudi to leto je bila delavnica v juliju, vendar nam je tokrat covid-19 onemogočil
srečanje v Plemljevi hiši. Tudi diskutirali nismo med hojo okoli jezera ali med hri-
bolazenjem. Vendar nam je dolgoletna iskušnja s “cosmovio” — videopovezavami
z laboratoriji po svetu — omogočila, da je tudi letos stekla Blejska delavnica, tokrat
prek interneta.
K našim zelo odprtim, prijateljskim, dolgim in zahtevnim diskusijam, polnim
iskrivega sodelovanja, je prispevalo veliko fizikov in celo nekaj matematikov. V
večini predavanj in razprav so udeleleženci poskusili razumeti in pojasniti pred-
postavke obeh standadnih modelov, elektrošibkega in barvnega v fiziki osnovnih
delcev ter kozmološkega, predpostavke in napovedi obeh modelov pa vskladiti z
meritvami in opazovanji, da bi poiskali model, ki preseže oba standardna modela,
kar bi omogočilo zanesljivejše napovedi za nove poskuse.
Čeprav je večina udeležencev teoretičnih fizikov, mnogi z lastnimi idejami kako
narediti naslednji korak onkraj sprejetih modelov in teorij, so še posebej dobrodošli
predstavniki eksperimentalnih laboratorijev, ki nam pomagajo v odprtih diskusijah
razjasniti resnično sporočilo meritev in nam pomagajo razumeti kakšne napovedi
so potrebne, da jih lahko s poskusi dovolj zanesljivo preverijo.
Organizatorji moramo priznati, da smo se na blejskih delavnicah v (dolgih) pred-
stavitvah (z odmori in nadaljevanji preko več dni), ki so jim sledile zelo podrobne
diskusije, naučili veliko, morda več kot večina udeležencev. Upamo in verjamemo,
da so veliko odnesli tudi študentje in večina udeležencev. Velikokrat so se pre-
davanja spremenila v zelo pedagoške predstavitve, ki so pojasnile predpostavke
in podrobne korake, soočile predstavljene predloge s predlogi v literaturi ali s
predlogi ostalih udeležencev ter jasno pokazale, kje utegnejo tičati šibke točke
predlogov. Zdi se, da so se ideje v teh letih razvijale bistveno hitreje, zahvaljujoč
prav tem delavnicam.
Tako kot v preteklih dveh letih tudi to leto niso eksperimenti v kozmologiji in
fiziki osnovih fermionskih in bozonskih polj ponudili rezultatov, ki bi omogočili
nov vpogled v fiziko osnovnih delcev in polj, čeprav je bilo vanje vloženega veliko
truda in četudi razberemo iz eksperimentov, da četrta družina k že izmerjenim
trem mora biti, saj lahko s štirimi družinami lažje pojasnimo izmerjene podatke,
kar je omenjeno tudi v tem zborniku.
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Tudi zadnje analize rezultatov merjenj na LHC in drugih merilnikih niso pripo-
mogle k boljšemu razumevanju naravnih zakonov v fiziki osnovnih delcev in
kozmologiji. Posebno pozornost so vzbudile meritve gravitacijskih valov, ki so jih
povzročile črne luknje z masami okoli 150 sončnih mas. Prav te meritve poskušajo
razložiti nekateri prispevki v letošnjem zborniku.
Vse več je tudi kozmoloških meritev, za katere se zdi, da jih standardni model
osnovnih fermionski in bozonskih polj ne more pojasniti. Še nikoli doslej niso bili
predlogi za kozmološke teorije in iskanje nove teorije v fiziki osnovnih polj tako
zelo soodvisne od poizkusov in razumevanja predpostavk na obeh področjih.
Pričakujemo, da bodo kozmološka merjenja in meritve v laboratorijih pomagala
razrešiti odprta vprašanja na obeh področjih. Na obeh področjih je predlogov
za novo teorijo čedalje več, vendar velika večina teh predlogov ponuja majhna
odstopanja od standardnih modelov. Tekma, kdo ima prav, je odprta.
Nove meritve bodo morda kmalu ponudile odgovor na vprašanje, ali so naravni
zakoni elegantni (kot napoveduje teorija spina-naboja-družin in tudi druge teorije
Kaluze in Kleina, vendar brez družin in ne tako ”udarno”) ali pa ”narava uporabi
grupe, ki in ko jih ravno potrebuje” (kar predlaga velika večina modelov, tudi
nekateri v tem zborniku). Ali je smotrno pojav Higgsovega skalarnega polja in
Yukawinih sklopitev dodati k standardnemu modelu osnovnih delcev kot dodatno
polje, ki ga zahtevajo poskusi, ali pa je v resnici skalarnih polj več, njihov izvor pa
je gravitacijsko polje v razsešnostih d > (3+ 1)?
So vsa osnovna fermionska in bozonska polj, tudi skalarna, brezmasna in je njihova
masa, ki jo merimo pri nizkih energijah, posledica sil in zlomitve simetrij? Ali
izvirajo naboji fermionov, ki jih izmerimo pri nizkih energijah, v spinih, ki jih ti
fermioni nosijo v d > (3 + 1)? Kaj tedaj prostor in čas v resnici pomenita? Sta
neskončna, ali pa se rodita iz nič ? Ali ”narava uporabi” liho Clifordovo algebro
za opis fermionov, kar zagotovi antikomutacijske relacije med kreacijskimimi in
anihilacijskimi operatorji že med enofermionskimi stanji, kar pojasni Diracove
postulate za fermione v drugi kvantizaciji? Kaj ”prisili” fermione, da se pojavijo v
družinah? Koliko je družin kvarkov in leptonov in kako so povezani, če sploh, z
izmerjenimi tremi družinami? Kaj povzroči zlomitev simetrij, diskretnih, globalnih,
lokalnih? Ali je Lorentzova simetrija zlomljena in če je, pod kakšnimi pogoji
se zlomi? Ali je simetrija med fermioni in antifermioni v gravitacijskem polju
zlomljena?
Kaj so gradniki temne snovi? Ali so barioni družin, ki niso sklopljene z izmerjenimi
družinami kvarkov in leptonov in jih napove teorija spina-nabojev-družin, del
temne snovi v vesolju? Ali se lahko novi fermioni, ki jih dodajo k kvarkom in
leptonom standardnega modela osnovnih fermionskih in bozonskih polj, dajo
pojasniti s stabilnimi barioni, ki jih napove teorija spina-nabojev-družin? So tudi
temna jedra atoma O-He-lija člani stabilne družine? Se da temna snov pojasniti s
skupki kvarkov in leptonov standardnega modela? Ali pa k temni snovi prispevajo
temne zvezde, ki imajo lastnosti črnih lukenj?
Kaj pa so v resnici črne luknje? Če so nastajale ob inflaciji, kakšni fermioni in
antifermioni so sodelovali pri nastanku črnih lukenj, z maso nič (to je pred elek-
trošibkim faznim prehodom) ali z neničelnimi masami? Kaj je povzročilo inflacijo?
Če ima črna luknja singularnost, kako se spremenijo lastnosti fermionov in an-
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tifermionov znotraj črne luknje? Ali izgubijo lastnosti, ki so jih imeli v d = (3+ 1)-
razsežnem prostoru? Ali razumemo, kaj se dogaja v črni luknji znotraj horizonta?
Ta in še marsikatera druga vprašanja smo načeli v času Blejske delavnice 2020.
Denimo kot to, da v novi teoriji strun, ki jo sestavljajo točkasti delci, čas sploh ne
nastopa.
Meritve DAMA/LIBRA v Gran Sassu so nas znova prepričale, da so delci, ki
se sipljejo na atomskih jedrih merilcev in ki skozi leto periodično spreminjajo
svojo intenzivnost, delci temne snovi. Pričakujemo, da bo laboratorijem po svetu,
ki poskušajo potrditi njihove meritve, prej ali slej to tudi uspelo. Vprašanja in
odgovori so pomagali razumeti, zakaj nobenemu doslej potrditev še ni uspela.
Četudi je cosmovia poskrbela, da so diskusije tekle ves čas, tako kot je bilo na vseh
delavnicah doslej, blejskih diskusij v živo diskusije po internetu niso mogle nado-
mestiti. Diskusije so bile ognjevite in ostre, vsaj pri nekaterih predavanjih, vendar
potrebujejo učinkovite diskusije osebno prisotnost diskutantov in poslušalcev, ki
z vprašanji poskrbijo, da je debata razumljiva vsem. Tudi študentom internet ne
more nadomestiti dobrega učitelja.
Poudariti je potrebno, da nam je kjub temu uspela dokaj plodna diskusija o tem,
kako dobro razumemo danes obe področji, fiziko osnovnih delcev in polj ter di-
namiko našega vesolja. In dodajmo, da je delavnica preko interneta omogočila
šudentom aktivno in plodno sodelovanje, ki bi se ga v živo zaradi stroškov poto-
vanja ne mogli udeležiti.
Šiudentski prispevki so zbrani v drugem zborniku Blejske delavnice, skupaj s
prispevki vabljenih predavateljev, katerih prispevke smo prejeli zadnji trenutek.
Organizatorji upamo, da bo naslednje leto virus premagan, naše upanje velja za
ves svet, za mlado generacijo pa še posebej, pa tudi za Blejsko delavnico 2021, da
bo stekla v živo na Bledu.
Ker je vsako leto le malo casa od delavnice do zaključka redakcije, manj kot
dva meseca, avtorji ne morejo dovolj skrbno pripravti svojih prispevkov, vendar
upamo, da to nadomesti svezina prispevkov.
Bralec najde zapise vseh predavanj, objavljenih preko ”cosmovia” od leta 2009,
na viavca.in2p3.fr/site.html v povezavi Previous - Conferences. Večino predavanj
najde bralec na spletni strani delavnice na http://bsm.fmf.uni-lj.si/.
Prosili smo Astri, da nam pošlje kako od svojih pesmi. Prijazno nam je ugodila in
poslala dve. Objavljamo obe, v vsakem zborniku po eno.
Naj zakljucimo ta predgovor s prisrčno in toplo zahvalo vsem udeležencem,
prisotnim preko videokonference, za njihova predavanja in še posebno za zelo
plodne diskusije in kljub vsemu odlično vzdušje.

Norma Mankoč Borštnik, Holger Bech Nielsen, Maxim Y. Khlopov,
(Organizacijski odbor)

Norma Mankoč Borštnik, Holger Bech Nielsen, Dragan Lukman,
(uredniki)

Ljubljana, grudna (decembra) 2020
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Abstract. Experimental observations and theoretical arguments at galactic and larger scales
pointed out that a large fraction of the Universe is composed of Dark Matter (DM) particles.
This has motivated the pioneer DAMA experimental efforts to investigate the presence of
such particles in the galactic halo by exploiting a model-independent signature and highly
radio-pure apparata in deep underground. In this paper the long-standing DM model-
independent annual modulation effect measured by DAMA with various experimental
set-ups made of highly radiopure NaI(Tl) is shortly summarized. Efforts to further improve
the performance of the experiment at very low energy are mentioned.

Povzetek. Eksperimentalna opažanja in teoretične analize opažanj kažejo, da je temne
snovi mnogo več kot običajne. Experiment DAMA je bil postavljen, da z direktno meritvijo
delcev temne snovi, ki bo neodvisna od teoretičnih modelov, meri interakcijo med temi
delci in delci v merilnikih. Experiment DAMA že vrsto let ugotavlja prisotnost delcev
temne snovi v naši galaksiji na način, ki je neodvisen od predpostavk in napovedi modelov.
Detektorji iz zelo čistih materialov, ki so postavljeni globoko v podzemlju, merijo letno
modulacijo signala. Članek na kratko povzame rezultate, izmerjene z zelo (radio) čistim
detektorji NaI(Tl). Avtorji na kratko poročajo o nameravanih izbolšanju eksperimenta za
območje zelo nizkih energij.

Keywords: Dark Matter, Candidates, Rare Events, Annual Modulation, Low-
background Scintillators, NaI(Tl).
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2 R. Bernabei et al.

1.1 Introduction

The constant progress in the last century and the numerous astronomical and
cosmological observations in the last decades have collected a lot of information
about our Galaxy and the Universe itself. It was argued that much of it must be in
form of relic particles from the early stages of the formation of the Universe; this
opened up a field for the detection of such particles.

In particular, the Dark Matter (DM) direct detection approach is the most
direct method to investigate the presence of DM particles in our galactic halo,
picking up rare events directly induced on suitable Earth detectors, settled deep
underground. This investigation is difficult and delicate since many questions are
still open on the topic, such as:

· Considering how rich in particles the luminous matter is, although its ex-
tremely modest density in the Universe, can it be argued that the particle DM
is multicomponent?
· Which is the nature of the DM particle(s) and of its(their) interactions?
· Which is the proper description of the dark galactic halo?
· What about the interplay among Nuclear Physics, Particle Physics and Astro-

physics/Cosmology that heavily enters in the choice of related physical pa-
rameters and scenarios in corollary model dependent analyses?

These quests and many others on related experimental and theoretical argu-
ments make the efforts very challenging.

The DAMA project has been working as an observatory to investigate various
kinds of rare processes, in particular by developing and using low radioactive scin-
tillators. It is operative deep underground in the Gran Sasso National Laboratory
(LNGS) of the INFN. Among the many experiments carried on, dedicated R&D,
developments and highly radio-pure apparata have been set and empowered to
explore the presence of DM particles in the galactic halo by exploiting mainly
the DM model-independent annual modulation signature (see Ref. [1] and Refs.
therein). In particular, the development of Ultra Low Background (ULB) NaI(Tl)
target–detectors ensures sensitivity to a wide range of DM candidates, masses,
interaction types and astrophysical scenarios.

1.2 DAMA/LIBRA and the Dark Matter annual modulation

The expected DM particles differential counting rate depends on the Earth’s
velocity in the galactic frame:

vE(t) = v� + v⊕cosγcosω(t− t0), (1.1)

where the Sun velocity with respect to the galactic halo is v� ' v0 + 12 km/s,
with v0 local velocity), and v⊕ ' 30 km/s is the Earth’s orbital velocity around the
Sun on a plane with inclination γ = 60o with respect to the galactic one. Moreover,
ω= 2π/T with T = 1 year and roughly t0 ' June 2nd (when the Earth’s speed in
the galactic halo is at maximum). Thus, the expected counting rate averaged in a
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given energy interval can be conveniently worked out through a first order Taylor
expansion:

S(t) = S0 + Smcosω(t− t0), (1.2)

with the contribution from the highest order terms being less than 0.1%. The Sm
and S0 are the modulation amplitude and the un-modulated part of the expected
differential counting rate, respectively.

Therefore, in the DAMA experiments the experimental observable is the
modulation amplitude, Sm, as a function of the energy, and the identification of
the constant part of the signal, S0, is not required to point out the presence of a
signal in the exploited model-independent annual modulation approach. This has
several advantages; in particular, the only background of interest is the one able
to mimic the signature, i.e. able to account for the whole observed modulation
amplitude and to simultaneously satisfy all its many specific peculiarities (see e.g.
Ref. [2]). No background of this sort has been found, see Refs. [2–13].

The model-independent evidence for the presence of DM particles in the
galactic halo has been investigated on the basis of the exploited DM annual
modulation signature by the first six annual cycles of DAMA/LIBRA–phase2 [2,4–
7] after the previous DAMA/LIBRA–phase1 [3, 8–15] and the former DAMA/NaI
[16, 17] experiments. The cumulative Confidence Level (C.L.) is increased from the
previous 9.3 σ (data from 14 independent annual cycles for an exposure of 1.33 ton
× yr) to 12.9 σ (data from 20 independent annual cycles for an exposure of 2.46
ton × yr).

The modulation amplitudes, Sm, for the whole data sets: DAMA/NaI, DAMA/
LIBRA–phase1 and the first 6 annual cycles of DAMA/ LIBRA–phase2 (total ex-
posure 2.46 ton×yr) are plotted in Fig. 1.1; the data below 2 keV refer only to the
first 6 annual cycles of DAMA/LIBRA–phase2 exposure (1.13 ton×yr). It can be
inferred that positive signal is present in the (1–6) keV energy interval, while Sm
values compatible with zero are present just above [2]. Dedicated data analyses
descriptions are given e.g. in Refs. [1–19]. See also Fig. 1.2 in the following.

In order to continuously monitor the running conditions, several pieces of
information are acquired with the production data and quantitatively analysed;
information on technical aspects of DAMA/LIBRA has been given in Ref. [8, 14],
where the sources of possible residual radioactivity have also been analysed.
In particular, all the time behaviours of the running parameters, acquired with
the production data, have been investigated. Table 1.1 shows the modulation
amplitudes obtained for each annual cycle of DAMA/LIBRA–phase1 and phase2,
when fitting the time behaviours of the values of the main parameters including a
cosine modulation with the same phase and period as for DM particles. As can be
seen, all the measured amplitudes are well compatible with zero and the stability
of the measurements conditions is better than 1%.

Careful investigations on absence of any systematics or side reaction able to
account for the measured modulation amplitude and to simultaneously satisfy
all the requirements of the signature have been quantitatively carried out (see e.g.
Refs. [3], and references therein); some of them will be mentioned in the following.
The cases of muons, neutrons and neutrinos have also been carefully investigated
[12, 13]. In particular, no modulation
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Fig. 1.1. Modulation amplitudes, Sm, for the whole data sets: DAMA/NaI, DAMA/LIBRA–
phase1 and DAMA/LIBRA–phase2 (total exposure 2.46 ton×yr) above 2 keV; below 2 keV
only the DAMA/LIBRA–phase2 exposure (1.13 ton × yr) is available and used. The energy
bin ∆E is 0.5 keV. A clear modulation is present in the lowest energy region, while Sm
values compatible with zero are present just above [1].

has been found in any possible source of systematics or side reactions; thus, upper
limits (90% C.L.) on the possible contributions to the DAMA/LIBRA measured
modulation amplitude are summarized in Table 1.2. In particular, they cannot
account for the measured modulation both because quantitatively not relevant
and unable to mimic the observed effect.

1.2.1 Any effect from long–term decay in DAMA?

The adopted cautious procedure in the investigation of the DM particles an-
nual modulation signature, as discussed several times in the DAMA papers
[2–7, 9–11], is that the data taking of each annual cycle starts from autumn (when
cosω (t− t0) ' 0) towards summer (maximum expected). In such a way, during
the annual cycle the expected minimum (December) of the DM signal occurs before
of the maximum (June). Thus, any possible decay of long–term–living isotopes
cannot simulate the observed positive signal. On the contrary, assuming in the
analysis a constant background within each annual cycle, a possible decay of long–
term–living isotopes may only lead to an underestimate of the observed annual
modulation signal, depending on the radio–purity of the set-up as mentioned
already e.g. in Ref. [20], pag. 5731.

Despite this clear argument, recently Ref. [21] claims that the DAMA annual
modulation result may be biased by a slow variation in the rate, possibly due to
either some indefinite background or signal; even that the total rate at low energy
in DAMA/LIBRA may have an odd behavior, increasing with time (see Fig. 2
of Ref. [21]). At first, this odd time behaviour of the counting rate was already
excluded by the DAMA/LIBRA published results. In particular, the contaminants
of the DAMA set-ups are reported in several papers; for example in Refs. [1, 3, 8]

1 We also recall that the data collection of the first analysed annual cycle occurred more
than one and half year after the installation of the detectors underground.
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Source Main comment Cautious upper limit
(see also Ref. [8]) (90%C.L.)

Sealed Cu Box in
Radon HP nitrogen atmosphere, < 2.5× 10−6 cpd/kg/keV

3-level of sealing
Temperature Air conditioning < 10−4 cpd/kg/keV

+ huge heat capacity
Noise Efficient rejection < 10−4 cpd/kg/keV

Energy scale Routine < 1 − 2× 10−4 cpd/kg/keV
+ intrinsic calibrations

Efficiencies Regularly measured < 10−4 cpd/kg/keV
No modulation above 6 keV;

no modulation in the (1 – 6) keV
Background multiple–hit events; < 10−4 cpd/kg/keV

this limit includes all possible
sources of background

Side reactions From muon flux variation < 3× 10−5 cpd/kg/keV
measured by MACRO

In addition: no effect can mimic the signature
Table 1.2. Summary of the results obtained by investigating possible sources of systematics
or side reactions in the DAMA/LIBRA annual cycles. None able to give a modulation
amplitude different from zero has been found; thus cautious upper limits (90% C.L.) on
possible contribution to the measured modulation amplitude have been calculated and are
shown here (see e.g. Ref. [1] and references therein).

and references therein (see also above); none of them increases with time. Moreover,
the stability with time of the running parameters are shown e.g. in Refs. [1–7,9–11]
(also see Table 1.1). Thus, the assumptions in the paper of Ref. [21] are untenable
and the conclusions are flawed.

In addition, to quantitatively show the possible amount of long–term decaying
isotopes in DAMA/LIBRA, the following cases have been analyzed [1]:

• We recalculate the (2–6) keV single–hit residual rates of Fig. 25 in Ref. [1]
(reference case in Fig. 1.2–Top), by considering a possible time behaviour
given by the signal searched for and by different straight lines, one for each
annual cycle, simulating a time–varying background (hereafter, B hypothesis).
The residuals, once subtracting the so-obtained background, are reported in
Fig. 1.2–Bottom. The (2–6) keV single–hit residual rates have been fitted with
the function: A cosω(t − t0), considering a period T = 2π

ω
= 1 yr and a

phase t0 = 152.5 day (June 2nd) as expected from the DM annual modulation
signature. The obtained modulation amplitude in case of B hypothesis is A =

(0.0093± 0.0008) cpd/kg/keV, to be compared with A = (0.0095± 0.0008)
cpd/kg/keV (also see Ref. [1]) for the reference case in Fig. 1.2–Top. The χ2/dof
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Fig. 1.2. Experimental residual rate of the (2–6) keV single–hit scintillation events measured
by DAMA/LIBRA–phase1 and by the first 6 annual cycles of DAMA/LIBRA–phase2,
calculated according to the prescriptions of Sect. 5.1 in Ref. [1] (Top), reference case, and
according to B hypothesis, see text (Bottom). The superimposed curve is the cosinusoidal
functional form A cosω(t − t0) with a period T = 2π

ω
= 1 yr, a phase t0 = 152.5 day

(June 2nd) and modulation amplitude, A, equal to the central value obtained by best fit
on the data points of DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2. The two fitted
modulation amplitudes are well compatible, as described in the text.

are rather good in either case: 60.4/75 and 71.8/101. A χ2–difference (∆χ2)
test have been applied to investigate the two nested cases. The ∆χ2 = 11.4 is a
χ2 variable with 26 degrees of freedom and, consequently, the B hypothesis
is not favoured with respect to the reference case by the data at 90% C.L.:
P
(
∆χ2 < 11.4 | dof = 26

)
= 5.9× 10−3.

• In addition, the (2–6) keV single–hit residuals have also been fitted by keeping
free the period and the phase in the procedure. The period and the phase are
well compatible with expectations for a DM annual modulation signal; they
are for the B hypothesis: T = (0.9985± 0.0009) yr and t0 = (143± 5) days; the
modulation amplitude is A = (0.0094± 0.0008) cpd/kg/keV. These values
can be compared with those of Table 5 in Ref. [1], showing that the effect of
long–term time–varying background – if any – has a negligible role in the
given results.

• A possible long–term time–varying background would also induce a (ei-
ther positive or negative) fake modulation amplitudes (Σ) on the tail of
the Sm distribution above the energy region where the signal has been ob-
served. Taking as reference the (6–14) keV energy interval, the averaged mod-
ulation amplitudes are: 〈Sm〉(6−14) = (0.00028± 0.00075) cpd/kg/keV, and
〈Sm〉(6−14) = (0.0006± 0.0006) cpd/kg/keV for DAMA/LIBRA–phase1 and
DAMA/LIBRA–phase2, respectively [2–7, 9–11]. They are both compatible
with zero, as also previously reported in Refs. [2–7, 9–11]. Thus, applying
the Feldman and Cousins procedure [22], one can obtain an upper limit on
the absolute value of Σ at 90% C.L.: | Σ |< 1.5 × 10−3 cpd/kg/keV, and
| Σ |< 1.6×10−3 cpd/kg/keV for DAMA/LIBRA–phase1 and DAMA/LIBRA–
phase2, respectively.
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Thus, taking into account that the observed annual modulation amplitude
at low energy is order of 10−2 cpd/kg/keV, any possible effect of long–term
time–varying background – if any – is negligible.

• The maximum likelihood analysis has been repeated including in the back-
ground model a linear term decreasing with time [1]. The obtained Sm are
shown in Fig. 1.3 in comparison with those already obtained considering a
constant background for each annual cycle. It clearly shows that the systematic
error on the determination of the Sm previously reported is marginal.

Energy (keV)
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ke

V
)
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0 2 4 6 8 10 12 14 16 18 20

Fig. 1.3. Modulation amplitudes, Sm, calculated in the analyses of Ref. [1] (red data points)
and including in the background model a linear term decreasing with time (blue data points).
Here the energy bin is 1 keV. Top: DAMA/LIBRA–phase1 and Bottom: DAMA/LIBRA–
phase2.

In conclusion, we have shown few simple examples demonstrating that the possi-
ble effect of long–term time–varying background in DAMA/LIBRA is negligible
and the reference analyses, that assume a constant background within each annual
cycle as reported in Ref. [1], can be safely adopted. Similar conclusions have also
been reported in Ref. [23].

1.2.2 A prior for the corollary model dependent analyses

Implications of the model-independent DAMA result on several of the many
possible scenarios, already investigated with lower exposure and higher soft-
ware energy threshold in the past, have also been updated by including data
of DAMA/LIBRA–phase2 as reported in [24–26]. In fact, we have discussed in
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several papers the effects of the existing experimental and theoretical uncertainties
existing in model dependent interpretations of the DAMA model-independent
DM results, and comparisons.

Here we shortly remind the study of the measured low energy spectrum
which offers a useful prior for those kinds of corollary analyses. Few structures
in such spectrum allow the identification of contaminants present in traces in the
detectors. As an example, the low energy spectrum of single–hit scintillation events
for one detector in DAMA/LIBRA–phase2 is reported in Fig. 1.4, where – as also
always in the paper – the correction for efficiencies is already applied.

There are represented the measured contributions of: (i) the internal cosmo-
genic 129I: (947± 20) µBq/kg; (ii) the internal 210Pb: (26± 3) µBq/kg, which is in
a rather–good equilibrium with 226Ra in the 238U chain; (iii) the electron capture
of 40K (producing the 3.2 keV peak, binding energy of shell K in 40Ar): 14.2 ppb of
natK, corresponding to 450 µBq/kg of 40K in this detector. The broader structure
around 12–15 keV can be ascribed to 210Pb either on the PTFE, wrapping the bare
crystal, and/or on the Cu housing, at level of 1.20 cpd/kg. The continuum due to
high energy γ/β contributions is also reported. Below 5 keV a sharp decreasing
curve represents the derived upper limit on S0.

Fig. 1.4. Example of the energy spectrum of the single–hit scintillation events collected by
one DAMA/LIBRA–phase2 detector in one annual cycle. The software energy threshold
of the experiment is 1 keV. The identified components of the background are reported:
internal 129I (full blue curve on-line), internal 40K (dashed blue curve on-line), 210Pb
(internal: solid pink curve; external: dashed pink curve; on line), continuum due to high–
energy γ/β contributions (light green line on-line). Finally, the cyan (on-line) curve at low
energy represents the upper limit on S0. The red (on-line) line is the sum of the previously
mentioned contributions.

The cumulative (over all the detectors and DAMA/LIBRA–phase2 annual
cycles) low–energy distribution of the single–hit scintillation events (that is each
detector has all the others as veto) is reported in Fig. 1.5. Superimposed there is
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the model of the 40K structure and the continuum. As can be seen, there is excess
at low energy (online blue line in Fig. 1.5), which can be considered as an upper
limit on S0 in corollary model dependent analyses.

Fig. 1.5. Cumulative low–energy distribution of the single–hit scintillation events (that is
each detector has all the others as veto), as measured by DAMA/LIBRA–phase2 in an
exposure of 1.13 ton × yr.

In particular, in DAMA/LIBRA–phase2 S0 ≤ 0.80 cpd/kg/keV in the (1–2)
keV energy interval, S0 ≤ 0.24 cpd/kg/keV in the (2–3) keV energy interval,
and S0 ≤ 0.12 cpd/kg/keV in the (3–4) keV energy interval, are obtained. These
upper limits have to be properly taken into account as prior when corollary model–
dependent analyses for a specific DM candidate and scenario through maximum
likelihood procedure is pursued. The accounting of these priors assures more
suitable determinations of allowed parameters space in this kind of analyses we
published in literature.

1.3 Some arguments on comparisons in the DM direct detection
field

Let us shed light on few of the several arguments needed to correctly depict the
present situation in the DM direct detection field.

• It is important to remind that the number of DM particles species, their nature,
their interaction types, and the related astrophysical, nuclear and particle
physics aspects (which also play a relevant role in model-dependent results
and comparisons) are actually unknown at present level of knowledge. Indeed,
a lot of different DM scenarios have been proposed. Furthermore, in several
cases, complementary sensitivities are intrinsic in the use of different target-
detectors or approaches. Sometimes it is even not possible to completely depict
the more-than-2-dimensional volumes allowed/excluded at given C.L. under
the considered theoretical assumptions and adopted experimental parameters.
Therefore, considering both the large theoretical and experimental uncertain-
ties, space for compatibility in the DM field can exist in various scenarios even
assuming the sensitivity to S0 claimed by some other experiments. In addition,
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the exclusion plots have no general meaning, but are linked to the assumed
model and to the adopted experimental parameters, and – in every case –
they lose validity in presence of systematics. We already discussed related
arguments in previous papers.

• As to the recently published results by COSINE–100 (from part of its detectors)
and by ANAIS, they presently have no impact on the observed DAMA annual
modulation result. See Fig. 1.6, which summarizes the situation. When DM
candidates inducing nuclear recoils are considered, one has to introduce the
quenching factors (q.f.). In addition, the q.f.’s have large variations among
different detectors since they are property of the specific detector and not a
general property of the material. See discussion e.g. in Ref. [24]. In details the
q.f. values for nuclear recoils in COSINE–100 are lower than those in DAMA
detectors; this is consistent with the q.f. for α’s higher in DAMA than in
COSINE–100. In conclusion, in case of DM candidates inducing nuclear recoils,
experiments with lower q.f.’s values have different and lower sensitivity. As a
matter of fact different q.f.’s are actually expected e.g. because of the different
adopted procedures for the detectors’ production.

Fig. 1.6. Some aspects of comparison among DAMA/LIBRA annual modulation results
and COSINE–100 and ANAIS (compared there by those authors with a partial exposure of
DAMA). As evident they had no sufficient sensitivity to investigate the DAMA observed
signal. Here both keV and keVee means keV electron equivalent; other problems arise when
recoiling energy is addressed; see text.
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• COSINE–100 has also used a different approach trying to extract the S0 observ-
able – instead of Sm – from its large counting rate. In fact, the overall energy
spectrum has been fitted with some assumed background components to try
predicting with high precision the background at keV region. As we mentioned
above, this is a dangerous and uncertain procedure which affects the result.
Here, e.g., the existence of 129I was omitted leading to an overestimate of the
210Pb contents to fit with high precision the background at keV energy, with
a evident systematic error model dependent that instead the investigation of
Sm overcome at all. This has been somehow amended more recently, but ex-
clusion limits were not corrected. In every case this further demonstrates how
the “precise” determination of background at keV level through such method
is untenable. Anyhow, even assuming their model dependent subtraction –
and their given error estimates – as they claim in their paper, one can derive
that (Data - model) = −(0.105± 0.276) cpd/kg/keV, corresponding an upper
limit on S0: S0 < 0.36 cpd/kg/keV 90% C.L. in the (2–6) keV energy region;
thus, no contradiction exists with the limit on S0 arising from DAMA/LIBRA
(see Sect. 1.2.2). Moreover, as mentioned above, the poorer quenching factors
in COSINE–100 with respect to the DAMA ones implies that the (2–6) keV
interval corresponds to different recoil energies between the two experiments.
On the other hand, in general, an experiment with much larger counting rate,
much lower exposure, etc. cannot intrinsically be more sensitive than one with
lower counting rate, much larger exposure, etc.

• Finally, as regards the DM indirect searches, that study the annihilation prod-
ucts of DM particles in galactic halo, no quantitative comparison can be directly
performed with results obtained in direct investigations; it strongly depends
on assumptions and on the considered model framework. In fact, the count-
ing rate in direct search is proportional to the direct detection cross-sections,
while the flux of secondary particles is connected also to the annihilation cross-
section. In principle, these cross-sections can be correlated, but only when a
specific model is adopted and by non-directly proportional relations.

In conclusion, there is no direct model independent contradiction with any
available experiment so far, and DAMA results have deeply verified in very
different conditions over many years. Its detectors have well different features
than those recently developed because e.g. of the different adopted growing
procedures, starting materials, purification methods and protocols procedures, of
the long underground storage and of the exploited handling/running protocols.
Finally, it should be recalled that positive hints have been published both by
direct and indirect approaches. In both cases compatibility with DAMA results
are possible in various scenarios as shown also in literature at some extent.

1.4 Efforts towards the further lowering of the software energy
threshold

One of the possibilities to improve the DAMA/LIBRA performance at low energy
foresees a change of all the PMTs with new high Q.E. metal PMTs of increased
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radio-purity, equipped with miniaturized low background new concept preampli-
fiers mounted on the same socket holding the components of the miniaturized HV
divider, and few related improvement of the electronic chain. The aim of this up-
grade is the improvement of the experimental sensitivity through a lower software
energy threshold with large acceptance efficiency. In particular, the experimental
sensitivity to the DM annual modulation signature is connected to the product:
ε × ∆E ×M × T × (α − β2), where ε is the overall efficiency, ∆E is the energy
region where the DM annual modulation is present, M is the exposed mass, T
is the running time, and (α − β2) shows how the data are collected along each
annual cycle; it should approach 0.5 for a full year of data taking, crucial for a
reliable investigation on DM annual modulation signature.

An increase of the sensitivity can allow to explore more extensively the DM
annual modulation signature and to improve the measurement of the modulation
parameters such as the phase, which brings important information. On the other
hand, the goal of the DAMA project was not only to point out model-independent
evidence for the presence of DM particles in the galactic halo, but also to investigate
the nature of such particles and related astrophysical, nuclear and particle physics
scenario. In particular, the main aims of an experiment with lower energy threshold
are:

• to explore the DM annual modulation signature at lower software energy
threshold with high overall efficiency, also offering the possibility to more
effectively disentangle among some of the different proposed scenarios;

• to investigate possible presence of streams in the Galaxy (as we already did
for Sagittarius in the past) also in the light of the recent GAIA results;

• to investigate possible presence of caustics or of effects of gravitational focus-
ing of the Sun; and also to investigate the nuclear quantities entering in model
dependent corollary analyses;

• to investigate with increased sensitivity the diurnal modulation, and other
possible diurnal effects due e..g. to Earth shadow and channeling (refer to
DAMA literature for detailed discussions);

• to investigate rare processes other than Dark Matter by analyzing either other
parts of the energy spectrum or specific features of processes searched for, as
previously done and published with the DAMA/NaI and DAMA/LIBRA–
phase1 data (from keV up to tens MeV; see DAMA literature).

Therefore, the DAMA collaboration has been working towards this direction.
In particular, the aim of the R&D is to improve the signal/noise ratio near soft-
ware energy threshold, in order to disentangle the noise events (time decay of
order of tens ns) and the scintillation pulses (time decay of order of 240 ns) with
high overall efficiency also below 1 keV [8, 14, 15]. Thus, new high Q.E. and low
radioactivity PMTs have been developed by the Hamamatsu co. on the basis of
our own specifications. The main ones are: 1) Q.E. at λ= 420 nm 30%- 40%; 2) dark
current <100 cps; 3) 3” window diameter; 4) particular size and shape designed
to fit the already-existing honeycomb shaped copper shield around PMTs, and to
minimize the amount of material; 5) multiplication factor > 106; 6) peak/valley
ratio >2.5; 7) PMTs radio-purity at level of few mBq/PMT.
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Moreover, new voltage divider-preamplifier systems mounted on the same
Pyralux board have been developed. New preamplifiers for the new metal PMTs
have been developed to realize a single device with high signal/noise ratio, where
the voltage divider and the preamplifier are integrated on the same board. The
preamplifier is based on the operational amplifier LMH6624 by Texas Instruments
working at ±5V, with an input bias current of -15 µA at 300 K and a bandwidth of
1.5 GHz.

The preamplifier and the voltage divider are printed on the first and third
layer of a Pyralux board [27]; between these two layers a second ground layer is
placed. The board is directly mounted in the back of the PMT inside the copper
honeycomb structure of the shield. In such a way, the preamplifiers are as close as
possible to the input source – that is the anode of the PMT – instead of those used
so far in DAMA/LIBRA–phase2 which are allocated outside the internal part of
the set-up’s shield. The new configuration is now possible thanks to the improved
radio-purity both of the new metallic PMTs and of the new preamplifiers. Thus
summarizing, a better signal/noise factor can be obtained with respect to the
case of an external and more distant preamplifier and the overall radio-purity is
improved as well.

Measurements with and without the preamplifier have been performed to
characterize the metallic PMTs, their response and the voltage divider integrated
with the preamplifier:

• Spectral response of the PMT, expressed by the Q.E., as a function of λ;
• Single Photon Pulse Height Distribution of the metallic PMTs obtained by

irradiating the device with single photon pulse;
• Dark Pulse Height Distribution of the PMTs;
• Dark Current.

The produced boards, allocating the voltage divider and the preamplifier,
have been tested from the radioactivity point of view. Three boards equipped
with all the components (total mass of 14.1 g) were measured for 6.87 day in a
Germanium detector of the STELLA facility of the LNGS. The measured residual
activity of 232Th, 235U, 40K, 137Cs and 60Co is much lower than that of the single
PMT. The only concern is for 226Ra, which stays at level of 13 mBq per piece. This
is a typical feature for such devices: the Pyralux support has generally activity
about hundred times lower for 226Ra and about 30 times lower for 228Ra and
228Th. Thus, the small residual activity is mainly due to the electronic components.
Considering that the system voltage divider integrated with the preamplifier is
placed behind the PMT, and shielded in part by the honeycomb Cu structure, its
role in the total background is negligible.

At present four of the DAMA/LIBRA detectors are already equipped and
they are in data taking using the configuration with metal R11065-20 MOD PMTs
and the developed voltage divider-preamplifier system. In the light of these devel-
opments and goals, also other alternative and cheaper configurations are under
study to further lower the software energy threshold of the detectors.
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1.5 Conclusions

The DAMA has been a pioneer project in the direct detection of DM, obtaining
the first model-independent evidence for the presence of a particle component of
the DM in the galactic halo on the basis of the exploited DM annual modulation
signature.

Three independent experimental set-ups, and their upgrades have confirmed
the presence of a peculiar annual modulation of the single–hit events in the energy
region (1–6) keV, that meets all the many requirements of the DM annual modula-
tion signature; the cumulative exposure, considering them all together is 2.46 tons
× yr (over 20 independent annual cycles).

In particular:

• the single–hit events show a clear modulation in accordance with the cosine
function, as expected for a signal induced by DM particles;

• the measured period is (0.999 ± 0.001) yr, well compatible with a period of 1
year, as expected for a signal of DM;
• the measured phase: (145 ± 5) d, is compatible with about 152.5, which is the

expected value for a DM signal;
• modulation is present only in the low energy range (1–6) keV and not in other

higher energy regions, consistently as required for a DM signal;
• modulation is present only in the single–hit events, while it is absent in multiple–

hit events, as expected for a DM signal;
• the measured modulation amplitude using a NaI(Tl) target for the single–

hit scintillation events in the energy range (2–6) keV is: (0.0103 ± 0.0008)
cpd/kg/keV (12.9 σ C.L.).

No systematic or side processes is able to account for the observed signal are
available. Corollary investigations on the nature of the DM particle(s) in given
scenarios have been performed by corollary model-dependent analyses. Various
models and parameters (experimental and theoretical) are possible and many
hypotheses have to be considered [24]. In particular, the model-independent
evidence obtained by DAMA is compatible with a wide set of astrophysical,
nuclear and particle physics scenarios for high and low mass candidates that
induce nuclear recoil and/or electromagnetic radiation, as shown extensively in
literature.

The experiment is collecting data; moreover, R&Ds have been funded and
developed to further lower the software energy threshold with high acceptance
efficiency – among others – to further efficiently disentangle among at least some
of the many possible DM candidates and scenarios.

Finally, for completeness, we note that also all the other DAMA low back-
ground set-ups are running and related developments are in progress.
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Abstract. We present and discuss some basic elements of the Standard Model hypercolor
extension. Appearance of a set of hyperquarks bound states is resulted from σ−model using;
due to specific symmetries of this minimal extension, there arise stable hypermesons and
hyperbaryons which are interpreted as the Dark Matter candidates. Knowing estimations
of their masses from analysis of Dark Matter annihilation kinetics, some processes of high
energy cosmic rays scattering off these particles are analyzed for the search of Dark Matter
manifestations.

Povzetek. Avtorja obravnavata σ−model z dodano grupo hiper kvarkov. V tem modelu
poiščeta stabilna vezana stanja hyper mesonov in hyper barionov. Interpretirata jih kot
gradnike temne snovi. Iz izmerjenih lastnosti temne snovi ocenita mase teh hiper delcev.
Obravnavata morebitne opazljive efekte sipanja kozmičnih žarkov visokih energij na teh
delcih.
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2.1 Introduction

The presence in the Universe of so-called hidden mass, which manifests itself in
the formation of the observed structure of galaxies and their clusters, is confirmed
mainly by a quantitative analysis of the gravitational interaction of stellar systems
with these invisible neutral stable objects for which neither dynamics nor evolu-
tion in time is exactly known. Astrophysical confirmations of distributed hidden
mass influence on the star clusters dynamics, the alleged effects of Dark Matter
(DM) particles induced by their presence in the massive objects composition, an
increased density of DM near active galactic nuclei (AGN), a possible DM effect on
the composition and parameters of propagation of high-energy cosmic ray fluxes
in the Universe — search for answers on these and some other questions of high
energy physics, astrophysics and cosmology are the primary tasks of fundamental
physics. Elucidation of the mysterious nature of Dark Matter is complicated by
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the fact that terrestrial experimental physics at colliders, as it has become clear
by now, cannot detect any traces of DM particles. The impossibility to identify
processes with large missed energies and momenta which are characteristic of the
DM production at the colliders, i.e. in an active experiments, is accompanied by
the absence of signals of the DM particles interactions with nuclei and nucleons
in passive experiments, in underground laboratories. Another type of passive
experiments gathering astrophysical data by space telescopes play very important
role, recording the specific spectra of cosmic photons, leptons, and baryons in the
vicinity of the Earth.

In this situation, any astrophysical data capable of shedding light on the
hidden mass nature are valuable. In particular, these are indirect signals about
possible DM effects, which can be interpreted consistently. For an unambiguous
interpretation within the framework of a certain paradigm about the origin and
dynamics of the DM particles, it is of particular importance to study the correla-
tions between characteristics of various astrophysical phenomena and to consider
also DM interactions with different types of particles and astrophysical objects
at various space-time scales and in a wide energy ranges. Investigation of all as-
pects of DM physics within the framework of multi-messenger approach becomes
key for establishing the SM extension type. Because of lack of new information
about possible hidden mass carriers, we should examine various reasonable ideas
allowing to move beyond the SM. In this way, we come to consideration of new
objects with some new dynamics, and we can realize a quantitative analysis of
known or expected physical effects interpreting as the DM manifestations. Here,
we present some results on high-energy cosmic rays interaction with the DM
candidates arising in hyper-color SM extension. In the following Section 2 we
present in brief some detail of minimal vectorial hyper-color model; then, Section
3 contains discussion of cosmic rays scattering off DM objects in H-color scenario.
There are some new preliminary results of high-energy cosmic proton interaction
with the hyper-pions, ones of the DM components, in the Section 4. We also add
Conclusion and Discussion of this scenario in the end.

2.2 Basics of hypercolor extension of Standard Model

Hyper-color approach modifies the SM by extending it with additional heavy
fermions charged under some new gauge group [1–9]. In fact, these new fields,
hyperquarks, are similar to techniquarks, however, in this case vectorial interaction
of H-quark currents with the gauge bosons can be provided by some transfor-
mation of initial fermion doublets. In this way, some problems of Technicolor
can be eliminated. It is the vector-like interaction is the reason why the model is
in accordance with strong electro-weak constraints. Certainly, the H-quarks are
confined with new strong interaction and, remembering the Technicolor ideas,
these models with extra heavy H-quarks can result to the scenarios with composite
Higgs doublets (see e.g. [10]) or a small mixing between fundamental standard
Higgs bosons and composite hadron-like states of new strong sector. In this way,
we come to partially composite Higgs boson. Due to accidental symmetries in
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these models, there occur neutral stable states which can be interpreted as DM
candidates.

Among the simplest realizations of the scenario described, there are models
with two or three vector-like H-flavors confined by strong H-color force Sp(2nF),
nF > 1. The models with H-color group SU(2) (see Refs. [8, 9] and references
therein) can be considered as particular cases as a consequence of isomorphism
SU(2) = Sp(2). The global symmetry group of the strong sector with symplectic
H-color group is larger than for the special unitary case—it is the group SU(2nF)
broken spontaneously to Sp(2nF), with nF being a number of H-flavors. Here
we consider the case when the elementary Higgs doublet is preserved in the set
of Lagrangian field operators. Then, the scalar doublet mixes with H-hadrons,
and we get the physical Higgs partially composite. Note also that the same coset
SU(2nF)/Sp(2nF) can be used to construct composite two Higgs doublet model [10]
or little Higgs models [11–15].

In fact, the model has the symmetry G = GSM × Sp(2nf) with nf > 1, here
GSM and Sp(2nF) are the gauge SM group and a symplectic hypercolor group
respectively. In its field content, the model introduces a doublet and a singlet of
heavy vector-like H-quarks charged under H-color group. In the most general
form, renormalizable and invariant under G Lagrangian can be written as

L = LSM −
1

4
Hµνa H

a
µν + iQ̄DQ−mQQ̄Q+ iS̄DS−mSS̄S+ δLY, (2.1)

DµQ =

[
∂µ +

i

2
g1YQB

µ −
i

2
g2W

µ
aτa −

i

2
gc̃H

µ
aλa

]
Q, (2.2)

DµS =

[
∂µ + ig1YSB

µ −
i

2
gc̃H

µ
aλa

]
S, (2.3)

where Hµa, a = 1 . . . nF(2nF + 1) are hypergluon fields and Hµνa are their strength
tensors; τa are the Pauli matrices; λa, a = 1 . . . nF(2nF+ 1) are Sp(2nF) generators
satisfying the relation

λT
aω+ωλa = 0, (2.4)

where T stands for the transition operation, ω is an antisymmetric 2nF × 2nF
matrix, ωTω = 1. All underscored indices correspond to representations of the
H-color group Sp(2nF). In the Lagrangian (2.1), the contact Yukawa couplings δLY

of the H-quarks and the SM Higgs doublet H are permitted by the symmetry G if
the hypercharges YQ and YS satisfy an additional linear relation:

δLY = yL
(
Q̄LH

)
SR + yR

(
Q̄RεH̄

)
SL + h.c. for

YQ

2
− YS = +

1

2
; (2.5)

δLY = yL
(
Q̄LεH̄

)
SR + yR

(
Q̄RH

)
SL + h.c. for

YQ

2
− YS = −

1

2
. (2.6)
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Indeed, the hypercolor part of the H-quark Lagrangian (2.1) can be rewritten
in terms of a left-handed sextet as follows:

δLHq, kin = iP̄LDPL, PL =


QL

εωQR
C

SL

−ωSR
C

 , (2.7)

DµPL =

[
∂µ −

i

2
gc̃H

µ
aλa

]
PL, (2.8)

where ε = iτ2, the operation C denotes the charge conjugation. In the absence
of the electroweak interactions, the H-quark Lagrangian is invariant under an
extension of the chiral symmetry—a global SU(6) symmetry [16, 17]. The set of
SU(6) subgroups is the following:

• the chiral symmetry SU(3)L × SU(3)R,
• SU(4) subgroup corresponding to the two-flavor model without singlet H-

quark S,
• two-flavor chiral group SU(2)L × SU(2)R, which is a subgroup of both former

subgroups.

The global symmetry of the model is broken both explicitly and dynamically:

• explicitly—by the electroweak and Yukawa interactions and the H-quark
masses;

• dynamically—by H-quark condensate [18, 19]:

〈Q̄Q+ S̄S〉 = 1

2
〈P̄LM0PR + P̄RM

†
0PL〉, PR = ωPL

C, (2.9)

M0 =

0 ε 0ε 0 0

0 0 ε

 . (2.10)

Note, condensate (2.9) is invariant under Sp(6) ⊂ SU(6) transformations U that
satisfy a condition

UTM0 +M0U = 0, (2.11)

so the global SU(6) symmetry is dynamically broken to Sp(6) subgroup. Further,
H-quarks mass terms break the symmetry to Sp(4)× Sp(2):

δLHq = −
1

2
P̄LM

′
0PR + h.c., M ′0 = −M ′0

T =

 0 mQε 0

mQε 0 0

0 0 mSε

 . (2.12)

The model under consideration is free of gauge anomalies and is in agreement
with the electroweak precision constraints, since the H-quarks are vector-like, i.e.
their electroweak interactions are chirally symmetric.

The case of two-flavor model (without the singlet H-quark) is completely
analogous to the three-flavor model but is simpler than the latter one— global
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SU(4) symmetry is broken dynamically to its Sp(4) subgroup by the condensate
of doublet H-quarks; corresponding Lagrangian of the model is presented in
detail in [8, 9]. To operate with interacted constituent H-quarks and their bound
states, there were used a linear σ-model; the model Lagrangian consists of kinetic
terms for the constituent fermions and the lightest (pseudo)scalar composite states,
Yukawa terms for the interactions of the (pseudo)scalars with the fermions, and a
potential of (pseudo)scalar self-interactions Uscalars [8, 9] (remind that we consider
here fundamental Higgs doublet of the SM).

It also postulated that the constituent H-quarks interact with the gauge bosons
as the fundamental H-quarks. Then, we have transformation laws for the covariant
derivative for the scalar fieldM. The complete set of covariant derivatives which
are involved into the model Lagrangian is as follows:

DµH =

[
∂µ +

i

2
g1Bµ −

i

2
g2W

a
µ

]
H, (2.13)

DµPL =

[
∂µ + ig1B

µ (YQΣQ + YSΣS) −
i

2
g2W

µ
aΣ

a
W

]
PL,

DµM = ∂µM+ iYQg1Bµ(ΣQM+MΣT
Q) (2.14)

+iYSg1Bµ(ΣSM+MΣT
S) −

i

2
g2W

a
µ(Σ

a
WM+MΣaTW ).

For detail see [8, 9], matrices ΣQ, ΣS, ΣaW , a = 1, 2, 3 also are presented there.
Setting the H-quarks hypercharges to zero, the model Lagrangian is invariant

under an additional symmetry—hyper G-parity [20, 21]:

QG̃ = εωQC, SG̃ = ωSC. (2.15)

This transformation does not involve H-gluons and SM fields, so the lightest G̃-
odd H-hadron becomes stable. It happens to be the neutral H-pion π0. Besides, the
numbers of doublet quarks are conserved in the minimal SU(4) model, because
of global U(1) symmetry group of the Lagrangian, so we get the neutral singlet
H-baryon B stable. Note also that the G̃-parity is induced by a discrete symmetry,
and not with a continuous transformation of the H-pion states. So, higher order
corrections cannot destabilize neutral weakly interacting H-pion, which is the
lightest state in the pseudoscalar triplet. But charged H-pion states should decay
by several channels producing charged leptons and neutral H-pion.

In any case, we can interpret both stable objects in H-color model as two-
components of the DM (multi-component structure od DM was analyzed in a
number of papers [22–26]). Importantly, to be in a correspondence with precision
SM data the angle of mixing between σ̃− meson and Higgs boson should be
small sin θ � 0.1, then Peskin-Tackeuchi parameters agree with experimental
restrictions [8].
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2.3 Cosmic lepton scattering off Dark Matter

Now, in strong and EW channels the width of the charged H-pion decay [8] can be
found as

Γ(π̃± → π̃0l±νl) = 6 · 10−17GeV, τπ = 1.1 · 10−8 sec, cτπ ≈ 330 cm;

Γ(π̃± → π̃0π±) = 3 · 10−15GeV, τl = 2.2 · 10−10 sec, cτl ≈ 6.6 cm. (2.16)

The DM candidates, π̃0 and B0, have equal tree level masses, but the mass splitting
∆MBπ̃ = mB0 −mπ̃0 in one loop depends on a renormalization point as a conse-
quence of couplings of these pNG states with different H-quark currents. We also
assume that not-pNG H-hadrons (vector H-mesons, etc.) manifest itself at much
more larger energies. It results from the smallness of the scale of explicit SU(4)
symmetry breaking comparing with the scale of dynamical symmetry breaking.

Obviously, the search for two-component DM signals is possible in the (ap-
proximately) known range of DM candidates masses. Calculating cross sections of
DM components annihilation in all channels, we can analyze kinetics of the DM
freezing out. Assuming both of mass splittings are small in comparison with the
mass, coupled system of five Boltzmann kinetic equations for all stable compo-
nents (with an account of co-annihilation reactions) is numerically solved.

As it is shown in detail in [27], there are a set of regions in a plane of H-pion
and H-sigma masses (see Fig.1), where it is possible to fix the DM relic density
in agreement with the modern data. Because only H-pions interact with vector

Fig. 2.1. Phase diagram in terms ofMσ̃ andmπ̃ which is resulted from numerical solution
of the kinetic equations system.

bosons, there are no regions where this component dominates in the DM density.
The stable B0-baryons interact with matter only via H-quark and H-pion loops
and scalar exchange channels. It is a specific feature of SU(4) vector-like model
with two stable pNG states. From numerical tree level analysis there are three
allowable regions of parameters (masses):
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Region 1: hereMσ̃ > 2mπ̃0 and u ≥Mσ̃; at small mixing, sθ � 1, and large
mass of H-pions we get a reasonable value of the relic density and a significant
H-pion fraction;

Region 2: here again Mσ̃ > 2mπ̃0 and u ≥ Mσ̃ but mπ̃ ≈ 300 − 600 GeV;
H-pion fraction is small here, approximately, (10− 15)%;

Region 3: Mσ̃ < 2mπ̃ — this region is possible for all values of parameters,
but decay σ̃ → π̃π̃ is prohibited. Here, H-pion fraction can be up to 40% for
mπ̃0 ∼ 1TeV and small mixing between scalars.

So, possible values of H-pion mass should vary approximately in the range
(600–1200)GeV in agreement with recent astrophysics data. Because some hopeful
results from colliders are absent, we consider indirect searches of DM manifes-
tations in astrophysical data [28–32]. Now, we come to study of high-energy
cosmic rays quasi-elastic scattering off the DM [27, 33–36]. Most simple reac-
tion in H-color scenario is cosmic ray electrons scattering off H-pion component
via weak boson in the process eπ̃0 → νeπ̃

−, then charged π̃− will decay as it
was indicated above. In the narrow-width approximation we get for the cross
section: σ(eπ̃0 → νeπ̃

0lν ′l) ≈ σ((eπ̃0 → νeπ̃
−) · Br(π̃− → π̃0lν ′l), branchings

of charged hyperpion decay channels are: Br(π̃− → π̃0eν ′e) ≈ 0.01 and also
Br(π̃− → π̃0π−) ≈ 0.99. Considering final charged hyperpion π̃− near its mass
shell, standard light charged pion produces neutrino eνe and µνµ with following
probabilities: ≈ 1.2 · 10−6 and ≈ 0.999, correspondingly.

Then, an energetic cosmic electron produces electronic neutrino and soft
secondary e ′ν ′e or µνµ arise from charged H-pion decays. Now, there are final
states with Br(π̃0νeµ ′ν ′µ) ≈ 0.99 and Br(π̃0νee ′ν ′e) ≈ 10−2. These results are
justified in the framework of the factorization approach [37].

We get that initial electron with energies in the range Ee = (100− 1000)GeV
interacts with cross section decreases from O(10) up to O(0.1)nb and there is a
maximum at small angles between electron and the neutrino emitted [27]). In
this approximation, energy of the neutrino produced is proportional to incident
electron energy and depends on the mass of the Dark Matter particle very weakly.
The neutrino flux is calculated by integrating of spectrum, dN/dEν, this flux
depends on H-pion mass very weakly. In the interval (50− 350)GeV it decreases
most steeply, and then, down to energies ∼ 1TeV the fall is more smoother.

We also estimate number of neutrino landings on the IceCube surface and
(even with an amplification the DM density near the Galaxy center for the sym-
metric Einasto profile), we get very small number of neutrino events per year:
Nν = (6 − 7). Indeed, this number can be increased for cosmic rays energy in
multi-TeV region. However, the electron flux is only small part of the cosmic rays
total flux especially at energies ≥ 102 TeV. As a result, we predict a very small
fluxes of secondary neutrinos and, consequently, small probability to detect such
events at IceCube [27, 36]. Cosmic rays scattering off DM clusters of very high
density [38, 39] can result in amplifying secondary neutrino flux [40, 41].

It seems that there is a chance to introduce the B0 interaction through H-pion
and/or H-quark loops, however for the scattering channels these loops are exactly
zero [27]. Thus, we need to consider of more complex tree diagrams, in particular,
tree diagrams with the exchange of Higgs boson and its partner, σ̃−meson in
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t-channel give dominant non-zero contribution to the process e−B→ νeW
−B (see

Fig.2.a). VirtualW−−boson eventually decays to lν̄l or into light ordinary mesons.
Of course, there is similar scattering reaction with the scalar states exchange,
e−π̃0 → νeW

−π̃0, whose amplitude is half as it is seen from the model Lagrangian.
We have found, these diagrams give dominant tree level part of cosmic particles
scattering cross section, and we do not take into account small contributions from
H-quark loops, hhZ and other multi-scalar vertices [36]. To calculate total cross

a)

b)

Fig. 2.2. Quasi-elastic cosmic lepton scattering with energies (1 − 20)TeV off H-baryon
Dark Matter component: a) necessary Feynman diagrams; b) total cross section formB =

1200GeV.

section of the process with final state B0e−νν̄ or π̃0e−νν̄, it was used factorization
method [37] considering independently amplitudes squared of subprocesses with
intermediate W and Z-bosons and then estimating the (negative) interference of
these contributions. The approach allows to estimate with reasonable accuracy
(no worse than ∼ 10% due to approximate estimation of the interference) cross
section of an ”averaged” process where final electron and neutrinos are produced
by different vertices,W → lνl and Z→ νlν̄l.

So, we get a reasonable evaluation of total cross section (Fig.2b) and can
estimate also the possibility to detect at IceCube the neutrino signal producing
by the process of electron scattering off the DM. In this calculation, we restrict
ourselves those phase space regions which do not include an acceleration of
initial DM particle. In other words, final DM components are slow and nearly all
energy of the incident lepton is distributed between three final massless leptons
(electron and pair of neutrinos). Of course, for neutrino scattered via W-vertex
cross section is the same. The secondary neutrino fluxes calculated are very small
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in comparison with expected neutrino fluxes from AGN which can be ∼ 105

cm−2s−1sr−1. Atmospheric neutrino fluxes with neutrino energies≤ 2TeV are also
much larger [42–44]: ∼ 10−10 − 10−9 cm−2sr−1s−1. Namely, we get the secondary
neutrino flux resulted from the cosmic electrons scattering is ∼ 10−19 − 10−22

cm−2sr−1s−1 [36].
Interestingly to note a specific scattering process when high-energy intergalac-

tic neutrino interact with the DM via neutral Z-vertex as νl + DM → ν̄l + Z
∗ +

DM→ ν̄l + νkν̄k + DM. Then three secondary neutrinos are produced and can
be accompanied with the accelerated DM particle. This process can be informative
especially because both of these neutral objects can be messengers from regions
of high DM density — regions near AGN or from possible DM inhomogeneities
of some other nature —and early epoch of the Universe [45]. Work on analysis of
such reactions is in progress.

Thus, there are some points which are important for study of the cosmic rays
scattering off the DM. Independently of the SM extension, processes with scalar
exchanges results in a strong dependence of the cross section on the DM particle
mass giving dominant part of the total ctoss section. In H-color scenario, increasing
of the DM of 10% provides the cross section grow up to 50%. The opening of
channels with scalar exchanges allows to consider an additional ways to produce
secondary high-energy leptons and photons by ultra high-energy cosmic rays
(UHECR) scattering off the DM.

2.4 High energy protons and the Dark Matter particles
acceleration

Remind that expected number of neutrino events is too small to be measured
in experiments at modern neutrino observatories. The weakness of the signal
is also resulted from effective bremsstrahlung of electrons and the smallness of
electron fraction in cosmic rays, ∼ 1%. Therefore, they are not so good probe for
the DM structure; only if there are sharply non-homogeneous spatial distribution
of hidden mass, the signal of production of energetic neutrino by cosmic electrons
can be detected. It is an important reason to study inelastic scattering of cosmic
protons, because they are more energetic and have a much larger flux.

The possibility to accelerate light DM particles due to scattering of high-energy
cosmic rays off the DM was recently supposed and numerically analyzed in a
numerous papers [46–52]. In [53] kinetic energy of DM particle which was initially
at rest and then has been accelerated by high-energy cosmic ray particle, was
calculated assuming the scattering reaction is elastic and isotropic. This simplified
analysis of the DM acceleration was used for the light DM candidates. It seems,
however, in the approximation of elastic reaction in the CMS we can use the same
simple formula from [53] to estimate possibility of boosting for heavy DM objects.
Namely, we have

TDM =
1

2
(T2CR + 2mTCR)(TCR +M/2)−1 · (1+ cos θ), (2.17)
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where m and M - masses of cosmic ray and DM particles, correspondingly, TDM
and TCR - kinetic energies of DM particle after the scattering and projectile (cosmic
ray particle), θ - angle of scattering in CMS (here we considerM >> m). Further,
for TCR >> M we get an estimation TDM ∼ TCR. So, heavy DM objects with
masses ∼ 1TeV, as it takes place in H-color scenario, can be effectively accelerated
by cosmic ray protons of high energies ∼ 102 TeV. Cosmic rays with such energies
can be generated near AGN, in particular. In other words, fast protons from
blazar’s jets can interact with heavy DM particles from halo having the largest
density near AGN. In the framework of the H-color scenario, a significant part of
protons energy can be transferred due to charged current to heavy H-pion and to
both DM component in the diagrams involving scalar exchange as it takes place
for leptons scattering off H-baryon component (see Fig.2a).

As it is seen from Fig.3a,b, if an initial proton with energy in the range
50− 200TeV interacts with neutral H- pion which is nearly at rest, cross section
of the scattering process where final charged H-pion is produced with energies
(40−50)TeV is ∼ (10−15)pb. Certainly, secondary charged H-pion predominantly
decays as π̃± → π̃oπ± with the width Γ ≈ 3·10−15GeV. So, besides neutral H-pion
there appear secondary muon and muonic anti-neutrino in the final state.

Thus, in the deep inelastic reaction the main charged component of UHECR
i.e. protons, can transform in part into flux of high energy neutrino and leptons
accompanied with accelerated DM particle. From our estimations it follows that
∼ (10− 25)% of the proton energy is transferred to heavy neutral component of the
DM with cross section≈ (10− 100)pb. When the UHECR scatter off B-component,
total cross section is of the same order but there can appear additional neutrinos
generated by decay of intermediate vector bosons.

It should be noted, to get an estimation of these cross sections we have
used a very simple model of quark distribution function in the proton: q(x) ≈
A · xα · (1− x)β. In other words, we used very simplified an analytical expression
for pdf’s (see also Refs. [54, 55]) because at these high energies we do not know
an exact form of pdf’s and only try to get some reasonable evaluation of the cross
section. We assume, an error in these estimations cannot be more than in one
order. Indeed, cross section of the scattering with the DM particle acceleration
is small, but in these rare events heavy DM particles can accelerate significantly
and pass away from the DM halo. Then, they move like neutrino but slower, and
keep nearly constant direction due to weak interactions with the matter. So, this
rare process when the charge component of cosmic rays can be ruined in the deep
inelastic reaction and as a result neutral DM particle moves like a neutrino towards
the Earth. Remind that above considered high-energy electron scattering off the
DM can also accelerate the DM but in quasi-elastic process high energy neutrino
are generated with more probability.

Thus, from this brief description of some processes of scattering of high-
energy cosmic ray particles off the DM we can conclude that these reactions can
enrich the cosmic rays composition with boosted heavy neutral DM particles [56].
At energies of these projectiles ∼ (10− 100)TeV cross sections of their interactions
with nucleons and nuclei, ∼ (10−34−10−37) cm2, are compared with cross sections
of neutrino-nucleons scattering. In this deep-inelastic process nucleons or nuclei
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a)

b)

Fig. 2.3. Differential cross section for cosmic ray proton scattering off H-pion DM compo-
nent: a) initial proton energy 100TeV; b) initial proton energy 200TeV.

are transformed a multiparticle final states consisting of charged leptons, photons
and neutrino. Additional neutrinos are generated by the charged H-pion decay and
in the processes with resonant decay of Z-boson. So, the accelerated neutral DM
components can produce rare events - specific types of extended air showers (EAS),
which can be separated in the atmosphere from other types of showers [57, 58].

It is known that as usually cosmic rays generate a shower of secondary parti-
cles which are mainly muons, electrons and photons. They go to ground detectors
and can be fixed as measured signals registering also due to fluorescence and
Cherenkov light, and radio emission generated by charged component, electrons,
in atmosphere of the Earth. It seems, such type of shower is similar to neutrino
induced shower and its initial point also should be deeply in atmosphere, how-
ever, the neutral DM particle can not disappear from the EAS composition and
will interact with the ground detector producing some radiation from secondary
electrons or from excited nuclei in the detector. The DM showers, as they gener-
ated by intergalactic DM objects which were accelerated by UHECR or AGN jets
from halo of other galaxies, or DM particles boosted from halo of our Galaxy by
intergalactic UHECR do not have to be mostly inclined or nearly horizontal. It is
supposed, these accelerated DM components and EAS produced by them should
be distributed more or less isotropic. May be, the EAS axis can be connected with
direction to some blazar, as it was found for some very high-energy neutrino
events at IceCube.
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So, we can conclude that EAS from heavy DM particles are distinguished
from EAS generated by protons or neutrino because in the former event the
shower contains in his composition neutral stable object up to the final moment
when this fast DM particle scattered on nucleon in the detector (see also [59]
and references therein). In contrary, in composition of EAS which was induced
by neutrino or protons (or light nuclei), there is no any heavy stable particles,
only leptons, photons and neutrino are detected as final states. Note also that
interaction of DM component with nucleons in detector should have specific
signature: the scattering in charged current channel is accompanied with creation
and following decay of charged H-pion, so, the event can be seen due to charged
lepton bremsstrahlung. We hope, observing and measurement of characteristics
new types of EAS containing heavy neutral stable particle will be possible at
modern complex LHAASO [60], in other words, the DM candidates can manifest
itself in a specific types of EAS.

2.5 Conclusions and Discussion

It is known, hadrons, leptons, photons with energies E ≥ 107 TeV cannot reach the
Earth because they interact with γ-bkg and loss the energy. High-energy photons
with E ≥ 10 TeV also practically cannot reach the Earth due to interactions with
γ-bkg of various wave lengths — electron-positron pairs creation decreases photon
energies below 10 TeV. But intergalactic high energy neutrino can move to the
Earth being generated, for example, in blazars jets. Neutrinos being produced in
decays of high-energy hadrons and in reactions of scattering and conserve their
energy on the way from remote sources – at cosmological distances in 10-100 Mps
or more. Certainly, neutrinos can be also produced by supermassive X-particles
decay and in virtual Z-boson resonant transition to neutrino or hadronic pairs
or from resonant generation of lepton + neutrino pair or hadronic pairs from
virtual W-boson. And when neutrinos reach the Earth’s atmosphere, they can
produce Extended Atmospheric Showers (EAS) with high portion of neutrino
energy despite of small interaction cross section (which, however, increases with
energy).

However, as we see, there is a possibility to accelerate (heavy) neutral DM
particles which also can move from the distant sources, as the neutrino. EAS gen-
erated by neutrino can be successfully discriminated from other types of events
(from EAS induced by fast protons, for instance) because they are produced at
large depth in atmosphere and are mostly strongly inclined or they are even nearly
horizontal. It is an important ”fingerprint” for the EAS detection at modern com-
plex , LHAASO. We assume, heavy accelerated DM particle also would produce
EAS more deeply than ordinary cosmic rays, mimicking, in fact, neutrino event
but with different secondary particles spectrum and total energy release in the
process. So, if the DM particles entrance into atmosphere with sufficiently high
energy, they can produce specific EAS similar to neutrino-induced ones only in
some aspects.

There are known a number of neutrino events with energies up to E ≈ 107 TeV
which were registered at IceCube. The source of such super high-energy neutrinos
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is still unknown, and maybe resonance at q2 =M2
Z can contribute to high-energy

neutrino creation when high-energy proton interact with the DM particles. In this
process some part of proton energy transferred to multiple secondary decaying
mesons and neutral accelerated DM. High-energy intergalactic neutrino scattered
by DM in halo can transfer its energy to secondary leptons and accelerated neutral
DM object. This event can be detected as correlated EAS produced by neutral
objects with energies up to ∼ 103 TeV. In this range of energies the atmospheric
bkg should be small. In fact, cross section of neutrino-DM interaction is ∼ 102 pb,
it is much lower than cross section for annihilation of high-energy neutrino with
relic neutrino which is≈ 10 nb but such type events, in principle, can be registered
at IceCube and LHAASO as correlated EAS.

Note, cosmic ray proton scattering off the DM can give rise to increasing
of positrons number — they are products of eventually decay of (positively)
charged secondary hyperpions. Energy spectrum of these secondary positrons are
determined by energies of cosmic rays primaries , masses of the DM candidates,
type of the scattering reaction and kinematics of charged H-pion decay. This
process does not considered in detail yet.

If it wold be found some increasing of secondary particles (neutrino and/or
leptons) flux and the number of detected events from some fixed direction, it can
follow from the UHECR scattering off the DM clumps. In other words, to study the
DM space distribution, an analysis of EAS induced by (different) neutral objects,
their correlation together with measurements of secondary neutrino spectrum and
the number of events, can be used.

Moreover, there are some other features of the hypercolor two-component
DM scenario, namely, at high energies inelastic reactions with the exciting of
higher states of the pNG unstable H-hadrons can occur. Arising and decays of
these excited states can be manifested as heavy H-hadron jets that eventually
decay to neutral stable DM particles accompanied with photons, leptons and
decaying standard light mesons. To study these processes we should know (or
suppose) the mass spectrum of unstable H-hadrons, their possible decay channels
and widths. In any case, the DM two-component structure can be seen studying
of correlations in the set of quantitative and qualitative results in vector and scalar
UHECR scattering channels.
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Abstract. Physics beyond the Standard Model (BSM) of elementary particles is considered
as the physical basis for the now Standard model of the Universe, involving inflation,
baryosynthesis and dark matter /energy. BSM physics of these necessary elements of
the modern cosmology inevitably leads to cosmological predictions beyond the Standard
model of Cosmology. We outline some new trends in the relationship between BSM physics
and cosmology in the context of multimessenger cosmological probes for new physics,
underlying the modern theory of the structure and evolution of the Universe.

Povzetek. Fiziko onkraj Standardnega Modela elementarnih delcev imajo za fizikalno
osnovo sedaj Standardnega Modela Vesolja, ki vkljucje inflacijo, sintezo barionov in temne
snovi/energije. Fizika, potrebna za opis teh bistvenih elementov moderne kozmologije
sega onkraj Standardnega modela in neizogibno vodi do napovedi izven okvira stan-
dardnega kozmološkega modela. Avtor predstavi nekatere nove povezave med fiziko in
kozmologijo onkraj obeh standardnih modelov porojene s kozmološkimi opazovanji z
različnimi fizikalnimi nosilci informacij in oriše sodobno teorijo zgradbe in razvoja Vesolja.

Keywords: cosmology, particle physics, cosmoparticle physics, inflation, baryosyn-
thesis, dark matter, primordial black holes, antimatter, decaying particles, stable
particles, dark atoms

3.1 Introduction

Inflationary models with baryosynthesis and dark matter/energy, underlying the
now standard cosmology, are based on physics Beyond the Standard Model (BSM)
of elementary particles (see [1–8] for review and references). The choice of this
physics involves specific model dependent predictions, which can make possible
their effective observational and experimental test.

There are two principally different basic theoretical approaches to description
of BSM physics:

• Extension of the Standard model SM by additional sector G involving new
particles and/or fields, SM⊗G.

? E-mail: khlopov@apc.univ-paris.fr
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• Embedding of SM in more general framework C, C ⊃ SM. It inevitably
involves additional particles and fields, completing the SM content to the
general framework C.

The first approach adds new symmetries and particles without an ambition to
explain everything and doesn’t pretend to provide a complete physical basis for
the modern cosmological paradigm.

The second approach, pretending to be a overwhelming theory of everything,
is to provide such basis and offer candidates for dark matter together with mech-
anisms of inflation and baryosynthesis. It makes necessary to develop methods
to reveal model dependent signatures, specifying the particular ways to probe
the predicted BSM physics and the experimental and observational evidence for
the proposed theoretical framework. In particular, it is the challenge for the ap-
proach of [9] to provide not only a comprehensive basis for the modern cosmology,
but also to reveal the specific features of its deviations from the now Standard
cosmological paradigms

The paradox of the modern situation, outlined in [10], is that the data of preci-
sion cosmology favor now standard cosmological scenario and can be considered
as the evidence of BSM physics, proved by our existence, while the laboratory
and collider experimental probes for this physics only tighten the data around the
prediction of the Standard model.

To specify the model of BSM physics, its additional model dependent sig-
natures are needed. They involve effects, reflecting the fundamental structure
and symmetry breaking pattern of the BSM model [7, 8, 10] and can provide
multi-messenger cosmological probes for new physics [11].

Taking into account the recently published extensive review [12], here we
give only brief general review of probes for BSM physics with special emphasis on
cosmological messengers of new physics, involving new stable and meta-stable
particles, multi-component dark matter, composite dark matter and dark atoms,
primordial black holes and primordial nonlinear structures. The latter includes
antimatter stars in the baryon asymmetrical Universe as a profound signature of
strongly nonhomogeneous baryosynthesis in inflationary Universe. Some probes
of this kind look exotic and highly improbable, but the evidence for their existence
would provide a very refined selection of the proper BSM approach and model.

3.2 Messengers of BSM physics

In general, new physics is characterized by energy scale V and appears with full
strength at the energies E ≥ V . This scale V determines the mass of new particles
and at these energies they can be copiously produced, as well as their exchange is
not suppressed.

At smaller energies E < V new particles can be produced in virtual states
and their effects are suppressed by some power of (E/V). It defines the way to
probe super-high energy new physics at laboratory energies E � V - by rare
processes, whose exotic features provide their distinction om the background of
the SM physics events. The set of these rare processes is rather small and basically
involves processes with baryon or lepton number nonconservation
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On the other hand, cosmology, predicting the stages of early Universe with
very high energy density, can be considered as a natural laboratory of new physics
with high energy scale V , like Supergravity with subPlanckean scale [13]. The
corresponding processes take place at very early stages of cosmological evolu-
tion and their signatures require some messengers, which retain information on
these processes and provide confrontation with the astrophysical data on the
phenomena, taking place at much later stage of cosmological evolution.

Such approach implies sufficiently long-living particles and objects, surviving
sufficiently long time after their creation. From the view point of particle theory
such particles and objects reflect the fundamental symmetry of BSM model and
mechanisms of its symmetry breaking, making them cosmological messengers of
the fundamental symmetry of microworld. Here we briefly discuss some forms of
cosmological messengers of new physics.

3.2.1 Dark matter messengers of BSM physics

Nonbaryonic dark matter, dominating in the matter content of the modern Uni-
verse, is associated with the new stable form of the nonrelativistic matter. It should
be nonluminous and must decouple from plasma and radiation before the begin-
ning of the matter dominated stage. The first condition follows from the ”darkness”
of this form of matter. The second comes from the condition that dark matter pro-
vides effective development of gravitational instability in the beginning of matter
dominated stage before recombination of hydrogen (see e.g. [7, 8, 10] for reviews
and references). The simplest theoretical possibility to satisfy these conditions is
to assume the existence of stable neutral Weakly Interacting Massive particles
(WIMP).

The attractive feature of the WIMP dark matter candidates was their miracu-
lous property to explain the observed dark matter density by primordial gas of
stable particles with mass of the order of several hundred GeV with annihilation
cross section of the order of the ordinary weak interaction. These conditions natu-
rally lead to the predicted abundance corresponding to the measured density of
dark matter.

Strong theoretical support for WIMPs came from predictions of stable lightest
supersymmetric (SUSY) neutral particles with mass and annihilation cross section,
corresponding to the desired WIMP parameter range. The advantage of super-
symmetry with SUSY scale within 1 TeV was its principle possibility to solve the
problems of Standard model related with divergence of Higgs boson mass and
origin of the scale of the electroweak symmetry breaking. The expected discovery
of supersymmetric partners of ordinary quarks, leptons and gauge bosons with
the mass in the range 100 GeV-1 TeV, was the challenge for experimental search at
the LHC.

However, the results of the direct WIMP search in underground experiments
are controversial, as well as there is no positive results of SUSY particle searches
at the LHC in the indicated mass range, It stimulates the substantial extension of
the list of possible dark matter particle candidates.

Stability of dark matter implies stability of its constituents, which involves
new stable or very long-living particles, predicted by BSM models. It assumes
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extension of the symmetry of the Standard model, which leads to new conserved
charges, corresponding the the new additional symmetry. The lightest particle,
which possess new charge is stable, if the charge is strictly conserved.

There are several strongly motivated extensions of the Standard model, pre-
dicting various types of dark matter candidates (see [12] for review and references):

• Sterile neutrinos, having no ordinary weak interaction and involved in the
see-saw mechanism of neutrino mass generation;

• axion, a pseudo Nambu-Goldstone boson related with the Peccei-Quinn solu-
tion of the problem of strong CP violation in QCD;

• mirror or shadow matter, restoring equivalence of left- and right- handed
coordinate systems. Being in the same space-time with the ordinary matter
they have gravitational interaction and can also interact with matter due to
strongly suppressed kinetic mixing of neutral bosons, like mixing of ordinary
and mirror photons.

• gravitino, SUSY partner of graviton in Supergravity. By construction gravitino
has super-weak semi-gravitational interaction. At very high sub-Planckean
SUSY energy scale it can be also superheavy

These extensions of the Standard model lead to non-WIMP dark matter candidates.
Sterile neutrinos, mirror or shadow particles or gravitino are superWIMPs with
superweak interaction with matter, while axions have a very small mass, but still
play the role of Cold Dark Matter. The list of these candidates can be extended by
neutral stable particles originated by any extension of the group of the SM symme-
try SU(3) x SU(2) x U(1) by any additional strict symmetry group G. In particular,
new stable colored objects that possess the corresponding new conserved charge
can form Strongly Interacting Massive Particles (SIMP) (see .

3.2.2 Multicomponent dark matter

The motivation for existence of various dark matter particle candidates comes
from different solutions for the internal problems of SM. It makes possible their
co-existence and can lead to multicomponent dark matter scenarios.

In such scenarios dark matter can represent mixture of primordial particles
with different properties, like mixture of Hot and Cold Dark matter. Another pos-
sibility is co-existence of absolutely stable and metastable particles. The latter can
lead to observable effects of deviations from the Standard cosmological scenario.

To be of cosmological significance metastable particles with the massmmust
be sufficiently long living. Their lifetime τ should be much larger than mPl/m2.
Then they retain in the Big Bang Universe at T � m and their presence can lead to
observable signatures.

3.2.3 Cosmoarcheology of new physics

The set of astrophysical data puts constraints on any new forms of matter present
in the Universe at various periods of cosmological evolution. The very fact of
their presence means that they contribute to the total energy density and such
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contribution is restricted by the measurements of the modern total density, or by
effects of their presence in the period of Big Bang Nucleosynthesis or Large Scale
Structure formation.

Metastable particle with lifetime τ exceeding the age of the Universe tU
should contribute the modern dark matter density as decaying dark matter com-
ponent. If leptons, quarks, gluons or photons are among the decay products, their
contributions in the cosmic ray fluxes can provide constraints on the lifetime,
branching ratios and abundance of metastable particles.

Metastable particles with lifetime τ < tU cannot be considered as the candi-
dates for the modern dark matter, but their presence in the period of structure
formation can lead to unstable dark matter (UDM) scenarios, which are severely
constrained by the condition of the effective growth of density fluctuations, which
can be strongly suppressed after decays, if UDM dominates in the period of large
scale structure formation.

The sensitivity of astrophysical data to the presence and decays of metastable
particles strongly depends on the contribution of the decaying particles into the
total density and on the possibility of decay products to influence the observ-
able features of the CMB spectrum, light element abundance or cosmic neutrino,
gamma ray or cosmic ray fluxes. This sensitivity strongly increases, if decay prod-
ucts influence observable features of subdominant component, which is baryonic
matter at the radiation dominated stage and radiation at the matter dominated
stage. Such sensitive probes assume specific decay channels and are strongly
model dependent. Contribution to the total density of the Universe at various
periods of cosmological evolution avoids such specific model dependence, but on
this reason is much less sensitive to the presence of new particles in the Universe
(see [11, 12] for recent review and references).

3.2.4 Composite dark matter

Problem of stable charged particles BSM models try to avoid predictions of
stable electrically charged particles. Positively charged stable particles should bind
with electrons and form anomalous isotopes of chemical elements. The constraints
on the presence of such anomalous isotopes in the terrestrial matter put severe
constraint on their abundance. Only superheavy subPlanckean Charged Massive
particles (CHAMP) can avoid these constraints due to very small number density
and rapid diffusion to the center of Earth, strongly reducing their abundance in
the sea and terrestrial layers near the surface.

Similar to baryonic matter, charged stable particles may be hidden in neutral
atomic states and play the role of dark matter. The only condition is to avoid
overproduction of anomalous isotopes in this case. The main problem is that in
the expanding Universe recombination of electrically charged particles is never
complete and freezing out of free charged particles is inevitable. Free +1 charge
particles form anomalous hydrogen, severely constrained by the experimental
data. Free -1 charged particles E− form +1 charged ion (EHe) with primordial
helium nuclei, as soon as they are produced in the Big Bang Nucleosynthesis.
Similar problems arise for all positively charged stable particles and negatively
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charged particles with charge −2n − 1. It leaves only −2n charged particles as
possible constituents of dark atoms.

Multicharged stable particles Multicharged particles may be composite or ele-
mentary. The example of composite -2 charged particles give models with new
stable U-type quark. They predict existence of stable ∆−− - like state (ŪŪŪ).
It’s positively charged antiparticle (UUU) can bind with electrons in anomalous
helium and special mechanisms are needed to suppress their abundance. Such
mechanisms may naturally appear, if the (ŪŪŪ) excess over (UUU) is generated
similar to baryon excess in baryon asymmetrical Universe.

The balance between excess of new particles and baryon asymmetry can be
established by sphaleron transitions, if new particles possess electroweak SU(2)
charges. Such balance with proper (negative) sign of the excessive new parti-
cles takes place in Walking Technicolor (WTC) models, predicting technibaryons
composed of techniquarks and elementary technileptons. The absolute values of
electric charges of technibaryons and technileptons are free parameter of the model.
The only condition for the charge assignment is the cancellation of anomalies that
fixes the relationship between the charges of technileptons and technibaryons,
while the absolute value of these charges depends on the free parameter of this
model. New stable charged techniparticles may be technibaryons, if technibaryon
charge is conserved, technileptons, if technilepton charge is conserved, or both, if
the both charges are conserved. In the latter case two-component techniparticle
dark matter scenario is possible. Both technibaryons and technileptons look like
elementary leptons at energies below WTC confinement.

Dark atoms of dark matter Independent of the mechanism of baryon excess
generation, sphaleron transitions establish equilibrium between baryon excess and
excess of charged techniparticles. Choice of reasonable parameters of the model
provides excess of even negatively charged stable techniparticles, which provides
their explanation of the observed dark matter density for the masses of the order
of 1 TeV (see [11, 12] for recent review).

After Big Bang Nucleosynthesis these excessive −2n charged techniparticles
bind with n helium nuclei in dark atoms. O−− with charge -2 form OHe atoms -
Bohr like systems with O−− leptonic core and strongly interacting helium shell.
The Bohr radius in OHe atom is equal to the size of He. The lack of usual approx-
imations of atomic physics (small size of nuclear interacting nucleus relative to
Bohr orbit and electronic shell with electroweak interaction, supporting pertur-
bation methods of calculations) makes proper quantum mechanical treatment of
OHe interaction with matter a very complicated and still unresolved problem. The
first steps towards self-consistent numerical simulations of OHe interaction with
nuclei, taking into account both Coulomb and nuclear forces acting between OHe
components and nucleus, are discussed in [15].

Multimessenger probes for dark atoms Cosmological scenario of dark atom
evolution leads to Warmer than Cold dark matter scenario of structure formation.
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Owing to low number density of nuclei OHe gas decouples from plasma and
radiation before the beginning of matter dominated stage and supports growth of
density fluctuations with spectrum with slightly suppressed short wave part as
compared with the standard Cold dark matter scenario [11, 12].

In spite of its strong interaction with matter (σ ≈ 210−25 cm2), only suffi-
ciently dense matter objects of the size Rwith density

ρ >
1

σRmp
,

where mp is the mass of proton, are opaque for OHe, while the average matter
density makes the Galaxy transparent for it. OHe gas in the Galaxy is collisionless,
but in the region of the Galaxy center, where OHe density is higher rare OHe
collisions can lead to OHe excitations. De-excitation of OHe, excited in collisions,
by emission of electron-positron pairs can provide explanation for the excess of
positron annihilation line radiation from the galactic bulge, observed by INTE-
GRAL. Such explanation implies the mass ofO−− in the narrow window near 1.25
TeV, challenging the search of such stable double charged particles at the LHC.

Due to strong interaction with matter cosmic OHe is slowed down in the
terrestrial matter and cannot be detected in underground experiments by effects
of nuclear recoil, used for direct WIMP searches. However, annual modulation
in low energy binding of OHe with intermediate mass nuclei, like sodium, can
explain the positive results of DAMA/NaI and DAMA/LIBRA experiments with
their puzzling contradictions with negative results of direct WIMP searches.

Created after helium production in the Big Bang Nucleosynthesis OHe can
catalyze pregalactic production of heavier nuclei, like carbon or oxygen. Captured
by stars OHe can play interesting but still unexplored role in stellar evolution.
Liberated in stellar interiors and accelerated at Supernova explosions multiple
charged dark atom constituents can form high energy flux of exotic multiple
charged leptonic component that can lead to specific type of atmospheric showers
in LHAASO experiment [11].

3.3 Tracers of very early Universe

Together with baryon asymmetry or primordial gas of dark matter particles physics
of very early Universe can provide many other model dependent observable
tracers. Second order phase transitions can lead to formation of topological defects
like monopoles, strings, walls or many other types of stable or unstable topological
defects. Strong first order phase transitions can be the source of gravitational
wave background. These processes can lead to appearance of inhomogeneities in
homogeneous and isotropic Universe.

One of the profound signature of strong inhomogeneity of very early Universe
is formation of primordial black holes. Their spectrum contains information on
the mechanisms of their formation, reflecting the fundamental structure of the
particle theory at very high energy scale [7, 16].
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3.3.1 Primordial Black Holes as the messenger of new physics

To form black hole in the expanding Universe, one should stop its expansion within
the cosmological horizon [17]. It corresponds to nonhomogeneity δ = δρ/ρ ∼ 1 in
the nearly homogeneous and isotropic Universe with dispersion of small density
fluctuations 〈

δ2
〉
= δ2o � 1 (3.1)

. Probability for such a high amplitude fluctuation depends on the equation of state
p = γε (where p is pressure, ε is energy density and γ = 0 for matter dominance
(MD) and γ = 1/3 for radiation dominated (RD) stage) and is given by [18]

WPBH ∝ exp
(
−

γ2

2 〈δ2〉

)
.

This probability is exponentially suppressed for small amplitude density fluctua-
tions at the RD stage. At MD stage there is no exponential suppression. It makes
primordial black holes a sensitive indicator of early MD stages [19, 20].

Physics of early MD stages Early MD stage may be a consequence of existence
of a supermassive metastable particle, dominating in the Universe before decay
[16,19,20]. If such particles with massm are created in the Big Bang Universe with
frozen out relative abundance ν = nm/nr, where nm and nr are number densities
of considered particles and relativistic species, respectively, at the temperature
T < To = νm, corresponding to the period t > to = mPl/m

2 such particles start to
dominate in the Universe until their decay at t = τ, where τ is the particle lifetime.

Growth of density fluctuations at the MD stage leads to formation of gravi-
tationally bound systems, separated from cosmological expansion. Evolution of
these systems can lead to formation of black holes, retaining in the Universe at
t > τ, when particles, dominating in the Universe, decay.

The minimal estimation of the probability of PBH formation is determined
by direct collapse into black hole of specially homogeneous and isotropic configu-
rations, after they separate from the general expansion. This probability is given
by [11, 19]

WPBH ∝ δ13/2o .

If configuration is specially homogeneous and isotropic it contracts within its
gravitational radius as soon as it separates from cosmological expansion at t1 ≈
t0δ

−3/2
o . This mechanism leads to a flat spectrum of PBH masses ranging from

Mmin = m2Plto to the maximal mas, determined by the condition that the config-
uration can separate from expansion and collapse in black hole before particles
decay at t = τ.

However, most of configurations don’t contract directly into black . They form
gravitationally bound systems, whose evolution strongly depends on the nature
of particles, dominating at the MD stage.

If gas of massive particles is collisionless within configuration, gravitationally
bound system of point like masses collapses into black hole due to evaporation
of energetic particles in binary gravitational collisions at the timescale tevbin =
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t1N/ lnN [21] or due collective effects at the timescale tevcol = t1N2/3 [22], where
N� 1 is the number of particles in the gravitationally bound system [11, 12, 16].

If gas of massive particles is dissipational, its evolution to black holes takes
place at much smaller timescale, comparable with t1. In particular, if magnetic
monopole abundance is not suppressed by inflation and magnetic monopoles
dominate in the Universe before their abundance is suppressed by monopole-
antimonopole annihilation in gravitationally bound systems formed at the stage
of their dominance, collapse into black holes turns out to be more rapid, than
annihilation in these systems and magnetic monopole overproduction would
convert into overproduction of PBHs [16, 23].

Inflation can end by sufficiently long MD stage of massive scalar field domi-
nance, which can also result in PBH formation [24].

PBH formation in first order phase transitions If inflation ends by first order
phase transition or the symmetry breaking phase transition is a strong first order,
the process of bubble nucleation can lead to black hole production in bubble wall
collisions [25]. In the course of transition bubbles of true vacuum, expanding in the
false vacuum, collide and in the collision area the energy of bubble walls converts
into a false vacuum bag, which separates from walls and pending on its mass
either collapses in black hole [26] or converts in oscillon [27].

Bubble collisions become effective, when the bubble nucleation rate becomes
equal to the rate of expansion, H, and the mass of forming black holes is deter-
mined by the energy of the false vacuum within a region with typical size of
1/H.

3.3.2 Primordial nonlinear structures

Primordial objects created in the very early Universe seem to be constrained by
the small size of cosmological horizon. However, inflation can provide large scale
correlations in the space distribution of these objects, giving rise to the large scale
primordial structures.

Archioles - large scale correlations of energy density of the axion-like fields
In the axion-like models a complex scalar field Ψ = ψ exp (iθ) acquires after
spontaneous symmetry breaking of global U(1) symmetry vacuum expectation
value 〈ψ〉 = f, leaving continuous degeneracy of vacua with arbitrary values of
the phase θ. This continuous degeneracy is broken by explicit symmetry breaking
term

Veb = Λ4(1− cos θ). (3.2)

This term is negligible, if f � Λ. In the axion models it doesn’t exist at high
temperature and appears due to instanton effects in the period of QCD phase tran-
sition. Then at T ∼ Λ takes place the second phase transition, in which continuous
degeneracy of vacua is broken by the term Eq.(3.2) and the vacua have discrete
degeneracy, corresponding to θvac = 0, 2π, 4π.... The value of phase θ − θvac
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acquires the meaning of the amplitude of axion field, which determines the energy
density of the axion field oscillations.

If first phase transition takes place after reheating, the continuous degeneracy
of phase leads to singularities, having the geometric place of lines - axion strings.

After the second phase transition vacua with different values of θvac are
separated by domain walls, surrounded by strings. This vacuum defect structure
is unstable and rapidly decays, but the distribution of axion energy density follows
the initial structure of walls-surrounded-by-strings. Since 80% of axion string
length corresponds to infinite strings, this structure provides large scale correlation
in the distribution of axion energy density (see [7] for review and references).

Clusters of massive PBHs If the first phase transition takes place at the inflation-
ary stage, the now observed part of the Universe acquires at the corresponding
e-folding Ni = 60 unique value of phase θi.

However, at successive steps of inflation with smaller e foldings N < Ni the
value of phase experiences fluctuations

δθ ∼
Hi

2πf
,

where Hi is the Hubble constant at the inflationary stage. Therefore, if θi < π at
N = Ni in some smaller regions fluctuations of θ can lead to values θ > π. At
successive stages of inflation with smallerN fluctuations can lead in some smaller
regions to the value of θ < π. This process continues until the end of inflation.

In the result, at successive second phase transition, which takes place after
reheating at T ∼ Λ � f, the regions with θ < π and θ > π should be separated
by closed domain walls. The process described above leads to a system of closed
walls. Collapse of closed walls results in formation of black holes, which are not
distributed stochastically but appear in clusters, in which black holes of smaller
mass are created around the locally most massive black hole [29].

This mechanism leads to formation of clusters of PBHs with masses, deter-
mined by the fundamental parameters of the model f and Λ, which can have
stellar and superstellar values. The minimal mass is determined by the condition
that the width of domain wall (∼ f/λ2) doesn’t exceed the size of the gravitational
radius of the wall. It gives [28]

Mmin = f(
mPl

Λ
)2. (3.3)

The principally maximal mass of such PBHs is determined by the condition
that the wall does not dominate locally before it enters the cosmological hori-
zon. Otherwise, local wall dominance leads to a superluminal a ∝ t2 expansion
for the corresponding region, separating it from the other part of the universe.
This condition corresponds to the mass [16]

Mmax =
mPl

f
mPl(

mPl

Λ
)2. (3.4)

Formation of PBHs in the collapse of closed walls is accompanied by the
primordial gravitational wave (GW) background. Its spectrum is peaked at

ν0 = 3× 1011(Λ/f)Hz
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and the energy density can be estimated as [16]ΩGW ≈ 10−4(f/mPl). At f ∼ 1014

GeV this primordial gravitational wave background can reach ΩGW ≈ 10−9.

For the physically reasonable values of 1 < Λ < 108 GeV the maximum of the
spectrum corresponds to

3× 10−3 < ν0 < 3× 105Hz. (3.5)

This range may be within the reach of LIGO-VIRGO and future LISA detection of
gravitational waves and this prediction may be of interest for interpretation of the
recent results of the NANOGrav Collaboration [30].

The primordial origin of the observed massive and supermassive black holes
[31] may find additional support in the recent detection by LIGO and VIRGO
collaborations of gravitational wave signal from a binary black hole merging with
total mass 150Modot [32], corresponding to the gap in the predicted BH masses
from first massive stars, can evidence for primordial origin of massive BHs [33].

3.3.3 Antimatter stars as probes for nonhomogeneous baryosynthesis

Any mechanism of baryosynthesis can under some conditions predict nonhomoge-
neous distribution of the baryon excess. In the extreme case, nonhomogeneity can
lead not only to the spatial change of baryon asymmetry, but can also change its
sign, so that antimatter excess can appear in some regions of baryon asymmetrical
Universe [34–38].

Sufficiently large antimatter domains, corresponding to the mass, exceeding
103Modot can survive in the matter surrounding and form antimatter globular
cluster in our Galaxy. Owing to its situation in the galactic halo, where the gas
density is low, and the absence of significant amount of matter gas within the
cluster, γ radiation from this cluster, can come dominantly from the surfaces
of antimatter stars. It makes such object rather faint gamma source. Antimatter,
lost by the cluster annihilates with the matter gas and is the source of gamma
background. It puts upper limit on the mass of cluster around 105Modot.

Antimatter supernova explosions can accelerate antinuclei and generate heavy
antinuclear component of cosmic rays. Since the estimated flux of secondary
cosmic antihelium, originated from cosmic ray interaction with matter, is far
beyond the sensitivity of AMS02 experiment, detection of antihelium in this
experiment would be a very strong evidence for its primordial nature and for
existence of antimatter stars in our Galaxy [39]. It may provide distinction of
this mechanisms from other predictions of possible forms of antimatter in our
Galaxy [40].

The first claims on the detection of antihelium events in the AMS02 exper-
iment can hardly find explanation by natural astrophysical sources [41] and, if
confirmed in the future data analysis, may strongly evidence for the existence
of antimatter stars in our Galaxy. The development of numerical simulation of
production and propagation of antinuclei from antimatter globular cluster in our
Galaxy is discussed in [42].
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3.4 Conclusion

Recent hints to the deviations from the Standard cosmological paradigm in the
interpretation of discrepancies in measurement of the Hubble constant [43], in
the probes for hypothetical time variation of electron to proton mass ratio from
the period of recombination to the modern time [44], in the indications to some
problems of simple CDM model in the observational data on the structure and
evolution of galaxies [45,46], as well as puzzles of the results of direct and indirect
dark matter searches, of the origin of massive BH binaries, whose merging is
detected in gravitational wave experiments, of the possible detection of antihelium
in cosmic rays may reflect some specific features of BSM physics, on which now
standard cosmology is based.

Multimessenger cosmology of new physics deals with hypothetical phenom-
ena, which are not predicted with necessity in the framework of the now standard
cosmological paradigm. Being model dependent cosmological consequences of
BSM physics, their signatures can specify the underlying particle models and
provide their effective selection. Positive results of the searches for such signa-
tures would lead to nonstandard deviations from the modern cosmological stan-
dards, specifying true cosmological scenario and fundamental structure of the
microworld, on which it is based.
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Abstract. The hypothesis of Lorentz violation in the neutrino sector has intrigued scientists
for the last two to three decades. A number of theoretical arguments support the emergence
of such violations first and foremost for neutrinos, which constitute the “most elusive” and
“least interacting” particles known to mankind. It is of obvious interest to place stringent
bounds on the Lorentz-violating parameters in the neutrino sector. In the past, the most
stringent bounds have been placed by calculating the probability of neutrino decay into
a lepton pair, a process made kinematically feasible by Lorentz violation in the neutrino
sector, above a certain threshold. However, even more stringent bounds can be placed on
the Lorentz-violating parameters if one takes into account, additionally, the possibility of
neutrino splitting, i.e., of neutrino decay into a neutrino of lower energy, accompanied by
“neutrino-pair Cerenkov radiation”. This process has negligible threshold and can be used
to improve the bounds on Lorentz-violating parameters in the neutrino sector. Finally, we
take the opportunity to discuss the relation of Lorentz and gauge symmetry breaking, with
a special emphasis on the theoretical models employed in our calculations.

Povzetek. Domneva o morebitni kršitvi Lorentzove invariance pri nevtrinih vznemirja
znanstvenike v zadnjih dveh do treh desetletjih. Vrsta teorijskih argumentov podpira pojav
takih kršitev, predvsem za nevtrine, ki so “najbolj izmuzljivi” delci z “najmanj interakci-
jami”, kar jih poznamo. Zato je pomembno omejiti parametre, ki dopuščajo kršitve Lorent-
zove invariance. Doslej so najbolj ostre omejitve kršitve Lorentzove invariance ponudili
izračuni verjetnosti razpada nevtrina v leptonski par, pri katerem bi nad določenim pragom
lahko prišlo do kršitve. Avtor ocenjuje omejitev verjetnosti za Lorentzovo invarianco pri
procesu, ko nevtrino izgubi del svoje energije s čerenkovim sevanjem nevtrinskega para,
ki se pri tem rodi. Prag za tak dogodek je zelo nizek. Na koncu avtor obravnava še zvezo
med kršitvijo Lorentzove invariance in umeritveno simetrijo s posebnim poudarkom na
teoretičnih modelih, ki jih uporabi.

Keywords: Lorentz Violation, Neutrinos, Gauge Invariance, Mass Mixing, IceCube
Detector; Physics beyond the Standard Models
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4.1 Introduction

Neutrinos are the most elusive particles within the Standard Model of Elemen-
tary Interactions. Speculation about their tachyonic nature started with Ref. [1],
and has led to the development of a few interesting scenarios [2]. Within the
Lorentz-violating scenarios [3–11], one typically assumes a dispersion relation of
the form E =

√
~p2 v2 +m2 with v > 1. (In this article, we use physical units with

~ = ε0 = c = 1.) Formalizing the Lorentz-violating ideas, the Lorentz–Violating
Extension of the Standard Model (SME) was developed with a strong inspiration
coming from neutrino physics [12]. Kinematically, decay among neutrino mass
eigenstates is allowed due to their mass differences, while decay rates for “or-
dinary” neutrinos within the Standard Model formalism (for both Dirac as well
as Majorana) exceed the lifetime of Universe by orders of magnitude. Lorentz-
violating neutrinos undergo stronger decay and energy loss mechanisms than
“ordinary” neutrinos because of their dispersion relation E ≈ |~p| v (at high en-
ergy), which makes a number of decay channels (without GIM suppression, see
Refs. [13, 14]) kinematically possible.

There are a number of phenomena which inspire us to concentrate on the
neutrino sector for Lorentz violation. The early arrival of neutrinos from the 1987
supernova still inspires (some) physicists. Specifically, under the Mont Blanc, in
the early morning hours of February 23, 1987, a shower of neutrinos of interstellar
origin arrived about 6 hours earlier then the visible light from the Siderius Nuntius
SN1987A supernova. This event has been recorded in Ref. [15], and it was asserted
that such an event could happen by accident once in about 1000 yrs. Direct mea-
surements of neutrino velocities have given results that are consistent with the
speed of light within experimental uncertainty, but with the experimental result be-
ing a littler larger than the speed of light. For example, the MINOS experiment [16]
has measured superluminal neutrino propagation velocities which differ from
the speed of light by a relative factor of (5.1± 2.9)× 10−5 at an energy of about
Eν ≈ 3GeV , compatible with an earlier FERMILAB experiment [17]. Furthermore,
neutrinos cannot be used to transmit information (at least not easily) because of
their small interaction cross sections. Superluminality of neutrinos would thus not
necessarily lead to violation of causality at a macroscopic level, as demonstrated in
Appendix A.2 of Ref. [18]. Similar arguments have been made in Ref. [19], where
it was shown that problems with microcausality, in Lorentz-violating theories,
are alleviated for small Lorentz-violating parameters and in so-called concordant
frames where the boost velocities are not too large. For neutrinos, corresponding
problems are further alleviated by the fact that their interaction cross sections are
small; hence, it becomes very hard to transport information superluminally even
if the dispersion relation indicates such effects (see also Appendix A.2 of Ref. [18]).

4.2 Threshold Considerations

We refer to the lepton-pair Cerenkov radiation process (LPCR) in Fig. 4.1(a) and the
neutrino-pair Cerenkov radiation process (NPCR) depicted in Fig. 4.1(b). In order
to make neutrino decay kinematically possible, it is necessary to fulfill certain
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Fig. 4.1. In the lepton-pair Cerenkov radiation process (a), an oncoming Lorentz-violating
initial neutrino mass eigenstate ν(m)

i decays, under emission of a virtual Z0 boson, into
an electron-positron pair. The sum of the outgoing pair momenta is p2 + p4; one observes
the inverted direction of the fermionic antiparticle line. The arrow of time is from bottom
to top. The (blue) bosonic line carries the four-momentum q. Diagram (b) describes the
neutrino-pair Cerenkov radiation process, with a final neutrino mass eigenstate ν(m)

f .

threshold conditions. Let us denote the outgoing fermions in the generic decay
processes depicted in Fig. 4.1 by

ν→ ν+ f+ f̄ , (4.1)

with a pair of a massive fermion f and its antiparticle f̄ being emitted in the
process.

Energy-momentum conservation implies that (in the notation of Fig. 4.1)

(p1 − p3)
2 = q2 = (p2 + p4)

2 . (4.2)

Let us first consider the case of a massive outgoing pair 2+4, with rest massmf, and
vanishing Lorentz-violating parameter. Threshold is reached for collinear emission
geometry. The incoming four-momentum is p1 = (E1,~p1), with E1 = p1 vi, while
p3 = (0,~0), so that all transfer four-momentum q goes into the pair. For collinear

geometry, one has pµ2 = pµ4 = (Ef,~pf), where Ef =
√
~p 2f +m2. Under these

assumptions, p2+p4 = (2
√
~p 2f +m2, 2~pf), so that (p2+p4)2 = 4m2f . The threshold

condition becomes

p21(v
2
i − 1) ≥ 4m2f , p1 ≈ E1 ≥

2mf√
v2i − 1

=
2mf√
δi
. (4.3)

Here,
vi =

√
1+ δi . (4.4)

The threshold condition Eth = 2mf/
√
δi has been used extensively in Refs. [20–22].

The formula (4.3) implies that the threshold for NPCR is lower by at a least six
orders of magnitude as compared to LPCR.
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The kinematic considerations are very different in the high-energy regime,
when both incoming the decaying particle as well as the outgoing particles are
Lorentz violating. Masses can be neglected. In this case, one has at threshold
p2 = p4 = (Ef,~pf), where Ef = |~pf| vf, so that at threshold

p21(v
2
i − 1) ≥ 4p2f(v2f − 1) , (4.5)

Due to equipartition of the energy among outgoing pair at threshold, one has
pf ≈ Ef = E1/2 ≈ p1/2. In this case, the threshold condition reduces to

(v2i − 1) ≥ (v2f − 1) , δi > δf . (4.6)

Here, vf =
√
1+ δf. For δi = δf, no phase space is available in order to accommo-

date for the decay. This consideration explains why all results communicated in
Ref. [22] display a factor δi − δf; decay takes place from “faster” to “slower” mass
eigenstates.

4.3 Outline of the Calculation

The understanding of decay processes involving Lorentz-violating has been ad-
vanced through Refs. [20–22]. Let us briefly recall elements of the derivation given
in Ref. [22]. One particular question concerns the question of how to express the
decay rate for an (initially) flavor-eigenstate neutrino (the electroweak Lagrangian
is flavor-diagonal) in terms of mass eigenstates. We have, in the same obvious
notation as used in Ref. [22],

ν
(f)
k =

∑
Uk` ν

(m)
` , (4.7)

with the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrixUk`. The interaction
interaction LW with the Z0 boson in the flavor basis is

LW = −
gw

4 cos θW

∑
k,`,` ′

U+
`kUk` ′ ν

(m)
` γµ(1− γ5)ν

(m)
` ′ Zµ . (4.8)

Here, gw is the weak coupling constant, and θW is the Weinberg angle. A unitary
transformation leads to

L = −
gw

4 cos θW

∑
k,`,` ′

U+
`kUk` ′ ν

(m)
` γµ(1− γ5)ν

(m)
` ′ Zµ . (4.9)

The interaction with the Z0 boson in the mass eigenstate basis therefore reads as
follows,

L = −
gw

4 cos θW

∑
`

ν
(m)
` γµ(1− γ5)ν

(m)
` Zµ . (4.10)

In order to model the free Lorentz-violating neutrino Lagrangian, one introduces
a metric with tilde:

L =
∑
`

iν(m)
` γµ (1− γ5) g̃µν(v`)∂

νν
(m)
` . (4.11)
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Here,
g̃µν(v`) = diag(1,−v`,−v`,−v`) . (4.12)

The dispersion relation
E` = |~p| v` (4.13)

follows as the massless limit of E` =
√
(|~p| v`)2 +m2` . For neutrinos, we know that

the m` terms are different. So, there is reason to assume that the δ` =
√
v2` − 1

terms are also different among mass (flavor) eigenstates, if they are nonvanishing.
One defines a parameter vint for the unified description of LPCR and NPCR;

the effective four-fermion Lagrangian for the process reads as

Lint = fe
GF

2
√
2
ν
(m)
i γλ (1− γ5)ν

(m)
i g̃λσ(vint) ψ̄f γ

σ (cV − cA γ
5)ψf . (4.14)

Cohen and Glashow [20] set vint = 1. (In Ref. [22], on a number of occasions, the
parameter used in Ref. [20] had been inadvertently indicated as vint = 0, which is
not the case. We take the opportunity to point out that of course, the parameter
vint = 1 implies that δint = 0, which was the intended statement in Ref. [20].)
Bezrukov and Lee [21] use the parameters vint = 1 (“model I”) and vint = vi
(“model II”). In Ref. [22], the parameter vint is kept as a variable. As explained in
detail in Ref. [23], “gauge invariance” (with respect to a restricted subgroup of the
electroweak sector) can be restored if one uses the value vint = vi vf. Both Cohen
and Glashow [20], as well as Bezrukov and Lee [21], assume that δf = 0 for LPCR.
The parameter fe characterizes the process:

fe =

{
1, ψf = ν

(m)
f

2, ψf = e
. (4.15)

Approximately, one has

(cV , cA) =

{
(1, 1) ψf = ν

(m)
f

(0,−1
2
), ψf = e

. (4.16)

The matrix element

M = fe
GF

2
√
2

[
ūi(p3)γ

λ(1− γ5)ui(p1)
]
g̃λσ(vint)

[
ūf(p4)(cVγ

σ − cAγ
σγ5)vf(p2)

]
.

(4.17)

Key to the calculation is the fact that one can split the phase space of the three-
particle outgoing phase space

Γ =
1

2E1

∫
dφ3(p2, p3, p4;p1)

1

ns

∑
spins

|M|2

=
1

2E1

∫M2
max

M2
min

dM2

2π
dφ2(p3, p24;p1)dφ2(p2, p4;p24)

1

ns

∑
spins

|M|2 . (4.18)
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with appropriate limits forM2
min andM2

max being given as follows,

M2
min = δf(|~p2|+ |~p4|)

2 , M2
max = δi(|~p1|− |~p3|)

2 . (4.19)

The following splitting relation for the phase space is crucial to a simplification of
the integrations [see Ref. [24] and Eq. (43) of Ref. [22]],

dφ3(p2, p3, p4;p1) =∫
dM2

2π

d4p3
(2π)3

δ+(p
2
3 − δik

2
3)

d4p24
(2π)3

δ+(p
2
24 −M

2)(2π)4δ(4)(p1 − p3 − p24)︸ ︷︷ ︸
=dφ2(p3,p24;p1)

× d4p2
(2π)3

δ+(p
2
2 − δfk

2
2)

d4p4
(2π)3

δ+(p
2
4 − δfk

2
4)(2π)

4δ(4)(p24 − p2 − p4)︸ ︷︷ ︸
=dφ2(p2,p4;p24)

=

∫
dM2

2π
dφ2(p3, p24;p1)dφ2(p2, p4;p24) . (4.20)

The general result for the decay rate, unifying both processes depicted in Fig. 4.1,
reads as follows,

Γνi→νiψfψ̄f = G2Fk
5
1

192π3
f2e
c2V + c2A
420ns

(δi − δf)

[
(60− 43σi)(δi − δf)

2

+ 2(50− 32σi − 25σf + 7σiσf)(δi − δf)δf

+ 7(4− 3σi − 3σf + 2σiσf)δ
2
f + 7δ

2
int

]
.

(4.21)

This result vanishes for δi = δf, per the discussion in Sec. 4.2. Cohen and Glashow [20]
havens = 2 active spin states for the (initial) neutrino, while Bezrukov and Lee [21]
calculate with ns = 1. The σ parameters depend on the way in which spin polar-
ization sums are carried out,

σi =

{
0, CG spin sum for νi
1, BL spin sum for νi

, σf =

{
0, CG spin sum for ψf
1, BL spin sum for ψf

. (4.22)

In Ref. [20], the Cohen–Glashow (CG) spin sum (“polarization sum”) is taken as
follows, ∑

s

ν`,s ⊗ ν̄`,s = pµgµνγν . (4.23)

In Ref. [21], the Bezrukov–Lee (BL) spin sum is based on a somewhat more ad-
vanced treatment of the eigenspinors of superluminal neutrino mass eigenstates
and reads as ∑

s

ν`,s ⊗ ν̄`,s = pµg̃µν(v`)γν . (4.24)
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The general result for the energy loss rate, applicable to both processes in
Fig. 4.1, reads as

dEνi→νiψfψ̄f
dx

= −
G2Fk

6
1

192π3
f2e
c2V + c2A
672ns

(δi − δf)

×
[
(75− 53σi)(δi − δf)

2 + (122− 77σi − 61σf + 16σiσf)(δi − δf)δf

+ 8(4− 3σi − 3σf + 2σiσf)δ
2
f + 8δ

2
int

]
.

(4.25)

In Ref. [22], we have verified and checked compatibility with all formulas con-
tained in Refs. [20] and [21]. This is important because it confirms that the model
dependence of the results is only contained in the numerical prefactors, but not in
the overall scaling of the results.

As outlined in Ref. [22], one can parameterize the results for NPCR as follows,

Γνi→νiνfν̄f = b G2F
192π3

k51 ,
dEνi→νiνfν̄f

dx
= −b ′

G2F
192π3

k61 . (4.26)

For the CG spin sum, one obtains the following b coefficients,

bCG =
1

7
(δi − δf)

[
(δi − δf)

2 +
5

3
δf(δi − δf) +

7

15
δ2f

]
, (4.27a)

b ′CG =
25

224
(δi − δf)

[
(δi − δf)

2 +
112

75
δf(δi − δf) +

32

75
δ2f

]
. (4.27b)

For the BL spin sum, one obtains

bBL =
17

210
(δi − δf)

[
(δi − δf)

2 +
7

17
δ2int

]
, (4.28a)

b ′BL =
11

168
(δi − δf)

[
(δi − δf)

2 +
4

11
δ2int

]
. (4.28b)

Typically, one finds [22] numerical prefactors in these formulas are larger than
those for LPCR by a factor of four or five. Also, NPCR has negligible threshold.

In papers of Stecker and Scully [10, 25, 26], the following bound is derived for
the Lorentz-violating parameter of the electron-positron field alone (watch out for
a difference in the conventions used for defining the δe parameter):

δe ≤ 1.04× 10−20 . (4.29)

The observation of very-high-energy neutrinos by IceCube, taking into con-
sideration the LPCR process (but not NPCR!), implies that the Lorentz-violating
parameter for neutrinos cannot be larger than (Ref. [10])

δν ≤ 2.0× 10−20 . (4.30)

This bound is based on the assumption that δe and δν are different. Colloquially
speaking, we can say that, if δν were larger, then “Big Bird” (the 2 PeV specimen
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found in IceCube, see Refs. [27,28]) would have already decayed before it arrived at
the IceCube detector. However, the full analysis requires Monte Carlo simulations
involving astrophysical data and is much more involved [10, 25, 26].

Provided the Lorentz-violating parameters for the different neutrino mass
eigenstates are different, low-energy neutrinos are affected by the decay and
energy loss processes connected with NPCR, in view of a negligible threshold for
NPCR. Typically, Numerical coefficients for NPCR are a factor of four or five larger
than for LPCR, depending on the model used for the spin sums. This enhances the
importance of the NPCR effect. Inspired by Eq. (4.30), we thus conjecture here that
a full analysis of astrophysical data, using the NPCR process as a limiting factor
for the observation of high-energy neutrinos, should yield a bound on the order of

|δi − δf| ≤
1

51/3
× 2.0× 10−20 ∼ 5.8× 10−21 , (4.31)

where the prefactor takes into account the scaling of the effect with the δ parameter.
Specifically, the decay and energy loss rates typically scale with the factor (δi−δf)3.
It would be very fruitful if this conjecture were to be checked against astrophysical
data in an independent investigation.

4.4 An Attractive Scenario

At first, one might see a dilemma: Within a fully SU(2)L gauge-invariant theory,
one necessarily has δν = δe (see Ref. [23] for a detailed discussion), and so,
the bound δν ≤ 2.0 × 10−20 given in Eq. (4.30) is not applicable, because the
LPCR process does not exist. But then, they have to acknowledge that the bound
δe ≤ 1.04 × 10−20 given in Eq. (4.29), which is derived for electrons, based on
other physical processes, applies to the neutrino sector.

So, the dilemma is that either, one has to give up gauge invariance and uses
different Lorentz-violating parameters for each of the three known particle gener-
ations, or, if one insists on gauge invariance, then this defeats part of the purpose
of looking at the neutrino sector for Lorentz violation. This is because in the latter
case, Lorentz-violating parameters for neutrinos and charged left-handed leptons
within the same SU(2)L doublet are necessarily the same, and the tight bounds on
Lorentz-violating parameters in the charged-fermion sector automatically apply to
the neutrino sector as well. This observation has important consequences when ex-
amining the first-generation SU(2)L doublet, consisting of (νe, eL). Electrons and
positrons are stable particles, and small violations of Lorentz invariance would
immediately lead to violations of causality on a macroscopic level (see Appendix
A.2 of Ref. [18]). If we had to carry over all restrictions on Lorentz-violating elec-
tron parameters to the electron neutrino sector, then this would nullify all the
motivations listed in Sec. 4.1 for investigating the first-generation neutrino sector.

On the contrary, If one accepts the necessity that different Lorentz-violating
parameters should be used for each of the three known particle generations,
then one needs to acknowledge that the parameter space for differential Lorentz-
violation among neutrino mass eigenstates is restricted by additional constraints
due to the NPCR process [22]. An attractive gauge-invariant scenario could still
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be found, as follows. Namely, one might observe that, as per the discussion in
Appendix A.2 of Ref. [18], causality violations due to Lorentz violation are less
severe for unstable particles, which decay and therefore are not amenable to
the reliable transport of information. Part of the above sketched dilemma could
thus be avoided as follows. One first observes that, as per the above argument,
problems with respect to causality are less severe in the second-generation SU(2)L
doublet (νµ, µL) and also in the third-generation SU(2)L doublet (ντ, τL), which
are composed entirely of unstable particles. Full gauge invariance can be retained
if we assume generation-dependent Lorentz-violating parameters δe, δµ, and δτ,
for the three SU(2)L doublets, which could be encoded in modified Dirac matrices
γ̃i = vf γ

i with f = e, µ, τ [see Eq. (5) of Ref. [23]]. In the charged-fermion sector,
we have nearly no mixing of mass and charge eigenstates. Let us then go into
the high-energy regime where, where mass and flavor eigenstates, under the
assumptions

δµ, δτ > 0 , δµ 6= δτ , δe = 0 , (4.32)

become equal. In this case, at high energy, one would have two neutrino mass
eigenstates, which asymptotically approach the muon neutrino and tau neutrino
flavor eigenstates at very high energy, decay into electron-positron pairs and
(asymptotically) electron neutrinos, via LPCR and NPCR.

Of course, other scenarios and flavor and mass mixing phenomenologies are
also possible, as discussed in Sec. IV B of Ref. [22]. In general, one could interpret
the emergence of a specific predominant flavor composition of incoming super-
high-energy cosmic neutrinos, consistent with one, and only one, specific mass
eigenstate, as a signature of Lorentz violation. This is because a single, defined,
oncoming mass eigenstate would be consistent with the two other mass eigenstates
being “faster” and thus decaying into the single “slow” eigenstate.

In all discussed scenarios, one might find a conceivable explanation for the
apparent cutoff in the cosmic neutrino spectrum at about 2PeV , at the expense
of reducing the allowed regime of Lorentz-violating δ parameters to the range of
about 10−20. In our “attractive scenario”, one retains gauge invariance as outlined
in Sec. 4 of Ref. [23] and still is able to account for a super-high-energy cutoff
of the cosmic neutrino spectrum. Experimental confirmation or dismissal of this
hypothesis will require better cosmic neutrino statistics at very high energies.

4.5 Conclusions

The existence of the NPCR process [see Fig. 4.1(b)] reveals a certain dilemma for
Lorentz-violating neutrinos. Namely, under the hypothesis of a nonvanishing
Lorentz-violating parameter δ, given as in Eq. (4.4), the virtuality

E2 − p2 = p2(v2 − 1) ≈ E2(v2 − 1) = E2 δ (4.33)

of a neutrino becomes large for large energy, rendering a number of decay pro-
cesses kinematically possible. Conversely, based on high-energy astrophysical
observations, very strict bounds can be imposed on the Lorentz-violating parame-
ters [see Eqs. (4.29), (4.30), and (4.31)].
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Deep connections exist between Lorentz violation and gauge invariance. In
Ref. [29], it is shown that spontaneous Lorentz violation can lead to an effective
low-energy field theory with both Lorentz-breaking as well as gauge-invariance
breaking terms. According to Refs. [29–40], even the photon could potentially
be formulated as the Nambu-Goldstone boson linked to spontaneous Lorentz
invariance violation. (This ansatz was originally formulated before electroweak
unification.) For a broader view of this point, we refer to Appendix A of Ref. [23].
If one insists on the persistence of gauge invariance within the electroweak sector,
then one has to acknowledge that bounds on Lorentz-violating parameters for
charged leptons [e.g., Eq. (4.29)] also apply to the neutrino sector [thus lowering
the bound otherwise given in Eq. (4.30) by a factor two, and further restricting
the available parameter space for Lorentz-violating parameters in the neutrino
sector]. Also, the assumption that δν = δe would defeat the purpose of looking
at neutrinos for Lorentz violation. If one insists on gauge invariance and still
pursues the exploration of Lorentz violation in the neutrino sector, then more
sophisticated considerations are required. Namely, one could potentially invoke
flavor-dependent differential Lorentz violation across generations. In this case,
flavor and mass eigenstates would become identical in the high-energy limit, and
decay and energy loss processes could potentially contribute to an explanation for
the apparent cutoff in the cosmic neutrino spectrum in the range of a few PeV (see
Refs. [27, 28] and the discussion in Sec. 4.4).
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18. U. D. Jentschura, D. Horváth, S. Nagy, I. Nándori, Z. Trócsányi, and B. Ujvári, Int. J.

Mod. Phys. E 23, 1450004 (2014).
19. V. A. Kostelecky and R. Lehnert, Phys. Rev. D 63, 065008 (2001).
20. A. G. Cohen and S. L. Glashow, Phys. Rev. Lett. 107, 181803 (2011).
21. F. Bezrukov and H. M. Lee, Phys. Rev. D 85, 031901(R) (2012).
22. G. Somogyi, I. Nándori, and U. D. Jentschura, Phys. Rev. D 100, 035036 (2019).
23. U. D. Jentschura, I. Nándori, and G. Somogyi, Int. J. Mod. Phys. E 28, 1950072 (2019).
24. E. Byckling and K. Kajantie, Particle Kinematics (J. Wiley & Sons, New York, NY, 1973).
25. F. W. Stecker, Astropart. Phys. 56, 16 (2014).
26. F. W. Stecker and S. T. Scully, Phys. Rev. D 90, 043012 (2014).
27. IceCube Collaboration, Phys. Rev. Lett. 111, 021103 (2013).
28. IceCube Collaboration, Phys. Rev. Lett. 113, 101101 (2014).
29. J. L. Chkareuli and J. G. Jejeleva, Phys. Lett. B 659, 754 (2008).
30. W. Heisenberg, Rev. Mod. Phys. 29, 269 (1957).
31. J. D. Bjorken, Ann. Phys. (N.Y.) 24, 174 (1963).
32. I. Bialynicki-Birula, Phys. Rev. 130, 465 (1963).
33. T. Eguchi, Phys. Rev. D 14, 2755 (1976).
34. J. L. Chkareuli, C. D. Froggatt, and H. B. Nielsen, Phys. Rev. Lett. 87, 091601 (2001).
35. J. L. Chkareuli, C. D. Froggatt, and H. B. Nielsen, Nucl. Phys. B 609, 46 (2001).
36. J. D. Bjorken, Emergent Gauge Bosons, hep-th/0111196.
37. A. T. Azatov and J. L. Chkareuli, Phys. Rev. D 73, 065026 (2006).
38. J. L. Chkareuli and Z. R. Kepuladze, Phys. Lett. B 644, 212 (2007).
39. J. L. Chkareuli, C. D. Froggatt, J. G. Jejeleva, and H. B. Nielsen, Nucl. Phys. B 796, 211

(2008).
40. J. L. Chkareuli, C. D. Froggatt, and H. B. Nielsen, Nucl. Phys. B 821, 65 (2009).



i
i

“proc20Vol1” — 2020/12/6 — 22:10 — page 58 — #74 i
i

i
i

i
i

BLED WORKSHOPS
IN PHYSICS
VOL. 21, NO. 1

Proceedings to the 23rd [Virtual]
Workshop, Volume 1

What Comes Beyond . . . (p. 58)
Bled, Slovenia, July 4–12, 2020

5 Antimatter Gravity: Second Quantization and
Lagrangian Formalism

U.D. Jentschura ?

Department of Physics, Missouri University of Science and Technology,
Rolla, Missouri 65409, USA;
MTA–DE Particle Physics Research Group, P.O. Box 51, H–4001 Debrecen, Hungary
MTA Atomki, P.O. Box 51, H–4001 Debrecen, Hungary

Abstract. The application of the CPT theorem to an apple falling on Earth leads to the
description of an anti-apple falling on anti–Earth (not on Earth). On the microscopic level,
the Dirac equation in curved space-time simultaneously describes spin-1/2 particles and
their antiparticles coupled to the same curved space-time metric (e.g., the metric describing
the gravitational field of the Earth). On the macroscopic level, the electromagnetically and
gravitationally coupled Dirac equation therefore describes apples and anti-apples, falling
on Earth, simultaneously. A particle-to-antiparticle transformation of the gravitationally
coupled Dirac equation therefore yields information on the behavior of “anti-apples on
Earth”. However, the problem is exacerbated by the fact that the operation of charge conju-
gation is much more complicated in curved as opposed to flat space-time. Our treatment
is based on second-quantized field operators and uses the Lagrangian formalism. As an
additional helpful result, prerequisite to our calculations, we establish the general form of
the Dirac adjoint in curved space-time. On the basis of a theorem, we refute the existence
of tiny, but potentially important, particle-antiparticle symmetry breaking terms whose
possible existence has been investigated in the literature. Consequences for antimatter
gravity experiments are discussed.

Povzetek. Iz izreka CPT za jabolko, ki pada na Zemljo, sledi izrek za anti-jabolko, ki
pada na anti-Zemljo (ne na Zemljo). Na mikroskopskem nivoju Diracova enačba v ukrivl-
jenem prostor-času hkrati opiše delce s spinom 1/2 in njihove antidelce sklopljene z isto
metriko ukrivljenenega prostor-časa (metriko, ki opiše gravitacijsko polje na Zemlji). Na
makroskopskem nivoju opiše Diracova enačba za fermione, ki interagirajo z elektromag-
netnim in gravitacijskim poljem, hkrati opiše jabolko in anti-jabolko, ki padata na Zemljo.
Transformacija delcev v antidelce v Diracovi enačbi ponudi informacijo o interakciji med
“anti-jabolki in Zemljo”. Operacija konjugacije naboja v ukrivljenem prostor-času je bolj
zapletena kot v ravnem prostoru. Avtor uporabi Lagrangeov formalizem in obravnava
fermione v drugi kvantizaciji. Avtor zatrdi, da simetrija delec-antidelec ni zlomljena, četudi
so jo v literaturi že obravanavali. Obravnava poskuse z gravitacijo antisnovi.

Keywords: General Relativity, Antimatter Gravity, Antiparticles, CPT Symmetry,
Spin Connection; Physics beyond the Standard Models
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5.1 Introduction

It is common wisdom in atomic physics that the Dirac equation describes particles
and antiparticles simultaneously, and that the negative-energy solutions of the
Dirac equation have to be reinterpreted in terms of particles that carry the opposite
charge as compared to particles, and whose numerical value of the energy E
is equal to the negative value of the physically observed energy [1]. Based on
the Dirac equation, the existence of the positron was predicted, followed by its
experimental detection in 1933, by Anderson [2]. If we did not reinterpret the
negative-energy solutions of the Dirac equation, then the helium atom would be
unstable against decay into a state where the two electrons perform quantum
jumps into continuum states [3]. One of the electrons would jump into the positive-
energy continuum, the other, into the negative-energy continuum, with the sum
of the energies of the two continuum states being equal to the sum of the two
bound-state energies of the helium atom from which the transition started [3–5].

The absolute necessity to reinterpret the negative-energy solutions of the Dirac
equation as antiparticle wave functions, i.e., the necessity to interpret positive-
energy and negative-energy solutions of one single equation as describing two
distinct particles, hints at the possibility to use the Dirac equation as a bridge to
the description of the gravitational interaction of antimatter. Namely, if the Dirac
equation is being coupled to a gravitational field, then, since it describes parti-
cles and antiparticles simultaneously, the Dirac equation offers us an additional
dividend: In addition to describing the gravitational interaction of particles, the
Dirac equation automatically couples the antiparticle (the “anti-apple”), which is
described by the same equation, to the gravitational field, too.

Corresponding investigations have been initiated in a series of recent publica-
tions [6–9]. One may ask whether the dynamics of particles and antiparticles differ
in a central, static, gravitational field, in first approximation, but also, if there are
any small higher-order effects breaking the particle-antiparticle symmetry under
the gravitational interaction. The first of these questions has been answered in
Refs. [6–8], with the result being that the Dirac particle and antiparticle behave ex-
actly the same in a central gravitational field, due to a perfect particle-antiparticle
symmetry which extends to the relativistic and curved-space-time corrections to
the equations of motion.

In order to address the second question, it is necessary to perform the full
particle-to-antiparticle symmetry transformation of the Dirac formalism, in an
arbitrary (possibly dynamic) curved-space-time-background. This transforma-
tion is most stringently carried out on the level of the Lagrangian formalism. A
preliminary result has recently been published in Ref. [9], where a relationship
was established between the positive-energy and negative-energy solutions of the
Dirac equation in an arbitrary dynamics curved-space-time-background. However,
the derivation in Ref. [9] is based on a first-quantized formalism, which lacks the
unified description in terms of the field operator. The field operator comprises
all (as opposed to any) solution of the gravitationally (and electromagnetically)
coupled Dirac equation. In general, a satisfactory description of antiparticles, in
the field-theoretical context, necessitates a description in terms of particle- and
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antiparticle creation and annihilation processes, and therefore, the introduction of
a field operator. In consequence, the investigation [9] is augmented here on the
basis of a transformation of the entire Lagrangian density, which can be expressed
in terms of the charge-conjugated (antiparticle) bispinor wave function, and gen-
eralized to the level of second quantization. The origin [9] of a rather disturbing
minus sign which otherwise appears in the Lagrangian formalism upon charge
conjugation in first quantization will be addressed. The use of the Lagrangian
formalism necessitates a definition of the Dirac adjoint in curved space-times. As a
spin-off result of the augmented investigations reported here, we find the general
form of the Dirac adjoint in curved space-times, in the Dirac representation of γ
matrices.

According to Ref. [10], the role of the CPT transformation in gravity needs
to be considered with care: A priori, a CPT transformation of a physical system
consisting of an apple falling on Earth would describe the fall of an anti-apple
on anti-Earth. Key to our considerations is the fact that, on the microscopic level,
the Dirac equation applies (for one and the same space-time metric) to both
particles and antiparticles simultaneously (this translates, on the macroscopic
level, to “apples” as well as “anti-apples”). This paper is organized as follows: We
investigate the general form of the Dirac adjoint in Sec. 5.2, present our theorem in
Sec. 5.3, and in Sec. 5.4, we provide an overview of connections to new forces and
CPT violating parameters, Conclusions are reserved for Sec. 5.5.

5.2 Dirac Adjoint for Curved Space–Times

In order to properly write down the Lagrangian of a Dirac particle in a gravitational
field, we first need to generalize the concept of the Dirac adjoint to curved space-
times. We recall that the Dirac adjoint transforms with the inverse of the Lorentz
transform as compared to the original Dirac spinor. A general spinor Lorentz
transformation S(Λ) is given as follows,

S(Λ) = exp
(
−

i
4
εAB σAB

)
, σAB =

i
2

[
γA, γB

]
, A, B = 0, 1, 2, 3 .

(5.1)
Note that the generator parameters εAB = −εBA, for local Lorentz transformations,
can be coordinate-dependent. In the following, capital Roman letters A,B,C, · · · =
0, 1, 2, 3 refer to Lorentz indices in a local freely falling coordinate system. The (flat-
space) Dirac matrices γA are assumed to be taken in the Dirac representation [1],

γ0 =

(
I2×2 0

0 I2×2

)
, ~γ =

(
0 ~σ

−~σ 0

)
. (5.2)

Here, the vector of Pauli spin matrices is denoted as ~σ. In consequence, the spin
matrices σAB are the flat-space spin matrices. The spin matrices fulfill the commu-
tation relations

[1
2
σCD, 1

2
σEF] = i

(
gCF 1

2
σDE + gDE 1

2
σCF − gCE 1

2
σDF − gDF 1

2
σCE

)
. (5.3)
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These commutation relations, we should note in passing, are completely analogous
to those fulfilled by the matrices MAB that generate (four-)vector local Lorentz
transformations. As is well known, the latter have the components (denoted by
indices C and D)

(MAB)
C
D = gCA gDB − gCB gDA . (5.4)

The vector local Lorentz transformation Λwith components ΛCD is obtained as
the matrix exponential

ΛCD =

(
exp

[
1

2
εABMAB

])C
D

. (5.5)

The algebra fulfilled by the M matrices is well known to be

[MCD,MEF] = gCF MDE + gDE MCF − gCE MDF − gDF MCE . (5.6)

The two algebraic relations (5.3) and (5.6) are equivalent if one replaces

MCD → −
i
2
σCD , (5.7)

which leads from Eq. (5.1) to Eq. (5.5). Under a local Lorentz transformation, a
Dirac spinor transforms as

ψ ′(x ′) = S(Λ)ψ(x) . (5.8)

In order to write the Lagrangian, one needs to define the Dirac adjoint in curved
space-time. In order to address this question, one has to remember that in flat-
space-time, the Dirac adjoint ψ(x) is defined in such a way that is transforms with
the inverse of the spinor Lorentz transform as compared to ψ(x),

ψ
′
(x ′) = ψ(x)S(Λ−1) = ψ(x) [S(Λ)]−1 . (5.9)

The problem of the definition of ψ(x) in curved space-time is sometimes treated in
the literature in a rather cursory fashion [12]. Let us see if in curved space-time,
we can use the ansatz

ψ(x) = ψ+(x)γ0 , (5.10)

with the same flat-space γ0 as is used in the flat-space Dirac adjoint. In this case,

ψ
′
(x ′) = ψ+(x ′)S+(Λ)γ0 =

(
ψ+(x ′)γ0

) [
γ0 S+(Λ)γ0

]
, (5.11)

To first order in the Lorentz generators εAB, we have indeed,

γ0 S+(Λ)γ0 = 1+
i
4
εAB γ0 σ+

AB γ
0 = 1+

i
4
εAB σAB = [S(Λ)]−1 , (5.12)

where we have used the identity

σ+
AB = −

i
2
[γ+
B, γ

+
A] = −

i
2
γ0 [γ0γ+

Bγ
0, γ0γ+

Aγ
0] γ0

= −
i
2
γ0 [γB, γA] γ

0 = −γ0 σBA γ
0 = γ0 σAB γ

0 . (5.13)
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It is easy to show that Eq. (5.12) generalizes to all orders in the εAB parameters,
which justifies our ansatz given in Eq. (5.10). The result is that the flat-space γ0

matrix can be used in curved space, just like in flat space, in order to construct
the Dirac adjoint. The Dirac adjoint spinor transforms with the inverse spinor
representation of the Lorentz group [see Eq. (5.9)].

5.3 Lagrangian and Charge Conjugation

Equipped with an appropriate form of the Dirac adjoint in curved space-time, we
start from the Lagrangian density [11–20]

L = ψ(x) [γµ {i (∂µ − Γµ) − eAµ}−mI] ψ(x) , (5.14)

Here, the Aµ field describes the four-vector potential of the electromagnetic field,
while the Γµ matrices describe the spin connection.

Γµ =
i
4
ωABµ σAB , ωABµ = eAν∇µeνB , ∇µeνB = ∂µe

νB+ Γνµρ e
ρB . (5.15)

For the form of the covariant coupling, we refer to Eqs. (3.129) and (3.190) of
Ref. [11]. In the above equations, capital Roman indices A,B,C, · · · = 0, 1, 2, 3

refer to a freely falling coordinate system (a Lorentz index), while Greek indices
µ, ν, ρ, · · · = 0, 1, 2, 3 refer to an external coordinate system (an Einstein index).

We shall attempt to derive the particle-antiparticle symmetry on the level of
a transformation of the Lagrangian. In comparison to textbook treatments (see,
e.g., pp. 89 ff. and 263 ff. of Ref. [21], p. 70 of Ref. [22], p. 66 of Ref. [23], pp. 89
ff. and 263 ff. of Ref. [23], p. 142 of Ref. [24], p. 218 of Ref. [25], p. 67 of Ref. [26],
p. 116 of Ref. [27], p. 320 of Ref. [28], p. 153 of Ref. [1], and Chap. 7 of Ref. [29]), our
derivation is much more involved in view of the appearance of the Γµ matrices
which describe the gravitational coupling. In other words, we note that none of the
mentioned standard textbooks of quantum field theory discuss the gravitationally
coupled Dirac equation, and all cited descriptions are limited to the flat-space
Dirac equation, where the role of the charge conjugation operation is much easier
to analyze than in curved space.

The double-covariant coupling to both the gravitational as well as the electro-
magnetic field is given as follows,

Dµ = ∂µ − Γµ + ieAµ = ∇µ + ieAµ , (5.16)

where∇µ = ∂µ − Γµ is the gravitational covariant derivative.
As a side remark, we note that gravitational spin connections Γµ = i

4
ωABµ σAB

and other gauge-covariant couplings are unified in the so-called spin-charge family
theory [30–34] which calls for a unification of all known interactions of nature in
terms of an SO(1, 13) overarching symmetry group. (In the current article, we use
the spin connection matrices purely in the gravitational context.) The SO(1, 13)
has a 25-dimensional Lie group, with 13 boosts and 12 rotations in the internal
space. This provides for enough Lie algebra elements to describe the Standard
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Model interactions, and predict a fourth generation of particles. The spin-charge
family theory is a significant generalization of Kaluza-Klein-type ideas [35, 36].

In the context of the current investigations, though, we restrict ourselves to the
gravitational spin connection matrices. In view of the (in general) nonvanishing
space-time dependence of the Ricci rotation coefficients, we can describe the
quantum dynamics of relativistic spin-1/2 particles on the basis of Eqs. (5.14)
and (5.15). The σAB matrices defined in Eq. (5.15) represent the six generators of
the spin-1/2 representation of the Lorentz group.

The Lagrangian (5.14) is Hermitian, and so

L = L+ = ψ+(x)
[
(γµ)+

{
−i
←−
∂ µ − eAµ

}
− (−i) (Γµ)

+
(γµ)+ −mI

] [
ψ(x)

]+
.

(5.17)
An insertion of γ0 matrices under use of the identity (γ0)2 = 1 leads to the relation

L+ = ψ+(x)γ0
[
γ0 (γµ)+ γ0

{
−i
←−
∂ µ − eAµ

}
+i
{
γ0 (Γµ)

+
γ0
}
γ0 (γµ)+ γ0 −mI

]
γ0
[
ψ(x)

]+
. (5.18)

Also, we recall that γ0 (Γµ)+ γ0 = −Γµ, because

Γ+
µ = −

i
4
ωABµ σ+

AB = −
i
4
ωABµ γ0 σAB γ

0 = −γ0 Γµγ
0 . (5.19)

So, the adjoint of the Lagrangian is

L+ = ψ+(x)γ0
[
γµ
{
−i
←−
∂ µ − eAµ

}
− i Γµ γµ −mI

]
γ0
[
ψ(x)

]+
. (5.20)

Now, we use the relations ψ+(x)γ0 = ψ(x) and γ0
[
ψ(x)

]+
= ψ(x), and arrive at

the form
L+ = ψ(x)

[
γµ
{
−i
←−
∂ µ − eAµ

}
− i Γµ γµ −mI

]
ψ(x) . (5.21)

Because L is a scalar, a transposition again does not change the Lagrangian, and
we have(
L+)T

= ψT(x)
[
(γµ)

T
{
−i

−→
∂ µ − eAµ

}
− i (γµ)T

(Γµ)
T
−mI

] [
ψ(x)

]T
. (5.22)

An insertion of the charge conjugation matrix C = iγ2 γ0 (with the flat-space γ2

and γ0) leads to(
L+)T

= ψT(x)C−1
[
C (γµ)

T
C−1
{
−i

−→
∂ µ − eAµ

}
−iC (γµ)

T
C−1 CΓT

µ C
−1 −mI

]
C
[
ψ(x)

]T
. (5.23)

we use the identities C (γµ)
T
C−1 = −γµ, and C (Γµ)

T
C−1 = −Γµ. The latter of

these can be shown as follows,

CΓT
µ C

−1 =
i
4

{
i
2
ωABµ C

[
γT
B, γ

T
A

]
C−1

}
=

i
4

{
i
2
ωABµ [−γB, −γA]

}
= −Γµ .

(5.24)
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The result is the expression(
L+)T

= ψT(x)C−1
[
(−γµ)

{
−i

−→
∂ µ − eAµ

}
− i (−γµ) (−Γµ) −mI

]
C
[
ψ(x)

]T
.

(5.25)
Now we express the result in terms of the charge-conjugate spinor ψC(x) and its
adjoint ψC(x) (further remarks on this point are presented in Appendix 5.7),

ψC(x) = C
[
ψ(x)

]T
, ψC(x) = −ψT(x)C−1 , (5.26)

where we use the identity C−1 = −C (see also Appendix 5.6). The Lagrangian
becomes

L =
(
L+)T

= −ψC(x)
[
γµ
{

i
−→
∂ µ + eAµ

}
− iγµ Γµ −mI

]
ψC(x)

= −ψC(x) [γµ {i(∂µ − Γµ) + eAµ}−mI] ψ
C(x) . (5.27)

The Lagrangian given in Eq. (5.27) differs from (5.17) only with respect to the sign
of electric charge, as is to be expected, and with respect to the replacement of the
Dirac spinor ψ(x) by its charge conjugation ψC(x). The overall minus sign is phys-
ically irrelevant as it does not influence the variational equations derived from the
Lagrangian; besides, it finds a natural explanation in terms of the reinterpretation
principle, if we interpret ψ(x) as a Dirac wave function in first quantization.

Namely, there is a connection of the spatial integrals of the mass term, propor-
tional to

J =

∫
d3rψ(x)ψ(x) =

∫
d3rψ(t,~r)ψ(t,~r) =

∫
d3rψ+(t,~r)γ0ψ(t,~r) , (5.28)

and the charge conjugate,

JC =

∫
d3rψ

C
(x)ψC(x) =

∫
d3r

(
ψC(t,~r)

)+
γ0ψ(t,~r) . (5.29)

Both of the above integrals connect to the energy eigenvalue of the Dirac equation
in the limit of time-independent fields (see Appendices 5.6 and 5.7). One can show
that the energy eigenvalues of Dirac eigenstates ψ, in the limit of weak potentials
and states composed of small momentum components, exactly correspond to the
integrals J and JC (up to a factormI). In turn, the dominant term in the Lagrangian
in this limit is

L→ −ψ(x)mIψ(x) = +ψC(x)mIψ
C(x) . (5.30)

Because the integral
∫

d3rL equals −J (or +JC), the sign change becomes evident:
it is due to the fact that the states ψC describe antiparticle wave functions where
the sign of the energy flips in comparison to particles. The matching ofmI to the
gravitational mass can be performed in a central, static field [6, 9], and results in
the identificationmI = mG, wheremG is the gravitational mass. The gravitational
covariant derivative ∂µ − Γµ has retained its form in going from (5.17) to (5.27),
in agreement with the perfect particle-antiparticle symmetry of the gravitational
interaction. Because the above demonstration is general and holds for arbitrary
(possibly dynamic) space-time background Γ , there is no room for a deviation of
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the gravitational interactions of antiparticles (antimatter) to deviate from those
of matter. This has been demonstrated here on the basis of Lagrangian methods,
supplementing a recent preliminary result [9].

In order to fully clarify the origin of the minus sign introduced upon charge
conjugation, one consults Chaps. 2 and 3 of Ref. [1] and Chap. 7 of Ref. [29].
Namely, in second quantization, there is an additional minus sign incurred upon
the charge conjugation, which restores the original sign pattern of the Lagrangian.
According to Eq. (2.107) and (3.157) of Ref. [1], we can write the expansion of the
free Dirac field operator as

ψ̂(x) =
∑
s

∫
d3p
(2π)3

m

E

[
as(~p)us(~p) e−ip·x + eip·x vs(~p)b

+
s (~p)

]
. (5.31)

The field operator is denoted by a hat in order to differentiate it from the Dirac
wave function. The four-momentum is pµ = (E,~p), where E =

√
~p2 +m2 is

the free Dirac energy, and us(~p) and vs(~p) are the positive-energy and negative-
energy spinors with spin projection s (onto the z axis). Furthermore, the particle
annihilation operator as(~p) and the antiparticle creation operator b+

s (~p), and
their Hermitian adjoints, fulfill the commutation relations given in Eqs. (3.161) of
Ref. [1], {

as(~p), a
+
s ′(~p)

}
=
E

m
(2π)3 δ(3)(~p− ~p ′) δss ′ , (5.32a){

bs(~p), b
+
s ′(~p

′)
}
=
E

m
(2π)3 δ(3)(~p− ~p ′) δss ′ . (5.32b)

The spinors are normalized according to Eq. (2.43a) of Ref. [1], i.e., they fulfill
the relation u+

s (~p)us(~p) = v
+
s (~p) vs(~p) = E/m. For the charge conjugation in the

second-quantized theory, it is essential that an additional minus sign is incurred
in view of the anticommutativity of the field operators. Namely, without con-
sidering the interchange of the field operators, one would have, under charge
conjugation, Jµ(x) = ψ(x)γµψ(x) = ψ

C
(x)γµψC(x) = JCµ(x), i.e., the current

would not change under charge conjugation which is intuitively inconsistent
[see the remark following Eq. (4.618) of Ref. [29]]. However, for the field op-
erator current (from here on, we denote field operators with a hat), we have
Ĵµ(x) = ψ̂(x)γµψ̂(x) = −ψ̂C(x)γµψ̂C(x) = −ĴCµ(x), because one has incurred
an additional minus sign due to the restoration of the field operators into their
canonical order after charge conjugation [see the remark following Eq. (7.309) of
Ref. [29]].

In our derivation above, when one transforms to a second-quantized Dirac
field (but keeps classical background electromagnetic field and a classical non-
quantized curved-space-time metric), one starts from Eq. (5.21) as an equivalent,
alternative formulation of Eq. (5.14). One observes that in going from Eq. (5.21)
to (5.22), one has actually changed the order of the field operators in relation to
the Dirac spinors. Restoring the original order, much in the spirit of Eq. (7.309) of
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Ref. [29], one incurs an additional minus sign which ensures that

L̂ = ψ̂(x) [γµ {i (∂µ − Γµ) − eAµ}−mI] ψ̂(x)

= ψ̂C(x) [γµ {i(∂µ − Γµ) + eAµ}−mI] ψ̂
C(x) , (5.33)

exhibiting the effect of charge conjugation in the second-quantized theory—and
restoring the overall sign of the Lagrangian. The theorem (5.33) shows that parti-
cles and antiparticles behave exactly the same in gravitational fields, but it does
not imply, a priori, that mI = mG. The matching of the inertial mass mI and the
gravitational massmG most easily proceeds in a central, static field (Schwarzschild
metric), as demonstrated in Sec. 3 of Ref. [9].

One should, at this stage, remember that experimental evidence, to the extent
possible, supports the above derived symmetry relation. The only direct experi-
mental result on antimatter and gravity comes, somewhat surprisingly, from the
Supernova 1987A. Originating from the Large Magellanic Cloud, the originating
neutrinos and antineutrinos eventually were detected on Earth. In view of their
travel time of about 160,000 years, they were bent from a “straight line” by the
gravity from our own galaxy. The gravitational bending changed the time needed
to reach Earth by about 5 months. Yet, both neutrinos and antineutrinos reached
Earth within the same 12 second interval, shows that neutrinos and antineutrinos
fall similarly, to a precision of about 1 part in a million [37, 38]. In view of the
exceedingly small rest mass of neutrinos, the influence of the mass term (even
a conceivable tachyonic mass term) on the trajectory is negligible [39]. Yet, it is
reassuring that experimental evidence, at this time, is consistent with Eq. (5.33).

5.4 Other Interpretations of Antimatter Gravity

In view of the symmetry relations derived in this article for the gravitationally and
electromagnetically coupled Dirac equation, it is certain justified to ask about an
adequate interpretation of antimatter gravity experiments. We have shown that
canonical gravity cannot account for any deviations of gravitational interactions of
matter versus antimatter. How could tests of antimatter “gravity” be interpreted
otherwise? The answer to that question involves clarification of the question which
“new” interactions could possibly mimic gravity. The criteria are as follows: (i) The
“new” interaction would need to violate CPT symmetry. (ii) The “new” interaction
would have to be a long-range interaction, mediated by a massless virtual particle.

One example of such an interaction would be induced if hydrogen atoms
were to acquire, in addition to the electric charges of the constituents (electrons
and protons), an additional “charge” η e, where e is the elementary charge, while
antihydrogen atoms would acquire a charge −η e, where η is a small parameter.
One could conjecture the existence of a small, CPT-violating “charge” ηe/2 for
electrons, protons, and neutrons, while positrons and antiprotons, and antineu-
trons, would carry a “charge” −ηe/2. We will refer to this concept as the “η force”
in the following. The difference in the gravitational force (acceleration due to the
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Earth’s field) felt by a hydrogen versus an antihydrogen atom is

Fη
H
− FηH = 2 η

[η
2
(Np +Nn +Ne)

] e2

4πεR2⊕
. (5.34)

Here, R⊕ is the radius of the Earth, while Np, Nn and Ne are the numbers of
protons, neutrons and electrons in the Earth. The gravitational force on a falling
antihydrogen atom is

FGH = G
mpM⊕

R2⊕
. (5.35)

Let us assume that an experiment establishes that |Fη
H
− FηH| < χFG

H
, where χ

is a measure of the deviation of the acceleration due to gravity+“η”-force for
antihydrogen versus hydrogen. A quick calculation shows that this translates into
a bound

η < 7.3× 10−19√χ . (5.36)

Antimatter gravity tests thus limit the available parameter space for η, and could
be interpreted in terms of corresponding limits on the maximum allowed value of
η.

5.5 Conclusions

In the current paper, we have analyzed the particle-antiparticle symmetry of the
gravitationally (and electromagnetically) coupled Dirac equation and come to the
conclusion that a symmetry exists, for the second-quantized formulation, which
precludes the existence particle-antiparticle symmetry breaking terms on the level
of Dirac theory. In a nutshell, one might say the following: Just as much as the
electromagnetically coupled Dirac equation predicts that antiparticles have the
opposite charge as compared to particles (but otherwise behave exactly the same
under electromagnetic interactions), the gravitationally coupled Dirac equation
predicts that particles and antiparticles follow exactly the same dynamics in curved
space-time, i.e., with respect to gravitational fields (in particular, they have the
same gravitational mass, and there is no sign change in the gravitational coupling).
In the derivation of our theorem (5.33), we use the second-quantized Dirac for-
malism, in the Lagrangian formulation. Our general result for the Dirac adjoint,
communicated in Sec. 5.2, paves the way for the Lagrangian of the gravitationally
coupled field, and its explicit form is an essential ingredient of our considerations.

Why is this interesting? Well, first, because the transformation of the gravita-
tional force under the particle-to-antiparticle transformation has been discussed
controversially in the literature [40–43]. In Ref. [10], it was pointed out that the
role of the CPT transformation in gravity needs to be considered with care: It
relates the fall of an apple on Earth to the fall of an anti-apple on anti-Earth, but
not on Earth. The Dirac equation, colloquially speaking, applies to both apples as
well as anti-apples on Earth, i.e., to particles and antiparticles in the same space-
time metric. Second, our results have important consequences because one might
have otherwise speculated about the existence of tiny violations of the particle-
antiparticle symmetry, even on the level of the gravitationally coupled Dirac theory.
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For example, in Ref. [44], it was claimed that the Dirac Hamiltonian for a particle
in a central gravitational field, after a Foldy–Wouthuysen transformation which
disentangles the particle from the antiparticle degrees of freedom, contains the
term [see the last term on the first line of the right-hand side of Eq. (31)]

H ∼ −
~
2c

~Σ · ~g , ~Σ =

(
~σ 0

0 ~σ

)
. (5.37)

We here restore the factors ~ and c in order to facilitate the comparison to Ref. [44].
The term proportional to ~Σ · ~g, where ~g is the acceleration due to gravity, would
break parity, because ~Σ transforms as a pseudovector, while ~g transforms as a vec-
tor under parity. This aspect has given rise to discussion, based on the observation
that an initially parity-even Hamiltonian (in a central field) should not give rise
to parity-breaking terms after a disentangling of the effective Hamiltonians for
particles and antiparticles [45, 46].

We should note that Ref. [44] was not the only place in the literature where
the authors speculated about the existence of P, and CP–violating terms obtained
after the identification of low-energy operators obtained from Dirac Hamiltonians
in gravitational fields. E.g., in Eq. (46) of Ref. [47], spurious parity-violating, and
CP-violating terms were obtained after a Foldy–Wouthuysen transformation; these
terms would of course also violate particle-antiparticle symmetry.

In the context of the current discussion, the existence of terms proportional to
~Σ · ~g, as given in Eq. (5.37), would also violate particle-antiparticle symmetry: This
is because it lacks the universal prefactor β = γ0, where

β =

(
I2×2 0

0 −I2×2

)
. (5.38)

In fact, in the complete result (up to fourth order in the momenta) for the effective
particle-antiparticle Hamiltonian in a central field, given in Eq. (21) of Ref. [6], all
terms have a common prefactor β. The common prefactor β implies that, after
the application of the reinterpretation principle for antiparticles, the effective
Hamiltonians for particles and antiparticles in a central gravitational field (but
without electromagnetic coupling) are exactly the same, and ensures the particle-
antiparticle symmetry.

The absence of such parity-violating (and particle-antiparticle symmetry
breaking) terms has meanwhile been confirmed in remarks following Eq. (15) of
Ref. [48], in the text following Eq. (35) of Ref. [49], and also, in clarifying remarks
given in the text following Eq. (7.33) of Ref. [50]. Further clarifying analyses can
be found in Ref. [51] and in Ref. [52]. Related calculations have recently been
considered in other contexts [50, 53, 54]. The question of whether such parity- and
particle-antiparticle symmetry violating terms could exist in higher orders in the
momentum expansion has been answered negatively in Ref. [7], but only for a
static central gravitational field, and in Ref. [55], still negatively, for combined
static, central gravitational and electrostatic fields.

However, the question regarding the absence of particle-antiparticle symme-
try breaking terms for general, dynamic space-time backgrounds has not been
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answered conclusively in the literature up to this point, to the best of our knowl-
edge. This has been the task of the current paper. In particular, our results imply a
no-go theorem regarding the possible emergence of particle-antiparticle-symmetry break-
ing gravitational, and combined electromagnetic-gravitational terms in general static
and dynamic curved-space-time backgrounds. Any speculation [44, 47] about the re-
emergence of such terms in a dynamic space-time background can thus be laid to
rest. Concomitantly, we demonstrate that there are no “overlap” or “interference”
terms generated in the particle-antiparticle transformation, between the gauge
groups, namely, the SO(1, 3) gauge group of the local Lorentz transformations,
and the U(1) gauge group of the electromagnetic theory. This result implies both
progress and, unfortunately, some disappointment, because the emergence of such
terms would have been fascinating and would have opened up, quite possibly,
interesting experimental opportunities. In our opinion, antimatter gravity experi-
ments should be interpreted in terms of limits on CPT-violating parameters, such
as the η parameter introduced in Sec. 5.4. This may be somewhat less exciting than
a “probe of the equivalence principle for antiparticles” but still, of utmost value
for the scientific community.
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5.6 APPENDIX: Sign Change ofψψ under Charge Conjugation

With the charge conjugation matrix C = iγ2γ0 (superscripts denote Cartesian
indices), and the Dirac adjoint ψ = ψ+ γ0, we have

ψC = Cψ
T
= iγ2 γ0 γ0ψ∗ = iγ2ψ∗ . (5.39)

We recall that the γ2 (contravariant index, no square) matrix in the Dirac represen-
tation matrix is

γ2 =

(
0 σ2

−σ2 0

)
, σ2 =

(
0 −i
i 0

)
,
(
σ2
)+

= σ2 , (5.40)

which implies that
(
γ2
)+

= −γ2. The Dirac adjoint of the charge conjugate is

ψ
C
=
(
ψC
)+
γ0 = ψT(−i)

(
γ2
)+
γ0 = ψT(−i) (−γ2)γ0 = ψT iγ2 γ0 . (5.41)

This leads to a verification of the sign flip of the mass terms in the gravitation-
ally coupled Lagrangian for antimatter, given in Eq. (5.27) [see also Eqs. (5.28)
and (5.29)],

ψ
C
ψC = (ψTiγ2)γ0 (iγ2ψ∗) = −(i)2ψT (γ2)2 γ0ψ∗ = −ψT γ0ψ∗ = −ψψ .

(5.42)
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Two useful identities (i) γ0 C+ γ0 = C and (ii) C−1 = −C have been used in
Sec. 5.3. These will be derived in the following. The explicit form of the γ2 matrix
in the Dirac representation implies that

(
γ2
)+

= −γ2. Based on this relation, we
can easily show that

C+ =
(
iγ2 γ0

)+
= −iγ0

(
γ2
)+

= iγ0 γ2 = −iγ2 γ0 = −C . (5.43)

The first identity γ0 C+ γ0 = C can now be shown as follows,

γ0 C+ γ0 = γ0
[
−iγ2 γ0

]
γ0 = −iγ0 γ2 = iγ2 γ0 = C . (5.44)

Furthermore, one has

CC+ = C (−C) = iγ2 γ0 iγ0 γ2 = −
(
γ2
)2

= −(−I4×4) = I4×4 , (5.45)

so that
C−1 = C+ = −C , (5.46)

which proves, in particular, that C−1 = −C.

5.7 APPENDIX: General Considerations

A few illustrative remarks are in order. These concern the following questions: (i)
To which extent do gravitational and electrostatic interactions differ for relativistic
particles? This question is relevant because, in the nonrelativistic limit, in a central
field, both interactions are described by potentials of the same functional form
(“1/R potentials”). (ii) Also, we should clarify why the integrals (5.28) and (5.29)
represent the dominant terms in the evaluation of the Dirac particle energies, in
the nonrelativistic limit.

After some rather deliberate and extensive considerations, one can show [8]
that, up to corrections which combine momentum operators and potentials, the
general Hamiltonian for a Dirac particle in a combined electric and gravitational
field is

HD = ~α · ~p+ β{m(1+ φG)}+ eφC , (5.47)

where φG is the gravitational, and φC is the electrostatic potential. Also, ~α is
the vector of Dirac α matrices, ~p is the momentum operator, and β = γ0 is the
Dirac β matrix. After a Foldy–Wouthuysen transformation [51], one sees that
the gravitational interaction respects the particle-antiparticle symmetry, while
the Coulomb potential does not, commensurate with the opposite sign of the
charge for antiparticles. Question (i) as posed above can thus be answered with
reference to the fact that, in leading approximation, the gravitational potential
enters the Dirac equation as a scalar potential, modifying the mass term, while the
electrostatic potential can be added to the free Dirac Hamiltonian vecα · ~p+ βm
by covariant coupling [1].

The second question posed above is now easy to answer: Namely, in the
nonrelativistic limit, one has

~α · ~p→ 0 , (5.48)
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and furthermore, the gravitational and electrostatic potentials can be assumed
to be weak against the mass term, at least for non-extreme Coulomb fields [56].
Under these assumptions, one has HD → βm, and the matrix element 〈ψ|HD|ψ〉
assumes the form

∫
d3rψ+(~r)γ0mψ(~r) [see Eq. (5.28)].

References

1. C. Itzykson and J. B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980).
2. C. D. Anderson, Phys. Rev. 43, 491 (1933).
3. G. E. Brown and D. G. Ravenhall, Proc. Roy. Soc. London, Ser. A 208, 552 (1951).
4. R. Jauregui, C. F. Bunge, and E. Ley-Koo, Phys. Rev. A 55, 1781 (1997).
5. J. Maruani, J. Chin. Chem. Soc. 63, 33 (2016).
6. U. D. Jentschura and J. H. Noble, Phys. Rev. A 88, 022121 (2013).
7. U. D. Jentschura, Phys. Rev. A 87, 032101 (2013), [Erratum Phys. Rev. A 87, 069903(E)

(2013)].
8. U. D. Jentschura, Phys. Rev. A 98, 032508 (2018).
9. U. D. Jentschura, Int. J. Mod. Phys. A 34, 1950180 (2019).

10. M. H. Holzscheiter, R. E. Brown, J. Camp, T. Darling, P. Dyer, D. B. Holtkamp, N. Jarmie,
N. S. P. King, M. M. Schauer, S. Cornford, K. Hosea, R. A. Kenefick, M. Midzor, D.
Oakley, R. Ristinen, and F. C. Witteborn, AIP Conf. Proc. 233, 573 (1991).

11. M. Bojowald, Canonical Gravity and Applications (Cambridge University Press, Cam-
bridge, 2011).

12. D. R. Brill and J. A. Wheeler, Rev. Mod. Phys. 29, 465 (1957).
13. V. Fock and D. Iwanenko, Z. Phys. 56, 798 (1929).
14. V. Fock, Z. Phys. 57, 261 (1929).
15. V. Fock and D. Ivanenko, C. R. Acad. Sci. Paris 188, 1470 (1929).
16. D. G. Boulware, Phys. Rev. D 12, 350 (1975).
17. M. Soffel, B. Müller, and W. Greiner, J. Phys. A 10, 551 (1977).
18. O. S. Ivanitskaya, Extended Lorentz transformations and their applications (in Russian)

(Nauka i Technika, Minsk, USSR, 1969).
19. O. S. Ivanitskaya, Lorentzian basis and gravitational effects in Einstein’s theory of gravity (in

Russian) (Nauka i Technika, Minsk, USSR, 1969).
20. O. S. Ivanitskaya, N. V. Mitskievic, and Y. S. Vladimirov, in Proceedings of the 114th

Symposium of the International Astronomical Union held in Leningrad, USSR, May 1985,
edited by J. Kovalevsky and V. A. Brumberg (Kluwer, Dordrecht, 1985), pp. 177–186.

21. A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics (Nauka, Moscow, 1969).
22. M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Perseus,

Cambridge, Massachusetts, 1995).
23. S. Gasiorowicz, Elementarteilchenphysik (Bibliographisches Institut, Mannheim, 1975).
24. J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons, 2 ed. (Springer, Heidel-

berg, 1980).
25. A. Lahiri and P. B. Pal, Quantum Field Theory (Alpha Science, Oxford, UK, 2011).
26. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York,

1964).
27. J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields (McGraw-Hill, New York, 1965).
28. N. N. Bogoliubov, A. A. Logunov, and I. T. Todorov, Introduction to Axiomatic Quantum

Field Theory (W. A. Benjamin, Reading, Massachusetts, 1975).
29. H. Kleinert, Particles and Quantum Fields (World Scientific, Singapore, 2016).
30. N. S. Mankoc Borstnik, Int. J. Theor. Phys. 40, 315 (2001).



i
i

“proc20Vol1” — 2020/12/6 — 22:10 — page 72 — #88 i
i

i
i

i
i

72 U.D. Jentschura

31. N. S. Mankoc Borstnik and H. B. F. Nielsen, How to generate families of spinors, preprint
arXiv:hep-th/0303224.

32. N. S. Mankoc Borstnik, Phys. Rev. D 91, 065004 (2015).
33. N. S. Mankoc Borstnik and H. B. F. Nielsen, Progress in Physics 65, 1700046 (2016).
34. N. Mankoc Borstnik, in Conference on New Physics at the Large Hadron Collider, edited by

H. Fritzsch (World Scientific, Singapore, 2017), pp. 161–194.
35. T. Kaluza, Preussische Akademie der Wissenschaften (Berlin), Sitzungsberichte, 966–972

(1921).
36. O. Klein, Z. Phys. A 37, 895 (1926).
37. M. J. Longo, Phys. Rev. Lett. 60, 173 (1988).
38. J. M. LoSecco, Phys. Rev. D 38, 3313 (1988).
39. J. H. Noble and U. D. Jentschura, Phys. Rev. A 92, 012101 (2015).
40. R. M. Santilli, Int. J. Mod. Phys. A 14, 2205 (1999).
41. M. Villata, Europhys. Lett. 94, 20001 (2011).
42. M. J. T. F. Cabbolet, Astrophys. Space Sci. 337, 5 (2011).
43. M. Villata, Astrophys. Space Sci. 337, 15 (2011).
44. Y. N. Obukhov, Phys. Rev. Lett. 86, 192 (2001).
45. N. Nicolaevici, Phys. Rev. Lett. 89, 068902 (2002).
46. Y. N. Obukhov, Phys. Rev. Lett. 89, 068903 (2002).
47. J. F. Donoghue and B. R. Holstein, Am. J. Phys. 54, 827 (1986).
48. A. J. Silenko and O. V. Teryaev, Phys. Rev. D 71, 064016 (2005).
49. A. J. Silenko, Phys. Rev. A 94, 032104 (2016).
50. Y. N. Obukhov, A. J. Silenko, and O. V. Teryaev, Phys. Rev. D 96, 105005 (2017).
51. U. D. Jentschura and J. H. Noble, J. Phys. A 47, 045402 (2014).
52. M. V. Gorbatenko and V. P. Neznamov, Ann. Phys. (Berlin) 526, 195 (2014).
53. Y. N. Obukhov, A. J. Silenko, and O. V. Teryaev, Phys. Rev. D 90, 124068 (2014).
54. Y. N. Obukhov, A. J. Silenko, and O. V. Teryaev, Phys. Rev. D 94, 044019 (2016).
55. J. H. Noble and U. D. Jentschura, Phys. Rev. A 93, 032108 (2016).
56. P. J. Mohr, G. Plunien, and G. Soff, Phys. Rep. 293, 227 (1998).



i
i

“proc20Vol1” — 2020/12/6 — 22:10 — page 73 — #89 i
i

i
i

i
i

BLED WORKSHOPS
IN PHYSICS
VOL. 21, NO. 1

Proceedings to the 23rd [Virtual]
Workshop, Volume 1

What Comes Beyond . . . (p. 73)
Bled, Slovenia, July 4–12, 2020

6 Main Properties of New Heavy Hadrons and the
Luminosity of Hadronic Dark Matter

V.I. Kuksa ? and V.A. Beylin

Research Institute of Physics, Southern Federal University, 344090 Rostov-on-Don, Av.
Stachky 194, Russian Federation

Abstract. The origin and main properties of new heavy hadrons as dark matter candi-
dates, are represented. Low-energy interactions of new hadrons with leptons and nucleons
are described in the terms of effective vertexes. We consider the lowest excited levels of
new mesons in the frame-work of the Heavy Quark Effective Theory. The effect of fine
and hyper-fine splitting of excited states follows directly from this theory. We analyze
phenomenological consequences of this effect as manifestation of dark matter particles.

Povzetek. Avtorja predstavita izvor in glavne lastnosti novih hadronov kot kandida-
tov za delce temne snovi. Nizkoenergijske interakcije novih hadronov z leptoni in nu-
cleoni običajne snovi predstavita z efektivnimi vozlišči. Obravnavata nanjižja vzbujena
stanja v okviru efektivne teorije težkih kvarkov, fini in hiperfini razcep vzbujenih stanj ter
fenomenološke posledice za obravnavo teh delcev kot temne snovi.

Keywords: hadronic dark matter; hyperfine splitting; luminosity
PACS: 95.30 Cq, 11.10. St, 11.10 Ef

6.1 Introduction

The cald dark matter candidates usually are interpreted as stable weakly interact-
ing massive particles (WIMP). Rigid experimental constraints on the cross-section
of WIMP-nucleon interaction [1] exclude some variants of WIMPs. So, alternative
scenarios are considered in literature, for example, the scenario with strongly in-
teracting massive particle (SIMP) [2]- [7]. In these works, the scenario of hadronic
dark matter realization was represented, where dark matter (DM) particles con-
sists of new heavy and ordinary quarks. Such scenarios can be realized in the SM
extensions with fourth generation [2, 3], in the chiral-symmetric models [7, 8], and
in the extension with singlet quark [9].

Principal properties of hadronic DM particles of meson type were considered
in Refs. [8–10], where it was shown that hadronic DM scenario is not excluded by
EW and cosmochemical constraints. Low-energy interaction of hadronic dark mat-
ter (HDM) with ordinary matter was decribed in Refs. [11, 12]. There, Lagrangians

? E-mail: vkuksa47@mail.ru
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of strong and weak interactions of new heavy mesons with ordinary light ones
and gauge bosons were derived. It was shown in [12], that the effect of fine and
hyperfine splitting manifests itself in the spectrum of new heavy mesons. Note,
the existence of new heavy hadrons and their principal properties are the direct
coseuquenses of high energy SM extensions. These extensions have independent
meaning as variants of realization of grand unification theory. Application of this
scenario to the description of DM is not obligatory, however, it gives the simplest
and natural realization of hadronic DM scenario.

In this report, we consider in details the main properties of new heavy mesons
and their phenomenological consequences. In Section 2, we describe the interaction
of new quarks with the gauge bosons, electro-weak restrictions on the mass of
these quarks and define the value of their mass. Low-energy interaction of new
mesons with ordinary particles (leptons and nucleons) are considered in Section
3. The effects of fine and hyperfine splitting in the set of new heavy mesons are
described in Section 4. Some conclusions are presented in Section 5.

6.2 New Heavy Stable Quarks

In the scenario with chiral extension of SM, new sets of the up and down quarks
has the form:

Q = {QR =

(
U

D,

)
R

; UL, DL} (6.1)

The structure of covariant derivatives is defined in standard way:

DµQR =(∂µ − ig1YQVµ −
ig2

2
τaV

a
µ − ig3tiG

i
µ)QR;

DµUL =(∂µ − ig1YUVµ − ig3tiG
i
µ)UL,

DµDL =(∂µ − ig1YDVµ − ig3tiG
i
µ)DL. (6.2)

In the Eqs. (6.2), the values YA, A = Q,U,D, are the hypercharges and ti are
generators of SUC(3) -group. Here, gauge boson fields Vaµ are superheavy chiral
partner of standard fields. If we interprete the gauge field Vµ as standard U(1)Y
one, then standard mixing of Vµ and V3µ is forbidden. Moreover, standard interpre-
tation of the field Vµ and weak hypercharge YQ = q̄ leads to wrong V−A structure
of photon interaction. These obstakles were considered in detail in Ref. [8], where
hypercharge operator was redefined and vector-like interaction of new quarks
was established:

LintQ = g1VµQ̄γ
µq̂Q = g1(cwAµ − swZµ)(qUŪγ

µU− qDD̄γ
µD), (6.3)

where the field Vµ is standard mixture of photon,Aµ, and boson, Zµ. In expression
(6.3), the values cw = cos θw, sw = sin θw, g1cw = e and θw is Weinberg angle.

In the scenario with singlet quark (SQ), new heavy quark, S, is a singlet
with respect to SUW(2) weak group. The high-energy origin and low-energy
phenomenology of singlet quark (SQ) were considered in many works (see, for
example, [13]- [17] and references therein). The low-energy phenomenology of
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SQ mainly is stipulated by effect of it’s mixing with ordinary quarks. This mixing
causes the appearence of flavor changing neutral currents (FCNC) and instability
of SQ. Here, we consider the variant with stable SQ which have no the mixing
with ordinary ones. Because the SQ strongly interacts with ordinary quarks, they
form the bound states of type (Sq), (Sqq), (SSq). Here, we consider the main
properties of two-quark, (Sq), meson states and the scenario, where the lightest
neutral mesonM0 = (S̄q) is the DM candidate.

Further, we present the scenario of the SM extension with singlet quark
S, which can be up, U, or down, D, type. The field S is singlet representation
of SUW(2) group and has standard properties with respect to UY(1) and color
SUC(3) groups. Minimal Lagrangian of SQ interaction with the gauge bosons is:

LS = iS̄γµ(∂µ − ig1qVµ − igstaG
a
µ)S−MSS̄S. (6.4)

In (6.4), hypercharge Y/2 = q of singlet quark S, ta = λa/2 are generators of
SUC(3) -group, and MS is mass of quark. Abelian part of the Lagrangian (6.4)
describes the interactions of SQ with photon A and Z-boson:

LintS = g1qVµS̄γ
µS = qg1(cwAµ − swZµ)S̄γ

µS. (6.5)

Note, the interaction of SQ with Z-bosons has vector-like form.
The constraints on new fermions follow from the EW measurements of the

vector boson polarizations. The contributions of new quarks into polarizations of
gauge bosons γ, Z, W are described by Peskin-Takeuchi parameters (PT parame-
ters). In our case, polarizations Πab(0) = 0 and PT parameters can be represented
as follows:

S =
4s2wc

2
w

α
[
ΠZZ(M

2
Z,M

2
Q)

M2
Z

−
c2w − s2w
swcw

Π
′

γZ(0,M
2
Q) − Π

′

γγ(0,M
2
Q)]; T = 0;

U =−
4s2w
α

[c2w
ΠZZ(M

2
Z,M

2
Q)

M2
Z

+ 2swcwΠ
′

γZ(0,M
2
Q) + s

2
wΠ

′

γγ(0,M
2
Q)]. (6.6)

In Eqs. (6.6), α = e2/4π, MQ is mass of new quark and Πab(p2) are defined at
p2 =M2

Z and p2 = 0. The valuesΠab(p2,M2
Q) can be described by the expressions

(q = 2/3):

Πab(p
2,M2

Q) =
g21
9π2

kabF(p
2,M2

Q); kZZ = s2w, kγγ = c2w, kγZ = −swcw;

F(p2,M2
Q) = −

1

3
p2 + 2M2

Q + 2A0(M
2
Q) + (p2 + 2M2

Q)B0(p
2,M2

Q). (6.7)

By straightforward calculations we get rather simple expressions for PT parame-
ters:

S = −U =
ks4w
9π

[−
1

3
+ 2(1+ 2

M2
Q

M2
Z

)(1−
√
β arctan

1√
β
)]. (6.8)

In Eq. (6.8), β = 4M2
Q/M

2
Z − 1, k = 16(4) (SQ model) with the value of charge

q = 2/3(−1/3), and k = 20 in the chiral-symmetric model. We check that the
values of PT parameters significantly less the experimental limits [18]:

S = 0.00+ 0.11(−0.10), U = 0.08± 0.11, T = 0.02+ 0.11(−0.12). (6.9)
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So, the scenarios with singlet and mirror quarks satisfy to the experimental EW
restrictions on new physics.

Additional EW restrictions follow from the flavor-changing neutral currents
(FCNC). In the scenario, new quark does not mix with ordinary ones, FCNC are
absent and there are no additional restrictions from the rare processes. Thus, the
scenario with new heavy quarks is not excluded by precision EW restrictions. In
Ref. [7], it was shown that the potential of new meson and nucleon interaction
has repulsive character. So, the DM particles do not form the coupled states with
nucleons. This effect makes it possible to escape strong cosmo-chemical constraints
on the anomalous elements [7].

Quantum numbers, quark and isotopic structure of new hadrons are repre-
sented in Refs. [7, 8], where their properties and evolution are briefly described.
Here, we describe the principal properties of new mesons with structure of type
(qQ), in particular, the mesons M = (M0,M−). The mass M0 of neutral compo-
nent M0 is defined from the equality of annihilation cross-sections at freez-out
phase:

(σ(M)vr)
Mod = (σvr)

Exp (6.10)

In Eq. (6.10), the left part is model value of annihilation cross-section and the right
part follows from the data on the recil abondence of DM, (σvr)Exp = 2·10−9GeV−2.
The cross-section of annihilation QQ̄→ gg, qq̄was presented in [10]:

(σ(M))Mod = σ(QQ̄→ gg, qq̄) ≈ 44π
9

α2s
M2

. (6.11)

Using the expression (6.11) and equality (6.10) we get the estimation of new quarks
mass,M ≈ 10 TeV. From this estimation, it follows that freezing out temperature
Tf ≈M/30 ≈ 300 GeV, i.e., it is much greater than the temperature of QCD phase
transition, TQCD ≈ 150MeV. So, the stage of hadronization of ordinary and new
heavy hadrons begins much later the freezing out one. After phase transition new
heavy quarkQ combine with ordinary light quark q into new heavyQ-hadrons. In
baryon asymmetrical Universe it is possible the forming of meson states (qQ̄) and
baryon states (qqQ) with unit electrical charge. Further, we consider the meson
states only, while the more complicated states were considered in Ref. [10].

6.3 Interaction of DM with ordinary matter

Low-energy interaction of new hadrons with leptons is described by effective
Lagranian in standard differential form [12]:

Leff(WMM) = iGWMUikW
+µ(M̄ui∂µMdk − ∂µM̄uiMdk) + h.c., (6.12)

where ui = u, c, t; dk = d, s, b; Uik are the element of CM matrix, Mui = (uiŪ),
Mdk = (dkŪ), and effective coupling constantGWM = g/2

√
2. The value ofGWM

is equal to the coupling constant inW -boson fundamental interaction with quarks.
This is due toW-boson interacts with light standard quarks u, d only, it does not
interact with heavy quark Q, which at low energy plays spectator role.
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Low-energy Lagrangian of Z-boson interaction with new mesons can be
represented in the form (6.12) too. However, in contrast toGWM, effective coupling
GZM is caused by interactions of Zwith both quarks,Q and q, and the problem of
coupling definition arises.

Inelastic scattering of leptons on the M-particles is described by t-channel
diagram with W-boson in the intermediate state. Using Eq. (6.12) and standard
vertexWe−νe, by straightforward calculation, in approximationme � m(M) and
|m(M−) −m(M0)|� m(M), where m(M) is the mass of new mesons, we get the
cross-section in the form [12]:

σ(l−M0 → νlM
−) ≈ 3g

4|Uud|
2

210πM4
W

s(1−
m̄2

s
)2, (6.13)

where
√
s is full energy in the CMS and m̄ is mean mass of the doublet (M0,M−).

Full process of lepton scattering onM0 with account of final states is:

l−M0 → νlM
− → νlM

0e−ν̄e. (6.14)

So, in this process, neutrino with energy Eν ∼ El appears together with e−ν̄e
-pair. The cross-section of the process νlM0 → l−M+ is described by the same
expression (6.13).

Heavy DM particles are non-relativistic at the modern stage of evolution,
they have an average velocity ∼ 10−3 with respect to Galaxy. From the kinematics
of the heavy-light particles collisions, whenm�M, it follows that momentum
transfer is small (see comments below). In this case, the low-energy DM-nucleon
interaction can be described by effective meson-exchange approach (see Ref. [11]).
The nucleon-meson interaction was considered in [19] on the base of the gauge
scheme realization of symmetry U(1)× SU(3). This scheme was developed and
applied to the interaction of new heavy mesons with ordinary vector mesons
[11,12]. Lagrangian which describes the interaction of nucleons and new M-mesons
with ordinary vector mesons consists of two terms:

LNMV = LNV + LMV . (6.15)

In Eq. (6.15) the first term describes interaction of nucleon with standard light
mesons:

LNV = gωωµ(p̄γ
µp+ n̄γµn) +

1

2
gρ0µ(p̄γ

µp− n̄γµn)

+
1√
2
gρ+µ p̄γ

µn+
1√
2
gρ−µ n̄γ

µp, (6.16)

where gω =
√
3g/2 sin θ, g2/4π ≈ 3.4 and sin θ ≈ 0.78 [19]. The second term in

Eq. (6.16) describes the interaction of M -particles with ordinary vector mesons [12]:

LMV = iGωMω
µ(M̄0M0

,µ − M̄0
,µM

0 +M+
,µM

− −M+M−
,µ)

+
ig

2
ρ0µ(M̄

0M0
,µ − M̄0

,µM
0 +M+

,µM
− −M+M−

,µ)

+
ig√
2
ρ+µ(M̄0M−

,µ − M̄0
,µM

−) +
ig√
2
ρ−µ(M+M0

,µ −M+
,µM

0). (6.17)
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In Eq. (6.17), the coupling constant GωM = gω/3. In Ref. [11], it was shown that
scalar mesons give very small contribution into NM interaction. The interactions
of new mesons with ordinary pseudoscalar mesons (for instance, π-mesons) are
absent due to parity conservation. This is an important property which differs
new heavy hadrons from the standard baryons.

Low-energy scattering of nucleons on new mesons is described by t-channel
diagrams with light vector and scalar mesons in the intermediate states. The dia-
grams with pseudoscalar mesons are absent at the tree level, while the contribution
of scalar mesons is negligible. So, the dominant contribution into the cross-section
gives the change by the vector mesons,ω and ρmesons.

Now, we consider the kinematics of elastic scattering MN → MN, where
M = (M0,M−) andN = (p, n). In the case of non-relativistc particles, the maximal
value of momentum transfer Q2 = −q2 is Q2max = (pk)2 ≈ 4m2Nv2r . So, Qmax ≈
mNvr ∼ 10−3mN, the value Qmax much less the mass of vector mesons mv
(mv ∼ mN) and the meson-exchange model is relevant.

Using the vertexes from the Eqs. (6.16) and (6.17), we calculated the cross-
section of the process NaMb → NaMb [11, 12]:

σ(NaMb → NaMb) =
g4m2p

16πm4v
(1+

kab

sin2 θ
)2, (6.18)

whereNa = (p, n),Mb = (M0,M−), g2/4π ≈ 3.4, sin θ = 1/
√
3 and kab = ±1 for

the case of proton, p, and neutron, n. From the Eq. (6.18) it follows that the value of
cross-section is rather large, for example, σ(pM0 → pM0) ≈ 0.9 barn. Large cross-
section of NM-scattering can cause noteceabl interaction of DM halo and galaxy.
The problem of interaction between galaxies and their DM halo was considered
in Ref. [20]. Analysis of the low-energy scattering NaMb → NaMb discover an
important peculiarity of the NM-interaction. We show in Born approximation
that potential of M-nucleon interaction at large distances (d ∼ m−1

ρ ) has repulsive
character [7, 10] and new heavy hadrons as DM-particles do not form coupled
states with nucleon. This effect allows us to escape the problem of anomalous
hydrogen and helium [7].

In spite of large cross-section ofNM-scattering, the direct detection of hadronic
DM by underground devices is difficult due to small free pass in ground, lfr < 1
cm. So, we consider indirect constraints on hadronic DM which can impact on
the parameters of big bang nucleosynthesis (BBN) and γ-spectrum of cosmic rays
(CR) in the Galaxy [21]. In this work, the constraints were derived on the relation
R = σ(cm2)/MDM(g), where σ is cross-section of DM-baryon scattering (in cm2)
andMDM is the mass of DM particle (in g). The constraints are as follow [21]:

BBN : R < 108 cm2g−1; CR : R < 5 · 10−3 cm2g−1. (6.19)

So, the second restriction is much more stringent and we compare it with model
result. In our consideration, the value of mass is MDM ≈ 104GeV ≈ 10−20/0.56 g,
and cross-section σ ∼ 10−24cm2. Thus, the model relation R ≈ 5.6 · 10−5 cm2g−1
does not contradict to the CR restriction. The more proper measurements and
constraints are considered in Ref. [22] for the case of cosmic ray interaction with
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DM. The constrains were developed using NFW and Moore DM density pro-
files and new data from Fermi gamma ray space telescope. Here, we use the
upper constraint with Moore profile (which is more stringent): σNx = 9.3 ·
10−30mxcm

2GeV−1. Atmx = 104 GeV we get σ < 10−25cm2, which excludes the
model estimation. Here, we note that we describe the DM-nucleon interaction in
meson-exchange approach using the coupling constant, which was determined
in low-energy hadrons interaction (g2/4π = 3.4). Thus, the model assumption
concern the value of coupling is not justified, and from the experiment we get the
constraint on this parameter: g2/4π < 1.

The processes of non-elastic scattering NaMb → NcMd, where Na = (p, n)

and Mb = (M0,M−), are described by the kinematics of elastic scattering one.
The dominant contribution into cross-section is caused by t -channel diagram with
charged ρ±-meson in the intermediate state. The expression for the cross-section
explicitly indicates the presence of the threshold:

σ(NaMb → NcMd) =
g4m

8πvrm4v

√
2m[Ea − ∆ab]

1/2, (6.20)

where Ea ≈ mav2r/2, m(Na) = ma ≈ mb ≈ m, ∆ab is the combination of mass-
splitting ∆M = m(M+)−m(M0) and ∆m = mn−mp ≈ 1.4MeV. The expression
(6.20) can be represented in another form:

σ(NaMb → NcMd) =
g4m2

8πm4v
[1−

∆ab

Ep
]1/2. (6.21)

From (6.21) one can see that the process of scattering has the threshold Ethrp = ∆ab,
when ∆ab > 0. In Ref. [12], we present the expressions for the threshold in the
case of basic reactions, naimly pM0 → nM+, nM+ → pM0, nM0 → pM− and
pM− → nM0.

6.4 Fine and hyperfine splitting in doublet of new heavy
mesons

New heavy quarks possess strong QCD interaction, so they can form the coupled
states - new heavy mesons, (qQ̄), and fermions, (qqQ), (qQQ), (QQQ). Classi-
fication and the main properties of these hadrons were presented in [10] for the
case of up and down type of new quark Q. The evolution of new hadrons was
briefly considered in Ref. [7], where the process of burning out of heavy baryons
was analyzed. Here, we represent the main properties of new mesons, M0 and
M−, which can lead to the characteristic sygnals of the hadronic dark matter.

An important role in hadronic DM scenario plays the value of mass-splitting
in the doublet of neutral, M0, and charged, M−, new heavy mesons. We define
the value of mass-splitting as follows:

∆m = m(M−) −m(M0). (6.22)

In the case of standard heavy-light (HL) mesons the value ∆m is an order of
MeV, besides, this value is positive for the case of D-meson (up heavy quark)
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and negative for the case of K- and B-mesons (down heavy quark). New heavy
mesonsM0 andM− are just the case of the heavy-light (HL) mesons,mQ � mq.
From the heavy quark symmetry [23], it follows the analogy with standard HL
mesons. So, for the case of up-type new mesons, M0 = (uŪ) and M− = (dŪ),
we can assume that ∆m is positive and ∆m ∼ MeV. The instability condition
of charged meson M− leads to inequality ∆m > me, where me is the mass of
electron. Thus, charged partner of neutral DM particle has unique decay channel
M− → M0W∗− → M0e−ν̄e with very small phase space in a final state. The
expression for the width of charged meson is as follows [10]:

Γ(M−) =
G2F
60π3

|Mud|
2(∆m5 −m5e), (6.23)

where Mud is the element of CM matrix, which corresponds to the transition
d → uW. From the expression (6.23) one can see that at ∆m → me, the value of
width Γ(M−)→ 0, that is lifetime can be arbitrary large. For instance, at ∆m ∼ 1

MeV the lifetime τ ∼ 105 s. Thus, in the scenario with hadronic DM, new neutral
meson M0, as DM candidate, has charged metastable partner with the same mass.
New heavy charged meson appears in the process of collision of DM with ordinary
matter, leptons and nucleons (see the previous section).

Principal feature of hadronic DM scenario is the effect of hyperfine splitting of
excited states of new heavy hadrons. In contrast to fine splitting, which is caused
by change of light quark content (d → u) and has the value an order of MeV,
hyperfine splitting takes place for the mesons with the same quark content and
has much less value (an order of keV). Further, we describe the effect of hyperfine
splitting δMq = m(M∗q) −m(Mq), where M∗q is excited state of the meson Mq.
Here, we consider the lowest excited states of the mesonMq = (qŪ). In a direct
analogy with the standard heavy-light (HL) mesons, Dq = (cq) and Bq = (b̄q),
we define the ground and excited states in the terms S10 and S11 (classification with
quantum nubbers L2s+1J ), or 1

2
(0−) and 1

2
(1+) (classification I(JP)). Here, L, s, J,

I and P = (−1)1+L are orbital momentum, spin, full momentum of the system,
isospin and parity. The ground states 1

2
(0−) of the HL mesons we designate asDq,

Bq and Mq, while the excited states as D∗q, B∗q and M∗q. Evaluation of the mass-
splitting of the states M∗q and Mq we carry out in analogy with standard splitting
mechanism. The analogy is provided by the heavy quark symmetry which is the
base of heavy quark effective theory (HQET). Heavy quark symmetry [23] leads
to relations between the masses of excited states of B and Dmesons [24]:

m(B2) −m(B1) ≈
mc

mb
(m(D2) −m(D1)), (6.24)

where m(Bk) and m(Dk) are masses of Bk and Dk, mc and mb are masses of
constituent quarks. The expression (6.24) successfully describes the relation of
splitting between the lowest excited 1

2
(1−) and ground states 1

2
(0−) of B and D

mesons:
m(B∗) −m(B)

m(D∗) −m(D)
≈ mc

mb
−→ 0.32 ≈ 0.32 (0.28). (6.25)

In (6.25), we used m(B∗) − m(B) = 45 MeV and m(D∗) − m(D) = 142 MeV
(see [18]),mc = 1.55 GeV andmb = 4.88 GeV [24]. The value of relation in bracket
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(0.28) follows from the data mc = 1.32 GeV and Mb = 4.74 GeV [18]. In order
to evaluate the mass-splitting in the doublet of new mesonsMq = (qŪ), we use
the relation (6.25) and equality m(U) ≈ m(Mq) = M. Using the value of mass
M = 10 TeV, we get:

δm(M)

δm(B)
=
m(M∗) −m(M)

m(B∗) −m(B)
≈ mb
M

−→ δm(M) ≈ δm(B)
mb

M
≈ 2KeV. (6.26)

Thus, we get very small mass-spltiting (hyperfine splitting) δm, which is much
less the fine splitting, δm� ∆m.

The excitation of hadronic DM particle can manifest itself in the processes of
interaction of neutral mesonM0 with cosmic rays. Transition to the first excited
state of the meson M0 = (uŪ) can be caused by the absorption of photons in
keV range, which have the wavelength λ ∼ 10−9 cm. If we assume that the
meson M0 = (uŪ) has the size an order of nucleon radius, RM ∼ 10−13 cm,
then RM � λtrans and interaction of M0 with photons is caused by multi-pole
expansion of charge distribution in the system (uŪ). So, the cross-section of γM0

scattering is small and these neutral mesons manifest themselves as dark matter
particles. At λtrans � RM the cross-section of interaction γM0 become large and
dark matter is not absolutely ”dark”. Now, we consider a possible manifestation of
keV-signal, which is caused by hyperfine splitting, in the spectrum of X-rays from
the galaxy clusters. In Refs. [25, 26], it was reported about emission line at E ≈ 3.5
keV in a spectrum of galaxy center and galaxy clusters. Here, we should note that
the existence in nature of superheavy-light mesons inevitably (in the framework of
HQET) leads to hyperfine mass-splitting of ground and excited levels. Transitions
between these states generate emission of photons with energy 3.5 keV when the
mass of new heavy mesonsm(M) ≈ 6 TeV. This estimation in the framework of
HQET follows from the Eq. (6.26) without refer to DM hypothesis.

6.5 Conclusion

High-energy extensions of SM, as a rule, contain heavy particles which possess
conservative quantum number. In the extension with singlet quark, the conser-
vation of baryon charge leads to the stability of the lightest new hadron which
can be assumed as DM carrier. In this report, we present the main properties
of new heavy hadrons and describe their low-energy interactions with ordinary
leptons and nucleons. We considered some electro-weak and cosmological con-
strains on the new heavy quarks and hadrons. Excited states of these hadrons were
considered in analogy with standard HL mesons. We show that there exist fine
and hyperfine structure of excited levels which lead to weak or electromagnetic
transitions. Such transitions appear in the processes of interaction of new heavy
hadrons with ordinary particles and cosmic rays. This effect rises the problem of
separation the terms ”dark matter” and ”hidden matter”. It was noted that this
problem becomes actual in the range of hard gamma rays.

In order to describe DM signals in hadronic processes, we developed and
analyzed the low-energy model of new hadrons interaction with ordinary ones.
The model of DM-nucleon interaction is based on the meson-exchange approach
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and realized in the frame of the gauge scheme realization of the SU(3)-symmetry.
In the framework of this model, we derived analytical expressions for the cross-
sections of elastic and inelastic collisions of nucleons and new heavy hadrons.
These expressions will be used in the analysis and description of DM interactions
with cosmic rays, interstellar gas and with Earth atmosphere. The most important
signal of such interactions is the appearance of the metastable heavy charge pati-
cles M−. The scenario with hadronic DM provides a new aspect to the problem of
interconnection of galaxies and their DM halos which can stipulate some pecuilar-
ities of galaxy formation. Effect of hyperfine splitting can explain the emission line
at 3.5 keV in the spectrum of X-rays.
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Abstract. The assumptions of the standard model, which 50 years ago offered an elegant
new step towards understanding basic fermion and boson fields, are still waiting for an
explanation. The spin-charge-family theory is promising not only in explaining the standard
model postulates but also in explaining the cosmological observations, like there are the
appearance of the dark matter, of the matter-antimatter asymmetry, making several predictions.
This theory assumes that the internal degrees of freedom of fermions (spins, handedness
and all the charges) are described by the Clifford algebra objects in d ≥ (13+1)-dimensional
space. Fermions interact with only the gravity (the vielbeins and the two kinds of the spin
connection fields, which manifest in d = (3 + 1) as all the vector gauge fields as well as the
scalar fields - the higgs and the Yukawa couplings). The theory describes the internal space
of fermions with the Clifford objects which are products of odd numbers of γa objects,
what offers the explanation for quantum numbers of quarks and leptons and anti-quarks
and ani-leptons, with family included. In this talk I overview shortly the achievements
of the spin-charge-family theory so far and in particular the explanation of the second
quantization procedure offered by the description of the internal space of fermions with
the anticommuting Clifford algebra objects of the odd character. The theory needs still to
answer many open questions that it could be accepted as the next step beyond the standard
model.

Povzetek. Privzetki Standardnega Modela, ki je pred 50 leti ponudil eleganten opis osnovnih
fermionskh in bozonskih polj, so še vedno nepojasnjeni. Teorija spinov-nabojev-družin ponuja,
poleg razlage privzetkov Standardnega Modela, tudi razlago nekaterih kozmoloških opažanj,
kot je pojav temne snovi, asimetrije snovi in antisnovi, ponudi pa tudi več napovedi. Teorija
privzame, da so notranje prostostne stopnje fermionov (spin, ročnost in vsi naboji) opisane
z objekti Cliffordove algebre v prostoru z razsežnostjo d ≥ (13 + 1). Fermioni interagirajo
samo z gravitacijskim poljem (s tetradami in dvema vrstama spinskih povezav), ki se
v prostoru d = (3 + 1) predstavi kot običajna gravitacija, kot vsa poznana vektorska
umeritvena polja ter kot skalarna umeritvena polja, ki pojacnijo pojav Higgsovega skalarja
in Yukawinih sklopitev. Notranje prostostne stopnje fermionov opisuje avtorica teorije s
Cliffordovo algebro, ki ponudi razumevanje privzetkov za lastnosti kvarkov in leptonov
in njihovih družin, v Standardnem Modelu. V predavanju avtorica na kratko predstavi
dosedanje dosežke Teorije spinov-nabojev-družin, napovedi teorije ter tudi odprta vprašanja.
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Poudarek predavanja je na ponudbi drugačne poti do druge kvantizacije fermionov kot je
splošno privzeta Diracova. Opis notranjega prostora fermionov z objekti, ki antikomutirajo,
pojasni antikomutacjske lastnosti fermionov v drugi kvantizaciji. Predstavi tudi odprta
vprašanja, ki jih je potrebno rešiti, da bo teorija lahko sprejeta kot nov korak k razumevanju
vesolja in osnovnih gradnikov vesolja.

Keywords: Beyond the standard model, Gravity as the only gauge fields, Kaluza-
Klein-like theories, Higher dimensional spaces, Dark matter, Matter/antimatter
asymmetry, Four families of quarks and leptons, Second quantization of fermion
fields in Clifford and in Grassmann space, Explanation of the Dirac postulates

7.1 Introduction

Let us start with the motivation for the spin-charge-family theory.
The standard model offered an elegant new step towards understanding ele-

mentary fermion and boson fields by postulating (the inspiration came from the
experiments):
a. The existence of massless fermion family members with the spins and charges
in the fundamental representation of the groups, a.i. the quarks as colour triplets
and colouress leptons, a.ii the left handed members as the weak doublets, a.ii.
the right handed weak chargeless members, a.iii. the left handed quarks differ-
ing from the right handed leptons in the hyper charge, a.iv. all the right handed
members differing among themselves in hyper charges, a.v. antifermions carry
the corresponding anticharges of fermions and opposite handedness, a.vi. the
number of massless families, determined by experiments (there is no right handed
neutrino postulated, since it would carry none of the so far observed charges, and
correspondingly there is also no left handed antineutrino allowed).
b. The existence of massless vector gauge fields to the observed charges of quarks
and leptons, carrying charges in the adjoint representations of the corresponding
charged groups.
c. The existence of the massive weak doublet scalar higgs, c.i. carrying the weak
charge ±1

2
and the hypercharge ±1

2
(as it would be in the fundamental represen-

tation of the two groups), c.ii. gaining at some step of the expanding universe
the nonzero vacuum expectation value, c.iii. breaking the weak and the hyper
charge and correspondingly breaking the mass protection, c.iv. taking care of the
properties of fermions and of the weak bosons masses, c.v. as well as of the Yukawa
couplings.
d. The presentation of fermions and bosons as second quantized fields.
e. The gravitational field in d = (3+ 1) as independent gauge field.

The standard model assumptions have been confirmed without raising any
doubts so far, but also by offering no explanations for the assumptions. The last
among the fields postulated by the standard model, the scalar higgs, was detected
in June 2012, the gravitational waves were detected in February 2016.

The standard model has in the literature several explanations, mostly with
many new not explained assumptions. The most popular seem to be the grand
unifying theories [14–30]. At least SO(10) offers the explanation for the potulates
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from a.i. to a.iv, partly to b. — but does not explain the assumptions a.v. up to
a.vi., c. and d., and does not connect gravity with gauge vector and scalar fields.

What questions should one ask to be able to find a trustworthy next step
beyond the standard models of elementary particle physics and cosmology, which
would offer understanding of not yet understood phenomena?
i. Where do fermions, quarks and leptons, originate and why do they differ from
the boson fields in spins, charges and statistics?
ii. How can one describe the internal degrees of fermions to explain the Dirac’s
postulates of the second quantization?
iii. Why are charges of quarks and leptons so different, why have the left handed
family members so different charges from the right handed ones and why does
the handedness relate charges to anticharges?
iv. Where do families of quarks and leptons originate and how many families do
exist?
v. Why do family members – quarks and leptons — manifest so different masses if
they all start as massless?
vi. How is the origin of the scalar field (the Higgs’s scalar) and the Yukawa cou-
plings connected with the origin of families and how many scalar fields determine
properties of the so far (and others possibly be) observed fermions and masses of
weak bosons? (The Yukawa couplings certainly speak for the existence of several
scalar fields with the properties of Higgs’s scalar.) Why is the Higgs’s scalar, or
are all scalar fields of similar properties as the higgs, if there are several, doublets
with respect to the weak and the hyper charge? Do possibly exist also scalar fields
with the colour charges in the fundamental representation and where, if they are,
do they manifest?
vii. Where do the so far observed (and others possibly non observed) vector gauge
fields originate? Do they have anything in common with the scalar fields and the
gravitational fields?
viii. Where does the dark matter originate?
ix. Where does the ”ordinary” matter-antimatter asymmetry originate?
x. Where does the dark energy originate and why is it so small?
xi. What is the dimension of space? (3+ 1)?, ((d− 1) + 1)?,∞?

And many others.

My working hypotheses is that a trustworthy next step must offer answers to
several open questions, the more answers to the above open questions the step
covers the greater the possibilities of the theory being the right next step.

I am proposing the spin-charge-family theory [1–10], offering so far the answers
from i. to ix. of the above questions; The more work is invested in this theory the
more answers to the above open questions the theory offers.

Let me make in what follows a short introduction into the spin-charge-family
theory to show briefly up the way the theory is offering the answers to the above
mentioned open questions. A more detailed presentation of the theory and its
achievements are presented in Sect. 7.2.

The spin-charge-family theory is a kind of the Kaluza-Klein like theories [8,
31–38] due to the assumption that in d ≥ 5 — in the spin-charge-family theory
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d ≥ (13+ 1) — fermions interact with the gravity only 1, treating consequently all
the vector gauge fields, the scalar gauge fields, and the gravity in an equivalent
way, offering answers to the above questions vi. and vii..

In the spin-charge-family theory the fermion internal space is described by the
”basis vectors”, which are the superposition of the odd products of the Clifford
algebra objects. There are two kinds of the Clifford algebra objects [1, 2, 12, 45, 46].
In d = (13 + 1)-dimensional space the odd Clifford algebra objects of one kind
offer in d = (3 + 1) the description of the spins and all the charges of fermions
and antifermions, since both — fermions and antifermions — appear in the same
irreducible representation of one of the two Lorentz groups in the internal space of
fermions, what consequently explains the connection among the spins, handedness
and charges of fermions, answering the questions i. and iii..

The other kind takes care of the family quantum numbers of fermions, distin-
guishing among different irreducible representations [3, 4, 7, 9], and offering a part
answer to iv..

The creation operators, creating the single particle states, are tensor products
of the superposition of the finite number of the Clifford odd ”basis vectors” of
the internal space and of the infinite basis in the momentum space. The ”basis
vectors” of the internal space transfer their oddness to the creation operators and
correspondingly guarantees the oddness of the single fermion states, since the
vacuum state has an even Clifford character.

The Hilbert space of fermions is formed from all possible tensor products
of any number of single fermion creation operators, operating on the vacuum
state [12].

The spin-charge-family theory offers correspondingly answers to the questions
from i. to iv., explaining the common origin of spins and charges of fermions and
antifermions, of all the quantum numbers of quarks and leptons and antiquarks
and antileptons postulated by the standard model, as well as of the origin of families.
The theory explains as well the Dirac postulates of the second quantization of the
ferrmion fields.

Fermions interact with the vielbeins and the two kinds of the spin connection
fields, the gauge fields of the momenta and of the two kinds of the generators of
the Lorentz transformations, determined by the two kinds of the Clifford algebra
objects [3–10, 12].

The spin connection fields of one kind manifest in d = (3+ 1) as the vector
gauge fields of the charges of fermions, as the gravitational fields and also as the
scalar gauge fields [5], to which also the scalar fields which are the gauge field of
the second kind of the spin connection fields contribute. These offer answers to the
questions vi. and vii., while explaining the common origin of the gravity, the vector
gauge fields of the charges and the scalar gauge fields. The scalar gauge fields of

1 Correspondingly the spin-charge-family theory shares with the Kaluza-Klein like theories
their weak points, at least: a. Not yet solved the quantization problem of the gravitational
field. b. The spontaneous break of the starting symmetry, which would at low energies
manifest the observed almost massless fermions [32]. Concerning this second point we
proved on the toy model of d = (5+ 1) that the break of symmetry can lead to (almost)
massless fermions [68–70].



i
i

“proc20Vol1” — 2020/12/6 — 22:10 — page 88 — #104 i
i

i
i

i
i

88 N.S. Mankoč Borštnik

both origins — of both generators of the Lorentz transformations in internal space
of fermions — determine the scalar higgs and the Yukawa couplings, which all are
in the standard model postulated.

The two kinds of the Clifford algebra objects require the existence of the two
groups of four families of quarks and leptons and antiquarks and antileptons. The
two groups distinguish from each other with respect to the family quantum num-
bers and correspondingly with respect to the interaction with the different two
groups of the scalar gauge fields, which determine masses of these two groups of
families after the break of the weak and hyper charge symmetries. Consequently:
a. To the observed three families of quarks and leptons and antiquarks and antilep-
tons there must exist the fourth family [3, 9, 49, 51, 53, 54]. b. The second group of
the four families offers the explanation for the existence of the dark matter [52, 61].

The quantum numbers of the weak charge and the hyper charge of the scalar
fields, taking care of the masses of the two groups of four families, depend on the
space index of the scalar fields. The scalar fields with the space indexes 7 and 8 do
carry the weak and the hyper charge as assumed by the standard model, explaining
the origin of scalar higgs and Yukawa couplings [3, 9, 49, 51, 53, 54], what adds the
explanation to the question vi..

There appear in the spin-charge-family the scalar fields with the space indexes
9− 14, which are the colour triplets [4,61]. They cause the transitions of antiquarks
and antileptons into quarks and back. In the expanding universe under the non
equilibrium conditions they offer the explanation of today’s dominance of ordinary
matter in the observed part of the universe.

It remains to tell how does in the spin-charge-family appear the spontaneous
breaking of the starting symmetry in d = (13 + 1), first with the appearance of
the condensate of two right handed neutrinos [3, 4, 9], and then when scalar fields
with space index (7, 8) obtain nonzero vacuum expectation values.

The detailed, although still short, presentation of the spin-charge-family theory
is presented in Sects. 7.2and 7.2.1.

7.2 Short presentation of the spin-charge-family theory

The spin-charge-family theory assumes a simple starting action for fermions, cou-
pled to only gravitational field in d ≥ (13 + 1)-dimensional space through the
vielbeins fαa, the gauge fields of momenta, and the two kinds of the spin connec-
tion fields,ωabα and ω̃abα, the gauge fields of the two kinds of the generators of
the Lorentz transformations of the Clifford algebras, and with the internal space
of fermions described by the anticommuting ”basis vectors” of one of the two
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Clifford algebras

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR+ α̃ R̃) ,

p0a = fαap0α +
1

2E
{pα, Ef

α
a}− ,

p0α = pα −
1

2
Sabωabα −

1

2
S̃abω̃abα ,

R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c. ,

R̃ =
1

2
{fα[afβb] (ω̃abα,β − ω̃caα ω̃

c
bβ)}+ h.c. . (7.1)

Here 2 fα[afβb] = fαafβb − fαbfβa.
As written in the introduction, the tensor products of the superposition of

the finite number of anticommuting ”basis vectors” and of the infinite basis in the
momentum space offer the description of the fermion creation and annihilation
anticommuting operators. The creation and annihilation operators explain the
Dirac postulates of the second quantized fermions, Sect. (7.2.1,7.2.1, 7.2.1).

The single fermion states manifest in d = (3 + 1) space the spins and all
the charges of the observed quarks and leptons and antiquarks and antileptons,
Table 7.3, as well as families, Table 7.4, predicting the fourth family [49–51, 53, 54,
57, 58] to the observed three families and offering the explanation for the observed
dark matter [52, 61].

The spin connection gauge fields manifest in d = (3 + 1) as the ordinary
gravity, the known vector gauge fields, the scalar gauge fields [5] with the prop-
erties of higgs explaining the higgses and the Yukawa couplings, predicting new
vector and scalar fields, which offer explanation for the dark matter [52] and for
matter/antimatter asymmetry [4].

To be in agreement with the observations in d = (3+ 1) the manifoldM(13+1)

must break first intoM(7+1) ×M(6) (which manifests as SO(7, 1) ×SU(3) ×U(1)),
affecting both internal degrees of freedom - the one represented by γa and the one
represented by γ̃a [3].

There is a scalar condensate (Table 7.5) of two right handed neutrinos with
the family quantum numbers of the group of four families (the one which does
not include the observed three families), Table 7.4, which bring masses of the scale
∝ 1016 GeV or higher to all the vector and scalar gauge fields, which interact with
the condensate [4].

2 fαa are inverted vielbeins to eaα with the properties eaαfαb = δab, e
a
αf
β
a = δβα, E =

det(eaα). Latin indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while
Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index (a curved index). Letters from
the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ),
from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and
µ, ν, ..), indexes from the bottom of the alphabets indicate the compactified dimensions
(s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.
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Since the left handed spinors couple differently (with respect to M(7+1)) to
scalar fields than the right handed ones, the break can leave massless and mass
protected 2((7+1)/2−1) families [68]. The rest of families get heavy masses 3.

There is additional breaking of symmetry: The manifoldM(7+1) breaks fur-
ther to M(3+1)× SU(2) × SU(2) included in M(4). These electroweak break is
caused by the scalar fields with the space index (7, 8). They carry due to the space
index the weak charge and hyper charge [3, 4].

I shall shortly present the influence of the breaks with the condensate and with
the scalar fields (the electroweak break) when presenting properties of fermions
and vector and scalar gauge fields in d = (3+ 1).

7.2.1 Properties of fermion fields in the spin-charge-family theory

Let us start with the properties of the fermion fields in the spin-charge-family theory.
Fermion fields, which are the superposition of tensor products of the anticom-

muting ”basis vectors” describing fermions internal degrees of freedom and of
commuting basis in the momentum (coordinate) space, manifest the anticommut-
ing properties already on the single fermion level [13], demonstrating that the first
quantized fermions are the approximation to the second quantized fields.

There are two kinds of the anticommuting objects [1–3,9,12] — the Grassmann
coordinates and correspondingly the Grassmann operators, θa and ∂

∂θa
, and the

Clifford coordinates/operators, γa and γ̃a, expressible with one another. Either
the Grassmann or the two Clifford algebras offer in d-dimensional space 2 · 2d
operators (the Grassmann algebra has 2d − 1 products of θa’s and 2d − 1 products
of ∂
∂θa

’s and the identity, the two Clifford algebras have each 2d − 1 products of
γa’ and 2d − 1 products of γ̃a’s and the identity) with the properties [12, 13]

{θa, θb}+ = 0 , {
∂

∂θa
,
∂

∂θb
}+ = 0 , {θa,

∂

∂θb
}+ = δab ,

(θa)† = ηaa
∂

∂θa
, (

∂

∂θa
)† = ηaaθa ,

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ , {γa, γ̃b}+ = 0 ,

(γa)† = ηaa γa , (γ̃a)† = ηaa γ̃a ,

(a, b) = (0, 1, 2, 3, 5, · · · , d) . (7.2)

The identity is the self adjoint member. The signature ηab = diag{1,−1,−1, · · · ,−1}
is assumed.

The two algebras are expressible with one another

3 A toy model [68, 69] was studied in d = (5 + 1) with the same action as in Eq. (7.1).
The break from d = (5 + 1) to d = (3 + 1)× an almost S2 was studied. For a particular
choice of vielbeins and for a class of spin connection fields the manifoldM(5+1) breaks
into M(3+1) times an almost S2, while 2((3+1)/2−1) families remain massless and mass
protected. Equivalent assumption, although not yet proved how does it really work, is
made in the d = (13 + 1) case. This study is in progress quite some time.
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γa = (θa +
∂

∂θa
) , γ̃a = i (θa −

∂

∂θa
) ,

θa =
1

2
(γa − iγ̃a) ,

∂

∂θa
=
1

2
(γa + iγ̃a) . (7.3)

Let me add the generators of the Lorentz transformations in both algebras

Sab = i (θa
∂

∂θb
− θb

∂

∂θa
) , (Sab)† = ηaaηbbSab ,

Sab =
i

4
(γaγb − γbγa) , S̃ab =

i

4
(γ̃aγ̃b − γ̃bγ̃a) ,

Sab = Sab + S̃ab , {Sab, S̃ab}− = 0 ,

{Sab, γc}− = i(ηbcγa − ηacγb) , {Sab, γ̃c}− = 0 ,

{S̃ab, γ̃c}− = i(ηbcγ̃a − ηacγ̃b) , {S̃ab, γc}− = 0 , (7.4)

The Grassmann algebra offers the description of the integer spin fermions,
with the charges in the adjoint representations. Both Clifford algebras offer the
description of the half integer spin fermions with charges in the fundamental rep-
resentations. Both algebras, the Grassmann algebra and the two Clifford algebras,
can be separated into odd and even parts with odd and even products of algebra
elements.

While in the Grassmann algebra the Hermitian conjugated partners of prod-
ucts of θa’s are the corresponding products of ∂

∂θa
’s, Eq. (7.2), and opposite, in the

Clifford algebras the Hermitian conjugated partners are less transparent, due to
the relations γa† = ηaaγa and γ̃a† = ηaaγ̃a, Eq. (7.2).

In order to resolve the problem of the Hermitian conjugated partners in the
Clifford case and also to be able to make predictions of the theory to be compared
with the experimental results, let us arrange products of θa’s as well as products
of either γa’s or γ̃a’s into irreducible representations with respect to the Lorentz
group with the generators [2] presented in Eq. (7.4) and to arrange the members of
each irreducible representation to be eigenstates of the Cartan subalgebra

S03,S12,S56, · · · ,Sd−1 d ,
S03, S12, S56, · · · , Sd−1 d ,
S̃03, S̃12, S̃56, · · · , S̃d−1 d . (7.5)

The easiest way to achieve this is to find the eigenstates of each member of the
Cartan subalgebras separately.

The observed fermions have the half integer spin and charges in the funda-
mental representations, and there are no fermions observed yet with the integer
spins and charges in the adjoint representations. The spin-charge-family theory must
correspondingly use the Clifford algebras. However, there are also no experimen-
tal evidences that there is any need for two independent representations offered
by the two kinds of the Clifford algebra objects, γa’s and γ̃a’s.

Let us therefore start the discussion about the description of the internal space
of fermions by taking into account the two Clifford algebras and let us leave the
discussion on the Grassmann algebra for later, Ref. [13].
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We can make a choice for the members of the irreducible representations
of the two Lorentz groups to be the ”eigenvectors” of the corresponding Cartan
subalgebras of Eq. (7.5), taking into account Eq. (7.2). If Sab and S̃ab represents
each one of the (d

2
for even d) members of the Cartan subalgebra elements, we

easily check that

Sab
ab

(k) =
k

2

ab

(k) ,
ab

(k):=
1

2
(γa +

ηaa

ik
γb) , (

ab

(k))2 = 0 ,
ab

(k)

†

= ηaa
ab

(−k) ,

Sab
ab

[k] =
k

2

ab

[k] ,
ab

[k]:=
1

2
(1+

i

k
γaγb) , (

ab

[k])2 =
ab

[k] ,
ab

[k]

†

=
ab

[k] ,

S̃ab
ab
˜(k) =

k

2

ab
˜(k) ,

ab
˜(k):=

1

2
(γa +

ηaa

ik
γb) , (

ab
˜(k))2 = 0 ,

ab
˜(k)
†

= ηaa
ab
˜(−k) ,

S̃ab
ab
˜[k] =

k

2

ab
˜[k] ,

ab
˜[k]:=

1

2
(1+

i

k
γaγb) , (

ab
˜[k])2 =

ab
˜[k] ,

ab
˜[k]
†

=
ab
˜[k] . (7.6)

The notation
ab

(k),
ab

[k],
ab
˜(k) and

ab
˜[k] is introduced to simplify the discussions. The

Clifford ”vectors” — nilpotents (
ab

(k)
ab

(k)= 0,
ab
˜(k)
ab
˜(k)= 0) and projectors (

ab

[k]
ab

[k]=
ab

[k]

,
ab
˜[k]
ab
˜[k]=

ab
˜[k] — of both algebras are normalized up to a phase [2, 12, 13].

Both have half integer spins. The ”eigenvalues” of the operator S03 for the
”eigenvectors” 1

2
(γ0 ∓ γ3), for example, are equal to ± i

2
, respectively, for the

”vectors” 1
2
(1± γ0γ3) are ± i

2
, respectively, while all the rest ”eigenvectors” have

”eigenvalues” ± 1
2

. One finds equivalently for the ”eigenvectors” of the operator
S̃03: for 1

2
(γ̃0 ∓ γ̃3) the ”eigenvalues” ± i

2
, respectively, and for the ”eigenvectors”

1
2
(1± γ̃0γ̃3) the ”eigenvalues” k = ± i

2
, respectively, while all the rest ”eigenvec-

tors” have k = ± 1
2

.
It is useful to know some additional relations among nilpotents and projectors,

taken from Ref. [3]

ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0 ,
ab

(k)
ab

(−k) = ηaa
ab

[k] ,
ab

[k]
ab

[−k]= 0 . (7.7)

The same relations are valid also if one replaces
ab

(k) with
ab
˜(k) and

ab

[k] with
ab
˜[k].

The ”basis vectors” are products of d
2

eigenvectors of all the Cartan subalgebra
members. For the description of the internal space of fermions only those ”basis
vectors” which are products of an odd number of nilpotents, the rest can be
projectors, are acceptable, since they anticommute algebraically, what we expect for
the single fermion states of the second quantized fields.

To make clear what the anticommutation of the basis vectors mean, let us
start with the first ”basic vector”, denoting it as b̂m=1†

f=1 , with f defining different
irreducible representations and m a member in the representation f. Then its
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Hermitian conjugated partner is b̂mf = (b̂m†f )†. Let us make a choice of the starting
”basic vector” for the Clifford algebra of the kind γa’s with an odd products of the
nilpotents

b̂m=1†
f=1 : =

0 3

(+i)
1 2

[+]
5 6

[+]
7 8

(+)
9 10

(+)
11 12

[−]
13 14

[−] · · ·
d−3d−2

[−]
d−1d

[−] ,

(b̂m=1†
f=1 )† = b̂m=1

f=1 =
d−1d

[−]
d−3d−2

[−] · · ·
13 14

[−]
11 12

[−]
9 10

(−)
7 8

(−)
56

[+]
12

[+]
03

(−i) , (7.8)

the rest products in · · ·
d−3d−2

[−]
d−1d

[−] are assumed to be all projectors with k = −1,
[−]. All the rest members of this irreducible representation are reachable by Sab.

Let us see how do Sab’s transform the ”basis vectors”.

Sac
ab

(k)
cd

(k) = −
i

2
ηaaηcc

ab

[−k]
cd

[−k] ,

Sac
ab

[k]
cd

[k] =
i

2

ab

(−k)
cd

(−k) ,

Sac
ab

(k)
cd

[k] = −
i

2
ηaa

ab

[−k]
cd

(−k) ,

Sac
ab

[k]
cd

(k) =
i

2
ηcc

ab

(−k)
cd

[−k] ,

(7.9)

We learn from Eq. (7.50) that S01 transforms b̂m=1†
f=1 into, let us call it b̂m=2†

f=1 ,

b̂m=2†
f=1 =

0 3

[−i]
1 2

(+)
5 6

[+]
7 8

(+)
9 10

(+)
11 12

[−]
13 14

[−] · · ·
d−3d−2

[−]
d−1d

[−] .
Application of all possible Sdg generates 2

d
2
−1 members of each Clifford

odd irreducible representation. To each irreducible representation the Hermitian
conjugated irreducible representation belongs.

The Hermitian conjugated partner of the starting ”basic vector” of an odd
product of nilpotents obviously belong to another irreducible representation, since
it is not reachable by Sab. Each Scd namely transforms a pair of projectors into
a pair of nilpotents, a pair of nilpotents into a pair of projectors, and a pair of a
nilpotent and a projector into a pair of a projector and a nilpotens, changing in
each member of a pair its k into −k. The Hermitian conjugation transforms in b̂m†f
an odd number of nilpotents, each carrying its own k, into the same number of
nilpotents, each carrying then −k 4.

From Eq. (7.50) we learn that the starting member b̂m=1†
f=2 of the next irre-

ducible representation can be obtained from b̂m=1†
f=1 by replacing, for example,

0 3

(+i)
1 2

[+] in b̂m=1†
f=1 with

0 3

[+i]
1 2

(+). This new ”basis vector” does not belong to either
the starting irreducible representation, or to the Hermitian conjugated partners
of the starting irreducible representation, due to the way how it is creating: S01

transforms
0 3

(+i)
1 2

[+] into
0 3

[−i]
1 2

(−), the Hermitian conjugation transforms
0 3

(−i)
1 2

[+].

4 The ”basis vectors” with an even number of nilpotents have in even dimensional spaces
the property that there is one member of each representation which is self adjoint, the
one which is the product of only projectors.
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Exchanging all possible pairs in the starting ”basis vector” by keeping the
same k’s while transforming a pair of nilpotents into a pair of projectors, a pair of
projectors into a pair of nilpotents and a pair of a nilpotent and a projector into a
pair of the projector and the nilpotent, we generate 2

d
2
−1 irreducible representa-

tions with 2
d
2
−1 members each.

The Hemitian conjugation then generates 2
d
2
−1· 2d2−1 partners to the 2

d
2
−1

members of each of the 2
d
2
−1 irreducible representations.

One can find that the algebraic product of b̂mf ∗Ab̂m†f is the same for all
m of a particular irreducible representation f (since b̂mf (2 Sab)†∗A(2 Sab)b̂m†f =

b̂mf ∗Ab̂m†f , due to the relation (−2iSab)†(−2iSab) = 1).
Each irreducible representation contributes different algebraic product b̂mf ∗Ab̂m†f .
For the representation of Eq. (7.8) the product b̂m=1

f=1 ∗ab̂m=1†
f=1 is equal to

|ψoc > |f=1 =
0 3

[−i]
1 2

[+]
5 6

[+]
7 8

[−]
9 10

[−]
11 12

[−]
13 14

[−] · · ·
d−3d−2

[−]
d−1d

[−] .
This can be checked by using Eq. (7.7).

Defining the vacuum state |ψoc > for the vector space determined by γa’s as

a sum of all different products of
∑2

d
2

−1

f=1 b̂mf ∗Ab̂m†f , ∀ m, and for d = 2n+ 1, one
obtains

|ψoc > =
03

[−i]
12

[−]
56

[−] · · ·
d−1 d

[−] +
03

[+i]
12

[+]
56

[−] · · ·
d−1 d

[−]

+
03

[+i]
12

[−]
56

[+] · · ·
d−1 d

[−] + · · · |1 > ,
for d = 2(2n+ 1) . (7.10)

Let me add that the application of any member of the Cartan subalgebras on the
vacuum state, Sab|ψoc >= 0, S̃ab|ψoc >= 0, ∀ Sab and S̃ab belonging to Cartan
subalgeras of Eq. (7.5).

One finds that all the members of all the irreducible representations fulfill
together with their Hermitian conjugated partners the relations

b̂mf ∗A |ψoc > = 0 · |ψoc > ,
b̂m†f ∗A |ψoc > = |ψmf > ,

{b̂mf , b̂
m ′

f ′ }∗A+|ψoc > = 0 |ψoc > ,

{b̂mf , b̂
m ′†
f }∗A+|ψoc > = δmm

′
|ψoc > ,

{b̂m†f , b̂m
′†

f ′ }∗A+|ψoc > = 0 · |ψoc > , (7.11)

for each f. ∗A represents the algebraic multiplication of b̂m†f ’s and b̂m
′

f ′ ’s among
themselves and with the vacuum state |ψoc > of Eq.(7.10).

The relations of Eq. (7.11) almost manifest the anticommutation relations for
the second quantized fermion fields postulated by Dirac [67]. It is pointed out
almost, since the relation

{b̂mf , b̂
m ′†
f ′ }∗A+|ψoc > = δmm

′
δff
′
|ψoc > (7.12)

is not fulfilled. There are, namely, besides b̂mf , 2
d
2
−1 − 1members of the Hermitian

conjugated partners belonging each to a different irreducible representation, which
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give a nonzero contribution — not an identity as b̂mf does — when multiplying
b̂m†f from the left hand side. b̂mf ′ ∗A b̂

m†
f 6= 0

for 2
d
2
−1 − 1 different f ′ 6= f, while b̂mf ∗A b̂

m†
f = 1.

Let me illustrate this on the example of b̂m=1†
f=1 of Eq. (7.8). Besides (b̂m=1†

f=1 )† =

b̂m=1
f=1 =

d−1d

[−]
d−3d−2

[−] · · ·
13 14

[−]
11 12

[−]
9 10

(−)
7 8

(−)
56

[+]
12

[+]
03

(−i) also
d−1d

[−]
d−3d−2

[−] · · ·
13 14

[−]
11 12

[−]
9 10

(−)
7 8

(−)
56

[+]
12

(−)
03

[+i] ,
d−1d

[−]
d−3d−2

[−] · · ·
13 14

[−]
11 12

[−]
9 10

(−)
7 8

(−)
56

(−)
12

[+]
03

[+i] ,

etc (7.13)

applied on b̂m=1†
f=1 , give a nonzero contributions.

But index f determine different irreducible representations and we can not
expect that the algebraic anticommutation relations will be fulfilled also among
different irreducible representations. Different irreducible representations should
be treated in tensor products.

All the discussions about the Clifford algebra with γa’s, appearing after
Eq. (7.7), can be as well repeated also for the Clifford algebra with γ̃a’s.

The Dirac’s postulates for the second quantized fermion fields include the
infinite basis in momentum space, while we treated so far the finite dimensional
internal space of fermions. Before extending the vector basis space by making the
tensor product of internal space and the momentum space let us recognize that the
observed quarks and leptons and antiquarks and antileptons do not at all suggest
that there might be two different internal spaces, which could be described by
two kinds of the Clifford algebra objects. Let us therefore first reduce the Clifford
space by the postulate, which leave only γa’s as the algebra describing the internal
degrees of freedom of fermions, while γ̃a’s are used to give quantum numbers to
different irreducible representations.

Reduction of the Clifford space It is needed to give to each irreducible repre-
sentation of the Lorentz transformations in the internal space of fermions the
quantum number, which will distinguish among the 2

d
2
−1 different irreducible

representations. If we keep the Clifford algebra with γa’s to describe the internal
space of fermions, then γ̃a’s, or rather S̃ab’s, can be used to determine ”family”
quantum number of each irreducible representation of the Lorentz algebra in the
Clifford space of γa’s.

We want that all the relations among γa’s and γ̃a’s, presented in Eq. (7.2),
remain unchanged, while the eigenvalues of the Cartan subalgebra of S̃ab are
expected to be changed.

The postulate [2, 7, 9, 10, 12, 46]

γ̃aB = (−)B i Bγa , (7.14)

with (−)B = −1, if B is a function of an odd product of γa’s, otherwise (−)B =

1 [46], does just that 5

5 Eq. (7.14) requires that γ̃a(a0 + abγ
b + abcγ

bγc + · · · ) = (ia0γ
a + (−i)abγ

bγa +

iabcγ
bγcγa + · · · ), what means that the relation γ̃a a0 = ia0γ

a is only one of the
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It is not difficult to check that the relations in Eq. (7.2), concerning γ̃a’s are
still valid: {γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ , {γ

a, γ̃b}+ = 0 , (γa)† = ηaa γa , (γ̃a)† =

ηaa γ̃a.
After this postulate the vector space of γ̃a’s is ”frozen out”. And also the

Grassmann algebra space is now reduced to θa = γa and ∂
∂θa

= 0 6. No vector
space of γ̃a’s exists any longer, what is in agreement with the observed properties
of fermions. While the anticommutation relations among γa’s and γ̃a’s remain the
same as in Eq. (7.2), it follows for the eigenvalues of S̃ab

Sab
ab

(k)=
k

2

ab

(k) , S̃ab
ab

(k)=
k

2

ab

(k) ,

Sab
ab

[k]=
k

2

ab

[k] , S̃ab
ab

[k]= −
k

2

ab

[k] , (7.15)

showing that the eigenvalues of Sab on the nilpotents and projectors of γa’s differ
from the eigenvalues of S̃ab on the nilpotents and projectors of γa’s. The members
of the Cartan subalgebra of S̃ab, Eq. (7.5), can now be used to give to the irreducible
representations of Sab the ”family” quantum numbers.

Let me mention that if one arranges the space of odd products of γa’s with
respect to Sab(= Sab + S̃ab), these new ”basis vector” will form multiplets with
integer spins and charges in adjoint representations. Like the ”basis vectors” ex-
pressed by Grassmann algebra do in Ref. [13], Table I, but this time with θa’s
replaced by γa’s.

relations included into Eq. (7.14). Another relation, for example, is γ̃aγa = (−i)γaγa =

−iηaa. One correspondingly finds {γ̃a, γ̃b}+ = 2ηab = γ̃aγ̃b + γ̃bγ̃a = γ̃aiγb + γ̃biγa =

iγb(−i)γa + iγa(−i)γb = 2ηab. {γ̃a, γb}+ = 0 = γ̃aγb + γbγ̃a = γb(−i)γa + γbiγa = 0.
{γ̃a, γa}+ = 0 = γ̃aγa + γaγ̃a = γa(−i)γa + γaiγa = 0.

6 Let me show how does the Grassmann space loose the Hermitian conjugated partners
to θa’s, while θa’s become equal to γa’s. My statement that Eq. (7.14) requires θa = γa

and ∂
∂θa

= 0 can be proved as follows. There are only two requirements which have
to be analyzed in details, γ̃a(α) = iαγa, α is any constant and γ̃aγa = −iγaγa. Both
relations apply on |ψoc >: In the Grassmann case the vacuum state is identity | 1 >, while
in the Clifford algebra the vacuum state is the sum of even products of γa’s as seen in
Eq. (7.10), which applies on identity. Let us express γa’s, γ̃a’s and |ψoc > in terms of θa’s
and ∂

∂θa
as written in Eq. (7.3). Eq. (7.3) requires that γa = (θa + ∂

∂θa
), γ̃a = i(θa − ∂

∂θa
).

Let us put these expressions into Eq. (7.14) and let |ψoc > be expressed in terms of θa’s.
Taking into account that θa’s applying on identity gives θa’s back while ∂

∂θa
applying on

identity gives zero, it follows that |ψoc >= a0 + aabθaθb + · · · , the rest of expansion is
irrelevant for the proof. The constant α can be skipped, since constants appear in |ψoc >=

a0+aabθ
aθb+ · · · anyhow. The first relation [γ̃a = iγa]|ψoc >, expressed with θa’s and

∂
∂θa

, reads: i(θa − ∂
∂θa

)(a0 + aabθ
aθb + · · · ) = i(θa + ∂

∂θa
)(a0 + aabθ

aθb + · · · ). From
this we find iθaa0 = ia0θa and i(− ∂

∂θa
)aabθ

aθb = i ∂
∂θa

abθ
aθb, requiring that ∂

∂θa
= 0

(as an operator Hermitian conjugated to θa for ∀ a). These relation requires that the
derivatives should not exist any longer, if the relation should hold. Then it follows from
γa = (θa + ∂

∂θa
) that θa = γa, which means that the Grassmann space has no meaning

any longer, the only remaining space is the space of the Clifford products of odd number
of γa’s, on which γa’s and γ̃a’s operate: [γ̃a = iγa]|ψoc > and [γ̃aγb = −iγbγa]|ψoc >.
This complicates the proof .
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It is useful to notice that γa transform
ab

(k) into
ab

[−k], never to
ab

[k], while γ̃a

transform
ab

(k) into
ab

[k], never to
ab

[−k]

γa
ab

(k)= ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k],

γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k)= −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k],

γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) . (7.16)

Some additional applications of γ̃a’s and S̃ab’s on nilpotents and projectors
expressed by the γa’s can be found in App. 7.4.

Each irreducible representation has now the ”family” quantum number, de-
termined by S̃ab of the Cartan subalgebra of Eq. (7.5). Now we can replace the
fourth equation in Eq. (7.11) — {b̂mf , b̂

m ′†
f }∗A+|ψoc >= δmm

′
|ψoc > — with the

relation in Eq. (7.12) — {b̂mf , b̂
m ′†
f ′ }∗A+|ψoc >= δ

mm ′δff ′ |ψoc >.
Each family contributes in even dimensional spaces one summand of d

2

projectors to the vacuum state |ψoc > of fermions.
Correspondingly the ”basic vectors” and their Hermitian conjugated partners

fulfill algebraically the anticommutation relations of Dirac’s second quantized
fermions: Different irreducible representations carry different ”family” quantum
numbers and to each ”family” quantum number only one Hermitian conjugated
partner with the same ”family” quantum number belongs. Also each summand of
the vacuum state, Eq. (7.10), belongs to a particular ”family”.

One can easily check that each ”basic vector” b̂m†f , applied algebraically on
|ψoc >, gives nonzero contribution on the summand in the odd number of γa’s,
determined by b̂mf b̂

m†
f , which is the same for all m of particular f, representing

therefore the corresponding state |ψfm >, while on all other summands b̂m†f gives
zero, b̂mf applying on |ψoc > gives zero for all f and allm.

To define creation and annihilation operators, which determine on the vacuum
state the single fermion states, we ought to make the tensor products of the 2

d
2
−1

× 2d2−1 ”basis vectors”, describing the internal space of fermions and of infinite
basis of momenta.

The oddness of the products of the odd number of γa’s guarantees the anticommuting
properties of all the objects which include an odd number of γa’s.

The creation and annihilation operators, derived as tensor products of the
”basis vectors” and the basis in momenum space, will fulfill the Dirac’s postulates
of the second quantized fermions without postulating them, as Dirac did. They
follow by themselves from the fact that the creation and annihilation operators are
superposition of odd products of γa’s.

Second quantized fermion fields Since the nonrelativistic quantum theory is an
approximation of the relativistic second quantized field theory — as the relativistic
classical physics is an approximation of the quantum physics, and as the nonrela-
tivistic classical physics, which we use the most of time, is the approximation of
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the relativistic classical physics — let us try to recognize what properties should
the single particle states have to form the Hilbert space of second quantized fields.

In the references [10, 12, 13] the properties of the single fermion states, the
tensor products among which form the Hilbert space, are discussed in details.
In this talk I am presenting this topic from the point of view of the spin-charge-
family. This theory offers, as written in the introduction, the explanation for the
appearance of the spin (and handedness in the case of massless fermions), of all
the charges, as well as of the families fermions. The number of families depends
on the way how does the symmetry of the space breaks from d = (13 + 1) to
d = (3+ 1).

In Table 7.3 one irreducible representation of SO(13 + 1) of one family (be-
longing to the one of the two groups of four families which includes the so far
observed three families) is presented. The first ”basis vector” describes the inter-
nal degrees of freedom of the right handed quark ûc1†R , of the first family with
(S̃03, S̃12, S̃56, S̃78) equal to (1

2
,−1

2
,−1

2
, 1
2

), presented in Table 7.4 as ûc1†R1 . The ”ba-
sis vector” b̂m=1†

f=1 , Eq. 7.8, represents for d = (13 + 1) just this ûc1†R1 quark, and
b̂m=1
f=1 is its Hermitian conjugated partner.

The ”basis vector” b̂m=1†
f=2 represents for d = (13+1) the right handed u-quark

with all the properties of ûc1†R1 except for the family quantum numbers, which
are now equal to (−1

2
, 1
2
,−1

2
, 1
2

). One can read in Table 7.3 that the spin of this
right handed quark ûc1†R is +1

2
, the weak SU(2) charge is zero, the colour charge

is (1
2
, 1

2
√
3
). It carries the additional SU(2) charge equal to 1

2
and the ”fermion”

quantum number — τ4 charge — equal to 1
6

.
When solving the equations of motion for free massless fermions, which

follow from the action, presented in Eq. (7.1), under the assumption, that at low en-
ergies the momentum of this right handed quark is pa = (p0, p1, p2, p3, 0, · · · , 0),
the solution s = 1 is the superposition

ûsf=1†R (~p) = β(ûc1†R↑ +
p1 + ip2

|p0|+ |p3|
ûc1†R↓ ) , (7.17)

with |p0| = |~p|, with ↑, ↓ denoting spin ±1
2

, respectively, and with β∗β = |p0|+|p3|

2|p0|

normalizing the state.
There are steps from the d = (13 + 1) dimensional space to the step where

momentum in higher dimensions do not contribute to dynamics in d = (3 + 1),
while the break of symmetry makes the internal degrees of freedom (spins and
families) to manifest as the spin and charges as presented in Table 7.3 and families
as presented at Table 7.4. One finds the detailed presentations in Ref.( [3–5, 9, 49,
52, 70] and the references therein).

Let us here represent the general solutions of equations of motion for free
massless fermions with the internal space of fermions described by the ”basis
vectors” b̂m†f , fulfilling the relations of Eq. (7.11), for each family f separately, and
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also with respect to different families, b̂mf ∗A b̂
m ′†
f = δmm

′
δff ′ ,

b̂sf†(~p)|p0=|~p|
def
=
∑
m

csfm (~p, |p0| = |~p|) b̂m†f ,

b̂
sf†
tot(~p,~x)

def
= (b̂sf†(~p) e−i(p

0x0−~p·~x))||p0|=|~p| ,∑
m

(csf∗m(~p) · cs ′f ′m(~p))||p0|=|~p| = δss
′
δff ′ , (7.18)

s represents different orthonormalized solutions of the equations of motion,
csfm(~p, |p0| = |~p|) are coefficients, depending on momentum |~p| with |p0| = |~p|.
For the case of the right handed u-quarks of Eq. (7.17) the two nonzero coefficients
are β and β p1+ip2

|p0|+|p3|
.

Creation operators of an odd Clifford character b̂
sf†
tot(~p) create the single

particle states, < x|ψsf(p̃,p0) > |p0=|p̃|, manifesting the oddness of the creation
operators

< x|ψsf(p̃,p0) > |p0=|p̃| =

∫
dp0δ(p0 − |~p|) b̂sf†(~p) e−ipax

a ∗A |ψoc >

= (b̂sf†(~p) · e−i(p0x0−ε~p·~x))|p0=|~p| ∗A |ψoc > , (7.19)

with the property∫
dd−1x

(
√
2π)d−1

< ψs ′f ′( ~p ′, p ′0 = | ~p ′|)|x >< x||ψsf(~p, p0 = |~p|) >=∫
dd−1x

(
√
2π)d−1

eip
′
ax
a

|p ′0=| ~p ′| e
−ipax

a

|p0|=|~p|

· < ψoc| (b̂s
′f ′( ~p ′) b̂sf†(~p)) ∗A |ψoc >= δss ′δff

′
δ(~p− ~p ′) . (7.20)

One further finds the single particle fermion states in the coordinate representation

|ψsf(x̃, x0) >=

∫+∞
−∞

dd−1p
(
√

2π)d−1
(b̂sf†(p̃) e−i(p0x0−εp̃·x̃)|p0=|p̃| ∗A |ψoc >=

∑
m

b̂m†f |ψoc>

∫+∞
−∞

dd−1p

(
√
2π)d−1

(csfm(~p) e−i(p
0x0−ε~p·~x))|p0=|~p| =∑

m

b̂m†f |ψoc > csfm(−i
∂

∂xa
, |p0| = |(−i

∂

∂xa
|) δ(~x) , (7.21)

where it is taken into account that b̂sf†(~p)|p0=|~p| |ψoc >=
∑
m c

sf
m (~p, |p0| =

|~p|) b̂m†f , Eq. (7.18), and that
∫

dd−1x

(
√
2π)d−1

eip
′
ax
a

e−ipax
a

= δ(~p − ~p ′). ε = ±1, de-
pending on handedness and spin of solutions.

Taking into account the above derivations, leading to∫
dp0δ(p0 − |~p|)ei(p

0x0−p0x0) = 1
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and < ψoc| b̂sf(~p, p0)∗A b̂s
′f ′†(~p, p0) |ψoc >= δ

ss ′δff
′
, one finds

< ψsf(~x, x0)|ψs ′f ′(~x ′, x0) >=

=

∫+∞
−∞

dd−1p

(
√
2π)d−1

∫+∞
−∞ δ(p0 − |~p|) < ψsf(~x, x0)|~p >< ~p|ψs ′f ′ (~x ′, x0) >

=

∫+∞
−∞

dd−1p

(
√
2π)d−1

e−i~p·~x ei~p·
~x ′
∫
dp0 δ(p0 − |~p|)

< ψoc|b̂sf (~p, p0)∗A b̂s
′f ′† (~p, p0) ∗A |ψoc >=

= δss
′
δff ′ δ(~x− ~x ′) . (7.22)

The scalar product < ψsf(~x, x0) |ψs ′f ′(~x ′, x0) > has obviously the desired proper-
ties of the second quantized states.

The new creation operators b̂
sf†
tot(~p,~x), which are generated on the tensor

products of both spaces, internal and momentum, fulfill obviously the below
anticommutation relations when applied on |ψoc >

{b̂
sf

tot(~p,~x) , b̂
sf†
tot(~p

′,~x)}+ ∗T |ψoc > = δss
′
δff ′ δ(~p− ~p ′) |ψoc > ,

{b̂
sf

tot(~p,~x) , b̂
s ′f ′

tot (
~p ′,~x)}+ ∗T |ψoc > = 0 · |ψoc > ,

{b̂
sf†
tot(~p,~x) , b̂

s ′f ′†
tot (~p ′,~x)}+ ∗T |ψoc > = 0 · |ψoc > ,

b̂
sf†
tot(~p,~x) ∗T |ψoc> = |ψsf(~p, ,~x) > ,

b̂
sf

tot(~p, ,~x) ∗T |ψoc > = 0 · |ψoc > ,
|p0| = |~p| . (7.23)

It is not difficult to show that b̂
sf

tot(~p,~x) and b̂
sf†
tot(~p,~x) manifest the same anticom-

mutation relations also on tensor products of an arbitrary chosen products of sets
of single fermion states [13].

Hilbert space of fermion fields The tensor products of any number of any sets

of the single fermion creation operators b̂
sf†
tot(~p,~x) (fulfilling together with their

Hermitian conjugated partners annihilation operators b̂
sf

tot(~p,~x) the anticommuta-
tion relations of Eq. (7.23)) form the Hilbert space of the second quantized fermion
fields. The number of the sets is infinite. The internal space, defined by b̂mf , con-
tributes in d-dimensional space for each chosen momentum ~p (and for a parameter

~x) the finite number, 22
d
2

−1·2
d
2

−1

, of such sets, the total Hilbert space has, due to
the infinite basis in the momentum (or coordinate) space, the infinite number of
sets

NH =

∞∏
~p

22
d−2

. (7.24)

The number operator is defined as

Nsf~p = b̂
sf†
tot(~p,~x) ∗T b̂

sf

tot(~p,~x) ,

Nsf~p |ψoc > = 0 · |ψoc > . (7.25)
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The vacuum state contains no fermions.
The Clifford odd objects b̂

sf†
tot(~p,~x) demonstrate their oddness also with re-

spect to the whole Hilbert spaceH, that is with respect to any tensor product of

members of any sets of creation operators b̂
sf†
tot(~p

′,~x)). Correspondingly the anti-

commutation relations follow also for the application of b̂
sf†
tot(~p,~x) and b̂

sf

tot(~p,~x)

onH

{b̂
sf

tot(~p,~x) , b̂
s ′f ′†
tot (~p ′,~x)}∗T+H = δss

′
δff ′ δ(~p− ~p ′) H ,

{b̂
sf†
tot(~p,~x) , b̂

s ′f ′†
tot (~p ′,~x)}∗T+ H = 0 · H ,

{b̂
sf†
tot(~p,~x), b̂

s ′f ′†
tot (~p ′,~x)}∗T+ H = 0 · H . (7.26)

I presented in this talk the derivation of the creation and annihilation operator
of the second quantized fermion fields, which obey the Dirac’s postulates for
the second quantized fermion fields without postulating them, just by analyzing
properties of creation and annihilation operators obtained as tensor products of the
”basis vectors” of an odd Clifford algebra and of the basis in either momentum or
coordinate space. In Ref. [10–13] the relation between the creation and annihilation
operators, postulated by Dirac and the ones presented in this talk are discussed.

Properties of fermions in d = (3+ 1) This section follows quite a lot Refs. [3, 4].
With respect to the last years I have not succeeded to improve much the part
presented in this subsection. I have been working on the symmetries of the spin-
charge-family theory and in particular on how can the theory, using the Clifford
algebra to describe all the internal properties of fermions — spins, charges and
families — help to explain the assumptions of the second quantized fermion fields.
I shall therefore review the other achievements of the theory very briefly.

In Eq. (7.1) the starting action is presented for fermion and boson fields in
d = (13 + 1). In order that predictions of the spin-charge-family theory are in
agreement with the observed properties of quarks and leptons and antiquarks and
antileptons, of the vector gauge fields and of the scalar gauge fields (manfesting as
the higgs and Yukawa couplings), the manifoldM(13+1) ought to break first into
M(7+1) ×M(6) (which manifests as SO(7, 1) ×SU(3) ×U(1)), affecting fermions,
vector gauge fields and scalar gauge fields.

This first break is caused by the scalar condensate of two right handed neutri-
nos, presented in Table 7.5, Sect. 7.5 which interact with all the scalar gauge fields
(with the gauge fields with the space index (5, 6, 7, · · · , 14), as well as with those
vector gauge fields (with the gauge fields with the space index (0, 1, 2, 3), which
couple to the condensate. The only vector gauge fields which do not interact with
the condensate and remain consequently massless are the weak charge, colour
charge and hyper charge vector gauge fields.

Since the left handed fermions couple differently to scalar fields than the
right handed ones, the break can leave massless and mass protected 2((7+1)/2−1)

families [68]. The rest of families get heavy masses 7.
7 A toy model [68, 69] was studied in d = (5 + 1) with the same action as in Eq. (7.1).

The break from d = (5 + 1) to d = (3 + 1)× an almost S2 was studied. For a particular
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The fermion families are arranged into twice two groups of massless four
families, with respect to family quantum numbers as presented in Table 7.4 in
Sect. 7.5, each group manifesting SU(2)⊂SO(3,1) × SU(2)⊂SO(4) symmetry, one
group manifesting SU(2)L × SU(2)L symmetry, the other SU(2)R × SU(2)R sym-
metry.

The nonzero vacuum expectation values of the scalar fields with the space
index (7, 8), which carry the weak and hyper charges, break the mass protection
and make family massive [7, 9].

The breaks of the staring symmetry make the spins in higher dimensions to
manifest as charges in d = (3+ 1).

The superposition of the Lorentz members of the Clifford algebra, manifesting
in d = (3+ 1) the spins, Eq. (7.52), charges, Eqs. (7.53, 7.54) and families, Eqs (7.55,
7.56). are presented in Sect. 7.5.

Let me rewrite the fermion part of the action, Eq. (7.1), by taking into account
the degrees of freedom the action manifests in d = (3+ 1) in the way that we can
clearly see that the action does manifest in the low energy regime by the standard
model required properties of fermions, of vector gauge fields and of scalar gauge
fields [1–3, 7, 9, 51–53, 71, 72].

Lf = ψ̄γm(pm −
∑
A,i

gAiτAiAAim )ψ+

{
∑
s=7,8

ψ̄γsp0s ψ}+

{
∑

t=5,6,9,...,14

ψ̄γtp0t ψ} , (7.27)

where p0s = ps − 1
2
Ss
′s"ωs ′s"s −

1
2
S̃abω̃abs, p0t = pt − 1

2
St
′t"ωt ′t"t −

1
2
S̃abω̃abt,

with m ∈ (0, 1, 2, 3), s ∈ (7, 8), (s ′, s") ∈ (5, 6, 7, 8), (a, b) (appearing in S̃ab)
run within either (0, 1, 2, 3) or (5, 6, 7, 8), t runs ∈ (5, . . . , 14), (t ′, t") run either
∈ (5, 6, 7, 8) or ∈ (9, 10, . . . , 14). The spinor function ψ represents all family mem-
bers of all the 2

7+1
2

−1 = 8 families.

a. The first line of Eq. (7.27) determines in d = (3 + 1) the kinematics
and dynamics of fermion fields, coupled to the vector gauge fields [3, 5, 9]. The
vector gauge fields are the superposition of the spin connection fields ωstm,
m = (0, 1, 2, 3), (s, t) = (5, 6, · · · , 13, 14), the gauge fields of Sst. They are shortly
presented in Sect. 7.34.

The operators τAi (τAi =
∑
a,b c

Ai
ab S

ab, Sab are the generators of the
Lorentz transformations in the Clifford space of γa’s) are presented in Eqs. (7.53,
7.54) of Sect. 7.5. They represent the colour charge, ~τ3, the weak charge, ~τ1, and
the hyper charge, Y = τ4 + τ23, τ4 is the fermion charge, originating in SO(6) ⊂
SO(13, 1), τ23 belongs together with ~τ1 of SU(2)weak to SO(4) group (⊂ SO(13+
1)).

choice of vielbeins and for a class of spin connection fields the manifoldM(5+1) breaks
into M(3+1) times an almost S2, while 2((3+1)/2−1) families remain massless and mass
protected. Equivalent assumption, although not yet proved how does it really work, is
made in the d = (13 + 1) case. This study is in progress.
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One fermion irreducible representation of the Lorentz group contains, as seen in
Table 7.3, quarks and leptons and antiquarks and antileptons, belonging to the first
family in Table 7.4. One can notice that the SO(7, 1) subgroup content of the
SO(13, 1) group is the same for the quarks and leptons and the same for the
antiquarks and antileptons. Quarks distinguish from leptons, and antiquarks from
antileptons, only in the SO(6) ⊂ SO(13, 1) part, that is in the colour (τ33, τ38) part
and in the fermion quantum number τ4. The quarks distinguish from antiquarks,
and leptons from antileptons, in the handedness, in the colour part and in the τ4

part, explaining the relation between handedness and charges of fermions and
antifermions 8.

The vector gauge fields, which interact with the condensate, presented in
Table 7.5, become massive. The vector gauge fields not interacting with the condensate —
the weak, colour and hyper charged vector gauge fields — remain massless, in agreement
with by the standard model assumed gauge fields before the electroweak break of
the mass protection,

After the electroweak break, caused by the scalar fields, the only conserved
charges are the colour and the electromagnetic charge Q = τ13 + Y, Y = τ4 + τ23.

b. The second line of Eq. (7.27) is the mass term, responsible in d = (3+1) for
the masses of fermions. The interaction of fermions with the superposition of the
spin connection fields with the space index s = (7, 8), which gain nonzero vacuum
expectation values, cause the electroweak break, bringing masses to fermions
and antifermions and to the weak vector gauge fields. They are superposition
of either ωs ′t ′s or ω̃abs. These scalar fields explain the appearance of the higgs and
Yukawa couplings of the standard model. Their properties are shortly presented in
Subsect. 7.2.2.

These scalar gauge fields split into two groups of four families, one group
manifesting the symmetry — S̃U(2)

(S̃O(3,1),L)
×S̃U(2)

(S̃O(4),L)
×U(1) — and the

other the symmetry — S̃U(2)
(S̃O(3,1),R)

×S̃U(2)
(S̃O(4),R)

×U(1), Eq. (7.37). The
scalar gauge fields, manifesting SU(2)L,R × SU(2)L,R, are the superposition of the
gauge fields ω̃abs, s = (7, 8), (a, b) = either (0, 1, 2, 3) or (5, 6, 7, 8), manifesting
as twice two triplets interacting each with one of the two groups of four families,
presented in Table 7.4. The three U(1) singlet scalar gauge fields are superposition
ofωs ′t ′s, s = (7, 8), (s ′, t ′) = (5, 6, 7, 8, 9, · · · , 14), with the sum of Ss

′t ′ arranged
into superposition of τ13, τ23 and τ4. The three triplets interact with both groups
of quarks and leptons and antiquarks and antileptons.

Each of the two groups have well defined symmetry of mass matrices, what limits
the number of free parameters.

To one of the groups of four families the observed quarks and leptons be-
long [51, 54, 57, 58].

We predict the mixing matrices for quarks, taking as the input the masses
of the fourth family, since the elements for the 3 × 3 submatrix of the 4 × 4

8 Ref. [8] points out that the connection between handedness and charges for fermions and
antifermions, both appearing in the same irreducible representation, explains the triangle
anomalies in the standard model with no need to connect ”by hand” the handedness and
charges of fermions and antifermions.
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mixing matrix are (far) not accurately enough measured, that we could predict
masses of the fourth family quarks [8, 51, 54]. The newer are the experimental
data the better is the agreement of the measured mixing matrix elements with our
predictions [54, 58] at least so far.

The stable of the upper four families offers the explanation for the dark mat-
terappearance and it is so far in agreement with experimental evidences of the
dark matter [52, 61].

I discuss predictions of the spin-charge-family theory for the properties of the
lower four families and of the dark matter in Sect. 7.3.

c. The third line of Eq. (7.27) represents the scalar fields, which cause
transitions from antileptons and antiquarks into quarks and leptons and back,
offering the explanation for the matter/antimatter asymmetry in the expanding
universe at non equilibrium conditions [4]. They are colour triplets with respect
to the space index equal to (9, 10, 11, 12, 13, 14), while they carry the quantum
numbers with respect to the superposition of Sab in adjoint representations, as
can be seen in Table 7.2 and in Fig. 7.1 of Subsect. 7.2.2. I discuss properties of
these scalar fields, offered by the spin-charge-family theory, in Sect. 7.3.

7.2.2 Properties of vector and scalar gauge fields in spin-charge-family theory

In the starting action, Eq. (7.1), the second line represents the action for gauge
fields in d = (13+ 1)-dimensional space, with the index gf denoting gauge fields,
vector or scalar,

Agf =
∫
ddx E (αR+ α̃ R̃) ,

R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c. ,

R̃ =
1

2
{fα[afβb] (ω̃abα,β − ω̃caα ω̃

c
bβ)}+ h.c. , (7.28)

which in the spin-charge-family theory manifests after the break of the starting
symmetry in d = (3 + 1) as the action for all observed vector and scalar gauge
fields. Here fβa and eaα are vielbeins and inverted vielbeins respectively

eaαf
β
a = δβα , eaαf

α
b = δab , (7.29)

E = det(eaα).
Varying the action of Eq. (7.28) with respect to the spin connection fields, the

expression for the spin connection fieldsωeab follows

ωab
e =

1

2E
{eeα ∂β(Ef

α
[af
β
b]) − eaα ∂β(Ef

α
[bf
βe])

− ebα∂β(Ef
α[efβa])}

+
1

4
{Ψ̄(γe Sab − γ[aSb]

e)Ψ}

−
1

d− 2
{δea[

1

E
edα∂β(Ef

α
[df
β
b]) + Ψ̄γdS

d
b Ψ]

− δeb[
1

E
edα∂β(Ef

α
[df
β
a]) + Ψ̄γdS

d
a Ψ]} . (7.30)
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If replacing Sab in Eq. (7.30) with S̃ab, the expression for the spin connection fields
ω̃ab

e follows.
In Ref. [5] it is proven that in spaces with the desired symmetry the vielbein

can be expressed with the gauge fields, if only one of the two spin connection
fields are present

fσm =
∑
A

~τAσ ~AAm , (7.31)

with

AAim =
∑
st

cAistω
st
m ,

τAiσ =
∑
st

cAist (esτ f
σ
t − etτ f

σ
s)x

τ ,

τAi =
∑
st

cAist S
st . (7.32)

If fermions are not present them spin connections of both kinds are uniquely
determined by vielbeins, as can be noticed from Eq. (7.30). If fermions are present,
carrying both — family members and family quantum numbers — then vielbeins
and both kinds of spin connections are influenced by the presence of fermions,
which carry different family and family members quantum numbers.

The scalar (gauge) fields, carrying the space index s = (5, 6, . . . , d), offer in
the spin-charge-family for s = (7, 8) the explanation for the origin of the Higgs’s
scalar and the Yukawa couplings of the standard model, while scalars with the space
index s = (9, 10, . . . , 14) offer the explanation for the proton decay, as well as for
the matter/antimatter asymmetry in the universe.

We use the notation

τAi =
∑
a,b

cAiab S
ab ,

{τAi, τBj}− = iδABfAijkτAk ,

AAia =
∑
s,t

cAistω
st
a , (7.33)

a = m = (0, 1, 2, 3) for vector gauge fields and a = s = (5, 6, . . . , 14) for scalar
aguge fields.

The explicit expressions for cAiab, and correspondingly for τAi, and AAia , are
written in Sect. 7.5.

Vector gauge fields in d = (3 + 1) In the spin-charge-family theory there are
besides the gravity, the colour and the weak SU(2)I vector gauge fields, also the
second SU(2)II and the U(1)τ4 vector gauge fields. The U(1)τ4 vector gauge field
is the vector gauge field of τ4(= −1

3
(S9 10 + S11 12 + S13 14)) - the fermion charge.

The hyper charge vector gauge field of the standard model is the superposition of
the third component of the second SU(2)II vector gauge fields and the U(1)τ4
vector gauge field (AYm = cos θ2Aτ

4

m + sin θ2A23m , θ2 is the angle of the break
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of the SU(2)II × U(1)τ4 symmetry to U(1)Y at the scale ≥ 1016 or higher, [9]
and references therein). After the appearance of the condensate, presented in
Table 7.5, there are namely only the gravity, the colour, the weak SU(2)I and
the U(1)Y hyper charge vector gauge fields, which remain massless. The two
components of the second SU(2)II vector gauge fields and the superposition
AY

′

m = − sin θ2Aτ
4

m +cos θ2A23m , which is the gauge field of Y ′(= − tan2 θ2τ4+τ23)
gain high masses due to the interaction with the condensate. All the vector gauge
fields are expressible with the spin connection fieldsωstm,

AAim =
∑
s,t

cAist ω
st
m . (7.34)

Let me present expressions for the two SU(2) vector gauge fields, SU(2)I and
SU(2)II

~A1m = ~A1m = (ω58m −ω67m,ω57m +ω68m,ω56m −ω78m) ,

~A2m = ~A2m = (ω58m +ω67m,ω57m −ω68m,ω56m +ω78m) . (7.35)

The reader can similarly construct all the other vector gauge fields from the
coefficients for the corresponding charges, or find the expressions in Refs. [4, 7, 9]
and references therein.

The electroweak break, caused by the non zero expectation values of the
scalar gauge fields, carrying the space index s = (7, 8), makes the weak and the
hyper charge massive. The only vector gauge fields which remains massless are
the electromagnetic and the colour vector gauge fields — the observed two.

Scalar gauge fields in d = (3+1) There are in the spin-charge-family theory scalar
fields taking care of the masses of quarks and leptons: They have the space index
s = (7, 8) and carry with respect to the space index the weak charge τ13 = ±1

2

and the hyper charge Y = ∓1
2

. With respect to τAi =
∑
ab c

Ai
abS

ab and τ̃Ai =∑
ab c

Ai
abS̃

ab they carry charges and family charges in adjoint representations,
Table 7.1, Eq. (7.39).

There are scalar fields transforming antileptons and antiquarks into quarks
and leptons and back. They carry space index s = (9, 10, . . . , 14), They are with
respect to the space index colour triplets, while they carry charges τAi and τ̃Ai in
adjoint representations.

The infinitesimal generators Sab, which apply on the spin connectionsωbde
(= fαe ωbdα) and ω̃b̃d̃e (= fαe ω̃b̃d̃α), on either the space index e or any of the
indices (b, d, b̃, d̃), as follows

SabAd...e...g = i (ηaeAd...b...g − ηbeAd...a...g) , (7.36)

(see Section IV. and Appendix B in Ref. [9]).

Scalar gauge fields determining scalar higgs and Yukawa couplings

Let me introduce a common notation AAis for all the scalar gauge fields with
s = (7, 8), independently of whether they originate in ωabs — in this case Ai
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= (Q,Q ′, Y ′) - or in ω̃ãb̃s — in this case all the family quantum numbers of all
eight families contribute. All these gauge fields contribute to the masses of the
quarks and leptons and the antiquarks and antileptons after gaining nonzero
vacuum expectation values.

AAis represents (AQs , A
Q ′

s , AY
′

s ,
~̃A1̃s ,

~̃A
ÑL̃
s , ~̃A2̃s ,

~̃A
ÑR̃
s ) ,

τAi represents (Q, Q ′, Y ′, ~̃τ1, ~̃NL, ~̃τ
2, ~̃NR) . (7.37)

Here τAi represent all the operators, which apply on the fermions. These scalars,
the gauge scalar fields of the generators τAi and τ̃Ai, are expressible in terms of
the spin connection fields (Ref. [9], Eqs. (10, 22, A8, A9)).

Let me demonstrate [9] that all the scalar fields with the space index (7, 8)

carry with respect to this space index the weak and the hyper charge (∓1
2

, ±1
2

),
respectively. This means that all these scalars have properties as required for the
Higgs in the standard model.

We need to know the application of the operators τ13 (= 1
2
(S56 − S78), Y

(= τ4+ τ23) andQ (= τ13+ Y), Eq (7.53, 7.54, 7.58), with Sab defined in Eq. (7.36),
on the scalar fields with the space index s = (7, 8).

To compare the properties of the scalar fields with those of the Higgs’s scalar
of the standard model let the scalar fields be eigenstates of τ13 = 1

2
(S56 − S78).

I rewrite for this purpose the second line of Eq. (7.27) as follows, ignoring the
momentum ps, s = (5, 6, . . . , d), since it is expected that solutions with nonzero
momenta in higher dimensions do not contribute to the masses of fermion fields at
low energies in d = (3+1). We pay correspondingly no attention to the momentum
ps , s ∈ (5, . . . , 8), when having in mind the lowest energy solutions, manifesting
at low energies.)∑

s=(7,8),A,i

ψ̄ γs (−τAiAAis )ψ =

−ψ̄ {
78

(+) τAi (AAi7 − iAAi8 )+
78

(−) (τAi (AAi7 + iAAi8 ) }ψ ,
78

(±)= 1

2
(γ7 ± i γ8 ) , AAi78

(±)

:= (AAi7 ∓ iAAi8 ) , (7.38)

with the summation over A and i performed, since AAis represent the scalar fields
(AQs , AQ

′

s , AY
′

s ) determined byωs ′,s ′′,s and those determined by (ω̃a,b,s Ã4̃s , ~̃A1̃s ,
~̃A2̃s , ~̃AÑRs and ~̃AÑLs ).

The application of the operators τ13, Y (Y = 1
2
(S56+S78)− 1

3
(S9 10+S11 12+

S13 14)) andQ on the scalar fields (AAi7 ∓iAAi8 ) with respect to the space index s =
(7, 8), by taking into account Eq. (7.36) to make the application of the generators
Sab on the space indexes, gives

τ13 (AAi7 ∓ iAAi8 ) = ± 1
2
(AAi7 ∓ iAAi8 ) ,

Y (AAi7 ∓ iAAi8 ) = ∓ 1
2
(AAi7 ∓ iAAi8 ) ,

Q (AAi7 ∓ iAAi8 ) = 0 . (7.39)
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Since τ4, Y, τ13 and τ1+, τ1− give zero if applied on (AQs , AQ
′

s and AY
′

s ) with
respect to the quantum numbers (Q,Q ′, Y ′), and since Y and τ13 commute with
the family quantum numbers, one sees that the scalar fields AAis ( =(AQs , AYs , AY

′

s ,
Ã4̃s , ÃQ̃s , ~̃A1̃s , ~̃A2̃s , ~̃AÑRs , ~̃AÑLs )), rewritten as AAi78

(±)

= (AAi7 ∓ iAAi8 ) , are eigenstates

of τ13 and Y, having the quantum numbers of the standard model Higgs’ scalar.
These superposition of AAi78

(±)

are presented in Table 7.1 as two doublets with

respect to the weak charge τ13, with the eigenvalue of τ23 (the second SU(2)II

charge) equal to either −1
2

or +1
2

, respectively. The operators τ1± = τ11 ± iτ12

name superposition τ13 τ23 spin τ4 Q
AAi78

(−)

AAi7 + iAAi8 + 1
2
− 1
2

0 0 0

AAi56
(−)

AAi5 + iAAi6 − 1
2
− 1
2

0 0 -1

AAi78
(+)

AAi7 − iAAi8 − 1
2
+ 1
2

0 0 0

AAi56
(+)

AAi5 − iAAi6 + 1
2
+ 1
2

0 0 +1

Table 7.1. The two scalar weak doublets, one with τ23 = − 1
2

and the other with τ23 = + 1
2

,
both with the ”fermion” quantum number τ4 = 0, are presented. In this table all the scalar
fields carry besides the quantum numbers determined by the space index also the quantum
numbers A and i from Eq. (7.37). The table is taken from Ref. [9].

τ
1±

=
1

2
[(S58 − S67) ∓ i (S57 + S68)] , (7.40)

transform one member of a doublet from Table 7.1 into another member of the
same doublet, keeping τ23 (= 1

2
(S56 + S78)) unchanged, clarifying the above

statement.
It is not difficult to show that the scalar fields AAi78

(±)

are triplets as the gauge

fields of the family quantum numbers ( ~̃NR, ~̃NL, ~̃τ
2, ~̃τ1; Eqs. (7.55, 7.56, 7.36)) or

singlets as the gauge fields of Q = τ13 + Y, Q ′ = − tan2 ϑ1Y +τ13 and Y ′ =
− tan2 ϑ2τ4 + τ23.

Let us do this for ÃNLi78
(±)

and for AQ78
(±)

, taking into account Eq. (7.52) (where we

replace Sab by Sab) and Eq. (7.36), and recognizing that Ã
NL±
78
(±)

= ÃNL178
(±)

∓ i ÃNL278
(±)

.

Ã
ÑL±
78
(±)

= {(ω̃
23
78
(±)

+ i ω̃
01
78
(±)

) ∓ i (ω̃
31
78
(±)

+ i ω̃
02
78
(±)

)} ,

ÃÑL378
(±)

= (ω̃
12
78
(±)

+ i ω̃
03
78
(±)

) ,

AQ78
(±)

= ω
56
78
(±)

− (ω
9 10

78
(±)

+ω
11 12

78
(±)

+ω
13 14

78
(±)

) .



i
i

“proc20Vol1” — 2020/12/6 — 22:10 — page 109 — #125 i
i

i
i

i
i

7 How Far has so Far the Spin-Charge-Family Theory. . . 109

One finds

Ñ3L Ã
ÑL±
78
(±)

= ± ÃÑL±78
(±)

, Ñ3L Ã
ÑL3
78
(±)

= 0 ,

QAQ78
(±)

= 0 . (7.41)

with Q = S56 + τ4 = S56 − 1
3
(S9 10 + S11 12 + S13 14), and with τ4 defined in

Eq. (7.54), if replacing Sab by Sab from Eq. (7.36). Similarly one finds properties
with respect to the Ai quantum numbers for all the scalar fields AAi78

(±)

.

After the appearance of the condensate (Table 7.5), which breaks the SU(2)II
symmetry and brings masses to all the scalar fields, the weak ~τ1 and the hyper
charge Y remain the conserved charges.

At the electroweak scale the scalar gauge fields with the space index (7, 8),
with the Lagrange density

Lsg = E
∑
A,i

{(pmA
Ai
s )† (pmAAis ) − (−λAi + (m ′Ai)

2))AAi†s AAis

+
∑
B,j

ΛAiBjAAi†s AAis ABj†s ABjs } , (7.42)

gain nonzero vacuum expectation values and cause the electroweak break 9. The
above Lagrange density needs to be studied. At this stage is just postulated.

The two groups of four families became massive. The mass matrices mani-
fest either S̃U(2)

S̃O(3,1)L
× S̃U(2)

S̃U(4)L
×U(1) symmetry, this is the case for the

lower four families of the eight families, presented in Table 7.4, or S̃U(2)
S̃O(3,1)R

×
S̃U(2)

S̃U(4)R
× U(1) symmetry, this is the case for the higher four families, pre-

sented in Table 7.4. The same three U(1) singlet fields contribute to the masses of
both groups, the two SU(2) triplet fields are for each of the two groups different,
although manifesting the same symmetries.

The mass matrix of family member — quarks and leptons — are 4×4matrices.
The observed three families of quarks and leptons form the 3×3 submatrices of the
4× 4matrices. The symmetry of the mass matrices, manifesting in all orders [57],
limits the number of free parameters.

All the scalars, the two triplets and the three singlets, are doublets with respect
to the weak charge, contributing to the weak and the hyper charge of the fermions
so that they transform the right handed members into the left handed onces.

Mα =


−a1 − a e d b

e −a2 − a b d

d b a2 − a e

b d e a1 − a


α

, (7.43)

with α representing family members — quarks and leptons of left and right
handedness [49–51, 53, 54, 58].

9 The expression for the Lagrange density of Eq. (7.42) is only estimated, more or less
guessed, I have no estimate yet for the constants.
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The mass matrices of the upper four families have the same symmetry as
the mass matrices of the lower four families, but the scalar fields determining
the masses of the upper four families have different properties (nonzero vacuum
expectation values, masses and coupling constants) than those of the lower four,
giving to quarks and leptons of the upper four families much higher masses in
comparison with the lower four families of quarks and leptons, what offers the
explanation for the appearance of the dark matter, studied at Refs. [52, 61].

Scalar fields transforming antiquarks and antileptons into quarks and lep-
tons

I follow in this part to a great deal similar part in Ref. [3].
To the matter-antimatter asymmetry the terms contribute, which cause tran-

sitions from antileptons into quarks and from antiquarks into quarks and back.
These are terms included into the third line of Eq. (7.27). Let me rewrite this part
of the fermion action

Lf ′ = ψ† γ0 γt
{

∑
t=(9,10,...14)

[
pt − (

1

2
Ss
′s"ωs ′s"t +

1

2
St
′t ′′ ωt ′t"t +

1

2
S̃ab ω̃abt )

]}
ψ,

as follows

Lf" = ψ† γ0(−) {
∑
+,−

∑
(t t ′)

tt ′

(±©) ·

[ τ2+A2+
tt ′
(±©)

+ τ2−A2−
tt ′
(±©)

+ τ23A23
tt ′
(±©)

+ τ1+A1+
tt ′
(±©)

+ τ1−A1−
tt ′
(±©)

+ τ13A13
tt ′
(±©)

+ τ̃2+ Ã2+
tt ′
(±©)

+ τ̃2− Ã2−
tt ′
(±©)

+ τ̃23 Ã23
tt ′
(±©)

+ τ̃1+ Ã1+
tt ′
(±©)

+ τ̃1− Ã1−
tt ′
(±©)

+ τ̃13 Ã13
tt ′
(±©)

+ Ñ+
R Ã

NR+
tt ′
(±©)

+ Ñ−
R Ã

NR−
tt ′
(±©)

+ Ñ3R Ã
NR3
tt ′
(±©)

+ Ñ+
L Ã

NL+
tt ′
(±©)

+ Ñ−
L Ã

NL−
tt ′
(±©)

+ Ñ3L Ã
NL3
tt ′
(±©)

+
∑
i

τ3iA3i
tt ′
(±©)

+ τ4A4
tt ′
(±©)

+
∑
i

τ̃3i Ã3i
tt ′
(±©)

+ τ̃4 Ã4
tt ′
(±©)

] }ψ , (7.44)

where (t, t ′) run in pairs over [(9, 10), (11, 12), (13, 14)] and the summation must
go over + and − of tt ′

(±©)

.
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In Eq. (7.44) the relations below are used

∑
t,s ′,s ′′

γt
1

2
Ss
′s"ωs ′s"t =

∑
+,−

∑
(t t ′)

tt ′

(±©)
1

2
Ss
′s"ω

s"s"
tt ′
(±©)

,

ω
s"s"

tt ′
(±©)

: = ω
s"s"

tt ′
(±)

= (ωs ′s"t ∓ iωs ′s"t ′) ,
tt ′

(±©): = =
1

2
(γt ± γt ′) ,

tt ′

(±©)
1

2
Ss
′s"ω

s"s"
tt ′
(±©)

=
tt ′

(±©) { τ2+A2+
tt ′
(±©)

+ τ2−A2−
tt ′
(±©)

+ τ23A23
tt ′
(±©)

+ τ1+A1+
tt ′
(±©)

+ τ1−A1−
tt ′
(±©)

+ τ13A13
tt ′
(±©)

} ,

A
2±
tt ′
(±©)

= (ω
58
tt ′
(±©)

+ω
67
tt ′
(±©)

) ∓ i(ω
57
tt ′
(±©)

−ω
68
tt ′
(±©)

) ,

A23
tt ′
(±©)

= (ω
56
tt ′
(±©)

+ω
78
tt ′
(±©)

) ,

A
1±
tt ′
(±©)

= (ω
58
tt ′
(±©)

−ω
67
tt ′
(±©)

) ∓ i(ω
57
tt ′
(±©)

+ω
68
tt ′
(±©)

) ,

A13
tt ′
(±©)

= (ω
56
tt ′
(±©)

−ω
78
tt ′
(±©)

) ,

(t t ′) ∈ ((9 10), (11 12), (13 14)) . (7.45)

The rest of expressions in Eq. (7.45) are obtained in a similar way. They are pre-
sented in Eq. (7.62).

The scalar fields with the scalar index s = (9, 10, · · · , 14), presented in Ta-
ble 7.2, carry one of the triplet colour charges and the ”fermion” charge equal
to twice the quark ”fermion” charge, or the antitriplet colour charges and the
”antifermion” charge. They carry in addition the quantum numbers of the adjoint
representations originating in Sab or in S̃ab 10.

If the antiquark ūc̄2L , from the line 43 presented in Table 7.3, with the ”fermion”
charge τ4 = −1

6
, the weak charge τ13 = 0, the second SU(2)II charge τ23 = −1

2
,

the colour charge (τ33, τ38) = (1
2
,− 1

2
√
3
), the hyper charge Y(= τ4 + τ23 =) −2

3

and the electromagnetic charge Q(= Y + τ13 =) −2
3

submits the A2�9 10
(⊕)

scalar field,

it transforms into uc3R from the line 17 of Table 7.3, carrying the quantum numbers
τ4 = 1

6
, τ13 = 0, τ23 = 1

2
, (τ33, τ38) = (0,− 1√

3
), Y = 2

3
and Q = 2

3
. These two

quarks, dc1R and uc3R can bind together with uc2R from the 9th line of the same table
(at low enough energy, after the electroweak transition, and if they belong to a
superposition with the left handed partners to the first family) -into the colour
chargeless baryon - a proton. This transition is presented in Figure 7.1.

The opposite transition at low energies would make the proton decay.

10 Although carrying the colour charge in one of the triplet or antitriplet states, these fields
can not be interpreted as superpartners of the quarks since they do not have quantum
numbers as required by, let say, the N = 1 supersymmetry. The hyper charges and the
electromagnetic charges are namely not those required by the supersymmetric partners
to the family members.
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field prop. τ4 τ13 τ23 (τ33, τ38) Y Q τ̃4 τ̃13 τ̃23 Ñ3L Ñ
3
R

A
1±
9 10
(±©)

scalar ∓© 1
3
± 1 0 (±© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3
+ ∓ 1 0 0 0 0 0

A139 10
(±©)

scalar ∓© 1
3
0 0 (±© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

A
1±
11 12
(±©)

scalar ∓© 1
3
∓ 1 0 (∓© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3
+ ∓ 1 0 0 0 0 0

A1311 12
(±©)

scalar ∓© 1
3
0 0 (∓© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

A
1±
13 14
(±©)

scalar ∓© 1
3
∓ 1 0 (0, ∓© 1√

3
) ∓© 1

3
∓© 1

3
+ ∓ 1 0 0 0 0 0

A1313 14
(±©)

scalar ∓© 1
3
0 0 (0, ∓© 1√

3
) ∓© 1

3
∓© 1

3
0 0 0 0 0

A
2±
9 10
(±©)

scalar ∓© 1
3
0 ± 1 (±© 1

2
, ±© 1

2
√
3

) ∓© 1
3
+ ∓ 1 ∓© 1

3
+ ∓ 1 0 0 0 0 0

A239 10
(±©)

scalar ∓© 1
3
0 0 (±© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

Ã
1±
910
(±©)

scalar ∓© 1
3
0 0 (±© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 ± 1 0 0 0

Ã13910
(±©)

scalar ∓© 1
3
0 0 (±© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

Ã
2±
910
(±©)

scalar ∓© 1
3
0 0 (±© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 ± 1 0 0

Ã23910
(±©)

scalar ∓© 1
3
0 0 (±© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

Ã
NL±
910
(±©)

scalar ∓© 1
3
0 0 (±© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 ± 1 0

Ã
NL3
910
(±©)

scalar ∓© 1
3
0 0 (±© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

Ã
NR±
910
(±©)

scalar ∓© 1
3
0 0 (±© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 ± 1

Ã
NR3
910
(±©)

scalar ∓© 1
3
0 0 (±© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·
A3i9 10

(±©)

scalar ∓© 1
3
0 0 (± 1+ ±© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·
A49 10

(±©)

scalar ∓© 1
3
0 0 (±© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·
~A3m vector 0 0 0 octet 0 0 0 0 0 0 0

A4m vector 0 0 0 0 0 0 0 0 0 0 0

Table 7.2. Quantum numbers of the scalar gauge fields carrying the space index t =

(9, 10, · · · , 14), appearing in Eq. (7.27), are presented. The space degrees of freedom con-
tribute one of the triplets values to the colour charge of all these scalar fields. These scalars
are with respect to the two SU(2) charges, (τ13 and ~τ2), and the two S̃U(2) charges, (~̃τ1 and
~̃τ2), triplets (that is in the adjoint representations of the corresponding groups), and they
all carry twice the ”fermion” number (τ4) of the quarks. The quantum numbers of the two
vector gauge fields, the colour and the U(1)II ones, are added.
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uc2R
τ4= 1

6
,τ13=0,τ23= 1

2

(τ33,τ38)=(− 1
2
, 1
2
√

3
)

Y= 2
3
,Q= 2

3

uc2R

ūc̄2L
τ4=− 1

6
,τ13=0,τ23=− 1

2

(τ33,τ38)=( 1
2
,− 1

2
√

3
)

Y=− 2
3
,Q=− 2

3

uc3R
τ4= 1

6
,τ13=0,τ23= 1

2

(τ33,τ38)=(0,− 1√
3

)

Y= 2
3
,Q= 2

3

ē+
L

τ4= 1
2
,τ13=0,τ23= 1

2

(τ33,τ38)=(0,0)
Y=1,Q=1

dc1R

τ4= 1
6
,τ13=0,τ23=− 1

2

(τ33,τ38)=( 1
2
, 1
2
√

3
)

Y=− 1
3
,Q=− 1

3

•

A2�
9 10
(+)

,
τ4=2×(− 1

6
),τ13=0,τ23=−1

(τ33,τ38)=( 1
2
, 1
2
√

3
)

Y=− 4
3
,Q=− 4

3

•

Fig. 7.1. The birth of a ”right handed proton” out of an positron ē +
L , antiquark ūc̄2L and

quark (spectator) uc2R . The family quantum number can be any.

7.3 Achievements and conclusions

It remains to point out the achievements of the spin-charge-family theory so far and
tell the open problems.

Achievements:
a. The simple starting action, Eq. (7.1), with the Clifford algebra used to describe
the internal space of fermions, which in d ≥ (13 + 1) interact with the vielbeins
and the two kinds of spin connection fields, offers a.i. that one irreducible
representation of the Lorentz algebra in internal space manifests in d = (3+ 1) all
the fermions and antifermions with the spins and charges of the standard model,
a.ii. that eight irreducible representations define in d = (3+ 1) (after the reduction
of the Clifford algebra from two kinds to only one kind) two times four families,
a.iii. that the two kinds of the spin connection fields manifest in d = (3+ 1) all the
vector gauge fields of the standard model, a.iv. that the scalar fields with respect
to d = (3+ 1), carrying the weak and the hyper charge ±1

2
and ∓1

2
, respectively,

forming two groups of scalar fields manifesting each the SU(2) × SU(2) × U(1)
symmetry, offer the explanation for the Higgs’s scalar and Yukawa couplings
of the standard model giving masses to two groups of four families — the lower
four families predicting the fourth family of quarks and leptons to the observed
three, the stable of the upper four families offering explanation for the dark matter,
a.v. that both groups of four families together spread masses from almost zero
to ≥ 1016 GeV, a.vi. that the scalar gauge fields manifesting as colour triplets
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and antitriplets offer the explanation for the matter/antimatter asymmetry of the
ordinary matter.

b. The decision to describe the internal space of fermions with the Clifford
odd algebra enables to define the creation operators as tensor products of finite
number of ”basis vectors” of internal space and infinite basis in ordinary space
applying on the vacuum state, which fulfill together the their Hermitian conjugated
annihilation operators the anticommutation relations postulated by Dirac for the
second quantized fields. The single fermion states have therefore by themselves
the anticommuting character. Tensor products of any number and any kind of
the single fermion creation operators define the second quantized fermion fields
forming the whole Hilbert space.

Predictions:

The spin-charge-family theory offers several explanations as discuss in Sects. 7.1
and 7.2 and also several predictions.
A. Prediction of the fourth family to the observed three families, Subsect. 7.2.1.
Taking into account the experimental data for masses of the observed families of
quarks and the corresponding mixing matrix we fit 6 parameters of the two quark
mass matrices, presented in Eq. (7.43), to twice 3measured massess of quarks and
to 6measured parameters of the mixing matrix.

Althrough any accurate 3×3 submatrix of the 4×4 unitary matrix determines
the 4 × 4 matrix completely, neither the quark nor the lepton mixing matrix is
measured accurately enough that it would be possible to determine three complex
phases of the 4 × 4 quark mixing matrix and the mixing matrix elements of the
fourth family quarks to the other three family members. We therefore assume that
mass matrices are symmetric and real, while making a choice for the masses of the
fourth family.

Results are presented for two choices ofmu4 = md4 , Ref. [54], [arxiv:1412.5866]:
1.mu4 = 700 GeV,md4 = 700 GeV.....new1
2.mu4 = 1 200 GeV,md4 = 1200 GeV.....new2

|V(ud)| =



expn 0.97425± 0.00022 0.2253± 0.0008 0.00413± 0.00049
new1 0.97423(4) 0.22539(7) 0.00299 0.00776(1)
new2 0.97423[5] 0.22538[42] 0.00299 0.00793[466]
expn 0.225± 0.008 0.986± 0.016 0.0411± 0.0013
new1 0.22534(3) 0.97335 0.04245(6) 0.00349(60)
new2 0.22531[5] 0.97336[5] 0.04248 0.00002[216]
expn 0.0084± 0.0006 0.0400± 0.0027 1.021± 0.032
new1 0.00667(6) 0.04203(4) 0.99909 0.00038
new2 0.00667 0.04206[5] 0.99909 0.00024[21]
new1 0.00677(60) 0.00517(26) 0.00020 0.99996
new2 0.00773 0.00178 0.00022 0.99997[9]



.

(7.46)
One can see that the above results for the mixing matrices of the lower three
families are in agreement with what Ref. [55] requires, namely that
Vu1d4 > Vu1d3 , Vu2d4 < Vu1d4 , and Vu3d4 < Vu1d4 .



i
i

“proc20Vol1” — 2020/12/6 — 22:10 — page 115 — #131 i
i

i
i

i
i

7 How Far has so Far the Spin-Charge-Family Theory. . . 115

Since we have not yet fit the mass matrix of Eq. (7.43) to the newest experi-
mental data [56], which appear after our Bled 2020, the evaluation for our 4× 4
quark mixing matrix with the new data and correspondingly a new prediction is
not yet offered.

Let me repeat the discussion of Ref. [58] that the existence of the fourth family
to the observed three is still not in disagreement with the latest experimental data
although some phenomenologists say different.
B. The spin-charge-family theory predicts in the low energy regime (up to 1016

GeV or higher) the existence of two decoupled groups of four families, which at
the electroweak break become massive [52]. The stable family of the upper group
of four families (with almost zero Yukawa couplings to the lower group of four
families) is the candidate for the dark matter, Subsect. 7.2.1.

I review here briefly the estimations done in Ref. [52]. We used the simple
hydrogen-like model to evaluate properties of the fifth family heavy baryons,
taking into account that for masses of the order of a few TeV or larger the force
among the constituents of the fifth family baryons is determined mostly by one
gluon exchange. The fifth family neutron is estimated as the most stable nucleon.
The ”nuclear interaction” among these baryons is found to have very interesting
properties. We studied scattering amplitudes among fifth family neutrons and
with the ordinary matter.

We followed the behaviour of the fifth family quarks and antiquarks in the
plasma of the expanding universe, through the freezing out procedure, solving the
Boltzmann equations, through the colour phase transition, while forming neutrons,
up to the present dark matter, taking into account the cosmological evidences, the
direct experimental evidences and all others known properties of the dark matter.

The cosmological evolution suggested the limits for the masses of the fifth
family quarks

10 TeV < mq5 c
2 < a few · 102 TeV (7.47)

and for the scattering cross sections

10−8 fm2 < σc5 < 10
−6 fm2 , (7.48)

while the measured density of the dark matter does not put much limitation on
the properties of heavy enough clusters.

The direct measurements limit the fifth family quark mass to

several 10TeV < mq5c
2 < 105 TeV . (7.49)

We also find that our fifth family baryons of the mass of several 10 TeV/c2 have
for a factor more than 100 times too small scattering amplitude with the ordinary
matter to cause a measurable heat flux on the Earth’s surface.
C. The spin-charge-family theory predicts several scalar fields with the weak and
the hyper charge of the Higg’s scalar (±1

2
, ∓1

2
) — two triplets and three singlets

— offering the explanation for the existence of the Higgs’s scalar and Yukawa
couplings, Subsect. 7.2.2.

The additional two triplets and the same three singlets determine properties
of the upper four families of quarks and leptons, Subsect. 7.2.2.
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D. The spin-charge-family theory predicts several scalar fields which are colour
triplets or antitriplets, offering the explanation for the matter/antimatter asymme-
try in the (nonequilibrium) expanding universe as well as the proton decay [4],
Subsect. 7.2.2.
E. The mass matrices of the two fourth family groups are close to democratic
one, causing spreading of the fermion masses from 10−8 MeV to 1016 GeV or even
higher.

I conclude by saying that there are still a lot of open problems to be solved.
Some of them are common to the other theories, like the Kaluza-Klein-like theories,
the others require to extract as much as possible from the offer of the theory. We
need collaborators, since the more work is put into the spin-charge-family theory
the more explanations for the observed phenomena follow.

7.4 APPENDIX: Useful relations

From Eq. (7.16) it follows

Sac
ab

(k)
cd

(k) = −
i

2
ηaaηcc

ab

[−k]
cd

[−k] , S̃ac
ab

(k)
cd

(k) =
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2
ηaaηcc
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[k]
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[k] ,
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[k] . (7.50)

By using Eq. (7.14) one finds the relations

ab
˜(k)
ab

(k) = 0 ,
ab
˜(−k)

ab

(k)= −i ηaa
ab

[k] ,
ab
˜(k)
ab

[k] = i
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(k) ,
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˜(k)

ab

[−k]= 0 ,
ab
˜[k]
ab

(k) =
ab

(k) ,
ab
˜[−k]

ab

(k)= 0 ,

ab
˜[k]
ab

[k] = 0 ,
ab
˜[−k]

ab

[k]=
ab

[k] . (7.51)

7.5 APPENDIX: One irreducible representation of the internal
space and families described by the Clifford algebra γa

Below the subgroups of the starting groups SO(13, 1) and ˜SO(13, 1) are presented,
manifesting in d = (3 + 1) the spins, charges and families of fermions in the
spin-charge-family theory. Table 7.3, representing one SO(13, 1) irreducible repre-
sentation of fermions — quarks and leptons and antiquarks and antileptons —
uses these expressions.
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a.i. The generators of the two SU(2) (⊂ SO(3, 1) ⊂ SO(7, 1) ⊂ SO(13, 1)) groups,
describing spins of fermions

~N±(= ~N(L,R)) : =
1

2
(S23 ± iS01, S31 ± iS02, S12 ± iS03) , (7.52)

are presented.
a.ii. The generators of the two SU(2) (SU(2) ⊂ SO(4) ⊂ SO(7, 1) ⊂ SO(13, 1))

groups, describing the two kinds of weak charges of fermions

~τ1 : =
1

2
(S58 − S67, S57 + S68, S56 − S78) ,

~τ2 : =
1

2
(S58 + S67, S57 − S68, S56 + S78) , (7.53)

are presented.
a.iii. The SU(3) and U(1) subgroups of SO(6) ⊂ SO(13, 1), describing the

colour charge and the ”fermion” charge of fermions

~τ3 :=
1

2
{S9 12 − S10 11 , S9 11 + S10 12, S9 10 − S11 12,

S9 14 − S10 13, S9 13 + S10 14 , S11 14 − S12 13 ,

S11 13 + S12 14,
1√
3
(S9 10 + S11 12 − 2S13 14)} ,

τ4 := −
1

3
(S9 10 + S11 12 + S13 14) , (7.54)

are presented.
b.i. The two S̃U(2) subgroups of ˜SO(3, 1) (⊂ S̃O(7, 1) ⊂ S̃O(13, 1)), describing

families of fermions

~̃NL,R : =
1

2
(S̃23 ± iS̃01, S̃31 ± iS̃02, S̃12 ± iS̃03) , (7.55)

are presented.
b.ii. The two S̃U(2) subgroups of S̃O(4) (⊂ S̃O(7, 1) ⊂ S̃O(13, 1)), describing

families of fermions

~̃τ1 : =
1

2
(S̃58 − S̃67, S̃57 + S̃68, S̃56 − S̃78) ,

~̃τ2 : =
1

2
(S̃58 + S̃67, S̃57 − S̃68, S̃56 + S̃78) , (7.56)

are presented.
b.iii. The group Ũ(1), the subgroup of S̃O(6) (⊂ S̃O(13, 1)), describing family

quantum numbers of fermions

τ̃4 := −
1

3
(S̃9 10 + S̃11 12 + S̃13 14) , (7.57)

are presented.
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c. Relations among the hyper, weak and the second SU(2) charges

Y := τ4 + τ23 , Y ′ := −τ4 tan2 ϑ2 + τ23 , Q := τ13 + Y , Q ′ := −Y tan2 ϑ1 + τ13 ,

Ỹ := τ̃4 + τ̃23 , Ỹ ′ := −τ̃4 tan2 ϑ2 + τ̃23 , Q̃ := Ỹ + τ̃13 , Q̃ ′ = −Ỹ tan2 ϑ1 + τ̃13 ,

(7.58)

are presented.
Below are some of the above expressions written in terms of nilpotents and

projectors

N±+ = N1+ ± iN2+ = −
03

(∓i)
12

(±) , N±− = N1− ± iN2− =
03

(±i)
12

(±) ,
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12
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12
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56
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78
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56
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78
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56
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78
˜(∓) . (7.59)
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8 ûc1†
L

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] -1 − 1

2
1
2

0 1
2

1
2
√
3

1
6

1
6

2
3

9 ûc2†
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Table 7.3. The left handed (Γ(13,1) = −1), multiplet of creation operators of fermions — the members of one fundamental representation of
the SO(13, 1) group, manifesting the subgroup SO(7, 1) of the colour charged quarks and antiquarks and the colourless leptons and antileptons —

is presented in the massless basis as products of nilpotents and projectors. The multiplet contains the left handed (Γ(3+1) = −1 weak (SU(2)I)

charged (τ13 = ± 1
2

, (~τ1 = 1
2

(S58 − S67, S57 + S68, S56 − S78)) and SU(2)II chargeless (τ23 = 0, ~τ2 = 1
2

(S58 +

S67, S57 − S68, S56 + S78)) quarks and leptons and the right handed (Γ(3+1) = 1), weak (SU(2)I) chargeless and SU(2)II charged

(τ23 = ± 1
2

) quarks and leptons, both with the spin S12 up and down (± 1
2

, respectively). The creation operators of quarks distinguish from those

of leptons only in the SU(3) × U(1) part: Quarks are triplets of three colours ( (τ33, τ38) = [( 1
2
, 1
2
√
3

), (− 1
2
, 1
2
√
3

), (0,− 1√
3

)],

(~τ3 = 1
2

(S9 12 − S10 11, S9 11 + S10 12, S9 10 − S11 12, S9 14 − S10 13, S9 13 + S10 14, S11 14 − S12 13,

S11 13+S12 14, 1√
3

(S9 10+S11 12−2S13 14)), carrying the ”fermion charge” (τ4 = 1
6

, = − 1
3

(S9 10+S11 12+S13 14).

The colourless leptons carry the ”fermion charge” (τ4 = − 1
2

). In the same multiplet of creation operators the left handed weak (SU(2)I ) chargeless
and SU(2)II charged antiquarks and antileptons and the right handed weak (SU(2)I ) charged and SU(2)II chargeless antiquarks and antileptons
are included. Antiquarks distinguish from antileptons again only in the SU(3) × U(1) part: Anti-quarks are antitriplets, carrying the ”fermion charge”

(τ4 = − 1
6

). The anti-colourless antileptons carry the ”fermion” charge (τ4 = 1
2

). Y = (τ23 + τ4) is the hyper charge, the electromagnetic charge

isQ = (τ13 + Y). The creation operators of opposite charges (antifermion creation operators) are reachable from the particle ones besides bySab also by
the application of the discrete symmetry operator CN PN , presented in Refs. [65, 66]. The reader can find this Weyl representation also in Refs. [4, 9, 71, 72] and
in the references therein.

Table 7.3 represents in the spin-charge-family theory the creation operators for
observed quarks and leptons and antiquarks and antileptons for a particular family,
Table (7.4). Hermitian conjugation of the creation operators of Table 7.3 generates
the corresponding annihilation operators, fulfilling together with the creation
operators anticommutation relations for fermions of Eq. (7.23).

The condensate of two right handed neutrinos with the family quantum
numbers of the upper four families, causing the break of the starting symmetry
SO(13, 1) into SO(7, 1)× SU(3)×U(1), is presented in Table 7.5.

7.6 APPENDIX: Expressions for scalar fields in term ofωs ′s ′′s

and ω̃abs

The scalar fields, responsible for masses of the family members and of the heavy
bosons [6, 7] after gaining nonzero vacuum expectation values and triggering the
electroweak break, are presented in the second line of Eq. (7.27). These scalar fields
are included in the covariant derivatives as −1

2
Ss
′s"ωs ′s"s −

1
2
S̃abω̃abs, s ∈ (7, 8),

(a, b), ∈ (0, . . . , 3), (5, . . . , 8).
One can express the scalar fields carrying the quantum numbers of the sub-

groups of the family groups, expressed in terms of ω̃abs (they contribute to mass
matrices of quarks and leptons and to masses of the heavy bosons), if taking into
account Eqs. (7.55, 7.56, 7.58),∑

a,b

−
1

2
S̃ab ω̃abs = −(~̃τ1̃ ~̃A1̃s +

~̃NL̃
~̃A
ÑL̃
s + ~̃τ2̃ ~̃A2̃s +

~̃NR̃
~̃A
ÑR̃
s ) ,

~̃A1̃s = (ω̃58s − ω̃67s, ω̃57s + ω̃68s, ω̃56s − ω̃78s) ,

~̃A
ÑL̃
s = (ω̃23s + i ω̃01s, ω̃31s + i ω̃02s, ω̃12s + i ω̃03s) ,

~̃A2̃s = (ω̃58s + ω̃67s, ω̃57s − ω̃68s, ω̃56s + ω̃78s) ,

~̃A
ÑR̃
s = (ω̃23s − i ω̃01s, ω̃31s − i ω̃02s, ω̃12s − i ω̃03s) ,

(s ∈ (7, 8)) . (7.60)

Scalars, expressed in terms ofωabc (contributing as well to the mass matrices of
quarks and leptons and to masses of the heavy bosons) follow, if using Eqs. (7.53,
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Ñ
3 L
Ñ
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û
c
1
†

R
6

0
3

(+
i)

1
2

(+
)
|
5
6

[+
]
7
8

[+
]
||
9
1
0

(+
)
1
1
1
2

(−
)
1
3
1
4

(−
)
ν̂
† R
6

0
3

(+
i)

1
2

(+
)
|
5
6

[+
]
7
8

[+
]
||
9
1
0

(+
)
1
1
1
2

[+
]
1
3
1
4

[+
]

0
−
1 2
0

1 2
−
1 2

II
û
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state S03 S12 τ13 τ23 τ4 Y Q τ̃13 τ̃23 τ̃4 Ỹ Q̃ Ñ3L Ñ
3
R

(|νVIII
1R >1 |νVIII

2R >2) 0 0 0 1 −1 0 0 0 1 −1 0 0 0 1

(|νVIII1R >1 |e
VIII
2R >2) 0 0 0 0 −1 −1 −1 0 1 −1 0 0 0 1

(|eVIII1R >1 |e
VIII
2R >2) 0 0 0 −1 −1 −2 −2 0 1 −1 0 0 0 1

Table 7.5. The condensate of the two right handed neutrinos νR, with the quantum numbers
of the VIIIth family, coupled to spin zero and belonging to a triplet with respect to the
generators τ2i, is presented, together with its two partners. The condensate carries ~τ1 = 0,
τ23 = 1, τ4 = −1 and Q = 0 = Y. The triplet carries τ̃4 = −1, τ̃23 = 1 and Ñ3R = 1,
Ñ3L = 0, Ỹ = 0, Q̃ = 0. The family quantum numbers of quarks and leptons are presented in
Table 7.4.

7.54, 7.58) ∑
s ′,s ′′

−
1

2
Ss
′s"ωs ′s"s = −(g23 τ23A23s + g13 τ13A13s + g4 τ4A4s) ,

g13 τ13A13s + g23 τ23A23s + g4 τ4A4s = gQQAQs + gQ
′
Q ′AQ

′

s + gY
′
Y ′AY

′

s ,

A4s = −(ω9 10 s +ω11 12 s +ω13 14 s) ,

A13s = (ω56s −ω78s) , A23s = (ω56s +ω78s) ,

AQs = sin ϑ1A13s + cos ϑ1AYs ,

AQ
′

s = cos ϑ1A13s − sin ϑ1AYs ,

AY
′

s = cos ϑ2A23s − sin ϑ2A4s ,

(s ∈ (7, 8)) . (7.61)

Scalar fields from Eq. (7.60) interact with quarks and leptons and antiquarks and
antileptons through the family quantum numbers, while those from Eq. (7.61)
interact through the family members quantum numbers. In Eq. (7.61) the coupling
constants are explicitly written in order to see the analogy with the gauge fields of
the standard model.

Expressions for the vector gauge fields in terms of the spin connection fields
and the vielbeins, which correspond to the colour charge (~A3m), the SU(2)II charge
(~A2m), the weak SU(2)I charge (~A1m) and the U(1) charge originating in SO(6)
(~A4m), can be found by taking into account Eqs. (7.53, 7.54). Equivalently one finds
the vector gauge fields in the ”tilde” sector, or one just uses the expressions from
Eqs. (7.61, 7.60), if replacing the scalar index swith the vector indexm.

The expression for
∑
tab γ

t 1
2
S̃ab ω̃abt, used in Eq. (7.45) (S̃ab are the in-

finitesimal generators of either S̃O(3, 1) or S̃O(4), while ω̃abt belong to the cor-
responding gauge fields with t = (9, . . . , 14)), and obtained by using Eqs. (7.55 -
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7.59), are

∑
abt

γt
1

2
S̃ab ω̃abt =

∑
+−tt ′ab

tt ′

(±©)
1

2
S̃ab ω̃

ab
tt ′
(±©)

=

∑
+−tt ′

tt ′

(±©) { τ̃2+ Ã2+
tt ′
(±©)

+ τ̃2− Ã2−
tt ′
(±©)

+ τ̃23 Ã23
tt ′
(±©)

+

τ̃1+ Ã1+
tt ′
(±©)

+ τ̃1− Ã1−
tt ′
(±©)

+ τ̃13 Ã13
tt ′
(±©)

+

Ñ+
R Ã

NR+
tt ′
(±©)

+ Ñ−
R Ã

NR−
tt ′
(±©)

+ Ñ3R Ã
NR3
tt ′
(±©)

+

Ñ+
L Ã

NL+
tt ′
(±©)

+ Ñ−
L Ã

NL−
tt ′
(±©)

+ Ñ3L Ã
NL3
tt ′
(±©)

} ,

Ã
NR±
tt ′
(±©)

= (ω̃
23
tt ′
(±©)

− i ω̃
01
tt ′
(±©)

) ∓ i(ω̃
31
tt ′
(±©)

− i ω̃
02
tt ′
(±©)

) ,

ÃNR3
tt ′
(±©)

= (ω̃
12
tt ′
(±©)

− i ω̃
03
tt ′
(±©)

) ,

Ã
NL±
tt ′
(±©)

= (ω̃
23
tt ′
(±©)

+ i ω̃
01
tt ′
(±©)

) ∓ i(ω̃
31
tt ′
(±©)

+ i ω̃
02
tt ′
(±©)

) ,

ÃNR3
tt ′
(±©)

= (ω̃
12
tt ′
(±©)

+ i ω̃
03
tt ′
(±©)

) .

(7.62)

The term
∑
tt ′t ′′ γ

t 1
2
St
′t"ωt ′t"t in Eq. (7.27) can be rewritten with respect to

the generators St
′t" and the corresponding gauge fieldsωs ′s"t as one colour octet

scalar field and one U(1)II singlet scalar field (Eq. 7.54)

γt
1

2
St"t

′"ωt"t ′"t =
∑
+,−

∑
(t t ′)

tt ′

(±©) { ~τ3 · ~A3
tt ′
(±©)

+ τ4 ·A4
tt ′
(±©)

} ,

(t t ′) ∈ ((9 10), 11 12), 13 14)) . (7.63)
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9. N.S. Mankoč Borštnik, ”The explanation for the origin of the Higgs scalar and for the
Yukawa couplings by the spin-charge-family theory”, J.of Mod. Physics 6 (2015) 2244-2274,
http://dx.org./10.4236/jmp.2015.615230 [arXiv:1409.4981].
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Založništvo, Ljubljana, December 2019, [arXiv:1802.05554v4, arXiv:1902.10628].
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Way of Second Quantization of Fermions — Part I
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Abstract. Both algebras, Clifford and Grassmann, offer ”basis vectors” for describing the
internal degrees of freedom of fermions [5, 6, 12]. The oddness of the ”basis vectors”, trans-
fered to the creation operators, which are tensor products of the finite number of ”basis
vectors” and the infinite number of momentum basis, and to their Hermitian conjugated
partners annihilation operators, offers the second quantization of fermions without pos-
tulating the conditions proposed by Dirac [1–3], enabling the explanation of the Dirac’s
postulates. But while the Clifford fermions manifest the half integer spins — in agreement
with the observed properties of quarks and leptons and antiquarks and antileptons — the
”Grassmann fermions” manifest the integer spins. In Part I properties of the creation and an-
nihilation operators of integer spins ”Grassmann fermions” are presented and the proposed
equations of motion solved. The anticommutation relations of second quantized integer
spin fermions are shown when applying on the vacuum state as well as when applying on
the Hilbert space of the infinite number of ”Slater determinants” with all the possibilities of
empty and occupied ”fermion states”. In Part II the conditions are discussed under which
the Clifford algebras offer the appearance of the second quantized fermions, enabling as
well the appearance of families. In both parts, Part I and Part II, the relation between the
Dirac way and our way of the second quantization of fermions is presented.

Povzetek. Avtorja obravnavata Cliffordovo in Grassmannovo algebro. Obe ponudita
”bazne vektorje” za opis notranjega prostora fermionov [5, 6, 12]. ”Bazni vektorji”, ki antiko-
mutirajo, poskrbijo za antikomutacijske lastnosti kreacijskih operatorjev, ki so tenzorski pro-
dukti končnega števila teh ”baznih vektorjev” in neskončnega števila vektorjev običajnega
prostora ter njihovih hermitsko konjugiranih anihilacijskih operatorjev. Antikomutatorji
teh kreacijskih in anihilacijskih operatorjev izpolnjujejo vse pogoje, ki jih za drugo kvan-
tizacijo fermionov postulira Dirac [1–3]. Predlagana pot avtorjev do druge kvantizacije
stanj fermionskih polj pojasni Diracove postulate druge kvantizacije. Cliffordovi fermioni
nosijo polceloštevilski spin — kar se ujema z opaženimi lastnostmi kvarkov in leptonov ter
antikvarkov in antileptonov — “Grassmannovi fermioni” pa nosijo celoštevilski spin. Prvi
del članka predstavi lastnosti kreacijskih in anihilacijskih operatorjev za ”Grassmannove
fermione”, ko delujejo na vakuumsko stanje in tudi, ko delujejo na neskončno število “Slater-
jevih determinant” ”Grassmannovih fermionskih” stanj vsemi možnostmi zasedenosti teh
stanj. V drugem delu obravnavata avtorja pogoje, pri katerih Cliffordove algebre ponudijo
opis fermionov v drugi kvantizaciji hkrati s pojavom družin fermionov. V obeh delih
primerjata Diracovo pot z njuno potjo do druge kvantizacije fermionov.
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Keywords: Second quantization of fermion fields in Clifford and in Grassmann
space, Spinor representations in Clifford and in Grassmann space, Explanation
of the Dirac postulates, Kaluza-Klein-like theories, Higher dimensional spaces,
Beyond the standard model

8.1 Introduction

In a long series of works we, mainly one of us N.S.M.B. ( [5–12, 15] and the
references therein), have found phenomenological success with the model named
by N.S.M.B the spin-charge-family theory, with fermions, the internal degrees of
freedom of which is describable with the Clifford algebra of all linear combinations
of products of γa’s in d = (13+ 1) (may be with d infinity), interacting with only
gravity. The spins of fermions from higher dimensions, d > (3 + 1), manifest in
d = (3+ 1) as charges of the standard model, gravity in higher dimensions manifest
as the standard model gauge vector fields as well as the scalar Higgs and Yukawa
couplings.

There are two anticommuting kinds of algebras, the Grassmann algebra and
the Clifford algebra (of two independent subalgebras), expressible with each
other. The Grassmann algebra, with elements θa, and their Hermitian conjugated
partners ∂

∂θa
[12], can be used to describe the internal space of fermions with the

integer spins and charges in the adjoint representations, the two Clifford algebras,
we call their elements γa and γ̃a, can each of them be used to describe half integer
spins and charges in fundamental representations. The Grassmann algebra is
equivalent to the two Clifford algebras and opposite.

The two papers explain how do the oddness of the internal space of fermions
manifests in the single particle wave functions, relating the oddness of the wave
functions to the corresponding creation and annihilation operators of the second
quantized fermions, in the Grassmann case and in the Clifford case, explaining
therefore the postulates of Dirac for the second quantized fermions. We also show
that the requirement that the Clifford odd algebra represents the observed quarks
and leptons and antiquarks and antileptons reduces the Clifford algebra for the
factor of two, reducing at the same time the Grassmann algebra, disabling the
possibility for the integer spin fermions.

In this paper it is demonstrated how do the Grassmann algebra — in Part I
— and the two kinds of the Clifford algebras — in Part II — if used to describe
the internal degrees of freedom of fermions, take care of the second quantization
of fermions without postulating anticommutation relations [1–3]. Either the odd
Grassmann algebra or the odd Clifford algebra offer namely the appearance of the
creation operators, defined on the tensor products of the ”basis vectors” of the in-
ternal space and of the momentum space basis. These creation operators, together
with their Hermitian conjugated partners anihilation operators, inherit oddness
from the ”basis vectors” determined by the odd Grassmann or the odd Clifford
algebras, fulfilling correspondingly, the anticommutation relations postulated
by Dirac for the second quantized fermions, if they apply on the corresponding
vacuum state, Eq. (8.7) (defined by the sum of products of all the annihilation
times the corresponding Hermitian conjugated creation operators). Oddness of the
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”basis vectors”, describing the internal space of fermions, guarantees the oddness
of all the objects entering the tensor product.

In d-dimensional Grassmann space of anticommuting coordinates θa’s, i =
(0, 1, 2, 3, 5, · · · , d), there are 2d ”basis vectors”, which are superposition of prod-
ucts of θa. One can arrange them into the odd and the even irreducible repre-
sentations with respect to the Lorentz group. There are as well derivatives with
respect to θa’s, ∂

∂θa
’s, taken in Ref. [12] as, up to a sign, Hermitian conjugated to

θa’s, (θa† = ηaa ∂
∂θa

, ηab = diag{1,−1,−1, · · · ,−1}), which form again 2d ”basis
vectors”. Again half of them odd and half of them even (the odd Hermitian conju-
gated to odd products of θa’s, the even Hermitian conjugated to the even products
of θa’s). Grassmann space offers correspondingly 2 · 2d degrees of freedom.

There are two kinds of the Clifford ”basis vectors”, which are expressible with
θa and ∂

∂θa
: γa = (θa + ∂

∂θa
), γ̃a = i (θa − ∂

∂θa
) [6, 13, 14]. They are, up to ηaa,

Hermitian operators. Each of these two kinds of the Clifford algebra objects has
2d operators. ”Basis vectors” of Clifford algebra have together again 2 · 2d degrees
of freedom.

There is the odd algebra in all three cases, θa’s, γa’s, γ̃a’s, which if used to
generate the creation and annihilation operators for fermions, and correspondingly
the single fermion states, leads to the Hilbert space of second quantized fermions
obeying the anticommutation relations of Dirac [1] without postulating these
relations: the anticommutation properties follow from the oddness of the ”basis
vectors” in any of these algebras.

Let us present steps which lead to the second quantized fermions:
i. The internal space of a fermion is described by either Clifford or Grassmann

algebra of an odd Clifford character (superposition of an odd number of Clifford
”coordinates” (operators) γa’s or of an odd number of Clifford ”coordinates”
(operators) γ̃a’s) or of an odd Grassmann character (superposition of an odd
number of Grassmann ”coordinates” (operators) θa’s).

ii. The eigenvectors of all the (chosen) Cartan subalgebra members of the
corresponding Lorentz algebra are used to define the ”basis vectors” in the odd
part of internal space of fermions. (The Cartan subalgebra is in all three cases
chosen in the way to be in agreement with the ordinary choice.) The algebraic
application of this ”basis vectors” on the corresponding vacuum state (either
Clifford |ψoc >, defined in Eq. (18) of Part II, or Grassmann |φog >, Eq. (8.7),
which is in the Grassmann case just the identity) generates the ”basis states”,
describing the internal degrees of freedom of fermions. The members of the ”basis
vectors” manifest together with their Hermitian conjugated partners properties of
creation and annihilation operators which anticommute, Eq. (8.11) in Part I and
Eq. (18) in Part II, when applying on the corresponding vacuum state, due to the
algebraic properties of the odd products of the algebra elements.

iii. The plane wave solutions of the corresponding Weyl equations (either
Clifford, Eq. (23) or Grassmann, Eq. (8.21)) for free massless fermions are the tensor
products of the superposition of the members of the ”basis vectors” and of the
momentum basis. The coefficients of the superposition correspondingly depend
on a chosen momentum ~p, with |p0| = |~p|, for any of continuous many moments ~p.
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iv. The creation operators defined on the tensor products, ∗T , of superposition
of finite number of ”basis vectors” defining the final internal space and of the
infinite (continuous) momentum space, Eq. (24) in the Clifford case and Eq. (8.22)
in the Grassmann case, have infinite basis.

v. Applied on the vacuum state these creation operators form anticommuting
single fermion states of an odd Clifford/Grassmann character.

vi. The second quantized Hilbert space H consists of ”Slater determinants”
with no single particle state occupied (with no creation operators applying on the
vacuum state), with one single particle state occupied (with one creation operator
applying on the vacuum state), with two single particle states occupied (with two
creation operator applying on the vacuum state), and so on. ”Slater determinants”
can as well be represented as the tensor product multiplication of all possible
single particle states of any number.

vii. The creation operators together with their Hermitian conjugated partners
annihilation operators fulfill, due to the oddness of the ”basis vectors”, while the
momentum part commutes, the anticommutation relations, postulated by Dirac
for second quantized fermion fields, not only when they apply on the vacuum
state, but also when they apply on the Hilbert spaceH, Eq. (39) in the Clifford case
and Eq. (8.34) in the Grassmann case. In the Clifford case this happens only after
”freezing out” half of the Clifford space, as it is shown in Part II, Sect. 2.2, what
brings besides the correct anticommutation relations also the ”family” quantum
number to each irreducible representation of the Lorentz group of the remaining
internal space.

The oddness of the creation operators forming the single fermion states of an
odd character, transfers to the application of these creation operators on the Hilbert
space of the second quantized fermions in the Clifford and in the Grassmann case.

viii. Correspondingly the creation and annihilation operators with the internal
space described by either odd Clifford or odd Grassmann algebra, since fulfilling
the anticommutation relations required for the second quantized fermions without
postulates, explain the Dirac’s postulates for the second quantized fermions.

In the subsection 8.1.1 of this section we discuss in a generalized way our
assumption, that the oddness of the ”basis vectors” in the internal space transfer
to the corresponding creation and annihilation operators determining the second
quantized single fermion states and correspondingly the Hilbert space of the
second quantized fermions.

We present in Sect. 8.2 properties of the Grassmann odd (as well as, for our
study of anticommuting ”Grassmann fermions” not important, the Grassmann
even) algebra and of the chosen ”basis vectors” for even (d = (2(2n+ 1), 4n), n is
an integer) dimensional space-time, d = (d− 1) + 1, and illustrate anticommuting
”basis vectors” on the case of d = (5+ 1), Subsect. 8.2.1, chapter A.b..

We define the action for the integer spin ”Grassmann fermions” in Sub-
sect. 8.2.2. Solutions of the corresponding equations of motion, which are the
tensor products of finite number of ”basis vectors” and of infinite number of basis
in momentum space, define the creation operators depending on internal quantum
numbers and on ~p in d-dimensional space-time. We illustrate the corresponding
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132 N.S. Mankoč Borštnik and H.B.F. Nielsen

superposition of ”basis vectors”, solving the equation of motion in d = (5+ 1) in
chapter B.a..

We present in Sect. 8.3 the Hilbert space H of the tensor multiplication of
one fermion creation operators of all possible single particle states of an odd
character and of any number, representing ”Slater determinants” with no ”Grass-
mann fermion” state occupied with ”Grassmann fermions”, with one ”Grassmann
fermion” state occupied, with two ”Grassmann fermion” states occupied, up to
the ”Slater determinant” with all possible ”Grassmann fermion” states of each of
infinite number of momentum ~p occupied. The Hilbert spaceH is the tensor prod-
uct
∏∞⊗N of finite number ofH~p of a particular momentum ~p, for (continues)

infinite possibilities for ~p.
OnH the creation and annihilation operators manifest the anticommutation

relations of second quantized ”fermions” without any postulates. These second
quantized ”fermion” fields, manifesting in the Grassmann case an integer spin,
offer in d-dimensional space, d > (3 + 1), the description of the corresponding
charges in adjoint representations. We follow in this paper to some extent Ref. [12].

In Subsect. 8.3.3 relation between the by Dirac postulated creation and annihi-
lation operators and the creation and annihilation operators presented in this Part
I — for integer spins ”Grassmann fermions” — are discussed.

In Sect. 8.4 we comment on what we have learned from the second quantized
”Grassmann fermion” fields with integer spin when internal degrees of freedom
are described with Grassmann algebra and compare these recognitions with the
recognitions, which the Clifford algebra is offering, discussions on which appear
in Part II.

In Part II we present in equivalent sections properties of the two kinds of
the Clifford algebras and discuss conditions under which odd products of odd
elements (operators), γa and γ̃a’s of the two Clifford algebras, demonstrate the
anticommutation relations required for the second quantized fermion fields on
the Hilbert space H =

∏∞⊗NH~p, this time with the half integer spin, offering
in d-dimensional space, d > (3 + 1), the description of charges, as well as the
appearance of families of fermions [12], both needed to describe the properties of
the observed quarks and leptons and antiquarks and antileptons, appearing in
families.

In Part II we discuss relations between the Dirac way of second quantization
with postulates and our way using Clifford algebra.

This paper is a part of the project named the spin-charge-family theory of one
of the authors (N.S.M.B.), so far offering the explanation for all the assumptions of
the standard model, with the appearance of the scalar fields included.

The Clifford algebra offers in even d-dimensional spaces, d ≥ (13 + 1) in-
deed, the description of the internal degrees of freedom for the second quantized
fermions with the half integer spins, explaining all the assumptions of the standard
model: The appearance of charges of the observed quarks and leptons and their
families, as well as the appearance of the corresponding gauge fields, the scalar
fields, explaining the Higgs scalar and the Yukawa couplings, and in addition
the appearance of the dark matter, of the matter/antimatter asymmetry, offering
several predictions [5–11, 15, 16].
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8.1.1 Our main assumption and definitions

In this subsection we clarify how does the main assumption of Part I and Part II, the
decision to describe the internal space of fermions with the ”basis vectors” expressed with
the superposition of odd products of the anticommuting members of the algebra, either the
Clifford one or the Grassmann one, acting algebraically, ∗A, on the internal vacuum
state |ψo >, relate to the creation and annihilation anticommuting operators of the
second quantized fermion fields.

To appreciate the need for this kind of assumption, let us first have in mind
that algebra with the product ∗A is only present in our work, usually not in other
works, and thus has no well known physical meaning. It is at first a product by
which you can multiply two internal wave functions Bi and Bj with each other,

Ck = Bi ∗A Bj ,
Bi ∗A Bj = ∓Bj ∗A Bi ,

the sign ∓ depends on whether Bi and Bj are products of odd or even number
of algebra elements: The sign is − if both are (superposition of) odd products of
algebra elements, in all other cases the sign is +.

Let Rd−1 define the external spatial or momentum space. Then the tensor
product ∗T extends the internal wave functions into the wave functions C~p, i

defined in both spaces

C~p, i = |~p > ∗T |Bi > ,

where again Bi represent the superposition of products of elements of the anti-
commuting algebras, in our case either θa or γa or γ̃a, used in this paper.

We can make a choice of the orthogonal and normalized basis so that <
C~p,i|C ~p ′,j >= δ(~p − ~p ′) δij. Let us point out that either Bi or C~p, i apply alge-
braically on the vacuum state, Bi ∗A |ψo > and C~p, i ∗A |ψo >.

Usually a product of single particle wave functions is not taken to have any
physical meaning in as far as most physicists simply do not work with such
products at all.

To give to the algebraic product, ∗A, and to the tensor product, ∗T , defined on
the space of single particle wave functions, the physical meaning, we postulate
the connection between the anticommuting/commuting properties of the ”basis
vectors”, expressed with the odd/even products of the anticommuting algebra
elements and the corresponding creation operators, creating second quantized
single fermion/boson states

b̂†C~p,i
∗A |ψo > = |ψ~p,i > ,

b̂†C~p,i
∗T |ψ ~p ′,j > = 0 ,

if~p = ~p ′ and i = j ,

in all other cases it follows

b̂†C~p,i
∗T b̂†C ~p ′,j

∗A |ψo > = ∓ b̂†C ~p ′,j
∗T b̂†C~p,i

∗A |ψo > ,
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with the sign ± depending on whether b̂†C~p,i
have both an odd character, the sign

is −, or not, then the sign is +.
To each creation operator b̂†C~p,i

its Hermitian conjugated partner represents

the annihilation operator b̂C~p,i

b̂C~p,i
= (b̂†C~p,i

)† ,

with the property

b̂C~p,i
∗A |ψo > = 0 ,

defining the vacuum state as

|ψo >: =
∑
i

(Bi)
† ∗A Bi | I >

where summation i runs over all different products of annihilation operator × its
Hermitian conjugated creation operator, no matter for what ~p , and | I > represents
the identity, (Bi)† represents the Hermitian conjugated wave function to Bi.

Let the tensor multiplication ∗T denotes also the multiplication of any number
of single particle states, and correspondingly of any number of creation operators.

What further means that to each single particle wave function we define
the creation operator b̂†C~p,i

, applying in a tensor product from the left hand side
on the second quantized Hilbert space — consisting of all possible products of
any number of the single particle wave functions — adding to the Hilbert space
the single particle wave function created by this particular creation operator. In
the case of the second quantized fermions, if this particular wave function with
the quantum numbers and ~p of b̂†C~p,i

is already among the single fermion wave
functions of a particular product of fermion wave functions, the action of the
creation operator gives zero, otherwise the number of the fermion wave functions
increases for one. In the boson case the number of boson second quantized wave
functions increases always for one.

If we apply with the annihilation operator b̂C~p,i
on the second quantized

Hilbert space, then the application gives a nonzero contribution only if the partic-
ular products of the single particle wave functions do include the wave function
with the quantum number i and ~p.

In a Slater determinant formalism the single particle wave functions define
the empty or occupied places of any of infinite numbers of Slater determinants.
The creation operator b̂†C~p,i

applies on a particular Slater determinant from the left
hand side. Jumping over occupied states to the place with its i and ~p. If this state
is occupied, the application gives in the fermion case zero, in the boson case the
number of particles increase for one. The particular Slater determinant changes
sign in the fermion case if b̂†C~p,i

jumps over odd numbers of occupied states. In
the boson case the sign of the Slater determinant does not change.

When annihilation operator b̂C~p,i
applies on particular Slater determinant, it

is jumping over occupied states to its own place. giving zero, if this space is empty
and decreasing the number of occupied states of this space is occupied. The Slater
determinant changes sign in the fermion case, if the number of occupied states
before its own space is odd. In the boson case the sign does not change.
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Let us stress that choosing antisymmetry or symmetry is a choice which we
make when treating fermions or bosons, respectively, namely the choice of using
oddness or evenness of basis vectors, that is the choice of using odd products or
even products of algebra anticummuting elements.

To describe the second quantized fermion states we make a choice of the basis
vectors, which are the superposition of the odd numbers of algebra elements, of
both Clifford and Grassmann algebras.

The creation operators and their Hermitian conjugation partners annihilation
operators therefore in the fermion case anticommute. The single fermion states,
which are the application of the creation operators on the vacuum state |ψo >,
manifest correspondingly as well the oddness. The vacuum state, defined as
the sum over all different products of annihilation × the corresponding creation
operators, have an even character.

Let us end up with the recognition:
One usually means antisymmetry when talking about Slater-determinants

because otherwise one would not get determinants.
In the present paper [5–7, 13] the choice of the symmetrizing versus antisym-

metrizing relates indeed the commutation versus anticommutation with respect
to the a priori completely different product ∗A, of anticommuting members of
the Clifford or Grassmann algebra. The oddness or evenness of these products
transfer to quantities to which these algebras extend.

8.2 Properties of Grassmann algebra in even dimensional
spaces

In Grassmann d-dimensional space there are d anticommuting operators θa,
{θa, θb}+ = 0, a = (0, 1, 2, 3, 5, .., d), and d anticommuting derivatives with respect
to θa, ∂

∂θa
, { ∂
∂θa

, ∂
∂θb

}+ = 0, offering together 2 · 2d operators, the half of which
are superposition of products of θa and another half corresponding superposition
of ∂
∂θa

.

{θa, θb}+ = 0 , {
∂

∂θa
,
∂

∂θb
}+ = 0 ,

{θa,
∂

∂θb
}+ = δab , (a, b) = (0, 1, 2, 3, 5, · · · , d) . (8.1)

Defining [12]

(θa)† = ηaa
∂

∂θa
,

it follows

(
∂

∂θa
)† = ηaaθa . (8.2)

The identity is the self adjoint member. The signature ηab = diag{1,−1,−1, · · · ,−1}
is assumed.
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It appears useful to arrange 2d products of θa into irreducible representations
with respect to the Lorentz group with the generators [6]

Sab = i (θa
∂

∂θb
− θb

∂

∂θa
) , (Sab)† = ηaaηbbSab . (8.3)

2d−1 members of the representations have an odd Grassmann character (those
which are superposition of odd products of θa’s). All the members of any particular
odd irreducible representation follow from any starting member by the application
of Sab’s.

If we exclude the self adjoint identity there is (2d−1 − 1) members of an even
Grassmann character, they are even products of θa’s. All the members of any
particular even representation follow from any starting member by the application
of Sab’s.

The Hermitian conjugated 2d−1 odd partners of odd representations of θa’s
and (2d−1 − 1) even partners of even representations of θa’s are reachable from
odd and even representations, respectively, by the application of Eq. (8.2).

It appears useful as well to make the choice of the Cartan subalgebra of the
commuting operators of the Lorentz algebra as follows

S03,S12,S56, · · · ,Sd−1 d , (8.4)

and choose the members of the irreducible representations of the Lorentz group to
be the eigenvectors of all the members of the Cartan subalgebra of Eq. (8.4)

Sab
1√
2
(θa +

ηaa

ik
θb) = k

1√
2
(θa +

ηaa

ik
θb) ,

Sab
1√
2
(1+

i

k
θaθb) = 0 ,

or

Sab
1√
2

i

k
θaθb = 0 , (8.5)

with k2 = ηaaηbb. The eigenvector 1√
2
(θ0 ∓ θ3) of S03 has the eigenvalue k = ±i,

the eigenvalues of all the other eigenvectors of the rest of the Cartan subalgebra
members, Eq. (8.4), are k = ±1.

We choose the ”basis vectors” to be products of odd nilpotents 1√
2
(θa +

ηaa

ik
θb) and of even objects i

k
θaθb, with eigenvalues k = ±i and 0, respectively.

Let us check how does Sac = i(θa ∂
∂θc

− θc ∂
∂θa

) transform the product of two
”nilpotents” 1√

2
(θa + ηaa

ik
θb) and 1√

2
(θc + ηcc

ik ′
θd). Taking into account Eq. (8.3)

one finds that Sac 1√
2
(θa + ηaa

ik
θb) 1√

2
(θc + ηcc

ik ′
θd) = −η

aaηcc

2k
(θaθb + k

k ′
θcθd).

Sac transforms the product of two Grassmann odd eigenvectors of the Cartan
subalgebra into the superposition of two Grassmann even eigenvectors.

”Basis vectors” have an odd or an even Grassmann character, if their products
contain an odd or an even number of ”nilpotents”, 1√

2
(θa + ηaa

ik
θb), respectively.

”Basis vectors” are normalized, up to a phase, in accordance with Eq. (8.38) of 8.5.
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The Hermitian conjugated representations of (either an odd or an even) prod-
ucts of θa’s can be obtained by taking into account Eq. (8.2) for each ”nilpotent”

1√
2
(θa +

ηaa

ik
θb)† = ηaa

1√
2
(
∂

∂θa
+
ηaa

−ik

∂

∂θb
) ,

(
i

k
θaθb)† =

i

k

∂

∂θa

∂

∂θb
. (8.6)

Making a choice of the identity for the vacuum state,

|φog > = | 1 > , (8.7)

we see that algebraic products — we shall use a dot , · , or without a dot for an
algebraic product of eigenstates of the Cartan subalgebra forming ”basis vectors”
and ∗A for the algebraic product of ”basis vectors” — of different θa’s, if applied
on such a vacuum state, give always nonzero contributions,

(θ0 ∓ θ3) · (θ1 ± iθ2) · · · (θd−1 ∓ θd)| 1 >6= zero,

(this is true also, if we substitute any of nilpotents 1√
2
(θa + ηaa

ik
θb) or all of them

with the corresponding even operators ( i
k
θaθb); in the case of odd Grassmann

irreducible representations at least one nilpotent must remain). The Hermitian
conjugated partners, Eq. (8.6), applied on | 1 >, give always zero

(
∂

∂θ0
∓ ∂

∂θ3
) · ( ∂

∂θ1
± i ∂
∂θ2

) · · · ( ∂

∂θd−1
± i ∂
∂θd

)| 1 >= 0.

Let us notice the properties of the odd products θa’s and of their Hermitian
conjugated partners:

i. Superposition of products of different θa’s, applied on the vacuum state
| 1 >, give nonzero contribution. To create on the vacuum state the ”fermion” states
we make a choice of the ”basis vectors” of the odd number of θa’s, arranging them
to be the eigenvectors of all the Cartan subalgebra elements, Eq. (8.4).

ii. The Hermitian conjugated partners of the “basis vectors”, they are products
of derivatives ∂

∂θa
’s, give, when applied on the vacuum state | 1 >, Eq. (8.7), zero.

Each annihilation operator annihilates the corresponding creation operator.
iii. The algebraic product, ∗A, of a “basis vector” by itself gives zero, the alge-

braic anticommutator of any two ”basis vectors” of an odd Grassmann character
(superposition of an odd products of θa’s) gives zero (”basis vectors” of the two
decuplets in Table 8.1 and the ”basis vector” of Eq. (8.13) 1

2
(θ0 ∓ θ3), for example,

demonstrate this property).
iv. The algebraic application of any annihilation operator on the correspond-

ing Hermitian conjugated ”basis vector” gives identity, on all the rest of ”basis
vectors” gives zero. Correspondingly the algebraic anticommutators of the creation
operators and their Hermitian conjugated partners, applied on the vacuum state,
give identity, all the rest anticommutators of creation and annihilation operators
applied on the vacuum state, give zero.

v. Correspondingly the “basis vectors” and their Hermitian conjugated part-
ners, applied on the vacuum state | 1 >, Eq. (8.7), fulfill the properties of creation
and annihilation operator, respectively, for the second quantized ”fermions” on
the level of one ”fermion” state.
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8.2.1 Grassmann ”basis vectors”

We construct 2d−1 Grassmann odd ”basis vectors” and 2d−1 − 1 (we skip self
adjoint identity, which we use to describe the vacuum state | 1 >) Grassmann even
”basis vectors” as superposition of odd and even products of θa’s, respectively.
Their Hermitian conjugated 2d−1 odd and 2d−1 − 1 even partners are, according
to Eqs. (8.2, 8.6), determined by the corresponding superposition of odd and even
products of ∂

∂θa
’s, respectively 1.

A.a. Grassmann anticommuting ”basis vectors” with integer spins

Let us choose in d = 2(2n + 1)-dimensional space-time, n is a positive inte-
ger, the starting Grassmann odd ”basis vector” b̂θ1†1 , which is the eigenvector of
the Cartan subalgebra of Eqs. (8.4, 8.5) with the egenvalues (+i,+1,+1, · · · ,+1),
respectively, and has the Hermitian conjugated partner equal to (b̂θ1†1 )† = b̂θ11 ,

b̂θ1†1 : = (
1√
2
)
d
2 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6)

· · · (θd−1 + iθd) ,

b̂θ11 : = (
1√
2
)
d
2 (

∂

∂θd−1
− i

∂

∂θd
) · · · ( ∂

∂θ0
−

∂

∂θ3
) . (8.8)

In the case of d = 4n, n is a positive integer, the corresponding starting
Grassmann odd ”basis vector” can be chosen as

b̂θ1†1 : = (
1√
2
)
d
2
−1 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · ·

· · · (θd−3 + iθd−2)θd−1θd . (8.9)

All the rest of ”basis vectors”, belonging to the same irreducible representation of
the Lorentz group, follow by the application of Sab’s.

We denote the members i of this starting irreducible representation k by b̂θk†i
and their Hermitian conjugated partners by b̂θki , with k = 1.

”Basis vectors”, belonging to different irreducible representations k = 2, will
be denoted by b̂θ2†j and their Hermitian conjugated partners by b̂θ2j = (b̂θk†j )†.

Sac’s, which do not belong to the Cartan subalgebra, transform step by step
the two by two ”nilpotents”, no matter how many ”nilpotents” are between the
chosen two, up to a constant, as follows:

Sac 1√
2
(θa + ηaa

ik
θb) · · · 1√

2
(θc + ηcc

ik ′
θd) ∝ −η

aaηcc

2k
(θaθb + k

k ′
θcθd) · · · ,

leaving at each step at least one ”nilpotent” unchanged, so that the whole
irreducible representation remains odd.

The superposition of Sbd and iSbc transforms −η
aaηcc

2k
(θaθb + k

k ′
θcθd) into

1√
2
(θa − ηaa

ik
θb) 1√

2
(θc − ηcc

ik ′
θd), and not into 1√

2
(θa + ηaa

ik
θb) 1√

2
(θc − ηcc

ik ′
θd)

or into 1√
2
(θa − ηaa

ik
θb) 1√

2
(θc + ηcc

ik ′
θd).

1 Relations among operators and their Hermitian conjugated partners in both kinds of the
Clifford algebra objects are more complicated than in the Grassmann case, where the
Hermitian conjugated operators follow by taking into account Eq. (8.2). In the Clifford
case 1

2
(γa + ηaa

i k
γb)† is proportional to 1

2
(γa + ηaa

i (−k)
γb), while 1√

2
(1 + i

k
γaγb) are self

adjoint. This is the case also for representations in the sector of γ̃a’s.
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Therefore we can start another odd representation with the ”basis vector”
b̂θ2†1 as follows

b̂θ2†1 : = (
1√
2
)
d
2 (θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd) ,

(b̂θ2†1 )† = b̂θ12 : = (
1√
2
)
d
2 (

∂

∂θd−1
− i

∂

∂θd
) · · · ( ∂

∂θ0
−

∂

∂θ3
) . (8.10)

The application of Sac’s determines the whole second irreducible representation
b̂θ2†j .

One finds that each of these two irreducible representations has 1
2

d!
d
2 !

d
2 !

mem-
bers, Ref. [12].

Taking into account Eq. (8.1), it follows that odd products of θa’s anticommute
and so do the odd products of ∂

∂θa
’s.

Statement 1: The oddness of the products of θa’s guarantees the anticom-
muting properties of all objects which include odd number of θa’s.

One further sees that ∂
∂θa

θb = ηab, while ∂
∂θa

| 1 >= 0, and θa| 1 >= θa| 1 >.
and {b̂θki , b̂

θl†
j }∗A+ = We can therefore conclude

{b̂θki , b̂
θl†
j }∗A+| 1 > = δij δ

kl | 1 > ,

{b̂θki , b̂
θl
j }∗A+| 1 > = 0 · | 1 > ,

{b̂θk†i , b̂θl†j }∗A+ | 1 > = 0 · | 1 > ,
b̂θkj ∗A | 1 > = 0 · | 1 > , (8.11)

where {b̂θki , b̂
θl†
j }∗A+ = b̂θki ∗A b̂θl†j + b̂θlj ∗A b̂θk†i is meant.

These anticommutation relations of the ”basis vectors” of the odd Grassmann
character, manifest on the level of the Grassmann algebra the anticommutation
relations required by Dirac [1] for second quantized fermions.

The ”Grassmann fermion basis states” can be obtained by the application of
creation operators b̂θk†i on the vacuum state | 1 >

|φko i > = b̂θk†i | 1 > . (8.12)

We use them to determine the internal space of ”Grassmann fermions” in the tensor
product ∗T of these ”basis states” and of the momentum space, when looking for
the anticommuting single particle ”Grassmann states”, which have, according to
Eq. (8.5), an integer spin, and not half integer spin as it is the case for the so far
observed fermions.

A.b. Illustration of anticommuting ”basis vectors” in d = (5 + 1)-dimensional
space

Let us illustrate properties of Grassmann odd representations for d = (5+1)-dimensional
space.

Table 8.1 represents two decuplets, which are ”egenvectors” of the Cartan subalgbra
(S03, S12, S56), Eq. (8.4), of the Lorentz algebra Sab. The two decuplets represent two
Grassmann odd irreducible representations of SO(5, 1).
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One can read on the same table, from the first to the third and from the fourth to
the sixth line of both decuplets, two Grassmann even triplet representations of SO(3, 1),
if paying attention on the eigenvectors of S03 and S12 alone, while the eigenvector of S56

has, as a ”spectator”, the eigenvalue either +1 (the first triplet in both decuplets) or −1 (the
second triplet in both decuplets). Each of the two decuplets contains also one ”fourplet”
with the ”charge” S56 equal to zero ((7th, 8th, 9th, 10th) lines in each of the two decuplets
(Table II in Ref. [6])).

Paying attention on the eigenvectors of S03 alone one recognizes as well even and odd
representations of SO(1, 1): θ0θ3 and θ0 ± θ3, respectively.

The Hermitian conjugated ”basis vectors” follow by using Eq. (8.6) and is for the
first ”basis vector” of Table 8.1 equal to (−)2( 1√

2
)3( ∂

∂θ5
− i ∂

∂θ6
) ( ∂
∂θ1

− i ∂
∂θ2

) ( ∂
∂θ0

+ ∂
∂θ3

).
One correspondingly finds that when ( 1√

2
)3( ∂

∂θ5
− i ∂

∂θ6
) ( ∂
∂θ1

− i ∂
∂θ2

) ( ∂
∂θ0

+ ∂
∂θ3

) applies
on ( 1√

2
)3(θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) the result is identity. Application of ( 1√

2
)3( ∂

∂θ5
−

i ∂
∂θ6

) ( ∂
∂θ1

− i ∂
∂θ2

) ( ∂
∂θ0

+ ∂
∂θ3

) on all the rest of ”basis vectors” of the decuplet I as well as
on all the ”basis vectors” of the decuplet II gives zero. ”Basis vectors” are orthonormalized
with respect to Eq. (8.38). Let us notice that ∂

∂θa
on a ”state” which is just an identity, | 1 >,

gives zero, ∂
∂θa

| 1 >= 0, while θa | 1 >, or any superposition of products of θa’s, applied
on | 1 >, gives the ”vector” back.

One easily sees that application of products of superposition of θa’s on | 1 > gives
nonzero contribution, while application of products of superposition of ∂

∂θa
’s on | 1 > gives

zero.
The two by Sab decoupled Grassmann decuplets of Table 8.1 are the largest two

irreducible representations of odd products of θa’s. There are 12 additional Grassmann odd
”vectors”, arranged into irreducible representations of six singlets and six sixplets

(
1

2
(θ0 ∓ θ3), 1

2
(θ1 ± iθ2), 1

2
(θ5 ± iθ6) ,

1

2
(θ0 ∓ θ3) θ1θ2θ5θ6, 1

2
(θ1 ± iθ2) θ0θ3θ5θ6 , 1

2
(θ5 ± iθ6) θ0θ3θ1θ2) . (8.13)

The algebraic application of products of superposition of ∂
∂θa

’s on the corresponding
Hermitian conjugated partners, which are products of superposition of θa’s, leads to the
identity for either even or odd Grassmann character 2.

Besides 32Grassmann odd eigenvectors of the Grassmann Cartan subalgebra, Eq. (8.4),
there are (32 − 1) Grassmann ”basis vectors”, which we arrange into irreducible represen-
tations, which are superposition of even products of θa’s. The even self adjoint operator
identity (which is indeed the normalized product of all the annihilation times ∗A creation
operators) is used to represent the vacuum state.

It is not difficult to see that Grassmann ”basis vectors” of an odd Grassmann character
anticommute among themselves and so do odd products of superposition of ∂

∂θa
’s, while

equivalent even products commute.
The Grassmann odd algebra (as well as the two odd Clifford algebras) offers, due to the

oddness of the internal space giving oddness as well to the elements of the tensor products
of the internal space and of the momentum space, the description of the anticommuting
second quantized fermion fields, as postulated by Dirac. But the Grassmann ”fermions”

2 We shall see in Part II that the vacuum states are in the Clifford case, similarly as in the
Grassmann case, for both kinds of the Clifford algebra objects, γa’s and γ̃a’s, sums of
products of the annihilation × its Hermitian conjugated creation operators, and corre-
spondingly self adjoint operators, but they are not the identity.



i
i

“proc20Vol1” — 2020/12/6 — 22:10 — page 141 — #157 i
i

i
i

i
i

8 Understanding the Second Quantization of Fermions — Part I 141

I i decuplet of eigenvectors S03 S12 S56 Γ (5+1) Γ (3+1)

1 ( 1√
2
)3(θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) i 1 1 1 1

2 ( 1√
2
)2(θ0θ3 + iθ1θ2)(θ5 + iθ6) 0 0 1 1 1

3 ( 1√
2
)3(θ0 + θ3)(θ1 − iθ2)(θ5 + iθ6) −i −1 1 1 1

4 ( 1√
2
)3(θ0 − θ3)(θ1 − iθ2)(θ5 − iθ6) i −1 −1 1 −1

5 ( 1√
2
)2(θ0θ3 − iθ1θ2)(θ5 − iθ6) 0 0 −1 1 −1

6 ( 1√
2
)3(θ0 + θ3)(θ1 + iθ2)(θ5 − iθ6) −i 1 −1 1 −1

7 ( 1√
2
)2(θ0 − θ3)(θ1θ2 + θ5θ6) i 0 0 1 0

8 ( 1√
2
)2(θ0 + θ3)(θ1θ2 − θ5θ6) −i 0 0 1 0

9 ( 1√
2
)2(θ0θ3 + iθ5θ6)(θ1 + iθ2) 0 1 0 1 0

10 ( 1√
2
)2(θ0θ3 − iθ5θ6)(θ1 − iθ2) 0 −1 0 1 0

II i decuplet of eigenvectors S03 S12 S56 γ(5+1) γ(3+1)

1 ( 1√
2
)3(θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) −i 1 1 −1 −1

2 ( 1√
2
)2(θ0θ3 − iθ1θ2)(θ5 + iθ6) 0 0 1 −1 −1

3 ( 1√
2
)3(θ0 − θ3)(θ1 − iθ2)(θ5 + iθ6) i −1 1 −1 −1

4 ( 1√
2
)3(θ0 + θ3)(θ1 − iθ2)(θ5 − iθ6) −i −1 −1 −1 1

5 ( 1√
2
)2(θ0θ3 + iθ1θ2)(θ5 − iθ6) 0 0 −1 −1 1

6 ( 1√
2
)3(θ0 − θ3)(θ1 + iθ2)(θ5 − iθ6) i 1 −1 −1 1

7 ( 1√
2
)2(θ0 + θ3)(θ1θ2 + θ5θ6) −i 0 0 −1 0

8 ( 1√
2
)2(θ0 − θ3)(θ1θ2 − θ5θ6) i 0 0 −1 0

9 ( 1√
2
)2(θ0θ3 − iθ5θ6)(θ1 + iθ2) 0 1 0 −1 0

10 ( 1√
2
)2(θ0θ3 + iθ5θ6)(θ1 − iθ2) 0 −1 0 −1 0

Table 8.1. The two decuplets, the odd eigenvectors of the Cartan subalgebra, Eq. (8.4),
(S03,S12, S56, for SO(5, 1)) of the Lorentz algebra in Grassmann (5 + 1)-dimensional space,
forming two irreducible representations, are presented. Table is partly taken from Ref. [12].
The ”basis vectors” within each decuplet are reachable from any member by Sab’s and
are decoupled from another decuplet. The two operators of handedness, Γ ((d−1)+1) for
d = (6, 4), are invariants of the Lorentz algebra, Eq. (8.40), Γ (5+1) for the whole decuplet,
Γ (3+1) for the ”triplets” and ”fourplets”.

carry the integer spins, while the observed fermions — quarks and leptons — carry half
integer spin.

A.c. Grassmann commuting ”basis vectors” with integer spins

Grassmann even ”basis vectors” manifest the commutation relations, and not the
anticommutation ones as it is the case for the Grassmann odd ”basis vectors”. Let us use
in the Grassmann even case, that is the case of superposition of an even number of θa’s in
d = 2(2n+ 1), the notation âθk†j , again chosen to be eigenvectors of the Cartan subalgebra,
Eq. (8.4), and let us start with one representative

âθ1†j : = (
1√
2
)
d
2
−1 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6)

· · · (θd−3 + iθd−2)θd−1θd . (8.14)
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The rest of ”basis vectors”, belonging to the same Lorentz irreducible representation, follow
by the application of Sab. The Hermitian conjugated partner of âθ1†1 is âθ11 = (âθ1†1 )†

âθ11 : = (
1√
2
)
d
2
−1 ∂

∂θd
∂

∂θd−1
(

∂

∂θd−3
− i

∂

∂θd−2
)

· · · ( ∂

∂θ0
−

∂

∂θ3
) . (8.15)

If âθk†j represents a Grassmann even creation operator, with index k denoting different
irreducible representations and index j denoting a particular member of the kth irreducible
representation, while âθkj represents its Hermitian conjugated partner, one obtains by taking
into account Sect. 8.2, the relations

{âθki , â
θk ′†
j }∗A−| 1 > = δij δ

kk ′
| 1 > ,

{âθki , â
θk‘
j }∗A−| 1 > = 0 · | 1 > ,

{âθk†i , âθk
′†

j }∗A− | 1 > = 0 · | 1 > ,

âθki ∗A | 1 > = 0 · | 1 > ,
âθk†i ∗A | 1 > = |φke i > . (8.16)

Equivalently to the case of Grassmann odd ”basis vectors” also here {âθki , â
θl†
j }∗A− =

âθki ∗A âθl†j − âθlj ∗A âθk†i is meant.

8.2.2 Action for free massless ”Grassmann fermions” with integer spin [12]

In the Grassmann case the ”basis vectors” of an odd Grassmann character, chosen
to be the eigenvectors of the Cartan subalgebra of the Lorentz algebra in Grass-
mann space, Eq. (8.4), manifest the anticommutation relations of Eq. (8.11) on the
algebraic level.

To compare the properties of creation and annihilation operators for ”integer
spin fermions”, for which the internal degrees of freedom are described by the
odd Grassmann algebra, with the creation and annihilation operators postulated
by Dirac for the second quantized fermions depending on the quantum numbers
of the internal space of fermions and on the momentum space, we need to define
the tensor product ∗T of the odd ”Grassmann basis states”, described by the
superposition of odd products of θa’s (with the finite degrees of freedom) and of
the momentum (or coordinate) space (with the infinite degrees of freedom), taking
as the basis the tensor product of both spaces.

Statement 2: For deriving the anticommutation relations for the ”Grassmann
fermions”, to be compared to anticommutation relations of the second quantized
fermions, we need to define the tensor product of the Grassmann odd ”basis
vectors” and the momentum space

basis(pa,θa) = |pa > ∗T |θa > . (8.17)

We need even more, we need to find the Lorentz invariant action for, let say,
free massless ”Grassmann fermions” to define such a ”basis”, that would manifest
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the relation |p0| = |~p|. We follow here the suggestion of one of us (N.S.M.B.) from
Ref. [12].

AG =

∫
ddx ddθ ω {φ† γ0G

1

2
θapaφ}+ h.c. ,

ω =

d∏
k=0

(
∂

∂θk
+ θk) , (8.18)

with γaG = (1 − 2θa ∂
∂θa

), (γaG)
† = γaG, for each a = (0, 1, 2, 3, 5, · · · , d). We use

the integral over θa coordinates with the weight functionω from Eq. (8.38, 8.39).
Requiring the Lorentz invariance we add after φ† the operator γ0G, which takes
care of the Lorentz invariance. Namely

Sab† (1− 2θ0
∂

∂θ0
) = (1− 2θ0

∂

∂θ0
)Sab ,

S† (1− 2θ0
∂

∂θ0
) = (1− 2θ0

∂

∂θ0
)S−1 ,

S = e−
i
2
ωab(L

ab+Sab) , (8.19)

while θa, ∂
∂θa

and pa transform as Lorentz vectors.
The Lagrange density is up to the surface term equal to 3

LG =
1

2
φ† γ0G(θ

a −
∂

∂θa
) (p̂aφ)

=
1

4
{φ† γ0G (θa −

∂

∂θa
) p̂aφ−

(p̂aφ
†)γ0G(θ

a −
∂

∂θa
)φ} , (8.20)

leading to the equations of motion 4

1

2
γ0G (θa −

∂

∂θa
) p̂a |φ > = 0 , (8.21)

as well as the the ”Klein-Gordon” equation,

(θa −
∂

∂θa
) p̂a (θ

b −
∂

∂θb
) p̂b |φ >= 0 = p̂ap̂

a |φ > .

The eigenstates φ of equations of motion for free massless ”Grassmann
fermions”, Eq. (8.21), can be found as the tensor product, Eq.(8.17) of the super-
position of 2d−1 Grassmann odd ”basis vectors” b̂θk†i and the momentum space,
represented by plane waves, applied on the vacuum state | 1 >. Let us remind

3 Taking into account the relations γa = (θa+ ∂
∂θa

), γ̃a = i (θa− ∂
∂θa

), γ0G = −iηaaγaγ̃a the
Lagrange density can be rewritten as LG = −i 1

2
φ† γ0G γ̃

a (p̂aφ) = −i 1
4
{φ† γ0G γ̃

a p̂aφ −

p̂aφ
† γ0G γ̃

a φ }.
4 Varying the action with respect to φ† and φ it follows: ∂LG

∂φ†
− p̂a

∂LG
∂p̂aφ†

= 0 =
−i
2
γ0G γ̃

a p̂a φ, and ∂LG
∂φ

− p̂a
∂LG
∂(p̂aφ)

= 0 = i
2
p̂a φ

†γ0G γ̃
a.
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that the ”basis vectors” are the ”eigenstates” of the Cartan subalgebra, Eq. (8.4),
fulfilling (on the algebraic level) the anticommutation relations of Eq. (8.11). And
since the oddness of the Grassmann odd ”basis vectors” guarantees the oddness
of the tensor products of the internal part of ”Grassmann fermions” and of the
plane waves, we expect the equivalent anticommutation relations also for the
eigenstates of the Eq. (8.21), which define the single particle anticommuting states
of ”Grassmann fermions”.

The coefficients, determining the superposition, depend on momentum pa,
a = (0, 1, 2, 3, 5, . . . , d), |p0| = |~p|, of the plane wave solution e−ipax

a

.
Let us therefore define the new creation operators and the corresponding

single particle ”Grassmann fermion” states as the tensor product of two spaces,
the Grassmann odd ”basis vectors” and the momentum space basis

b̂θk s†(~p) def
=
∑
i

cksi(~p) b̂
θk†
i , |p0| = |~p| ,

b̂
θk s†
tot (~p)

def
= b̂θk s†(~p) · e−ipaxa , |p0| = |~p| ,

< x|φkstot(~p) > = b̂
θks†
tot (~p) | 1 > , |p0| = |~p| , (8.22)

with s representing different solutions of the equations of motion and k different
irreducible representations of the Lorentz group, ~p denotes the chosen vector
(p0,~p) in momentum space.

One has further

|φks(x0,~x) > =

∫+∞
−∞

dd−1p

(
√
2π)d−1

b̂
θks†

(~p)||p0|=|~p|| 1 > (8.23)

The orthogonalized states |φks(~p) > fulfill the relation

< φks(~p)|φk
′s ′(~p ′) > = δkk

′
δss ′ δpp ′ , |p0| = |~p| ,

< φk
′s ′(x0,~x ′)|φks(x0,~x) > = δkk

′
δss ′ δ~x ′,~x , (8.24)

where we assumed the discretization of momenta ~p and coordinates ~x.
In even dimensional spaces (d = 2(2n+ 1) and 4n) there are 2d−1 Grassmann

odd superposition of ”basis vectors”, which belong to different irreducible rep-
resentations, among them twice 1

2
d!

d
2 !

d
2 !

of the kind presented in Eqs. (8.8, 8.9) and
discussed in the chapter A.b. of the subsect. 8.2.1 and in Table 8.1 for a particular

case d = (5 + 1). The illustration for the superposition b̂θk s†(~p) and b̂
θk s†
tot (~p) is

presented, again for d = (5+ 1), in chapter B.a..
We introduced in Eq. (8.22) the creation operators b̂

θk s†
tot (~p) as the tensor

product of the ”basis vectors” of Grassmann algebra elements and the momen-
tum basis. The Grassmann algebra elements transfer their oddness to the tensor

products of these two basis. Correspondingly must b̂
θk s†
tot (~p) together with their

Hermitian conjugated annihilation operators (b̂
θk s†
tot (~p))† = b̂

θk s

tot (~p) fulfill the
the anticommutation relations equivalent to the anticommutation relations of



i
i

“proc20Vol1” — 2020/12/6 — 22:10 — page 145 — #161 i
i

i
i

i
i

8 Understanding the Second Quantization of Fermions — Part I 145

Eq. (8.11)

{b̂
θk s

tot (~p), b̂
θk ′ s ′†
tot (~p ′)}∗T+| 1 > = δkk

′
δss ′δ(~p− ~p ′) | 1 > ,

{b̂
θk s

tot (~p), b̂
θk ′ s ′

tot (~p ′)}∗T+| 1 > = 0 · | 1 > ,
{b̂
θk s†
tot (~p), b̂

θk ′ s ′†
tot (~p ′)}∗T+| 1 > = 0 · | 1 > ,

b̂
θk s

tot (~p) ∗T | 1 > = 0 · | 1 > ,
|p0| = |~p| . (8.25)

k labels different irreducible representations of Grassmann odd “basis vectors”, s
labels different — orthogonal and normalized — solutions of equations of motion
and ~p represent different momenta fulfilling the relation (p0)2 = (~p)2. Here we
allow continuous momenta and take into account that

< 1|b̂
θk s

tot (~p) ∗T b̂
θk ′ s ′†
tot (~p ′)| 1 > = δkk

′
δss

′
δ(~p− ~p ′) , (8.26)

in the case of continuous values of ~p in even d-dimensional space.
For each momentum ~p there are 2d−1 members of the odd Grassmann charac-

ter, belonging to different irreducible representations. The plane wave solutions,
belonging to different ~p, are orthogonal, defining correspondingly∞ many de-

grees of freedom for each of 2d−1 ”fermion” states, defined by b̂
θk s†
tot (~p), when

applying on the vacuum state | 1 >, Eq. (8.7).
With the choice of the Grassmann odd ”basis vectors” in the internal space of

”Grassmann fermions” and by extending these ”basis states” to momentum space
to be able to solve the equations of motion, Eq. (8.21), we are able to define the

creation operators b̂
θk s

tot (~p) of the odd Grassmann character, which together with
their Hermitian conjugated partners annihilation operators, fulfill the anticommu-
tation relations of Eq. (8.25), manifesting the properties of the second quantized
fermion fields. Anticommutation properties of creation and annihilation operators
are due to the odd Grassmann character of the ”basis vectors”.

To define the Hilbert space of all possible ”Slater determinants” of all possible

occupied and empty fermion states and to discuss the application of b̂
θk s

tot (~p) and

b̂
k s†
tot (~p) on ”Slater determinants”, let us see what the anticommutation relations,
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presented in Eq. (8.25), tell. We realize from Eq. (8.25) the properties

b̂
θk s†
tot (~p) ∗T b̂

θk ′ s ′†
tot (~p ′) = −b̂

θk ′ s ′†
tot (~p ′) ∗T b̂

θk s†
tot (~p) ,

b̂
θk s

tot (~p) ∗T b̂
θk ′ s ′

tot (~p ′) = −b̂
θk ′ s ′

tot (~p ′) ∗T b̂
θk s

tot (~p) ,

b̂
θk s

tot (~p) ∗T b̂
θk ′ s ′†
tot (~p ′) = −b̂

θk ′ s ′†
tot (~p ′) ∗T b̂

θk s

tot (~p) ,

if at least one of (k, s,~p) distinguishes from(k ′, s ′,~p ′) ,

b̂
θk s†
tot (~p) ∗T b̂

θk s†
tot (~p) = 0 ,

b̂
θk s

tot (~p) ∗T b̂
θk s

tot (~p) = 0 ,

b̂
θk s

tot (~p) ∗T b̂
θk s†
tot (~p )| 1 > = | 1 > ,

b̂
θk s

tot (~p)| 1 > = 0 ,

|p0| = |~p| . (8.27)

From the above relations we recognize how do the creation and annihilation
operators apply on ”Slater determinants” of empty and occupied states, the later

determined by b̂
θk s†
tot (~p):

i. The creation operator b̂
θk s†
tot (~p) jumps over the creation operator defining

the occupied state, which distinguish from the jumping creation one in at least
one of (k, s,~p), changing sign of the ”Slater determinant” every time, up to the
last step when it comes to its own empty state, the one with its quantum numbers
(k, s,~p), occupying this empty state, or if this state is already occupied, gives zero.

ii. The annihilation operator changes sign of the ”Slater determinant” when
ever jumping over the occupied state carrying different internal quantum numbers
(k, s) or ~p, unless it comes to the occupied state with its own (k, s,~p), emptying
this state or, if this state is empty, gives zero.

We show in Part II that the Clifford odd ”basis vectors” describe fermions
with the half integer spin, offering as well the corresponding anticommutation
relations, explaining Dirac’s postulates for second quantized fermions.

We discuss in Sect. 8.3 the properties of the ”Slater determinants” of the

occupied and empty ”Grassmann fermion states”, created by b̂
θk s†
tot (~p).

In Subsect. B.a. we present one solution of the equations of motion for free
massless ”Grassmann fermions”.

B.a. Plane wave solutions of equations of motion, Eq. (8.21), in d = (5 + 1)-
dimensional space

One of such plane wave massless solutions of the equations of motion in d = (5 + 1)-
dimensional space for momentum pa = (p0, p1, p2, p3, 0, 0), p0 = |p0|, is the superposition
of ”basis vectors”, presented in Table 8.1 among the first three members of the first decuplet,
k = I. This particular solution b̂

θk s†
tot (~p) carries the spin S12 = 1 (”up”) and the “charge”
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S56 = 1 (both from the point of view of d = (3 + 1))

b̂
θ1 1†
tot (~p): = β (

1√
2
)2{

1√
2
(θ0 − θ3)(θ1 + iθ2)

−
2(|p0| − |p3|)

p1 − ip2
(θ0θ3 + iθ1θ2)

−(
(p1 + ip2)2

(|p0| + |p3|)2
)
1√
2
(θ0 + θ3)(θ1 − iθ2) }

×(θ5 + iθ6) · e−i(|p
0|x0−~p·~x) , |p0| = |~p| ,

β is the normalization factor. The notation b̂
θ1 1†
tot (~p) means that the creation operator

represents the plane wave solution of the equations of motion, Eq. (8.21), for a particular
|p0| = |~p|.

Applied on the vacuum state the creation operator defines the second quantized single
particle state of particular momentum ~p. States, carrying different ~p, are orthogonal (due to
the orthogonality of the plane waves of different momenta and due to the orthogonality of

b̂
θk ′ s ′†
tot (~p) and b̂

θk s

tot (~p) with respect to k and s, Eqs. (8.24, 8.26, 8.25)).
More solutions can be found in [12] and the references therein.

8.3 Hilbert space of anticommuting integer spin “Grassmann
fermions”

The Grassmann odd creation operators b̂
θk s†
tot (~p), with |p0| = |~p|, are defined on

the tensor products of 2d−1 ”basis vectors”, defining the internal space of inte-
ger spin ”Grassmann fermions”, and on infinite basis states of momentum space
for each component of ~p, chosen so that they solve for particular (~p) the equa-
tions of motion, Eq. (8.21). They fulfill together with their Hermitian conjugated

annihilation operators b̂
θk s

tot (~p) the anticommutation relations of Eq. (8.25).
These creation operators form the Hilbert space of ”Slater determinants”,

defining for each ”Slater determinant” places with either empty or occupied
”Grassmann fermion” states.

Statement 3: Introducing the tensor product multiplication ∗T of any number
of single ”Grassmann fermion” states of all possible internal quantum numbers

and all possible momenta (that is of any number of b̂
θk s†
tot (~p) and with the identity

included, applying on the vacuum state of any (k, s,~p)), we generate the Hilbert
space of the second quantized ”Grassmann fermion” fields.

It is straightforward to recognize that the above definition of the Hilbert
space is equivalent to the space of ”Slater determinants” of all possible empty
or occupied states of any momentum and any quantum numbers describing the
internal space. The identity in this tensor product multiplication, for example,
represents the ”Slater determinant” of no single fermion state present.

The 2d−1 Grassmann odd creation operators of particular momentum ~p, if
applied on the vacuum state | 1 >, Eq. (8.7), define 2d−1 states. Since any state can
be occupied or empty, the Hilbert spaceH~p of a particular momentum ~p consists
correspondingly of

NH~p
= 22

d−1

. (8.28)



i
i

“proc20Vol1” — 2020/12/6 — 22:10 — page 148 — #164 i
i

i
i

i
i
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”Slater determinants”, namely the one with no occupied state, those with one
occupied state, those with two occupied states, up to the one with all 2d−1 states
occupied.

The total Hilbert spaceH of anticommuting integer spin ”Grassmann fermions”
consists of infinite many ”Slater determinants” of particular ~p,H~p, due to infinite
many degrees of freedom in the momentum space

H =

∞∏
~p

⊗NH~p , (8.29)

with the infinite number of degrees of freedom

NH =

∞∏
~p

22
d−1

. (8.30)

8.3.1 ”Slater determinants” of anticommuting integer spin “Grassmann
fermions” of particular momentum ~p

Let us write down explicitly these 22
d−1

contributions to the Hilbert spaceH~p of
particular momentum ~p, using the notation that 0k

sp̃ represents the unoccupied

state b̂
θk s†
tot (~p)| 1 > (of the sth solution of the equations of motion belonging to the

kth irreducible representation), while 1k
sp̃ represents the corresponding occupied

state.
The number operator is according to Eq. (8.11) and Eq. (8.27) equal to

Nθk s~p = b̂
θk s†
tot (~p) ∗T b̂

θk s

tot (~p) ,

Nθks~p ∗T 0ks~p = 0 , Nθks~p ∗T 1ks~p = 1 . (8.31)

Let us simplify the notation so that we count for k = 1 empty states as
0rp̃, and occupied states as 1rp̃, with r = (1, . . . , s1max), for k = 2 we count r =

s1max+ 1, . . . , s
1
max+ s

2
max, up to r = 2d−1. Correspondingly we can representH~p

as follows

|01p̃, 02p̃, 03p̃, . . . , 02d−1p̃ > , |11p̃, 02p̃, 03p̃, . . . , 02d−1p̃ >,

|01p̃, 12p̃, 03p̃, . . . , 02d−1p̃ > , |01p̃, 02p̃, 13p̃, . . . , 02d−1p̃ >,

...

|11p̃, 12p̃, 03p̃, . . . , 02d−1p̃ > , |11p̃, 02p̃, 13p̃, . . . , 02d−1p̃ >,

...

|11p̃, 12p̃, 13p̃, . . . , 12d−1p̃ > , (8.32)

with a part with none of states occupied (Nr~p = 0 for all r = 1, . . . , 2d−1), with
a part with only one of states occupied (Nr~p = 1 for a particular r = 1, . . . , 2d−1

while Nr ′~p = 0 for all the others r ′ 6= r), with a part with only two of states
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occupied (Nr~p = 1 and Nr ′~p = 1, where r and r ′ run from 1, . . . , 2d−1), and so on.
The last part has all the states occupied.

Taking into account Eq. (8.27) is not difficult to see that the creation op-

erator b̂
θk s†
tot (~p) and the annihilation operators b̂

θk s

tot (~p), when applied on this
Hilbert spaceH~p, fulfill the anticommutation relations for the second quantized
“fermions”.

{b̂
θk s

tot (~p) , b̂
θk ′ s ′†
tot (~p )}∗T+H~p = δkk

′
δss ′H~p ,

{b̂
θk s

tot (~p) , b̂
θk ′ s ′

tot (~p )}∗T+ H~p = 0 · H~p ,

{b̂
θk s†
tot (~p) , b̂

θk ′ s ′†
tot (~p )}∗T+ H~p = 0 · H~p . (8.33)

The proof for the above relations easily follows if taking into account that,
when ever the creation or annihilation operator jumps over an odd products of
occupied states, the sign changes. Then one sees that the contribution of the appli-

cation of b̂
θk s

tot (~p)∗T b̂
θk ′ s ′†
tot (~p) H~p has the opposite sign than the contribution of

b̂
θk ′ s ′†
tot (~p)∗T b̂

θk s

tot (~p) H~p.
If the creation and annihilation operators are Hermitian conjugated to each

other, the result of

{b̂
θk s

tot (~p) ∗T b̂
θk s†
tot (~p) + b̂

θk s†
tot (~p) ∗T b̂

θk s

tot (~p) }H~p = H~p

is the wholeH~p back. Each of the two summands operates on its own half ofH~p.

Jumping together over even number of occupied states b̂
θk s

tot (~p) and b̂
θk s†
tot (~p) do

not change the sign of particular “Slater determinant”. (Let us add that b̂
θk s

tot (~p)

reduces for particular k and s the Hilbert space H~p for a factor 1
2

, and so does

b̂
θk s†
tot (~p). The sum of both, applied onH~p, reproduces the wholeH~p.)

8.3.2 ”Slater determinants” of Hilbert space of anticommuting integer spin
“fermions”

The total Hilbert space of anticommuting ”fermions” is the infinite product of the
Hilbert spaces of particular ~p,H =

∏∞
~p ⊗NH~p, Eq. (8.29), represented by infinite

numbers of ”Slater determinants” NH =
∏∞

~p 2
2d−1

, Eq. (8.30). The notation ⊗N
is to point out that creation operators b̂

θk s†
tot (~p ), which origin in superposition of

odd number of θa’s, keep their odd character also in the tensor products of the
internal and momentum space, as well as in the ”Slater determinants”, in which
creation operators determine the occupied states.

The application of creation operators b̂
θk s†
tot (~p ) and their Hermitian conju-

gated annihilation operators b̂
θk s

tot (~p ) on the Hilbert spaceH has the property, man-

ifested in Eq. (8.27), leading to the conclusion that the application of b̂
θk s†
tot (~p )∗T

b̂
θk ′ s ′†
tot ( ~p ′ ) ∗T H is not zero if at least one of (k, s,~p) is not equal to (k ′, s ′, ~p ′),

while b̂
θk s†
tot (~p )∗T b̂

θk ′ s ′†
tot ( ~p ′ ) ∗T H+ b̂

θk ′ s ′†
tot ( ~p ′ )∗T b̂

θk s†
tot (~p ) ∗T H = 0 for any
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(k, s,~p) and any (k ′, s ′, ~p ′), what is not difficult to prove when taking into account
Eq. (8.27).

One can easily show that the creation operators b̂
θk s†
tot (~p) and the annihilation

operators b̂
θk s

tot (~p
′) fulfill equivalent anticommutation on the whole Hilbert space

of infinity many ”Slater determinants” as they do on the Hilbert spaceH~p.

{b̂
θk s

tot (~p) , b̂
θk s†
tot (~p ′)}∗T+H = δkk

′
δss ′δ(~p− ~p ′) H ,

{b̂
θk s

tot (~p), b̂
θk s†
tot (~p ′)}∗T+ H = 0 · H ,

{b̂
θk s†
tot (~p) , b̂

θk ′ s ′†
tot (~p ′)}∗T+ H = 0 · H . (8.34)

Creation operators, b̂
sf†
tot(~p), operating on a vacuum state, as well as on the

whole Hilbert space, define the second quantized fermion states.

8.3.3 Relations between creation operators b̂
θk s†
tot (~p) in the Grassmann odd

algebra and the creation operators postulated by Dirac

Creation operators b̂
θk s†
tot (~p) define the second quantized ”fermion” fields of

integer spins.
Since the second quantized Dirac fermions have the half integer spin, the

”Grassmann fermions”, the internal degrees of which is described by the Grass-
mann odd algebra, have the integer spin. The comparison between the second
quantized fields of Dirac and those presented in this Part I of the paper can only be
done on a rather general level. We leave therefore the detailed comparison of the
creation and annihilation operators for fermions with half integer spins between
those postulated by Dirac and the ones following from the Clifford odd algebra
presented in Part II to Subsect. 3.4 of Part II.

Here we discuss only the relations among appearance of the creation and anni-
hilation operators offered by the Grassmann odd algebra and those postulated by
Dirac. In both cases we treat only d = (3+1)-dimensional space, that is we solve the
equations of motion for pa = (p0, p1, p2, p3) (in the case that d > 4 the rest of space
demonstrates the charges in d = (3+ 1), when pa = (p0, p1, p2, p3, 0, 0, . . . , 0)).

It is pointed out in what follows that both internal spaces — either the internal
space postulated by Dirac or the internal space offered by the Grassmann algebra
— are finite dimensional, as also the internal space offered by the Clifford algebra
is finite dimensional.

In the Dirac case the second quantized states are in d = (3 + 1) dimensions
postulated as follows

Ψs†(x0,~x) =
∑
i,~pk

â†i(~pk)u
s
i (~pk) e

−i(p0x0−ε~p·~x) . (8.35)

vsi (~pk) (= usi e
−i(p0x0)−ε~p·~x) are the two left handed (Γ (3+1) = −1) and the two

right handed (Γ (3+1) = 1, Eq. (B.3)) two-component column matrices, representing
the four solutions s of the Weyl equation for free massless fermions of particular
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momentum |~pk| = |p0k| ( [2], Eqs. (20-49) - (20-51)), the factor ε = ±1 depends on
the product of handedness and spin.

â†i(~pk) are by Dirac postulated creation operators, which together with anni-
hilation operators âi(~pk), fulfill the anticommutation relations ( [2], Eqs. (20-49) -
(20-51)),

{â†i(~pk), â†j(~pl)}∗T+ = 0 = {âi(~pk), âj(~pl)}∗T+ ,

{âi(~pk), â†j(~pl)}∗T+ = δijδ~pk~pl , (8.36)

in the case of discretized momenta for a fermion in a box. Creation operators and
annihilation operators, â†i(~pk) and âi(~pk), are postulated to have on the Hilbert
space of all ”Slater determinants” these anticommutation properties.

To be able to relate the creation operators of Dirac â†i(~pk) with b̂
θks†
tot (~pk) from

Eq. (8.34), let us remind the reader that b̂
θks†
tot (~pk) is a superposition of basic vectors

b̂θk†i with the coefficients cksi(~p), which depend on the momentum ~p, Eq. (8.22)

(b̂θk s†(~p) =
∑
i c
ks
i(~p) b̂

θk†
i ), so that b̂

θks†
tot (~pk) (=

∑
i c
ks
i(~p) b̂

θk†
i e−i(p

0x0−ε~p·~x))
solves the equations of motion for free massless ”Grassmann fermions” for plane
waves, while |p0| = |~p|.

We treat in this subsection the Grassmann case in (3+ 1)-dimensional space
only, without taking care on different irreducible representations k as well as on
charges, in order to be able to relate the creation and annihilation operators in
Grassmann space with the Dirac’s ones. In this case the odd Grassmann creation
operators are expressible with the ”basic vectors”, which are fourplets, presented
in Table 8.1 on the 7th up to the 10th lines, the same on both decuplets, neglecting
θ5θ6 contribution. (They have handedness in d = (3+ 1) equal zero.)

Let us rewrite creation operators in the Dirac case so that their expressions
resemble the expression for the creation operators

b̂
θs†
tot(~pk) =

∑
i

csi(~p) b̂
θ†
i e

−i(p0x0−ε~p·~x),

leaving out the index of the irreducible representation.

âs†tot(~pk)
def
=
∑
i

â†i(~pk)u
s
i (~pk) e

−i(p0x0−ε~p·~x) def
=
∑
i

αsi (~pk) â
†
i e

−i(p0x0−ε~p·~x)

to be compared with

b̂
θs†
tot(~pk) =

∑
i

csi(~p) b̂
θ†
i e

−i(p0x0−ε~p·~x) . (8.37)

We define in the Dirac case two creation operators: âs†tot(~pk) and â†i . Since
Ψs†(x0,~x) =

∑
~pk

âs†tot(~pk), Eq. (8.35), we realize that the two expressions

usi (~pk) â†i(~pk) and αsi (~pk) â
†
i

describe the same degrees of freedom.

These new creation operators âs†tot(~pk) can not be related directly to b̂
θs†
tot(~pk),

since the first ones describe the second quantized fields of the half integer spin
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fermions, while the later describe the second quantized integer spin ”fermion”
fields. However, both fulfill the anticomutation relations of Eq. (8.34).

The reader can notice that the creation operators â†i do not depend on ~p as
also b̂θ†i do not, both describing the internal degrees of freedom, while αsi (~pk) â

†
i

and αsi (~pk) b̂
θ†
i do.

The creation and annihilation operators of Dirac fulfill obviously the anticom-

mutation relations of Eq. (8.34). To see this we only have to replace b̂
θhs†
tot (~p) by

âhs†tot (~p) by taking into account relation of Eq. (8.37).
Creation and annihillation operators of the Dirac second quantized fermions

with half integer spins are in Part II, in Subsect. III.D, related to the corresponding
ones, offered by the Clifford algebra. Relating the creation and annihilation opera-
tors offered by the Clifford algebra objects with the Dirac’s ones ensures us that
the Clifford odd algebra explains the Dirac’s postulates.

8.4 Conclusions

We learn in this Part I paper, that in d-dimensional space the superposition of odd
products of θa’s exist, Eqs. (8.8, 8.10, 8.9), chosen to be the eigenvectors of the
Cartan subalgebra, Eq. (8.5), which together with their Hermitian conjugated part-
ners, odd products of ∂

∂θa
’s, Eqs. (8.2, 8.8, 8.6), fulfill on the algebraic level on the

vacuum state |φo >= | 1 >, Eq. (8.25), the requirements for the anticommutation
relations for the Dirac’s fermions.

The creation operators defined on the tensor products of internal space of
”Grassmann basis vectors” (of finite number of basis states) and of momentum
space (with infinite number of basis states), arranged to be solutions of the equation
of motion for free massless ”Grassmann fermions”, Eq. (8.21), form the infinite
dimensional Hilbert space of ”Slater determinants” of (continuous) infinite number
of momenta, with 22

d−1

possibilities for each momentum ~p, Eq. (8.34)). These
creation operators and their Hermitian conjugated partners fulfill on the Hilbert
space the anticommutation relations postulated by Dirac for second quantized
fermion fields.

We demonstrate the way of deriving second quantized integer fermion fields.
In the subsection 8.1.1 we clarify the relation between our description of

the internal space of fermions with ”basis vectors”, manifesting oddness and
transferring the oddness to the corresponding creation and annihilation operators
of second quantized fermions, to the ordinary second quantized creation and
annihilation operators from a slightly different point of view.

Since the creation and annihilation operators, which are superposition of odd
products of θa’s and ∂

∂θa
’s, respectively, anticommute algebraically when applying

on the vacuum state, Eq. (8.11, 8.12) (while the corresponding even products of
θa’s and ∂

∂θa
’s commute, Eq. (8.16)), it follows that also creation operators, defined

on tensor products of the finite number of ”basis vectors” (describing the internal
degrees of freedom of ”Grassmann fermions”) and on infinite basis of momentum
space, together with their Hermitian conjugated partners annihilation operators,
fulfill the anticommutation relations of Eq. (8.34). The use of the Grassmann



i
i

“proc20Vol1” — 2020/12/6 — 22:10 — page 153 — #169 i
i

i
i

i
i

8 Understanding the Second Quantization of Fermions — Part I 153

odd algebra to describe the internal space of ”Grassmann fermions” offers the
anticommutation relations without postulating them: on the (simple) vacuum
state as well as on the Hilbert space of infinite number of ”Slater determinants”
of all possible single particle states, empty or occupied, of the second quantized
integer spin ”fermion” fields. Correspondingly we second quantized ”fermion
fields” without postulating commutation relations of Dirac.

The internal ”basis vectors” are chosen to be eigenvectors of the Cartan
subalgebra operators in the way that the symmetry agrees with the properties of
usual Dirac’s creation and annihilation operators of second quantized fermions —
in the Clifford case for half integer spin, while in the ”Grassmann fermions” for
the integer spins.

The ”Grassmann fermions” carry the spin and charges, originated in d ≥ 5, in
the adjoint representations. ”Grassmann fermions” offer no families, what means
that there is no available operators, which would connect different irreducible
representations of the Lorentz group (without breaking symmetries).

No elementary ”Grassmann fermions” with the spins and charges in the
adjoint representations have been observed, and since the observed quarks and
leptons and anti-quarks and anti-leptons have half integer spins, charges in the
fundamental representations and appear in families, it does not seem possible
for the future observation of the integer spin elementary ”Grassmann fermions”,
especially not since Eq. (19) in Part II demonstrates that the reduction of space
in Clifford case, needed for the appearance of second quantized half integer
fermions, reduces also the Grassmann space, leaving no place for second quantized
”Grassmann fermions” with the integer spin.

In Part II two kinds of operators are studied; There are namely two kinds of
the Clifford algebra objects, γa = (θa+ ∂

∂θa
) and γ̃a = i (θa− ∂

∂θa
), which anticom-

mute, {γa, γ̃a}+ = 0 ({γa, γb}+ = 2ηab = {γ̃a, γ̃b}+), and offer correspondingly
two kinds of independent representations.

Each of these two kinds of independent representations can be arranged
into irreducible representations with respect to the two Lorentz generators —
Sab = i

4
(γaγb − γbγa) and S̃ab = i

4
(γ̃aγ̃b − γ̃bγ̃a). All the Clifford irreducible

representations of any of the two kinds of algebras are independent and discon-
nected.

The two Dirac’s actions in d-dimensional space for free massless fermions
(A =

∫
ddx 1

2
(ψ†γ0 γa paψ)+h.c. and Ã =

∫
ddx 1

2
(ψ†γ̃0 γ̃a paψ)+h.c. ) lead

to the equations of motion, which have the solutions in both kinds of algebras for
an odd Clifford character (they are superposition of an odd products of γa’s and
γ̃a’s, respectively), forming on the tensor product of finite number of ”basis vectors”
describing the internal space and of the infinite number of basis of momentum
space, the creation and annihilation operators, which only ”almost” anticommute,
while the Grassmann odd creation and annihilation operators do anticommute.
Although ”vectors” of one irreducible representation of an odd Clifford algebra
character, anticommute among themselves and so do their Hermitian conjugated
partners in each of the two kinds of the Clifford algebras, the anticommutation
relations among creation and annihilation operators in each of the two Clifford
algebras separately, do not fulfill the requirement, that only the anticommutator
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of a creation operator and its Hermitian conjugated partner gives a nonzero
contribution.

The decision, the postulate, Eq. (12), that only one kind of the Clifford algebra
objects — we make a choice of γa — describes the internal space of fermions,
while the second kind — γ̃a in this case — does not, and consequently determine
“family” quantum numbers which distinguish among irreducible representations
of Sab, solves the problems:

a. Creation operators and their Hermitian conjugated partners, which are
odd products of superpositions of γa, applied on the vacuum state, fulfill on the
algebraic level the anticommutation relations, and the creation and annihilation
operators creating the second quantized Clifford fermion fields fulfill all the
requirements, which Dirac postulated for fermions.

b. Different irreducible representations with respect to Sab carry now different
”family” quantum numbers determined by d

2
commuting operators among S̃ab.

c. The operators of the Lorentz algebra, which do not belong to the Cartan
subalgebra, connect different irreducible representations of Sab.

The above mentioned decision, Eq. (19) in Part II, obviously reduces the
degrees of freedom of the odd (and even) Clifford algebra, while opening the
possibility for the appearance of ”families”, as well as for the explanation for
the Dirac’s second quantization postulates. This decision, reducing as well the
degrees of freedom of Grassmann algebra, disables the existence of the integer
spin ”fermions” as elementary particles.

Let us point out again at the end that when the internal part of the single
particle wave function anticommute under the algebra product ∗A, then this
implies that the wave functions with such internal part anticommute under the
extension of ∗A to the (full) single particle wave functions and so do anticommute
the corresponding creation and annihilation operators what manifests also on the
properties of the Hilbert space.

The anticommuting single fermion states manifest correspondingly the odd-
ness already on the level of the first quantization.

8.5 APPENDIX: Norms in Grassmann space and Clifford space

Let us define the integral over the Grassmann space [6] of two functions of the
Grassmann coordinates < B|θ >< C|θ >, < B|θ >=< θ|B >†,

< b|θ >=
d∑
k=0

ba1...akθ
a1 · · · θak ,

by requiring

{dθa, θb}+ = 0 ,

∫
dθa = 0 ,

∫
dθaθa = 1 ,∫

ddθ θ0θ1 · · · θd = 1 ,

ddθ = dθd . . . dθ0 , ω =

d∏
k=0

(
∂

∂θk
+ θk) , (8.38)
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with ∂
∂θa

θc = ηac. We shall use the weight function [6] ω =
∏d
k=0(

∂
∂θk

+ θk) to
define the scalar product in Grassmann space < B|C >

< B|C > =

∫
ddθa ω < B|θ >< θ|C >

=

d∑
k=0

∫
b∗b1...bkcb1...bk . (8.39)

To define norms in Clifford space Eq. (8.38) can be used as well.

8.6 APPENDIX: Handedness in Grassmann and Clifford space

The handedness Γ (d) is one of the invariants of the group SO(d), with the infinites-
imal generators of the Lorentz group Sab, defined as

Γ (d) = αεa1a2...ad−1
ad S

a1a2 · Sa3a4 · · ·Sad−1ad , (8.40)

with α, which is chosen so that Γ (d) = ±1.
In the Grassmann case Sab is defined in Eq. (8.3), while in the Clifford case

Eq. (8.40) simplifies, if we take into account that Sab|a6=b = i
2
γaγb and S̃ab|a 6=b =

i
2
γ̃aγ̃b, as follows

Γ (d) : = (i)d/2
∏
a

(
√
ηaaγa), if d = 2n .

(8.41)
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Abstract. We present in Part II the description of the internal degrees of freedom of
fermions by the superposition of odd products of the Clifford algebra elements, either
γa’s or γ̃a’s [1–3], which determine with their oddness the anticommuting properties of
the creation and annihilation operators of the second quantized fermion fields in even
d-dimensional space-time, as we do in Part I of this paper by the Grassmann algebra of
θa’s and ∂

∂θa
’s. We discuss: i. The properties of the two kinds of the odd Clifford algebras,

forming two independent spaces, both expressible with the Grassmann coordinates θa’s
and their derivatives ∂

∂θa
’s [2,7,8]. ii. The freezing out procedure of one of the two kinds of

the odd Clifford objects, enabling that the remaining Clifford objects determine with their
oddness in the tensor products of the finite number of the Clifford basis vectors and the
infinite number of momentum basis, the creation and annihilation operators carrying the
family quantum numbers and fulfilling the anticommutation relations of the second quan-
tized fermions: on the vacuum state, and on the whole Hilbert space defined by the sum of
infinite number of ”Slater determinants” of empty and occupied single fermion states. iii.
The relation between the second quantized fermions as postulated by Dirac [19–21] and the
ones following from our Clifford algebra creation and annihilation operators, what offers
the explanation for the Dirac postulates.

Povzetek. V drugem delu prispevka predstavita avtorja opis notranjega prostora fermionov
v sodo razsežnih prostorih s superpozicijo lihih produktov elementov Cliffordove alge-
bre, bodisi γa ali γ̃a [1–3]. Lihi značaj teh produktov določa antikomutacijske lastnosti
kreacijskih in anihilacijskih operatorjev fermionskih stanj v drugi kvantizaciji brez Dira-
covih postulatov. (V prvem delu prispevka sta predstavila fermionske prostotne stopnje z
Grassmannovimi koordinatami θa in ∂

∂θa
). Obravnavata: i. Lastnosti dveh vrst lihih Clif-

fordovih objektov, ki tvorita neodvisna prostora. Obe Cliffordovi algebri sta izrazljivi
z Grassmannovimi koordinatami θa in njihovimi odvodi ∂

∂θa
[2, 7, 8]. ii. Pokaěta, da

četudi imajo vektorski produkti končnega števila lihih Cliffordovih produktov in (zvezno)
neskončnega števila bazičnih vektorjev v običajnem prostoru antikomutacijski značaj kot
ga Dirac predpiše za fermione v drugi kvantizaciji v vsaki od Cliffordih algeber posebej, pa
ustreže predlagani opis fermionov opazljivim lastnostim fermionov šele, ko s postulatom
zagotovita, da samo ena od algeber opiše notranji prostor fermionov, operatorji preostale
algebre pa določajo kvantna števila družin — na vakuumskem stanju in na celem Hilber-
tovem prostoru, ki ga določa vsota neskočnega števila “Slaterjevih determinant” praznih in
zasedenih enofermionskih stanj, ki imajo vsa lihi značaj. iii. Relacijo med Diracovimi postu-
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lati za fermione v drugi kvantizaciji [19–21] in obravnavano potjo do drude kvantizacije, ki
pojasni Diracove privzetke.

Keywords: Second quantization of fermion fields in Clifford and in Grassmann
space, Spinor representations in Clifford and in Grassmann space, Explanation
of the Dirac postulates, Kaluza-Klein-like theories, Higher dimensional spaces,
Beyond the standard model

9.1 Introduction

In a long series of works we, mainly one of us N.S.M.B. ( [1–3, 10–15] and the
references therein), have found phenomenological success with the model named
by N.S.M.B the spin-charge-family theory, with fermions, the internal space of which
is describable as superposition of odd products of the Clifford algebra elements
γa’s in d = (13 + 1) (may be with d infinity), interacting with only gravity. The
spins of fermions from higher dimensions, d > (3 + 1), manifest in d = (3 + 1)

as charges of the standard model, the gravity originating in higher dimensions
manifest as the standard model vector gauge fields and the scalar Higgs explaining
the Yukawa couplings.

There are two kinds of anticommuting algebras, the Grassmann algebra and
the Clifford algebra, the later with two independent subalgebras. The Grassmann
algebra, with elements θa, and their Hermitian conjugated partners ∂

∂θa
[3], de-

scribes fermions with the integer spins and charges in the adjoint representations,
the two Clifford algebras, we call their elements γa and γ̃a, can each of them be
used to describe half integer spins and charges in the fundamental representations.
The Grassmann algebra is expressible with the two Clifford algebras and opposite.

The two papers explain how do the oddness of the internal space of fermions
manifests in the single particle wave functions, relating the oddness of the wave
functions to the corresponding creation and annihilation operators of the to the sec-
ond quantized fermions, in the Grassmann case and in the Clifford case, explaining
therefore the postulates of Dirac for the second quantized fermions.

We learn in Part I of this paper, that in d-dimensional space 2d−1 superposition
of odd products of d θa’s exist, chosen to be the eigenvectors of the Cartan
subalgebra, Eq. (4) of Part I, and arranged in tensor products with the momentum
space to be solutions of the equation of motion for free massless “fermions”,
Eq. (21) of Part I.

The creation operators, defined as the tensor products of the superposition of
the finite number of ”basis vectors” in Grassmann space, guaranteeing the oddness
of operators, and of the infinite basis in momentum space, form — applied on the
vacuum state — the second quantized states of integer spin ”Grassmann fermions”.
The creation operators fulfill together with their Hermitian conjugated partners
annihilation operators (based on the internal space of odd products of ∂

∂θa
’s) all the

requirements of the anticommutation relations postulated by Dirac for fermions: i.
on the simple vacuum state | 1 > (Eqs. (7,11) of Part I), ii. on the Hilbert spaceH
(=
∏∞

~p ⊗NH~p, with the number of empty and occupied single fermion states for
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particular ~p equal to 22
d−1

) of infinite many ”Slater determinants” of all possible
empty and occupied single fermion states (with the infinite number of possibilities
of moments for each of 2d−1 internal degrees of freedom), Eqs. (25, 34) of Part I.

While the creation and annihilation operators, which are superposition of
odd products of θa’s and ∂

∂θa
’s, respectively, anticommute on the vacuum state

|φo >= | 1 >, Eq. (7,11), the superposition of even products of θa’s and ∂
∂θa

’s,
respectively, commute, Eq. (16) of Part I.

The superposition of odd products of γa’s and their Hermitian conjugated
partners, as well as of odd products of γ̃a’s and their Hermitian conjugated part-
ners, on the corresponding vacuum states, Eq. (9.18), anticommute. Since the
tensor products of the ”basis vectors” determining the internal space of Clifford
fermions and of the basis in momentum space manifest oddness of the internal
space, no postulates of anticommutation relations as in the Dirac second quantiza-
tion proposal is needed also for Clifford fermions with the internal space described
by one of the two Clifford objects (in Subsect. 9.2.2 we make a choice of γa’s). The
oddness of the ” basis vectors”, defining the internal space of fermions, transfers
to the creation and annihilation operators forming the second quantized single
fermion states in the Clifford and the Grassmann space.

The ”Grassmann fermions” have integer spins, and spins in the part with d ≥
5 manifesting as charges in d = (3+ 1), in adjoint representations, Table I in Part I.
There is no operator which would connect different irreducible representations of
the corresponding Lorentz group. There are no elementary fermions with integer
spin observed so far either.

The Clifford fermions, describing the internal space with γa’s, have half
integer spins and spins in the part with d ≥ 5manifesting as charges in d = (3+1)

in fundamental representations [10–12, 15, 17, 18]. The operators S̃ab (= i
4
{γ̃aγ̃b −

γ̃bγ̃a)}−) connect, after the reduction of the Clifford algebra degrees of freedom
by a factor of 2, Subsect. 9.2.2, different irreducible representations of the Lorentz
group Sab (= i

4
{γaγb − γbγa}−) and determine “family” quantum numbers. All

in agreement with the observed families of quarks and leptons.
In Part II the properties of the two kinds of the Clifford algebras objects, γa’s

and γ̃a’s, are discussed. Both are expressible with θa’s and ∂
∂θa

’s (γa = (θa+ ∂
∂θa

),
γ̃a = i (θa− ∂

∂θa
) [2,7,8]), and both are, up to a constant ηaa = (1,−1,−1, . . . ,−1),

Hermitian operators. Each of these two kinds of the Clifford algebra objects of an
odd Clifford character (superposition of odd number of products of either γa’s or
γ̃a’s, respectively) has 2d−1 members, together again 2 · 2d−1 members, the same
as in the case of ”Grassmann fermions”.

These two internal spaces, described by the two Clifford algebras, are inde-
pendent, each of them with their own generators of the Lorentz transformations,
Eq. (9.3), and their corresponding Cartan subalgebras, Eq. (9.4).

In each of these two internal spaces there exist 2
d
2
−1 ”basis vectors” in 2

d
2
−1

irreducible representations, chosen to be ‘’eigenvectors” of the corresponding
Cartan subalgebra elements, Eq. (9.5), and having the properties of creation and
annihilation operators (the Hermitian conjugated partners of the creation oper-
ators) on the vacuum state: i. The application of any creation operator on the
vacuum state, Eq. (9.18), gives nonzero contribution, while the application of any
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annihilation operator on the vacuum state gives zero contribution. ii. Within each
of these two spaces all the annihilation operators anticommute among themselves
and all the creation operators anticommute among themselves. iii. The vacuum
state is a superposition of products of the annihilation operators with their Her-
mitian conjugated partners creation operators, like in the Grassmann case. The
Clifford vacuum states, Eq. (9.18), are not the identity like in the Grassmann case,
Eq. (19) in Part I.

However, there is not only the anticommutator of the creation operator and
its Hermitian conjugated partner, which gives the nonzero contribution on the
vacuum state in each of the two spaces — what in the Grassmann algebra is the
case, and what the postulates of Dirac require. There are, namely, the additional
(2
d
2
−1−1) members of the same irreducible representation, to which the Hermitian

conjugated partner of the creation operator belongs, giving the nonzero anticom-
mutator with this creation operator on the vacuum state (Eq. (9.11) in Subsect. 9.2.1
illustrates such a case).

And, there is no operators, which would connect different irreducible rep-
resentations in each of the two Clifford algebras and correspondingly there is
no “family” quantum number for each irreducible representation, needed to de-
scribe the observed quarks and leptons. (Let the reader be reminded that also the
Grassmann algebra has no operators, which would connect different irreducible
representations. The Dirac’s second quantization postulates do not take care of
charges and families of fermions, both can be treated and incorporated into the
second quantization postulates as quantum numbers of additional groups as
proposed by the standard model.) We solve these problems with the requirement,
presented in Eq. (9.12): γ̃aB = (−)B i Bγa, with (−)B = −1, if B is (a function of)
an odd product of γa’s, otherwise (−)B = 1 [8].

We present in the subsection 9.1.1 of this section a short overview of steps,
which lead to the second quantized fermions in the Clifford space, offering the
explanation for the Dirac’s postulates. In the subsection 9.1.2 we discuss our
assumption, that the oddness of the ”basis vectors” in the internal space transfer
to the corresponding creation and annihilation operators determining the second
quantized single fermion states and correspondingly the Hilbert space of the
second quantized fermions, in a generalized way.

We present in Sect. 9.2 the properties of the Clifford algebra ”basis vectors”
in the space of d γa’s and in the space of d γ̃a’s. In Subsect. 9.2.1 we discuss
properties of the ”basis vectors” of half integer spin. In Subsect. 9.2.2 we discuss
conditions, under which operators of one of these two kinds of the Clifford algebra
objects demonstrate by themselves the anticommutation relations required for
the second quantized ”fermions”, manifesting the half integer spins, offering the
explanation for the spin and charges of the observed quarks and leptons and
anti-quarks and anti-leptons and also for their families [1–3, 10–15, 17].

In Subsect. 9.2.3 we generate the basis states manifesting the family quantum
numbers.

In Subsect. 9.2.4 the superposition of ”basis vectors”, solving the Weyl equa-
tion, are constructed, forming creation operators depending on the momenta and
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fulfilling with their Hermitian conjugated partners the anticommutation relations
for the second quantized fermions.

We illustrate in Sect. 9.2.5 properties of the Clifford odd ”basis vectors” in
d = (5+1)-dimensional space, and extending the internal space in a tensor product
to momentum space, we present also the superposition solving the Weyl equation,
and correspondingly present creation and annihilation operators depending on
the momentum ~p.

We present in Sect. 9.3 the Hilbert space H~p of particular momentum ~p as
”Slater determinants”: i. with no ”fermions” occupying any of the 2d−2 fermion
states, ii. with one ”fermion” occupying one of the 2d−2 fermion states, iii. with two
”fermions” occupying the 2d−2 fermion states,..., up to the ”Slater determinant”
with all possible fermion states of a particular ~p occupied by ”fermions”. The total
Hilbert spaceH is then the tensor product

∏∞⊗N of infinite number ofH~p. OnH
the tensor products of creation and annihilation operators (solving the equations
of motion for free massless fermions) manifest the anticommutation relations
of second quantized ”fermions” without any postulates. We also illustrate the
application of the tensor products of creation and annihillation operators onH in
a simple toy model.

In Subsect. 9.3.4 the correspondence between our way and the Dirac way of
second quantized fermions is presented, demonstrating that our way does explain
the Dirac’s postulates.

In Sect. 9.4 we note that the present work is the part of the project named the
spin-charge-family theory of one of the two authors of this paper (N.S.M.B.).

In Sect. 9.5 we comment on what we have learned from the second quantized
integer spins ”fermions”, with the internal degrees of freedom described with
Grassmann algebra, manifesting (from the point of view of d = (3+ 1)) charges in
the adjoint representations and compare these recognitions with the recognitions,
which the Clifford algebra is offering for the description of fermions, appearing
in families of the irreducible representations of the Lorentz group in the internal
— Clifford — space, with half integer spins and charges and family quantum
numbers in the fundamental representations [1–3, 10–15].

9.1.1 Steps leading to second quantized Clifford fermions

We claim that when the internal part of the single particle wave functions anticom-
mute under the Clifford algebra product ∗A, then the wave functions with such
internal part, extended with a tensor product to momentum space, anticommute
as well, and so do anticommute the creation and annihillation operators, creating
and annihilating the extended fermion states, assuming that the oddness of the
algebra of the wave function extends to the creation and annihilation operators as
presented in Subsect. 9.1.2.

If the internal part commute with respect to ∗A then the corresponding wave
functions and the creation operators commute as well.

Let us present steps which lead to the second quantized Clifford fermions,
when using the odd Clifford algebra objects to define their internal space:
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162 N.S. Mankoč Borštnik and H.B.F. Nielsen

i. The superposition of an odd number of the Clifford algebra elements, either
of γa’s or of γ̃a, each with 2 · (2d2−1)2 degrees of freedom, is used to describe the
internal space of fermions in even dimensional spaces.

ii. The ”basis vectors” — the superposition of an odd number of Clifford
algebra elements — are chosen to be the ”eigenvectors” of the Cartan subalgebras,
Eq. (9.4), of the corresponding Lorentz algebras, Eq. (9.3), in each of the two
algebras.

iii. There are two groups of 2
d
2
−1 members of 2

d
2
−1 irreducible representa-

tions of the corresponding Lorentz group, for either γa’s or for γ̃a algebras, each
member of one group has its Hermitian conjugated partner in another group.

Making a choice of one group of ”basis vectors” (for either γa’s or for γ̃a) to be
creation operators, the other group of ”basis vectors” represents the annihilation
operators. The creation operators anticommute among themselves and so do
anticommute annihilation operators.

iv. The vacuum state is then (for either γa’s or for γ̃a’s algebras) the super-
position of products of annihilation × their Hermitian conjugated partners the
creation operators.

The application of the creation operators on the vacuum state forms the ”basis
states” in each of the two spaces. The application of the annihilation operators on
the vacuum state gives zero, Subsect. 9.1.2.

v. The requirement that application of γ̃a on γa gives −iηaa, and the appli-
cation of γ̃a on identity gives iηaa and that only γa’s are used to determine the
internal space of half integer fermions, Eq. (9.2.2), reduces the dimension of the
Clifford algebra for a factor of two, enabling that the Cartan subalgebra of S̃ab’s
determines the ”family” quantum numbers of each irreducible representation of
Sab’s, Eq. (9.3), and correspondingly also of their Hermitian conjugated partners.

vi. The tensor products of superposition of the finite number of members of
the ”basis vectors” and the infinite dimensional momentum basis, chosen to solve
the Weyl equations for free massless half integer spin fermions, determine the
creation and (their Hermitian conjugated partners) annihilation operators, which
depend on the momenta ~p, while |p0| = |~p| (pa = (p0, p1, p2, p3, p5, . . . , pd)), man-
ifesting the properties of the observed fermions. These creation and annihilation
operators fulfill on the Hilbert space all the requirements for the second quantized
fermions, postulated by Dirac, Eq. (9.28) [19–21].

vii. The second quantized Hilbert space H~p of a particular ~p is a tensor
product of creation operators of a particular ~p, defining ”Slater determinants”
with no single particle state occupied (with no creation operators applying on the
vacuum state), with one single particle state occupied (with one creation operator
applying on the vacuum state), with two single particle states occupied, and so on,

defining in d-dimensional space 2(2
d
2

−1)2 dimensional space for each ~p.
viii. Total Hilbert space is the infinite product (⊗N) ofH~p : H =

∏∞
~p ⊗NH~p.

The notation ⊗N is to point out that odd algebraic products of the Clifford γa’s
operators anticommute no matter for which ~p they define the orthonormalized su-
perposition of ”basis vectors”, solving the equations of motion as the orthonormal-
ized plane wave solutions with p0 = |~p| and that the anticommutation character
keeps also in the tensor product of internal basis and momentum basis.
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Since the momentum space belonging to different ~p satisfy the ”orthogonality”
relations, the creation and annihilation operators determined by ~p anticommute
with the creation and annihilation operators determined by any other ~p ′. This
means that in what ever way the Hilbert spaceH is arranged, the sign is changed
whenever a creation or an annihilation operator, applying on the Hilbert spaceH,
jumps over odd number of occupied states. No postulates for the second quantized
fermions are needed in our odd Clifford space with creation and annihilation
operators carrying the family quantum numbers.

x. Correspondingly the creation and annihilation operators with the internal
space described by either odd Clifford or odd Grassmann algebra, since fulfilling
the anticommutation relations required for the second quantized fermions without
postulates, explain the Dirac’s postulates for the second quantized fermions.

9.1.2 Our main assumption and definitions

(This subsection is the same as the one of Part I.)
In this subsection we clarify how does the main assumption of Part I and Part

II: the decision to describe the internal space of fermions with the ”basis vectors” expressed
with the superposition of odd products of the anticommuting members of the algebra,
either the Clifford one or the Grassmann one, acting algebraically, ∗A, on the
internal vacuum state |ψo >, relate to the creation and annihilation anticommuting
operators of the second quantized fermion fields.

To appreciate the need for this kind of assumption, let us first have in mind
that algebra with the product ∗A is only present in our work, usually not in other
works, and thus has no well known physical meaning. It is at first a product by
which you can multiply two internal wave functions Bi and Bj with each other,

Ck = Bi ∗A Bj ,
Bi ∗A Bj = ∓Bj ∗A Bi ,

the sign ∓ depends on whether Bi and Bj are products of odd or even number
of algebra elements: The sign is − if both are (superposition of) odd products of
algebra elements, in all other cases the sign is +.

Let Rd−1 define the external spatial or momentum space. Then the tensor
product ∗T extends the internal wave functions into the wave functions C~p, i

defined in both spaces

C~p, i = |~p > ∗T |Bi > ,

where again Bi represent the superposition of products of elements of the anti-
commuting algebras, in our case either θa or γa or γ̃a, used in this paper.

We can make a choice of the orthogonal and normalized basis so that <
C~p,i|C ~p ′,j >= δ(~p

~p ′) δij. Let us point out that either Bi or C~p, i apply algebraically
on the vacuum state, Bi ∗A |ψo > and C~p, i ∗A |ψo >.

Usually a product of single particle wave functions is not taken to have any
physical meaning in as far as most physicists simply do not work with such
products at all.
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To give to the algebraic product, ∗A, and to the tensor product, ∗T , defined on
the space of single particle wave functions, the physical meaning, we postulate
the connection between the anticommuting/commuting properties of the ”basis
vectors”, expressed with the odd/even products of the anticommuting algebra
elements and the corresponding creation operators, creating second quantized
single fermion/boson states

b̂†C~p,i
∗A |ψo > = |ψ~p,i > ,

b̂†C~p,i
∗T |ψ ~p ′,j > = 0 ,

if~p = ~p ′ and i = j ,

in all other cases it follows

b̂†C~p,i
∗T b̂†C ~p ′,j

∗A |ψo > = ∓ b̂†C ~p ′,j
∗T b̂†C~p,i

∗A |ψo > ,

with the sign ± depending on whether b̂†C~p,i
have both an odd character, the sign

is −, or not, then the sign is +.
To each creation operator b̂†C~p,i

its Hermitian conjugated partner represents

the annihilation operator b̂C~p,i

b̂C~p,i
= (b̂†C~p,i

)† ,

with the property

b̂C~p,i
∗A |ψo > = 0 ,

defining the vacuum state as

|ψo >: =
∑
i

(Bi)
† ∗A Bi | I >

where summation i runs over all different products of annihilation operator × its
Hermitian conjugated creation operator, no matter for what ~p , and | I > represents
the identity, (Bi)† represents the Hermitian conjugated wave function to Bi.

Let the tensor multiplication ∗T denotes also the multiplication of any number
of single particle states, and correspondingly of any number of creation operators.

What further means that to each single particle wave function we define
the creation operator b̂†C~p,i

, applying in a tensor product from the left hand side
on the second quantized Hilbert space — consisting of all possible products of
any number of the single particle wave functions — adding to the Hilbert space
the single particle wave function created by this particular creation operator. In
the case of the second quantized fermions, if this particular wave function with
the quantum numbers and ~p of b̂†C~p,i

is already among the single fermion wave
functions of a particular product of fermion wave functions, the action of the
creation operator gives zero, otherwise the number of the fermion wave functions
increases for one. In the boson case the number of boson second quantized wave
functions increases always for one.

If we apply with the annihilation operator b̂C~p,i
on the second quantized

Hilbert space, then the application gives a nonzero contribution only if the partic-
ular products of the single particle wave functions do include the wave function
with the quantum number i and ~p.
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In a Slater determinant formalism the single particle wave functions define
the empty or occupied places of any of infinite numbers of Slater determinants.
The creation operator b̂†C~p,i

applies on a particular Slater determinant from the left
hand side. Jumping over occupied states to the place with its i and ~p. If this state
is occupied, the application gives in the fermion case zero, in the boson case the
number of particles increase for one. The particular Slater determinant changes
sign in the fermion case if b̂†C~p,i

jumps over odd numbers of occupied states. In
the boson case the sign of the Slater determinant does not change.

When annihilation operator b̂C~p,i
applies on particular Slater determinant, it

is jumping over occupied states to its own place, giving zero, if this space is empty
and decreasing the number of occupied states, if this space is occupied. The Slater
determinant changes sign in the fermion case, if the number of occupied states
before its own space is odd. In the boson case the sign does not change.

Let us stress that choosing antisymmetry or symmetry is a choice which we
make when treating fermions or bosons, respectively, namely the choice of using
oddness or evenness of basis vectors, that is the choice of using odd products or
even products of algebra anticummuting elements.

To describe the second quantized fermion states we make a choice of the basis
vectors, which are the superposition of the odd numbers of algebra elements, of
both Clifford and Grassmann algebras.

The creation operators and their Hermitian conjugation partners annihilation
operators therefore in the fermion case anticommute. The single fermion states,
which are the application of the creation operators on the vacuum state |ψo >,
manifest correspondingly as well the oddness. The vacuum state, defined as
the sum over all different products of annihilation × the corresponding creation
operators, have an even character.

Let us end up with the recognition:
One usually means antisymmetry when talking about Slater-determinants

because otherwise one would not get determinants.
In the present paper [1,2,7,10] the choice of the symmetrizing versus antisym-

metrizing relates indeed the commutation versus anticommutation with respect
to the a priori completely different product ∗A, of anticommuting members of
the Clifford or Grassmann algebra. The oddness or evenness of these products
transfer to quantities to which these algebras extend.

9.2 Properties of Clifford algebra in even dimensional spaces

We can learn in Part I that in d-dimensional space of anticommuting Grassmann
coordinates (and of their Hermitian conjugated partners — derivatives), Eqs. (2,6)
of Part I, there exist two kinds of the Clifford coordinates (operators) — γa and γ̃a

— both are expressible in terms of θa and their conjugate momenta pθa = i ∂
∂θa

[2].

γa = (θa +
∂

∂θa
) , γ̃a = i (θa −

∂

∂θa
) ,

θa =
1

2
(γa − iγ̃a) ,

∂

∂θa
=
1

2
(γa + iγ̃a) , (9.1)
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offering together 2 · 2d operators: 2d of those which are products of γa and 2d of
those which are products of γ̃a.

Taking into account Eqs. (1,2) of Part I ({θa, θb}+ = 0, { ∂
∂θa

, ∂
∂θb

}+ = 0,
{θa,

∂
∂θb

}+ = δab, θa† = ηaa ∂
∂θa

and ( ∂
∂θa

)† = ηaaθa) one finds

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,

{γa, γ̃b}+ = 0 , (a, b) = (0, 1, 2, 3, 5, · · · , d) ,
(γa)† = ηaa γa , (γ̃a)† = ηaa γ̃a , (9.2)

with ηab = diag{1,−1,−1, · · · ,−1}.
It follows for the generators of the Lorentz algebra of each of the two kinds of

the Clifford algebra operators, Sab and S̃ab, that:

Sab =
i

4
(γaγb − γbγa) , S̃ab =

i

4
(γ̃aγ̃b − γ̃bγ̃a) ,

Sab = Sab + S̃ab , {Sab, S̃ab}− = 0 ,

{Sab, γc}− = i(ηbcγa − ηacγb) ,

{S̃ab, γ̃c}− = i(ηbcγ̃a − ηacγ̃b) ,

{Sab, γ̃c}− = 0 , {S̃ab, γc}− = 0 , (9.3)

where Sab = i (θa ∂
∂θb

− θb ∂
∂θa

), Eq. (3) of Part I.
Let us make a choice of the Cartan subalgebra of the commuting operators

of the Lorentz algebra for each of the two kinds of the operators of the Clifford
algebra, Sab and S̃ab, equivalent to the choice of Cartan subalgebra of Sab in the
Grassmann case, Eq. (4) in Part I,

S03, S12, S56, · · · , Sd−1 d ,
S̃03, S̃12, S̃56, · · · , S̃d−1 d . (9.4)

Representations of γa and representations of γ̃a are independent, each with
twice 2

d
2
−1 members in 2

d
2
−1 irreducible representations of an odd Clifford char-

acter and with twice 2
d
2
−1 members in 2

d
2
−1irreducible representations of an even

Clifford character in even dimensional spaces.
We make a choice for the members of the irreducible representations of the two

Lorentz groups to be the ”eigenvectors” of the corresponding Cartan subalgebra
of Eq. (9.4), taking into account Eq. (9.2),

Sab
1

2
(γa +

ηaa

ik
γb) =

k

2

1

2
(γa +

ηaa

ik
γb) ,

Sab
1

2
(1+

i

k
γaγb) =

k

2

1

2
(1+

i

k
γaγb) ,

S̃ab
1

2
(γ̃a +

ηaa

ik
γ̃b) =

k

2

1

2
(γ̃a +

ηaa

ik
γ̃b) ,

S̃ab
1

2
(1+

i

k
γ̃aγ̃b) =

k

2

1

2
(1+

i

k
γ̃aγ̃b) . (9.5)

The Clifford ”vectors” — nilpotents and projectors — of both algebras are normal-
ized, up to a phase, with respect to Eq. (9.45) of 9.6. Both have half integer spins.
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The ”eigenvalues” of the operator S03, for example, for the ”vector” 1
2
(γ0 ∓ γ3)

are equal to ± i
2

, respectively, for the ”vector” 1
2
(1± γ0γ3) are ± i

2
, respectively,

while all the rest ”vectors” have ”eigenvalues” ± 1
2

. One finds equivalently for
the ”eigenvectors” of the operator S̃03: for 1

2
(γ̃0 ∓ γ̃3) the ”eigenvalues” ± i

2
,

respectively, and for the ”eigenvectors” 1
2
(1± γ̃0γ̃3) the ”eigenvalues” k = ± i

2
,

respectively, while all the rest ”vectors” have k = ± 1
2

.
To make discussions easier let us introduce the notation for the ”eigenvectors”

of the two Cartan subalgebras, Eq. (9.4), Ref. [2, 7].

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

(k)

†

= ηaa
ab

(−k) , (
ab

(k))2 = 0 ,

ab

[k]: =
1

2
(1+

i

k
γaγb) ,

ab

[k]

†

=
ab

[k] , (
ab

[k])2 =
ab

[k] ,

ab
˜(k): =

1

2
(γ̃a +

ηaa

ik
γ̃b) ,

ab
˜(k)
†

= ηaa
ab
˜(−k) , (

ab
˜(k))2 = 0 ,

ab
˜[k]: =

1

2
(1+

i

k
γ̃aγ̃b) ,

ab
˜[k]
†

=
ab
˜[k] , (

ab
˜[k])2 =

ab
˜[k] ,

(9.6)

with k2 = ηaaηbb. Let us notice that the “eigenvectors” of the Cartan subalgebras
are either projectors

(
ab

[k])2 =
ab

[k] , (
ab
˜[k])2 =

ab
˜[k] ,

or nilpotents

(
ab

(k))2 = 0 , (
ab
˜(k))2 = 0 .

We pay attention on even dimensional spaces, d = 2(2n+ 1) or d = 4n, n ≥ 0.
The ”basis vectors”, which are products of d

2
either of nilpotents or of pro-

jectors or of both, are “eigenstates‘’ of all the members of the Cartan subalgebra,
Eq. (9.4), of the corresponding Lorentz algebra, forming 2

d
2
−1 irreducible repre-

sentations with 2
d
2
−1 members in each of the two Clifford algebras cases.

The ”basis vectors” of Eq. (9.7) are ”eigenvectors” of all the Cartan subalgebra
members, Eq. (9.4), in d = 2(2n + 1)-dimensional space of γa’s. The first one is
the product of nilpotents only and correspondingly a superposition of an odd
products of γa’s. The second one belongs to the same irreducible representation as
the first one, if it follows from the first one by the application of S01, for example.

03

(+i)
12

(+) · · ·
d−1d

(+) ,
03

[−i]
12

[−i]
56

(+) · · ·
d−1d

(+) ,
03

[−i]
12

[−] · · ·
d−1d

[−] . (9.7)

One finds for their Hermitian conjugated partners, up to a sign,

03

(−i)
12

(−) · · ·
d−1d

(−) ,
03

[−i]
12

[−i]
56

(−) · · ·
d−1d

(−) ,
03

[−i]
12

[−] · · · · · ·
d−1d

[−] .
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The ”basis vectors” form an orthonormal basis within each of the irreducible
representations or among irreducible representations, like the product of the
following annihilation and the corresponding creation operator:

d−1d

(−) · · ·
12

(−)
03

(−i) ∗A
03

(+i)
12

(+) · · ·
d−1d

(+) = 1, while all the algebraic products,
which do not relate the annihilation operators with their Hermitian conjugated
creation operators, give zero.

Usually the operators γa’s are represented as matrices. We use γa’s here to
form the basis. One can find in Ref. [9] how does the application of γa’s on the
basis defined in d = (3+ 1) look like.

9.2.1 Clifford “basis vectors” with half integer spin

In the Grassmann case the 2d−1 odd and 2d−1 even Grassmann operators, which
are superposition of either odd or even products of θa’s, are well distinguishable
from their 2d−1 odd and 2d−1 even Hermitian conjugated operators, which are
superposition of odd and even products of ∂

∂θa
’s, Eq. (6) in Part I.

In the Clifford case the relation between ”basis vectors” and their Hermitian

conjugated partners (made of products of nilpotents (
ab

(k) or
ab
˜(k)) and projectors

(
ab

[k] or
ab
˜[k]), Eq. (9.6), are less transparent (although still easy to be evaluated).

This can be noticed in Eq. (9.6), since 1√
2
(γa + ηaa

i k
γb)† is ηaa 1√

2
(γa + ηaa

i (−k)γ
b),

while ( 1√
2
(1+ i

k
γaγb))† = 1√

2
(1+ i

k
γaγb) is self adjoint. (This is the case also for

representations in the sector of γ̃a’s.)
One easily sees that in even dimensional spaces, either in d = 2(2n+ 1) or in

d = 4n, the Clifford odd ”basis vectors” (they are products of an odd number of
nilpotents and an even number of projectors) have their Hermitian conjugated part-
ners in another irreducible representation, since Hermitian conjugation changes
an odd number of nilpotents (changing at the same time the handedness of the
”basis vectors”), while the generators of the Lorentz transformations change two
nilpotents at the same time (keeping the handedness unchanged).

The Clifford even ”basis vectors” have an even number of nilpotents and can
have an odd or an even number of projectors. Correspondingly an irreducible
representation of an even ”basis vector” can be a product of projectors only and
therefore is self adjoint.

Let us recognize the properties of the nilpotents and projectors. The relations
are taken from Ref. [10].

ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,
ab

[k]
ab

[k] =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0 . (9.8)

The same relations are valid also if one replaces
ab

(k) with
ab
˜(k) and

ab

[k] with
ab
˜[k],

Eq. (9.6).
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Taking into account Eq. (9.8) one recognizes that the product of annihilation

and the creation operator from Eq. (9.7),
03

(−i)
12

(−) · · ·
d−1d

(−) ∗A
03

(+i)
12

(+) · · ·
d−1d

(+) , ap-
plied on a vacuum state — defined as a sum of products of all annihilation × their
Hermitian conjugated partner creation operators from all irreducible represen-

tations,
03

[−i]
12

[−]
56

[−] · · ·
d−1d

[−] +
03

[+i]
12

[+]
56

[−] · · ·
d−1d

[−] +
03

[+i]
12

[−]
56

[+]
78

[−] · · ·
d−1d

[−] + · · · ,
Eq. (9.18), gives a nonzero contribution, but is not the only one for a chosen
creation operator. There are several other choices, like

03

[+i]
12

[+] · · ·
d−1d

(−) ∗A
03

(+i)
12

(+) · · ·
d−1d

(+) ,
03

[+i]
12

(−)
56

[+] · · ·
d−1d

(−) ∗A
03

(+i)
12

(+) · · ·
d−1d

(+) ,

which also give nonzero contributions.
Let us recognize:
i. The two Clifford spaces, the one spanned by γa’s and the second one

spanned by γ̃a’s, are independent vector spaces, each with 2d ”vectors”.
ii. The Clifford odd ”vectors” (the superposition of products of odd numbers

of γa’s or γ̃a’s, respectively) can be arranged for each kind of the Clifford algebras
into two groups of 2

d
2
−1 members of 2

d
2
−1 irreducible representations of the

corresponding Lorentz group. The two groups are Hermitian conjugated to each
other.

iii. Different irreducible representations are indistinguishable with respect to
the ”eigenvalues” of the corresponding Cartan subalgebra members.

iv. The Clifford even part (made of superposition of products of even numbers
of γa’s and γ̃a’s, respectively) splits as well into twice 2

d
2
−1 · 2d2−1 irreducible

representations of the Lorentz group. One member of each Clifford even represen-
tation, the one which is the product of projectors only, is self adjoint. Members of
one irreducible representation are with respect to the Cartan subalgebra indistin-
guishable from all the other irreducible representations.

v. The 2
d
2
−1 members of each of the 2

d
2
−1 irreducible representations are

orthogonal to one another and so are orthogonal their corresponding Hermitian
conjugated partners. For illustration of the orthogonality one can look at Table 9.1,
and recognize that any ”basis vector” of the first four multiplets of odd I, if mul-
tiplied from the left hand side or from the right hand side with any other ”basis
vector” from the rest three ”families” of odd I get zero when taking into account
Eq. (9.8). One can repeat this also for any ”basis vectors” of all the “families” of
odd I, as well as among all the “basis vectors” within odd II. Generalization to any
even dimension d is straightforward.

vi. Denoting ”basis vectors” by b̂m†f , (where f defines different irreducible
representations and m a member in the representation f), and their Hermitian
conjugate partners by b̂mf = (b̂m†f )†, let us start for d = 2(2n+ 1) with

b̂m=1†
f=1 : =

03

(+i)
12

(+) · · ·
d−1d

(+) ,

(b̂m=1†
f=1 )† = b̂m=1

f=1 : =
d−1d

(−) · · ·
12

(−)
03

(−i) , (9.9)
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and making a choice of the vacuum state |ψoc > as a sum of all the products of
b̂mf · b̂m†f for all f = (1, 2, · · · , 2d2−1), one recognizes for the ”basis vectors” of an
odd Clifford character for each of the two Clifford algebras the properties

b̂mf ∗A |ψoc > = 0 |ψoc > ,

b̂m†f ∗A |ψoc > = |ψmf > ,

{b̂mf , b̂
m ′

f ′ }∗A+|ψoc > = 0 |ψoc > ,

{b̂m†f , b̂m†f }∗A+|ψoc > = |ψoc > . (9.10)

∗A represents the algebraic multiplication of b̂m†f and b̂m
′

f ′ among themselves
and with the vacuum state |ψoc > of Eq.(9.18), which takes into account Eq. (9.2).
All the products of Clifford algebra elements are up to now the algebraic ones
and so are also the products in Eq. (9.10). Since we use here anticommutation
relations, we pointed out with ∗A this algebraic character of the products, to be
later distinguished from the tensor product ∗T , when the creation and annihilattion
operators are defined on an extended basis, which is the tensor product of the
superposition of the ”basis vectors” of the Clifford space and of the momentum
basis, applying on the Hilbert space of ”Slater determinants”. The tensor product
∗T is used as well as the product mapping a pair of the fermion wave functions
in to two fermion wave functions and further to many fermion wave functions —
that is to the extended algebra of many fermion system.

Obviously, b̂m†f and b̂mf have on the level of the algebraic products, when
applying on the vacuum state |ψoc >, almost the properties of creation and annihi-
lation operators of the second quantized fermions in the postulates of Dirac, as it
is discussed in the next items. We illustrate properties of ”basis vectors” and their
Hermitian conjugated partners on the example of d = (5+ 1)-dimensional space
in Subsect. 9.2.5.

vii. a. There is, namely, the property, which the second quantized fermions
should fulfill in addition to the relations of Eq. (9.10). The anticommutation rela-
tions of creation and annihilation operators should be:

{b̂mf , b̂
m ′†
f ′ }∗A+|ψoc > = δmm

′
δff ′ |ψoc > . (9.11)

For any b̂mf and any b̂m
′†

f ′ this is not the case; besides b̂m=1
f=1 =

d−1d

(−) · · ·
56

(−)
12

(−)
03

(−i),
for example, also

b̂m
′

f ′ =
d−1d

(−) · · ·
56

(−)
12

[+]
03

[+i] ,

and several others give, when applied on b̂m=1†
f=1 , nonzero contributions. There

are namely 2
d
2
−1 − 1 too many annihilation operators for each creation operator,

which give, applied on the creation operator, nonzero contribution.
vii. b. To use the Clifford algebra objects to describe second quantized

fermions, representing the observed quarks and leptons as well as the antiquarks
and antileptons [3, 10–15, 17], the families should exist.

vii. c. The operators should exist, which connect one irreducible represen-
tation of fermions with all the other irreducible representations.
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vii. d. Two independent choices for describing the internal degrees of free-
dom of the observed quarks and leptons are not in agreement with the observed
properties of fermions.

We solve these problems, cited in vii. a., vii. b., vii. c. and vii. d., by reducing
the degrees of freedom offered by the two kinds of the Clifford algebras, γa’s and
γ̃a’s, making a choice of one — γa’s — to describe the internal space of fermions,
and using the other one — γ̃a’s — to describe the ”family” quantum number of
each irreducible representation of Sab’s in space defined by γa’s.

9.2.2 Reduction of the Clifford space by the postulate

The creation and annihilation operators of an odd Clifford algebra of both kinds,
of either γa’s or γ̃a’s, would obviously obey the anticommutation relations for
the second quantized fermions, postulated by Dirac, at least on the vacuum state,
which is a sum of all the products of annihilation times, ∗A, the corresponding
creation operators, provided that each of the irreducible representations would
carry a different quantum number.

But we know that a particular memberm has for all the irreducible represen-
tations the same quantum numbers, that is the same ”eigenvalues” of the Cartan
subalgebra (for the vector space of either γa’s or γ̃a’s), Eq. (9.6).

The only possibility to ”dress” each irreducible representation of one kind of the two
independent vector spaces with a new, let us say ”family” quantum number, is that we

”sacrifice” one of the two vector spaces, let us make a choice of γ̃a’s, and use γ̃a’s to define
the ”family” quantum number for each irreducible representation of the vector space of
γa’s, while keeping the relations of Eq. (9.2) unchanged: {γa, γb}+ = 2ηab = {γ̃a, γ̃b}+,
{γa, γ̃b}+ = 0, (γa)† = ηaa γa, (γ̃a)† = ηaa γ̃a, (a, b) = (0, 1, 2, 3, 5, · · · , d).

We therefore postulate:
Let γ̃a’s operate on γa’s as follows [2, 3, 8, 14, 15]

γ̃aB = (−)B i Bγa , (9.12)

with (−)B = −1, if B is (a function of) an odd product of γa’s, otherwise
(−)B = 1 [8].

After this postulate the vector space of γ̃a’s is correspondingly ”frozen out”.
No vector space of γ̃a’s needs to be taken into account any longer, in agreement
with the observed properties of fermions. This solves the problems vii.a - vii. d. of
Subsect. 9.2.1.

Taking into account Eq. (9.12) we can check that:
a. Relations of Eq. (9.2) remain unchanged 1.
b. Relations of Eq. (9.3) remain unchanged 2.

1 Let us show that the relation {γ̃a, γ̃b}+ = 2ηab remains valid when applied on B, if B
is either an odd or an even product of γa’s: {γ̃a, γ̃b}+ γc = −i (γ̃aγcγb + γ̃bγcγa) =

−i i γc(γbγa + γaγb) = 2ηabγc, while {γ̃a, γ̃b}+ γ
cγd = i (γ̃aγcγdγb + γ̃bγcγdγa) =

i(−i)γcγd(γbγa + γaγb) = 2ηabγcγd. The relation is valid for any γc and γd, even if
c = d.

2 One easily checks that γ̃a†γc = −iγcγa† = −iηaaγcγa = ηaaγ̃aγc = −iηaaγcγa.
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c. The eigenvalues of the operators Sab and S̃ab on nilpotents and projectors
of γa’s are after the reduction of Clifford space

Sab
ab

(k)=
k

2

ab

(k) , S̃ab
ab

(k)=
k

2

ab

(k) ,

Sab
ab

[k]=
k

2

ab

[k] , S̃ab
ab

[k]= −
k

2

ab

[k] , (9.13)

demonstrating that the eigenvalues of Sab on nilpotents and projectors of γa’s
differ from the eigenvalues of S̃ab, so that S̃ab can be used to denote irreducible
representations of Sab with the ”family” quantum number, what solves the prob-
lems vii. b. and vii. c. of Subsect. 9.2.1.

d. We further recognize that γa transform
ab

(k) into
ab

[−k], never to
ab

[k], while γ̃a

transform
ab

(k) into
ab

[k], never to
ab

[−k]

γa
ab

(k)= ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k],

γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k)= −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k],

γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) . (9.14)

e. One finds, using Eq. (9.12),

ab
˜(k)
ab

(k) = 0 ,
ab
˜(−k)

ab

(k)= −i ηaa
ab

[k] ,
ab
˜(k)
ab

[k] = i
ab

(k) ,
ab
˜(k)

ab

[−k]= 0 ,
ab
˜[k]
ab

(k) =
ab

(k) ,
ab
˜[−k]

ab

(k)= 0 ,

ab
˜[k]
ab

[k] = 0 ,
ab
˜[−k]

ab

[k]=
ab

[k] . (9.15)
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f. From Eq. (9.14) it follows

Sac
ab

(k)
cd

(k) = −
i

2
ηaaηcc

ab

[−k]
cd

[−k] ,

S̃ac
ab

(k)
cd

(k) =
i

2
ηaaηcc

ab

[k]
cd

[k] ,

Sac
ab

[k]
cd

[k] =
i

2

ab

(−k)
cd

(−k) ,

S̃ac
ab

[k]
cd

[k] = −
i

2

ab

(k)
cd

(k) ,

Sac
ab

(k)
cd

[k] = −
i

2
ηaa

ab

[−k]
cd

(−k) ,

S̃ac
ab

(k)
cd

[k] = −
i

2
ηaa

ab

[k]
cd

(k) ,

Sac
ab

[k]
cd

(k) =
i

2
ηcc

ab

(−k)
cd

[−k] ,

S̃ac
ab

[k]
cd

(k) =
i

2
ηcc

ab

(k)
cd

[k] . (9.16)

g. Each irreducible representation has now the ”family” quantum number, deter-
mined by S̃ab of the Cartan subalgebra of Eq. (9.4). Correspondingly the creation
and annihilation operators fulfill algebraically the anticommutation relations of
Dirac second quantized fermions: Different irreducible representations carry dif-
ferent ”family” quantum numbers and to each ”family” quantum member only
one Hermitian conjugated partner with the same ”family” quantum number be-
long. Also each summand of the vacuum state, Eq. (9.18), belongs to a particular
”family”. This solves the problem vii. a. of Subsect. 9.2.1.

The anticommutation relations of Dirac fermions are therefore fulfilled on the
vacuum state, Eq. (9.18), on the algebraic level, without postulating them. They
follow by themselves from the fact that the creation and annihilation operators are
superposition of odd products of γa’s.

Statement 1: The oddness of the products of γa’s guarantees the anticom-
muting properties of all objects which include odd number of γa’s.

We shall show in Subsect. 9.2.4 of this section, and in Sect. 9.3, that the same
relations are valid also on the Hilbert space of all the second quantized fermions
states, with the creation operators defined on the tensor product of ”basis vectors”
of the Clifford algebra and on the basis of the momentum space, where the Hilbert
space is defined with the creation operators of all possible momenta of all possible
”Slater determinants” applying on |ψoc >.

Let us write down the anticommutation relations of Clifford odd ”basic
vectors”, representing the creation operators and of the corresponding annihilation
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operators again.

{b̂mf , b̂
m ′†
f ′ }∗A+ |ψoc > = δmm

′
δff ′ |ψoc > ,

{b̂mf , b̂
m ′

f ′ }∗A+ |ψoc > = 0 · |ψoc > ,
{b̂m†f , b̂m

′†
f ′ }∗A+ |ψoc > = 0 · |ψoc > ,
b̂m†f ∗A |ψoc > = |ψmf > ,

b̂mf ∗A|ψoc > = 0 · |ψoc > , (9.17)

with (m,m ′) denoting the ”family” members and (f, f ′) denoting ”families”, ∗A
represents the algebraic multiplication of b̂mf with the vacuum state |ψoc > of
Eq.(9.18) and among themselves, taking into account Eq. (9.2).

h. The vacuum state for the vector space determined by γa’s remains un-
changed |ψoc >, Eq. (80) of Ref. [3], it is a sum of the products of any annihilation
operator with its Hermitian conjugated partner of any family.

|ψoc > =
03

[−i]
12

[−]
56

[−] · · ·
d−1 d

[−] +
03

[+i]
12

[+]
56

[−] · · ·
d−1 d

[−]

+
03

[+i]
12

[−]
56

[+] · · ·
d−1 d

[−] + · · · |1 > ,
for d = 2(2n+ 1) ,

|ψoc > =
03

[−i]
12

[−]
35

[−] · · ·
d−3 d−2

[−]
d−1 d

[+]

+
03

[+i]
12

[+]
56

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] + · · · |1 > ,
for d = 4n , (9.18)

n is a positive integer.
i. Taking into account the relation among θa in Eq. (9.1) and Eq. (9.12), requir-

ing that γ̃aa0 = ia0γa, leads to ∂
∂θa

= 0, and further to

θa = γa . (9.19)

Eq. (9.12)) namely requires: γ̃a(a0+abγb+abcγbγc+· · · ) = (ia0γ
a+(−i)abγ

bγa+

iabcγ
bγcγa + · · · ), what means that Eq. (9.19) is only one of the relations 3 The

application of γ̃a depends on the space on which it applies.
The Hermitian conjugated part of the space in the Grassmann case is ”freezed

out” together with the ”vector” space of γ̃a’s.

9.2.3 Clifford fermions with families

Let us make a choice of the starting creation operator b̂1†1 of an odd Clifford
character and of its Hermitian conjugated partner in d = 2(2n + 1) and d = 4n,

3 Another relation, for example, is γ̃aγa = (−i)γaγa = −iηaa. One also has {γ̃a, γ̃b}+ =

2ηab = γ̃aγ̃b+γ̃bγ̃a = γ̃aiγb+γ̃biγa = iγb(−i)γa+iγa(−i)γb = 2ηab. {γ̃a, γb}+ = 0 =

γ̃aγb + γbγ̃a = γb(−i)γa + γbiγa = 0. {γ̃a, γa}+ = 0 = γ̃aγa + γaγ̃a = γa(−iγa +

γaiγa = 0.
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respectively, as follows

b̂1†1 : =
03

(+i)
12

(+)
56

(+) · · ·
d−3 d−2

(+)
d−1 d

(+) ,

(b̂1†1 )† = b̂11 : =
d−1 d

(−)
d−3 d−2

(−) · · ·
56

(−)
12

(−)
01

(−i) ,

d = 2(2n+ 1) ,

b̂1†1 : =
03

(+i)
12

(+)
56

(+) · · ·
d−3 d−2

(+)
d−1 d

[+] ,

(b̂1†1 )† = b̂11 : =
d−1 d

[+]
d−3 d−2

(−) · · ·
56

(−)
12

(−)
01

(−i) ,

d = 4n . (9.20)

All the rest ”vectors”, belonging to the same Lorentz representation, follow by the
application of the Lorentz generators Sab’s.

The representations with different ”family” quantum numbers are reachable
by S̃ab, since, according to Eq. (9.16), we recognize that S̃ac transforms two nilpo-

tents
ab

(k)
cd

(k) into two projectors
ab

[k]
cd

[k], without changing k (S̃ac transforms
ab

[k]
cd

[k]

into
ab

(k)
cd

(k), as well as
ab

[k]
cd

(k) into
ab

(k)
cd

[k]). All the ”family” members are reachable
from one member of a new family by the application of Sab’s.

In this way, by starting with the creation operator b̂1†1 , Eq. (9.20), 2
d
2
−1 ”fami-

lies”, each with 2
d
2
−1 ”family” members follow.

Let us find the starting member of the next ”family” to the ”family” of
Eq. (9.20) by the application of S̃01

b̂1†2 : =
03

[+i]
12

[+]
56

(+) · · ·
d−3 d−2

(+)
d−1 d

(+) ,

b̂12 : =
d−1 d

(−)
d−3 d−2

(−) · · ·
56

(−)
12

[+]
01

[+i] . (9.21)

The corresponding annihilation operators, that is the Hermitian conjugated
partners of 2

d
2
−1 ”families”, each with 2

d
2
−1 ”family” members, following from the

starting creation operator b̂1†1 by the application of Sab’s — the family members —
and the application of S̃ab — the same family member of another family — can be
obtained by Hermitian conjugation.

The creation and annihilation operators of an odd Clifford character, expressed by
nilpotents and projectors of γa’s, obey anticommutation relations of Eq. (9.17), without
postulating the second quantized anticommutation relations as we explain in Sub-
sect. 9.2.2.

The even partners of the Clifford odd creation and annihilation operators
follow by either the application of γa on the creation operators, leading to 2

d
2
−1

”families”, each with 2
d
2
−1 members, or with the application of γ̃a on the creation

operators, leading to another group of the Clifford even operators, again with the
2
d
2
−1 ”families”, each with 2

d
2
−1 members.

It is not difficult to recognize, that each of the Clifford even ”families”, ob-
tained by the application of γa or by γ̃a on the creation operators, contains one
selfadjoint operator, which is the product of projectors only, contributing as a
summand to the vacuum state, Eq. (9.18).
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9.2.4 Action for free massless Clifford fermions with half integer spin and
solutions of Weyl equations

To relate the creation operators, expressed with the Clifford odd ”basis vectors”,
and the creation operators, creating the second quantized fermions, we define the
tensor products of the finite number of odd Clifford ”basis vectors” and infinite
basis of momentum space. To compare properties of our creation operators of
the second quantized fermions with those of Dirac, the solution of the equations
of motion of the Weyl (for massless free fermions) or of the Dirac equations are
appropriate.

The Lorentz invariant action for a free massless fermion in Clifford space is
well known

A =

∫
ddx

1

2
(ψ†γ0 γapaψ) + h.c. , (9.22)

pa = i ∂
∂xa

, leading to the equation of motion

γapa|ψ > = 0 , (9.23)

and to the Klein-Gordon equation

γapaγ
bpb|ψ > = papa|ψ >= 0 ,

γ0 appears in the action to take care of the Lorentz invariance of the action.
Our Clifford algebra ”basis vectors” offer the description of only the internal

degrees of freedom of fermions (in d = (3 + 1) the ”basis vectors” offers the
description of only the spin and family degrees of freedom, in d ≥ 5 also of the
charges [4, 10, 11, 15] and the references therein).

We need to extend the internal degrees of freedom (offering final number —
2
d
2
−1 × 2d2−1 — of basis vectors of the odd products of γa) to the momentum or

coordinate space with (infinite number of) basis.
Statement 2: For deriving the anticommutation relations for the Clifford

fermions, to be compared with the anticommutation relations of the second quan-
tized fermions, we need to define the tensor product of the Clifford odd ”basis
vectors” and the momentum space

basis(pa,γa) = |pa > ∗T |γa > .

The new state vector space is the tensor product of the internal space of
fermions and the space of momenta or coordinates. All states have an odd Clifford
character due to oddness of the internal space.

Solutions of Eq. (9.23) for free massless fermions of momentum pa, a =

(0, 1, 2, 3, 5, . . . , d) are superposition of ”basis vectors” b̂m†f , expressed by operators
γa, where f denotes a ”family” and m a ”family” member quantum number,
Eqs. (9.20, 9.21), and of plane waves in the case of free, in our case, massless
fermions. The equations of motion require that |p0| = |~p|. Correspondingly it
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follows

< x|ψsf(p̃,p0) > |p0=|p̃| =

∫
dp0δ(p0 − |~p|) b̂sf†(~p) e−ipax

a ∗A |ψoc >

= (b̂sf†(~p) · e−i(p0x0−ε~p·~x))|p0=|~p| ∗A |ψoc > ,

where we define ,

b̂sf†(~p)|p0=|~p|
def
=
∑
m

csfm (~p, |p0| = |~p|) b̂m†f ,

|ψsf(x̃, x0) > =

∫+∞
−∞

dd−1p

(
√
2π)d−1

(b̂sf†(~p) e−i(p
0x0−ε~p·~x)|p0=|~p| ∗A |ψoc > ,

(9.24)

s represents different orthonormalized solutions of the equations of motion,
ε = ±1, depending on handedness and spin of solutions, csfm(~p, |p0| = |~p|)

are coefficients, depending on momentum |~p| with |p0| = |~p|, while ∗A denotes the
algebraic multiplication of the ”basis vectors” b̂m†f on the vacuum state |ψoc >,
Eq. (9.17).

An illustration of b̂sf†(~p) is presented in Subsect. 9.2.5.
Since the “basis vectors” in internal space of fermions are orthogonal accord-

ing to Eq. (9.10) ({b̂mf ∗A , b̂
m ′†
f ′ ∗A }+|ψoc >= b̂

m
f ∗A b̂

m ′†
f ′ ∗A |ψoc >),

b̂mf ∗A b̂
m ′†
f ′ ∗A |ψoc >= δ

mm ′δff ′ |ψoc > ,

it follows for particular ~p , p0 = |~p|, that∑
m

csf∗m(~p, |p0| = |~p|) cs
′f ′

m(~p, |p0| = |~p|) = δss
′
δff ′ ,

leading to∫
dd−1x

(
√
2π)d−1

< ψs ′f ′( ~p ′, p ′0 = | ~p ′|)|x >< x||ψsf(~p, p0 = |~p|) >=∫
dd−1x

(
√
2π)d−1

eip
′
ax
a

|p ′0=| ~p ′| e
−ipax

a

|p0|=|~p|

· < ψoc| (b̂s
′f ′( ~p ′) b̂sf†(~p)) ∗A |ψoc >= δss ′δff

′
δ(~p− ~p ′) , (9.25)

while we take into account that
∫

dd−1x

(
√
2π)d−1

eip
′
ax
a

e−ipax
a

= δ(~p− ~p ′).

Let us now evaluate the scalar product < ψsf(~x, x0) |ψs ′f ′(~x ′, x0) >, taking
into account that the scalar product is evaluated at a time x0 and correspondingly
using the relation

< ψsf(~x, x0)|ψs ′f ′(~x ′, x0) >= δss
′
δff ′ δ(~x− ~x ′) =∫

dp0√
2π

∫
dp ′0√
2π
δ(p0 − p ′0)

∫+∞
−∞

dd−1p ′

(
√
2π)d−1

∫+∞
−∞

dd−1p

(
√
2π)d−1

δ(p0 − |~p|) δ(p ′0 − | ~p ′|)

< ψoc|(b̂s
′f ′( ~p ′, p ′0) b̂sf†(~p, p0)) ∗A |ψoc > e

ip ′ax
′a
e−ipax

a

=∫
dp0√
2π

∫+∞
−∞

dd−1p ′

(
√
2π)d−1

δ(p0 − | ~p ′|)

∫+∞
−∞

dd−1p

(
√
2π)d−1

δ(p0 − |~p|)

< ψoc|(b̂sf(~p, p0) b̂s
′f ′†( ~p ′, p0)) ∗A |ψoc > e

i(p0x0−~p·~x) e−i(p
0x ′0− ~p ′·~x) . (9.26)
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The scalar product < ψsf(~x, x0) |ψs ′f ′(~x ′, x0) > has obviously the desired proper-
ties of the second quantized states.

Let us define the creation operators b̂
sf†
tot(~p), which determine, when applying

on the vacuum state, the fermion states, Eq. (9.24),

b̂
sf†
tot(~p)

def
= b̂sf†(~p) e−i(p

0x0−~p·~x) ,

b̂
sf

tot(~p) = (b̂
sf†
tot(~p))

† = b̂sf(~p) ei(p
0x0−~p·~x) ,

b̂
sf†
tot(~p) |ψoc > = |ψsf(~p, p0 = |~p|) > . (9.27)

In Eq. (9.27) b̂
sf†
tot(~p) creates on the vacuum state |ψoc > the single fermion states.

We can multiply, using the tensor product ∗T multiplication this time, an arbitrary
number of such single particle states, what means that we multiply an arbitrary

number of creation operators b̂
sf†
tot(~p)∗T b̂

s ′f ′†
tot ( ~p ′) ∗T · · · ∗T b̂

s ′′f ′′†
tot ( ~p ′′), applying

on |ψoc >, which gives nonzero contributions, provided that they distinguish
among themselves in at least one of the properties (s, f,~p), in the internal space
quantum numbers (s, f) or in momentum part ~p, due to the orthonormal property
of plane waves.

The space of all such functions, which one can form - including the identity -
represents the second quantized Hilbert space. We present these tensor products
as ”Slater determinants” of occupied and empty states in Section 9.3.

Due to anticommutation relations of any two of creation operators

{b̂sf†(~p) , b̂s
′f ′(~p)}+ |ψoc >= δ

ff ′δss
′
|ψoc >,

Eqs. (9.17, 9.24), while plane waves form the orthonormal basis in the momentum

representation, Eq. (9.25), the new creation operators b̂
sf†
tot(~p), which are are gen-

erated on the tensor products of both spaces, internal and momentum, fulfill the
anticommutation relations when applied on |ψoc >.

{b̂
sf

tot(~p) , b̂
sf†
tot(~p

′)}+ ∗T |ψoc > = δss
′
δff ′ δ(~p− ~p ′) |ψoc > ,

{b̂
sf

tot(~p) , b̂
s ′f ′

tot (
~p ′)}+ ∗T |ψoc > = 0 · |ψoc > ,

{b̂
sf†
tot(~p) , b̂

s ′f ′†
tot (~p ′)}+ ∗T |ψoc > = 0 · |ψoc > ,

b̂
sf†
tot(~p) ∗T |ψoc> = |ψsf(~p) > ,

b̂
sf

tot(~p) ∗T |ψoc > = 0 · |ψoc > ,
|p0| = |~p| . (9.28)

It is not difficult to show that b̂
sf

tot(~p) and b̂
sf†
tot(~p) manifest the same anticommu-

tation relations also on tensor products of an arbitrary chosen set of single fermion
states, what we discuss in Sect. 9.3.

Therefore, with the choice of the Clifford odd ”basis states” to describe the in-
ternal space of fermions (we can proceed equivalently in the Grassmann case) and
using the tensor product of the internal space and the momentum or coordinate
space to solve the equations of motion, we derive the anticommutation relations
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among creation operators b̂
sf†
tot(~p) and their Hermitian conjugated partners annihi-

lation operators (b̂
sf†
tot(~p))

† = b̂sf(~p) ei(p
0x0− ~p,·~x) = b̂

sf

tot(~p), with |p0| = |~p|. While

application of b̂
sf†
tot(~p) on |ψoc > generates the single fermion state, the application

of b̂
sf

tot(~p) gives zero.

We shall demonstrate in Sect. 9.3 that there is {b̂
s ′f ′

tot (
~p ′) , b̂

sf†
tot(~p)}+, which

when applied on the Hilbert space of the second quantized fermions (that is on
tensor products of all single fermion states, or equivalently on all possible ”Slater
determinants”), gives zero when at least one of (s ′, f ′, ~p ′) differ from (s, f,~p),

while {b̂
sf

tot(~p) , b̂
sf†
tot(~p)}+ applied on the Hilbert space, gives the whole Hilbert

space back.
Taking into account the last line of Eq. (9.24) and Eqs. (9.26,9.27), the creation

operators Ψ† follow, which determine, when applying on the vacuum state |ψoc >,
the fermion fields |ψsf(x̃, x0) >, depending on coordinates at particular time x0

Ψsf†(~x, x0)
def
=

∫+∞
−∞

dd−1p

(
√
2π)d−1

b̂
sf†
tot(~p)|p0|=|~p| ,

Ψsf†(~x, x0) |ψoc > = |ψsf(~x, x0) > ,

{Ψsf†(~x, x0) , Ψs
′f ′(~x ′, x0)}+ |ψoc > = δss

′
δff
′
δ(~x− ~x ′)|ψoc > ,

{Ψsf(~x, x0) , Ψs
′f ′(~x ′, x0)}+ |ψoc > = 0 .

{Ψsf†(~x, x0) , Ψs
′f ′†(~x ′, x0)}+ |ψoc > = 0 , (9.29)

where Ψ†(~x, x0) and Ψsf(~x, x0) are creation and annihilation partners, respectively,
Hermitian conjugated to each other, in the coordinate representation, presenting
the creation and annihilation operators of the second quantized fields.

The application of the creation operators b̂
sf†
tot(~p)|p0|=|~p| and Ψ†(~x, x0) and

their Hermitian conjugated partners on the Hilbert space of fermion fields will be
discussed in Sect. 9.3.

Dirac uses the Lagrange and Hamilton formalism for fermion fields and as-
suming that the second quantized states should anticommute to describe fermions,
he derives the anticommuting creation and annihillation operators. In Subsect. 9.3.4
we compare the Dirac anticommutation relations with our way of deriving anti-
commutation relations for second quantized fields in details.

In Subsect. 9.2.5 the properties of creation and annihilation operators, b̂
sf†
tot(~p)

and b̂
sf

tot(~p), respectively, described by the odd Clifford algebra objects in d =

(5+ 1)-dimensional space are discussed.

9.2.5 Illustration of Clifford fermions with families in d = (5 + 1)-
dimensional space

We illustrate properties of the Clifford odd, and correspondingly anticommuting, creation
and their Hermitian conjugated partners annihilation operators, belonging to 2

6
2
−1 = 4

”families”, each with 2
6
2
−1 = 4members in d = (5 + 1)-dimensional space. The spin in the

fifth and the sixth dimension manifests as the charge in d = (3 + 1).
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In Table 9.1 the ”basis vectors” of odd and even Clifford character are presented. They
are ”eigenvectors” of the Cartan subalgebras, Eq. (9.4).

Half of the Clifford odd ”basis vectors” are (chosen to be) creation operators b̂m†f ,
denoted in table by odd I, appearing in four ”families”, f = (1(a), 2(b), 3(c), 4(d)). The
rest half of the Clifford odd ”basis vectors” are their Hermitian conjugated partners b̂mf ,
presented in odd II part and denoted with the corresponding ”family” and family members
(am, bm, cm, dm) quantum numbers.

The normalized vacuum state is the product of b̂mf · b̂m†f — this product is the same
for each member of a particular family and different for different families — summed over
four families

|ψoc > =
1√
2
6
2
−1

(
03

[−i]
12

[−1]
56

[−1] +
03

[+i]
12

[+1]
56

[−1]

+
03

[+i]
12

[−1]
56

[+1] +
03

[−i]
12

[+1]
56

[+1]). (9.30)

One easily checks, by taking into account Eq. (9.15), that the creation operators b̂m†f
and the annihilation operators b̂mf fulfill the anticommutation relations of Eq (9.17).

The summands of the vacuum state |ψoc > appear among selfadjoint members of even
I part of Table 9.1, each of summands belong to different ”family” 4.

All the Clifford even ”families” with ”family” members of Table 9.1 can be obtained
as algebraic products, ∗A, of the Clifford odd ”vectors” of the same table.

Let us find the solutions of the Weyl equation, Eq. (9.23), taking into account four basis
creation operators of the first family, f = 1(a), in Table 9.1. Assuming that moments in the
fifth and the sixth dimensions are zero, pa = (p0, p1, p2, p3, 0, 0), the following four plane
wave solutions for positive energy, p0 = |~p|, can be found, two with the positive charge 1

2

and with spin S12 either equal to 1
2

or to − 1
2

, and two with the negative charge − 1
2

and
again with S12 either 1

2
or − 1

2
.

Clifford odd creation operators in d = (5 + 1)

p0 = |p0| , S56 =
1

2
, Γ (3+1) = 1 ,(

b̂
11†
tot(~p) = β

(
03

(+i)
12

(+) |
56

(+) +
p1 + ip2

|p0| + |p3|

03

[−i]
12

[−] |
56

(+)

))
·

e−i(|p
0|x0−~p·~x) ,(

b̂
21†
tot(~p) = β∗

(
03

[−i]
12

[−] |
56

(+) −
p1 − ip2

|p0| + |p3|

03

(+i)
12

(+) |
56

(+)

))
·

e−i(|p
0|x0+~p·~x) ,

4 If we would make a choice for creation operators the ”families” with the “family” mem-
bers of odd II of Table 9.1, instead of ”families” with the “family” members of odd I, then
their Hermitian conjugated partners would be the ”families” with the “family” members
in odd I. The vacuum state would be the sum of products of annihilation operators of
odd I times the creation operators of odd II and would be the sum of selfadjoint members
appearing in even II.
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odd I m f = 1(a) f = 2(b) f = 3(c) f = 4(d) S03 S12 S56 Γ(5+1) Γ(3+1)

( i
2
, 1
2
, 1
2

) (− i
2
,− 1
2
, 1
2

) (− i
2
, 1
2
,− 1
2

) ( i
2
,− 1
2
,− 1
2

)

03 12 56 03 12 56 03 12 56 03 12 56

1
03

(+i)
12
(+)

56
(+)

03
[+i]

12
[+]

56
(+)

03
[+i]

12
(+)

56
[+]

03
(+i)

12
[+]

56
[+] i

2
1
2

1
2

1 1

2 [−i][−](+) (−i)(−)(+) (−i)[−][+] [−i](−)[+] − i
2

− 1
2

1
2

1 1

3 [−i](+)[−] (−i)[+][−] (−i)(+)(−) [−i][+](−) − i
2

1
2

− 1
2

1 −1

4 (+i)[−][−] [+i](−)[−] [+i][−](−) (+i)(−)(−) i
2

− 1
2

− 1
2

1 −1

odd II S03 S12 S56 Γ(5+1) Γ(3+1)

03 12 56
fm

03 12 56
fm

03 12 56
fm

03 12 56
fm

(−i)(+)(+)d4
[−i][+](+)d3

[−i](+)[+]d2
(−i)[+][+]d1

− i
2

1
2

1
2

−1 −1

[+i][−](+)c4
(+i)(−)(+)c3

(+i)[−][+]c2
[+i](−)[+]c1

i
2

− 1
2

1
2

−1 −1

[+i](+)[−]b4
(+i)[+][−]b3

(+i)(+)(−)b2
[+i][+](−)b1

i
2

1
2

− 1
2

−1 1

(−i)[−][−]a4
[−i](−)[−]a3

[−i][−](−)a2
(−i)(−)(−)a1

− i
2

− 1
2

− 1
2

−1 1

even I m S03 S12 S56 Γ(5+1) Γ(3+1)

( i
2
, 1
2
, 1
2

) (− i
2
,− 1
2
, 1
2

) ( i
2
,− 1
2
,− 1
2

) (− i
2
, 1
2
,− 1
2

)

03 12 56 03 12 56 03 12 56 03 12 56

1 [−i](+)(+) (−i)[+](+) [−i][+][+] (−i)(+)[+] − i
2

1
2

1
2

−1 −1

2 (+i)[−](+) [+i](−)(+) (+i)(−)[+] [+i][−][+] i
2

− 1
2

1
2

−1 −1

3 (+i)(+)[−] [+i][+][−] (+i)[+](−) [+i](+)(−) i
2

1
2

− 1
2

−1 1

4 [−i][−][−] (−i)(−)[−] [−i](−)(−) (−i)[−](−) − i
2

− 1
2

− 1
2

−1 1

even II m S03 S12 S56 Γ(5+1) Γ(3+1)

(− i
2
, 1
2
, 1
2

) ( i
2
,− 1
2
, 1
2

) (− i
2
,− 1
2
,− 1
2

) ( i
2
, 1
2
,− 1
2

)

03 12 56 03 12 56 03 12 56 03 12 56

1 [+i](+)(+) (+i)[+](+) [+i][+][+] (+i)(+)[+] i
2

1
2

1
2

1 1

2 (−i)[−](+) [−i](−)(+) (−i)(−)[+] [−i][−][+] − i
2

− 1
2

1
2

1 1

3 (−i)(+)[−] [−i][+][−] (−i)[+](−) [−i](+)(−) − i
2

1
2

− 1
2

1 −1

4 [+i][−][−] (+i)(−)[−] [+i](−)(−) (+i)[−](−) i
2

− 1
2

− 1
2

1 −1

Table 9.1. 2d = 64 ”eigenvectors” of the Cartan subalgebra, Eq. (9.4), of the Clifford odd
and even algebras in d = (5 + 1) are presented, divided into four groups, each group with
four ”families”, each ”family” with four ”family” members. Two of four groups are sums of
an odd number of γa’s. The ”basis vectors”, b̂m†f , Eqs. (9.20, 9.21), in odd I group, belong to
four ”families” (f = 1(a), 2(b), 3(c), 4(d)) with four members (m = 1, 2, 3, 4), having their
Hermitian conjugated partners, b̂mf , among ”basis vectors” of the odd II part, denoted by
the corresponding ”family” and ”family” members (am, bm, cm, dm) quantum numbers.
The ”family” quantum numbers, the eigenvalue of (S̃03, S̃12, S̃56), of b̂m†f are written above
each ”family”. The two groups with the even number of γa’s, even I and even II, have
their Hermitian conjugated partners within their own group each. There are members in
each group, which are products of projectors only. Numbers — 03 12 56 — denote the
indexes of the corresponding Cartan subalgebra members (S̃03, S̃12, S̃56), Eq. (9.4). In the
columns (7, 8, 9) the eigenvalues of the Cartan subalgebra members (S03, S12, S56), Eq. (9.4),
are presented. The last two columns tell the handedness of d = (5 + 1), Γ (5+1), and of
d = (3 + 1), Γ (3+1), respectively, defined in Eq.(9.48).

Clifford odd creation operators in d = (5 + 1)

p0 = |p0| , S56 = −
1

2
, Γ (3+1) = −1 ,(

b̂
31†
tot(~p) = −β

(
03

[−i]
12

(+) |
56

[−] +
p1 + ip2

|p0| + |p3|

03

(+i)
12

[−] |
56

[−]

))
·

e−i(|p
0|x0+~p·~x) ,(

b̂
41†
tot(~p) = −β∗

(
03

(+i)
12

[−] |
56

[−] −
p1 − ip2

|p0| + |p3|

03

[−i]
12

(+) |
56

[−]

))
·

e−i(|p
0|x0−~p·~x) , (9.31)
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182 N.S. Mankoč Borštnik and H.B.F. Nielsen

Index s=(1,2,3,4) counts different solutions of the Weyl equations, index f=1 denotes the

family quantum number, all solutions belong to the same family, while β∗β = |p0|+|p3|

2|p0|

takes care that the corresponding states are normalized.
All four superposition of b̂

sf†
tot(~p)|p0=|~p| =

∑
m c

sf=1
m(~p, |p0| = |~p|) b̂m†f=1 e

−i(p0x0−ε~p·~x),
with m = (1, 2) for the first two states, and with m = (3, 4) for the second two states, Ta-
ble 9.1, s = (1, 2, 3, 4), are orthogonal and correspondingly normalized, fulfilling Eq. (9.25).

9.3 Hilbert space of Clifford fermions

The Clifford odd creation operators b̂
sf†
tot(~p), with |p0| = |~p|, are defined in Eq. (9.27)

on the tensor products of the (2
d
2
−1)2 ”basis vectors” (describing the internal

space of fermion fields) and of the (continuously) infinite number of basis in the
momentum space. The solutions of the Weyl equation, Eq. (9.23), are plane waves
of particular momentum ~p and with energy related to momentum, |p0| = |~p|.

The creation operator b̂
sf†
tot(~p) defines, when applied on the vacuum state

|ψoc >, the sth of the 2
d
2
−1 plane wave solutions of a particular momentum ~p be-

longing to the fth of the 2
d
2
−1 ”families”. They fulfill together with the Hermitian

conjugated partners annihilation operators b̂
sf

tot(~p) the anticommutation relations
of Eq. (9.28).

These creation operators form the Hilbert space of ”Slater determinants”,
defining for each ”Slater determinant” the ”space” for any of the single particle
fermion states of an odd Clifford character, due to the oddness of the ”basis vector”
of an odd Clifford character. Each of these ”spaces” can be empty or occupied.
Correspondingly there is the ”Slater determinant” with all the ”spaces” empty, the
”Slater determinants” with only one of the ”spaces” occupied, any one, and all the
rest empty, the ”Slater determinants” with two ”spaces” occupied, any two, and
all the rest empty, and so on.

These ”Slater determinant” of all possible occupied and empty states can be
explained as well if introducing the tensor multiplication of single fermion states
of any quantum number and any momentum, with the constant included.

Statement 3: Introducing the tensor product multiplication ∗T of any number
of Clifford odd fermion states of all possible internal quantum numbers and all

possible momenta (that is of any number of b̂
s f †
tot (~p)) of any (s, f,~p) we generate

the Hilbert space of Clifford fermions.
The Hilbert space of a particular momentum ~p,H~p, contains the finite number

of ”Slater determinants”. The number of ”Slater determinants” is in d-dimensional
space equal to

NH~p
= 22

d−2

. (9.32)

The total Hilbert space of anticommuting fermions is the product⊗N of the Hilbert
spaces of particular ~p

H =

∞∏
~p

⊗NH~p . (9.33)
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The total Hilbert space H is correspondingly infinite and contains NH ”Slater
determinants”

NH =

∞∏
~p

22
d−2

. (9.34)

Before starting to comment the application of the creation operators b̂
sf†
tot(~p)

and annihilation b̂
sf

tot(~p) operators on the Hilbert space H (described with all
possible ”Slater determinants” of all possible occupied and empty fermion states
of all possible (s, f,~p), or by the tensor products of all possible single fermion
states of all possible (s, f,~p), with the identity included) let us discuss properties
of creation and annihilation operators, the anticommutation relations of which are
presented in Eq. (9.28).

The creation operators b̂
sf†
tot(~p) and the annihilation operators b̂

s ′f ′

tot (
~p ′), hav-

ing an odd Clifford character, anticommute, manifesting the properties as follows

b̂
sf†
tot(~p) ∗T b̂

s ′f ′†
tot (~p ′) = −b̂

s ′f ′†
tot (~p ′) ∗T b̂

sf†
tot(~p) ,

b̂
sf

tot(~p) ∗T b̂
s ′f ′

tot (~p
′) = −b̂

s ′f ′

tot (~p
′) ∗T b̂

sf

tot(~p) ,

b̂
sf

tot(~p) ∗T b̂
s ′f ′†
tot (~p ′) = −b̂

s ′f ′†
tot (~p ′) ∗T b̂

sf

tot(~p) ,

if at least one of (s, f,~p) is different from (s ′, f ′,~p ′) ,

b̂
sf†
tot(~p) ∗T b̂

sf†
tot(~p) = 0 ,

b̂
sf

tot(~p) ∗T b̂
sf

tot(~p) = 0 ,

b̂
sf

tot(~p) ∗T b̂
sf†
tot(~p) = 1 (identity) ,

b̂
sf

tot(~p)|ψoc > = 0 . (9.35)

The above relations, leading from the commutation relations of Eq. (9.28), deter-
mine the rules of the application of creation and annihilation operators on ”Slater
determinants”:

i. The creation operator b̂
sf†
tot(~p) jumps over the creation operators determining

the occupied state of another kind (that is over the occupied state distinguishing
from the jumping creation one in any of the internal quantum numbers (s, f) or
in ~p) up to the last step when it comes to its own empty state with the quantum
numbers (f, s) and ~p, occupying this empty state, or, if this state is already occupied,

gives zero. Whenever b̂
sf†
tot(~p) jumps over an occupied state changes the sign of

the ”Slater determinant”.
ii. The annihilation operator changes the sign whenever jumping over the

occupied state carrying different internal quantum numbers (s, f) or ~p, unless it
comes to the occupied state with its own internal quantum numbers (s, f) and its
own ~p, emptying this state, or, if this state is empty, gives zero.

Let us point out that the Clifford odd creation operators, b̂
sf†
tot(~p), and annihi-

lation operators, b̂
s ′f ′

tot (
~p ′), fulfill the anticommutation relations of Eq. (9.28) for

any ~p and any (s, f) due to the anticommuting character (the Clifford oddness) of
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184 N.S. Mankoč Borštnik and H.B.F. Nielsen

the ”basis vectors”, b̂m†f and their Hermitian conjugated partners b̂mf , Eqs. (9.20,
9.21), what means that the anticommuting character of creation and annihilation
operators is not postulated.

The total Hilbert space H has infinite number of degrees of freedom (of
”Slater determinants”) due to the infinite number of Hilbert spacesH~p of particular
~p,H =

∏∞
~p ⊗NH~p, while the Hilbert spaceH~p of particular momentum ~p has the

finite dimension 22
d−2

.
In Subsects. 9.3.1, 9.3.2, 9.3.3 the properties of Hilbert spaces are discussed in

more details.

9.3.1 Application of b̂
sf†
tot(~p) and b̂

sf

tot(~p) on Hilbert space of Clifford
fermions of particular ~p

The 2d−2 Clifford odd creation operators of particular momentum ~p, b̂
sf†
tot(~p, p

0),
with the property |p0| = |~p|, each representing the sth solution of Eq. (9.23) for
a particular family f, fulfill together with the (Hermitian conjugated partners)

annihilation operators b̂
sf

tot(~p) the anticommutation relations of Eq. (9.28), the
application of which on the Hilbert space of ”Slater determinants” are discussed
in Eq. (9.35) and in the text below this equation.

The Hilbert spaceH~p of a particular momentum ~p consists correspondingly of
22
d−2

“Slater determinants”. Let us write down explicitly these 22
d−2

contributions
to the Hilbert spaceH~p of a particular momentum ~p, using the notation that 0sf

~p

represents the unoccupied state |ψsf(~p, p0) > ||p0|=|~p| = b̂
sf†
tot(~p)||p0|=|~p| |ψoc > of

the sth solution of the equations of motion for the fth family and the momentum
|p0| = |~p|), Eq. (9.24), while 1sf

~p represents the corresponding occupied state.
The number operator is defined as

Nsf~p = b̂
sf†
tot(~p) ∗T b̂

sf

tot(~p) ,

Nsf~p |ψoc > = 0 · |ψoc > , Nsf~p ∗T 0sf
~p = 0 ,

Nsf~p ∗T 1sf
~p = 1 · 1sf

~p , Nsf~p ∗T Nsf~p ∗T 1sf
~p = 1 · 1sf

~p . (9.36)

One can check the above relations on the example of d = (5+ 1), with the ”basis
vectors” for f = 1 presented in Table 9.2 and with the solution for Weyl equation,
Eq. (9.23), presented in Eq. (9.31).

i f = 1(a) Her. con. f = 1(a)

1
03

(+i)
12
(+)

56
(+)

03
(−i)

12
(−)

56
(−)

2
03

[−i]
12
[−]

56
(+)

03
[−i]

12
[−]

56
(−)

3
03

[−i]
12
(+)

56
[−]

03
[−i]

12
(−)

56
[−]

4
03

(+i)
12
[−]

56
[−]

03
(−i)

12
[−]

56
[−]

Table 9.2. The four creation operators of the irreducible representation odd I from Table 9.1,
d = (5+ 1), f = 1(a). together with their Hermitian conjugated partners are presented (up
to a phase).



i
i

“proc20Vol1” — 2020/12/6 — 22:10 — page 185 — #201 i
i

i
i

i
i

9 Understanding the Second Quantization of Fermions — Part II 185

Let us write down the Hilbert space of second quantized fermionsH~p, using
the simplified notation as in Part I, Sect. III.A., counting for f = 1 empty states
as 0rp, and occupied states as 1rp, with r = (1, . . . , 2

d
2
−1), for f = 2 we count

r = 2
d
2
−1 + 1, · · · , 2d−2. Correspondingly we can representH~p as follows

|01p, 02p, 03p, . . . , 02d−2p > |1 ,

|11p, 02p, 03p, . . . , 02d−2p > |2 ,

|01p, 12p, 03p, . . . , 02d−2p > |3 ,

|01p, 02p, 13p, . . . , 02d−2p > |4 ,

...

|11p, 12p, 03p, . . . , 02d−2p > |2d−2+2 ,

...

|11p, 12p, 13p, . . . , 12d−2p > |
22
d−2 , (9.37)

with a part with none of states occupied (Nrp = 0 for all r = 1, . . . , 2d−2), with a
part with only one of states occupied (Nrp = 1 for a particular r = (1, . . . , 2d−2),
while Nr ′p = 0 for all the others r ′ 6= r), with a part with only two of states
occupied (Nrp = 1 andNr ′p = 1, where r and r ′ run from (1, . . . , 2d−2), and so on.
The last part has all the states occupied.

It is not difficult to see that the creation and annihilation operators, when
applied on this Hilbert space H~p, fulfill the anticommutation relations for the
second quantized Clifford fermions.

{b̂
sf

tot(~p) , b̂
s ′f ′†
tot (~p)}∗T+H~p = δss

′
δff
′H~p ,

{b̂
sf

tot(~p), b̂
s ′f ′

tot (~p)}∗T+ H~p = 0 · H~p ,

{b̂
sf†
tot(~p) , b̂

s ′f ′†
tot (~p)}∗T+ H~p = 0 · H~p . (9.38)

The proof for the above relations easily follows if one takes into account that
whenever the creation or annihilation operator jumps over an odd products of
occupied states the sign of the ”Slater determinant” changes due to the oddness
of the occupied states, while states, belonging to different ~p are orthogonal 5, see
Eq. (9.35) and the text below this equation. Then one sees that the contribution

of the application of b̂
sf†
tot(~p) ∗T b̂

s ′f ′

tot (~p) ∗T onH~p has the opposite sign than the

contribution of b̂
s ′f ′

tot (~p) ∗T b̂
sf†
tot(~p) ∗T onH~p.

If the creation and annihilation operators are Hermitian conjugated to each
other, the result follows

( b̂
sf

tot(~p) ∗T b̂
sf†
tot(~p) + b̂

sf†
tot(~p) ∗T b̂

sf

tot(~p) ) ∗T H~p = H~p ,

manifesting that this application ofH~p gives the wholeH~p back. Each of the two
summands operates on their own half of H~p. Jumping together over an even

5 The orthogonality of the states are even easier to be visualized since the two delta
functions at ~x and at ~x ′, ~x 6= ~x ′ are obviously orthogonal.



i
i

“proc20Vol1” — 2020/12/6 — 22:10 — page 186 — #202 i
i

i
i

i
i
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number of occupied states, b̂
sf

tot(~p) and b̂sf†tot(~p) do not change the sign of the

particular “Slater determinant”. (Let us add that b̂
sf

tot(~p) reduces for the particular

s and f the Hilbert spaceH~p for the factor 1
2

, and so does b̂
sf†
tot(~p). The sum of both,

applied onH~p, reproduces the wholeH~p.)
Let us repeat that the number of ”Slater determinants” in the Hilbert space

of particular momentum ~p, H~p, in d-dimensional space is finite and equal to
NH~p

= 22
d−2

.

9.3.2 Application of b̂
sf†
tot(~p) and b̂

sf

tot(~p) on total Hilbert space H of Clifford
fermions

The total Hilbert space of anticommuting fermions is the infinite product of the
Hilbert spaces of particular ~p, Eq. (9.33),H =

∏∞
~p ⊗NH~p .

Due to the Clifford odd character of creation and annihilation operators,
Eq. (9.28), and the orthogonality of the plane waves belonging to different mo-

menta ~p , it follows that b̂
sf†
tot(~p) ∗T b̂

sf†
tot(~p

′) ∗T H 6= 0, ~p 6= ~p ′, while { b̂
sf†
tot(~p) ∗T

b̂
sf†
tot(~p

′)+ b̂
sf†
tot(~p

′) ∗T b̂
sf†
tot(~p) } ∗T H = 0, ~p 6= ~p ′. This can be proven if taking

into account Eq. (9.35). For “plane wave solutions” of equations of motion in a box
the momentum ~p is discretized, otherwise is continuous. The number of “Slater
determinants” in the Hilbert spaceH in d-dimensional space is infinite (in both
cases) NH =

∏∞
~p 2

2d−2

.

Since the creation operators b̂
sf†
tot(~p) and the annihilation operators b̂

s ′f ′

tot (~p
′)

fulfill for particular ~p the anticommutation relations onH~p, Eq. (9.38), and since the
momentum states, the plane wave solutions, are orthogonal, and correspondingly
the creation and annihilation operators defined on the tensor products of the
internal basis and the momentum basis, representing fermions, anticommute,

Eq. (9.28) (the Clifford odd objects b̂
sf†
tot(~p) demonstrate their oddness also with

respect to b̂
sf†
tot(~p

′)), the anticommutation relations follow also for the application

of b̂
sf†
tot(~p) and b̂

sf

tot(~p) onH

{b̂
sf

tot(~p) , b̂
s ′f ′†
tot (~p ′)}∗T+H = δss

′
δff ′ δ(~p− ~p ′) H ,

{b̂
sf†
tot(~p), b̂

s ′f ′†
tot (~p ′)}∗T+ H = 0 · H ,

{b̂
sf†
tot(~p), b̂

s ′f ′†
tot (~p ′)}∗T+ H = 0 · H . (9.39)

9.3.3 Illustration of H in d = (1+ 1)

Let us illustrate the properties of H and the application of the creation operators on H
in d = (1 + 1) dimensional space in a toy model with two discrete momenta (p11, p

1
2).

Generalization to many momenta is straightforward.
The internal space of fermions contains only one creation operator, one “basis vector”

b̂11 =
01

(+i), one family memberm = 1 of the only family f = 1. Correspondingly the creation

operators b̂
11†
tot(

~p1i )||p0|=|p1
i
| : =

01

(+i) e−i(p
0x0−p1i x

1)||p1
i
|=|p0

i
| distinguish only in momentum
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space of the fermion degrees of freedom. Their Hermitian conjugated annihilation operators

are b̂
11

tot(
~p1i )|p0|=|p1

i
|, while the vacuum state is |ψoc > =

01

(−i) ·
01

(+i)=
01

[−i].
The whole Hilbert space for this toy model has correspondingly four ”Slater determi-

nants”, numerated by | >i, i = (1, 2, 3, 4)

(|0p1 0p2 > |1 , |1p1 0p2 > |2 , |0p1 1p2 > |3 , |1p1 1p2 > |4) ,

0p1
i

represents an empty state and 1p1
i

the occupied state. Let us evaluate the application of

{b̂
11

tot(
~p11) , b̂

11†
tot(

~p12)}∗T+ on the Hilbert spaceH. It follows

{b̂
11

tot(~p
1
1) , b̂

11†
tot(~p

1
2)}∗T+H =

b̂
11

tot(~p
1
1) ∗T (|0p1 1p2 > |1→3 , −|1p1 1p2 > |2→4) +

b̂
11†
tot(~p

1
2) ∗T (|0p1 0p2 >2→1 , +|0p1 1p2 >4→3) =

(−|0p1 1p2 >2→4→3 + |0p1 1p2 >2→1→3) = 0 .

9.3.4 Relation between second quantized fermions of Dirac and second
quantized fermions originated in odd Clifford algebra

The Clifford odd creation operators b̂
sf†
tot(~p) and their Hermitian conjugated

partners annihilation operators b̂
sf

tot(~p) obey the anticommutation relations of
Eq. (9.39) — on the vacuum state |ψoc >, Eq. (9.18), and on the whole Hilbert

spaceH, Eq. (9.39). Creation operators, b̂
sf†
tot(~p), operating on a vacuum state, as

well as on the whole Hilbert space, define second quantized fermion states.
Let us relate here the Dirac’s second quantization relations and the relations

between creation operators b̂
sf

tot(~p) and their Hermitian conjugated partners anni-
hilation operators, without paying attention on the charges and family quantum
numbers, since Dirac’s creation operators do not pay attention on these two kinds
of quantum numbers. We shall relate vectors in d = (3+ 1) of both origins.

In the Dirac case the second quantized field operators are in d = (3 + 1)

dimensions postulated as follows

Ψhs†(~x, x0) =
∑
m,~pk

âh†m (~pk) v
hs
m (~pk) . (9.40)

vhsm (~pk) = u
hs
m ( ~pk) e

−i(p0x0−ε~pk·~x) are the two left handed (Γ (3+1) = −1 = h) and
the two right handed (Γ (3+1) = 1 = h, Eq. (B.3)) two-component column matrices,
m = (1, 2), representing the twice two solutions s of the Weyl equation for free
massless fermions of particular momentum |~pk| = |p0k| ( [20], Eqs. (20-49) - (20-51)),
the factor ε = ±1 depends on the product of handedness and spin.

âh†m (~pk) are by Dirac postulated creation operators, which together with the
annihilation operators âhm(~pk), fulfill the anticommutation relations ( [20], Eqs. (20-
49) - (20-51))

{âh†m (~pk), âh
′†
n (~pl)}∗T+ = 0 = {âhm(~pk), âh

′

n (~pl)}∗T+ ,

{âhm(~pk), âh
′†
n (~pl)}∗T+ = δmnδ

hh ′δ~pk~pl (9.41)
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in the case of discretized momenta for a fermion in a box. (Massive fermions are
represented by four vectors which are the superposition of both handedness.)

Let us present the two ”basis vectors” b̂h†m ,m = (1, 2), h representing left and
right handedness, in the internal space of fermions in d = (3+ 1), described by the
Clifford odd algebra, representing the creation operators of one particular family
(f not shown in this case), without charges, of one handedness and with spins

±1
2

, respectively, operating on the vacuum state |ψoc >=
03

[+i]
12

[−]: b̂h†1 =
03

[+i]
12

(+)

and b̂h†2 =
03

(−i)
12

[−], Eq. (9.20, 9.21) 6, with h = 1, representing the right handed-
ness. These two ”basis vectors” should be compared with the two vectors, one
corresponding to the spin 1

2
and the other to the spin −1

2
in the Dirac case.

Since Dirac did not postulate such creation operators on the level of b̂h†m ,
let us postulate them now on the level of b̂h†m , to be able to compare in this
paper presented creation operators for this particular case, âh†↑ and âh†↓ , of right
handedness h and spin up and down (↑, ↓) as follows

b̂h†1 =
03

[+i])
12

(+) to be related to âh†↑ , b̂h†2 =
03

(−i))
12

[−] to be related to âh†↓ .

One should repeat this also for left handedness h = −1. But these creation opera-
tors âh†m ,m = (1, 2) = (↑, ↓), still can not be compared with the Dirac’s ones.

Let us make the superposition of both creation operators of particular handed-
ness h, âhs†(~pk) := αhs↑ (~pk) â

h†↑ + αhs↓ (~pk) â
h†↓ , with the coefficients αhs↑ (~pk) and

αhs↓ (~pk) chosen so that âhs†tot (~pk): = âhs†(~pk) e−i(p
0x0−~pk·~x) solves the equations

of motion, Eq. (9.23) 7, for a plane wave eiε~pk·~x for | ~pk| = |p0k|, then it follows

âhs†tot (~pk) := (αhs↑ (~pk) â
h†↑ + αhs↓ (~pk) â

h†↓ ) e−i(p
0x0−~pk·~x) =

∑
m

âh†m (~pk)v
hs
m (~pk) ,

(9.42)

where the summation runs overm up and down spinm of the chosen handedness
h.

Since vhsm (~pk) = uhsm (~pk) e
−i(p0x0−~pk·~x) it follows also that

âhs†(~pk) =
∑
m

uhsm âh†m ,

and uhsm (~pk) = α
hs
m (~pk). We conclude that âhs†tot (~pk) obviously determine

âh†m (~pk)v
hs
m (~pk) = âh†m (~pk)u

hs
m (~pk)e

−i(p0x0−~pk·~x).

Anticommutation relations of Eq. (9.41), postulated by Dirac, ensure the
equivalent anticommutation relations also for âhs†(~pk) and âhs(~pk).

6 We choose in the Clifford case the first two members of the third family in Table 9.1, since
they manifest in d = (3 + 1) the Clifford odd character.

7 The equations of motion read in the Dirac case: {p̂0 + (−2iS0ip̂i)}(α
s
1(~pk) â†1

+αs2(~pk) â†2)e
−i(p0x0−~pk·~x) = 0. To solve them we need to recognize that the matrices in

the chiral representation S0i, i = (1, 2), transform â†1 into â†2, and opposite.
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Now we are able to relate creation and annihilation operators in both cases,
the Dirac case and our case of using the odd Clifford algebra to represent the
internal space of fermions.

b̂h†1 =
03

[+i]
12

(+) to be related to âh†↑ ,

b̂h†2 =
03

(−i)
12

[−] to be related to âh
h†↓

b̂h1 = −
03

[+i]
12

(−) to be related to âh↑ ,
b̂h2 =

03

(+i)
12

[−] to be related to âh↓ , (9.43)

both sides representing the creation operators, with S12 = 1
2

and handedness
Γ (3+1) = 1, Eq. (9.48), in the first row, and with S12 = −1

2
and handedness

Γ (3+1) = 1 = h, in the second row 8.
None of the creation operators, âh†m ,m = (↑, ↓) and b̂h†m ,m = (1, 2), depend on

momenta, but âhs†(~pk) and b̂sf†(~pk) as well as âhs†tot (~pk) and b̂
sf†
tot(~pk) do depend

on momenta.
The creation operators âs†tot(~pk) fulfill the anticommutation relations of Eqs. (9.28,

9.38, 9.39), the same as b̂
sf†
tot(~p) do. We can just replace âs†tot(~pk) by b̂

sf†
tot(~p) for any

of families (for plane waves solutions with continuous ~p).
We can conclude:

âhs†tot (~p) is to be related to b̂
hs†
tot (~p) ,

âh†m ,m = (↑, ↓) is to be related to b̂h†m m = (1, 2) , (9.44)

with h representing the handedness. This can be done for any chosen family in the

Clifford case. In all the relations with b̂
hs†
tot (~p) the handedness is not written explic-

itly and is included in the index m and in the index s, while the index f represents
the family quantum number. Only in this chapter we introduce handedness in
addition to clarify the relations.h

In the Clifford case the charges origin in spins d ≥ 6. In d = (13 + 1) all the
charges of quarks and leptons and antiquarks and antileptons can be explained,
as well as the families of quarks and leptons and antiquarks and antileptons. In
the Dirac case charges come from additional groups and so do families.

Let us add: The odd Clifford algebra influences the algebra of the associated
creation and annihilation operators acting on the second quantized Hilbert space
H; Due to oddness of the Clifford algebra, which determines internal degrees of
freedom of fermions, the creation operators and their Hermitian conjugated anni-
hilation partners, determined on the tensor products of internal and momentum
space, make the creation and annihilation operators to anticommute.

We conclude: The by Dirac postulated creation operators, âh†m (~p), and their
annihilation partners, âhm(~p), Eqs. (9.40, 9.42), related in Eq. (9.44) to the Clifford

8 The vacuum state is on the left hand side equal to
03

[+i]
12

[−], while on the right hand side
the corresponding vacuum state can be defined, if we follow our way of defining the
vacuum state, to be proportional to (â↑â†↑ + â↓â†↓).
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odd creation and annihilation operators, manifest that the odd Clifford algebra
offers the explanation for the second quantization postulates of Dirac.

9.4 Creation and annihilation operators in d = (13 + 1)-
dimensional space

The standard model offered an elegant new step in understanding elementary
fermion and boson fields by postulating:

i. Massless family members of (coloured) quarks and (colourless) leptons,
the left handed fermions as the weak charged doublets and the weak chargeless
right hand members, the left handed quarks distinguishing in the hyper charge
from the left handed leptons, each right handed member having a different hyper
charge. All fermion charges are in the fundamental representation of the corre-
sponding groups. Antifermions carry the corresponding anticharges and opposite
handedness. The massless families to each family member exist.

ii. The existence of the massless vector gauge fields to the observed charges of
quarks and leptons, carrying charges in the corresponding adjoint representations.

iii. The existence of a massive scalar Higgs, gaining at some step of the
expanding universe the nonzero vacuum expectation value, responsible for masses
of fermions and heavy bosons and for the Yukawa couplings. The Higgs carries a
half integer weak charge and hyper charge.

iv. Fermions and bosons are second quantized fields.
The standard model assumptions have in the literature several explanations,

mostly with many new not explained assumptions. The most successful seem to
be the grand unifying theories [22–36, 38–40], if postulating in addition the family
group and the corresponding gauge scalar fields.

The spin-charge-family theory, the project of one of the authors of this paper
(N.S.M.B. [1–3,10–15,17]), is offering the explanation for all the assumptions of the
standard model, unifying in d = (13+ 1)-dimensional space not only charges, but
also charges and spins and families [2, 7], explaining the appearance of families [8,
10, 15], the appearance of the vector gauge fields [12, 14], of the scalar field and the
Yukawa couplings [13]. Theory offers the explanation for the dark matter [4, 5], for
the matter-antimatter asymmetry [11], and makes several predictions [4, 6, 11].

The spin-charge-family theory is a kind of the Kaluza-Klein like theories [17,
42, 44–50] due to the assumption that in d ≥ 5 (in the spin-charge-family theory
d ≥ (13+1)) fermions interact with the gravity only (vielbeins and two kinds of the
spin connection fields). Correspondingly this theory shares with the Kaluza-Klein
like theories their weak points, at least:

a. Not yet solved the quantization problem of the gravitational field.
b. The spontaneous break of the starting symmetry, which would at low

energies manifest the observed almost massless fermions [44].
c. The appearance of gravitational anomalies, what makes the theory not

well defined [53], but in the low energy limit the fields manifest in d = (3 + 1)

properties of the observed vector and scalar gauge fields.
d. And other problems.
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In the spin-charge-family theory fermions interact in d = (13 + 1) with the
gravity only: with the spin connections (the gauge fields of Sab and of S̃ab) and
vielbeins (the gauge fields of momenta), with fermions as a condensate present,
breaking the symmetry (and with no other gauge fields present), manifesting at
low energies in d = (3 + 1) as the ordinary gravity and all the observed vector
gauge fields.

It is proven in Refs. [51, 52], that one can have massless spinors even after
breaking the starting symmetry. Ref. [12] proves, that at low enough energies,
after breaking the staring symmetry, the two spin connections manifest in d =

(3 + 1) as the observed vector gauge fields, as well as the scalar fields, which
offer the explanation for the Higgs and the Yukawa couplings. Ref. [11] offers the
explanation for the matter-antimatter asymmetry due to the existence of the scalar
fields with the “colour charges” in the fundamental representations. In Ref. [17] the
spin-charge-family theory explains the standard model triangle anomaly cancellation
better than the SO(10) theory [23].

The working hypotheses of the authors of this paper (in particular of N.S.M.B.)
is, since the higher dimensions used in the spin-charge-family theory offer in an
elegant (simple) way explanations for the so many observed phenomena, that they
should not be excluded by the renormalization and anomaly arguments. At least
the low energy behavior of the spin connections and vielbeins as vector and scalar
gauge fields manifest as the known and more or less well defined theories.

In this paper we present that using the half of the odd Clifford algebra objects
to explain the internal degrees of freedom of fermions (the other half represent
the Hermitian conjugated partners), as suggested by the spin-charge-family theory,
leads to the second quantized fermions without postulates of Dirac 9.

9.5 Conclusions

We present in Part I and Part II of this paper that the description of the internal
space of fermions with the odd elements of the anticommuting algebra defines
the creation and annihilation operators, which anticommute when applied on the
corresponding vacuum state. The internal space, described by the odd Clifford
algebra, extends its oddness to creation and annihilation operators generated on
the tensor products of the internal basis with finite numbers of elements and
the momentum basis with infinite number of elements. The application of these
creation and annihilation operators on the Hilbert space, determined by the tensor
multiplication of all possible creation operators of any numbers, formally observed

9 The authors of Ref. [43] let us know that their path integral formulation enabled them to
see a great deal of what we present in this paper. We went through their paper noting that
they did a lot concerning path integral formulation of quantum mechanics, offering ways
to treat anomalies. But we couldn’t recognize that they propose some replacement for the
Dirac postulates of creation and annihilation operators. We also could not found whether
our proposal for explaining the Dirac postulates would bring any new light on path
integral formulations and anomalies cancelations. To clarify this topics the discussions
with authors would be needed.



i
i

“proc20Vol1” — 2020/12/6 — 22:10 — page 192 — #208 i
i

i
i

i
i
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in this paper and in [3] in the Clifford algebra, manifests the same anticommuta-
tion relations as the creation and annihilation of the second quantized fermions,
explaining therefore the Dirac postulates of the second quantized fermion fields.

In the subsection 9.1.2 we clarify the relation between our description of
the internal space of fermions with ”basis vectors”, manifesting oddness and
transferring the oddness to the corresponding creation and annihilation operators
of second quantized fermions, to the ordinary second quantized creation and
annihilation operators from a generalized point of view.

We learn in Part I of this paper, that odd products of superposition of θa’s,
Eqs. (8-11,13,22) in Part I, exist forming the odd algebra ”basis vectors” in the
internal space of ”Grassmann fermions” with integer spin, which together with
their Hermitian conjugated partners fulfill on the algebraic level on the vacuum
state all the requirements for the anticommutation relations for the Dirac fermions.
The creation and annihilation operators, defined on the tensor products of the
superposition of the Grassmann odd algebra ”basis vectors” and the momentum
space basis, and manifesting correspondingly the oddness of the ”basis vectors”,
fulfill the anticommutation relations of the second quantized Dirac’s fermions on
the vacuum state, as well as on the ”Slater determinants” of all possibilities of
occupied and empty single particle ”Grassmann fermion” states of integer spins of
any number. These ”Slater deerminants”, representing the Hilbert space of second
quantized ”Grassmann fermions”, can be represented as well with the tensor
product multiplication of any possible choice of single ”Grasmann fermion states”
of all possible numbers of states, started with none (that is with the identity),
distinguishing at least either in one of the quantum numbers of the ”basic vectors”
or in momentum basis.

In Part II we learn, that the creation and annihilation operators exist in the
Clifford odd algebra, defining the internal space of half integer fermions, which
applying on the vacuum state fulfill the anticommutation relations postulated by
Dirac. Creation operators, defined on the tensor products of the superposition of
the finite ”basis vectors” of the internal space described with the Clifford algebra
and of the infinite momentum basis, fulfill as well together with their Hermitian
conjugated annihilation operators the anticommutation relations postulated by
Dirac, on the vacuum state and on the Hilbert space of infinite number of the
single particle fermion states, NH =

∏∞
~p 2

2d−2

, Eqs. (9.33, 9.34), creating ”Slater
determinants” (Eqs. (9.37, 9.39)), but only after the reduction of the degrees of
freedom of the Clifford algebras for a factor of two, Eq. (9.12).

The reduction of the Clifford algebras for the factor of two leaves the anticom-
mutation relations of Eqs. (9.2, 9.3) unchanged, enabling the appearance of family
quantum numbers. The Clifford fermions carry half integer spins, families and
charges in fundamental representations, Eq. (9.5).

The reduction of Clifford space causes the reduction also in Grassmann space,
what leads to the disappearance of integer spin fermions, Eq. (9.19).

The Clifford algebra oddness of the ”basis vectors”, describing the internal
space of fermions, makes odd also the corresponding fermion states defined on
the tensor products of the internal and momentum space. Correspondingly any



i
i

“proc20Vol1” — 2020/12/6 — 22:10 — page 193 — #209 i
i

i
i

i
i

9 Understanding the Second Quantization of Fermions — Part II 193

two states fulfill the anticommutation relations and so do any tensor products of
odd numbers of fermion states, forming the Hilbert second quantized space.

We present the creation operators, defined on the tensor products of ”basis
vectors” and plane waves, solve the equations of motion, in our case for free
massless fermions, Eq. (9.23), derived from the action, Eq. (9.22).

Anticommutation relations are not postulated, as it is in the Dirac case, they
follow from the oddness of the Clifford objects, and correspondingly explain the
second postulates of Dirac (what is stressed in several places in Part I and Part II
and in a short way also in Subsect. 9.1.2).

The relation between the Dirac’s creation and annihilation operators and the
ones offered by the odd Clifford algebra, discussed in In Subsect. 9.3.4 demon-
strates that the basic differences between these two descriptions is on the level
of the single particle creation operators: While the odd Clifford algebra offers
the creation and annihilation operators, which fulfill the anticommutation rela-
tions, already on the level of the ”basis vectors” determining the internal space
of fermions, Eq. (9.17), when applied on the vacuum state, Dirac postulates the
anticommutation relations on the level of second quantized objects, following the
procedure of Lagrange and Hamilton.

The final result is in both cases equivalent, leading to the Hilbert space of sec-
ond quantized fields. However, our way not only explains the Dirac postulates but
demonstrates in addition, that also the single particle states in the first quantization
do anticommute due to the oddness of the ”basis vectors” defining the internal
space. The oddness of the Clifford objects of creation and annihilation operators is
transmitted from the ”basis vectors” of internal space to the tensor products of the
superposition of the ”basis vectors” and the momentum or coordinate space.

Correspondingly the odd Clifford algebra, equipped with the family quantum
numbers, and fulfilling the anticommutation relations already on the level of the
single particle creation operators applying on the vacuum state, as well as on the
level of the whole Hilbert space, offers the explanation for the anticommutation
relations, postulated by Dirac.

The Hilbert space of all ”Slater determinants” with any number of occupied
or empty states of an odd character, follows in all three cases, the Dirac one (with
postulated creation and annihilation operators and offering no families and no
charges), the Grassmann one (offering spins and charges in adjoint representations,
and no families) and the Clifford one (offering spins, families and charges), in an
equivalent way: due to the anticommuting creation and annihilation operators,
representing ”basis vectors” and their Hermitian conjugated partners. One can
see this in Sect. 9.3.4.

Let us repeat: Internal space contributes the final number of states, the infinity
of number of states is due to momentum/coordinate space 10.

The anticommuting single fermion states manifest correspondingly the odd-
ness already on the level of the first quantization. Correspondingly these odd

10 Let us add that the single particle vacuum state is the sum of products of annihilation ×
creation operators: In the Grassmann case it is just an identity, in the Clifford case is the
sum of products of projectors for each family.
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fermion states form in the tensor products ∗T the Hilbert space H of second
quantized states.

9.6 APPENDIX: Norms in Grassmann space and Clifford space

Let us define the integral over the Grassmann space [2] of two functions of the
Grassmann coordinates < B|θ >< C|θ >, < B|θ >=< θ|B >†,

< b|θ >=
d∑
k=0

ba1...akθ
a1 · · · θak ,

by requiring

{dθa, θb}+ = 0 ,

∫
dθa = 0 ,

∫
dθaθa = 1 ,∫

dd θ θ0θ1 · · · θd = 1 ,

ddθ = dθd . . . dθ0 , ω = Πdk=0(
∂

∂θk
+ θk) , (9.45)

with ∂
∂θa

θc = ηac. We shall use the weight function [2]ω = Πdk=0(
∂
∂θk

+ θk) to
define the scalar product in Grassmann space < B|C >

< B|C > =

∫
ddθa ω < B|θ >< θ|C >

=

d∑
k=0

b∗b1...bkcb1...bk . (9.46)

To define norms in Clifford space Eq. (9.45) can be used as well.

9.7 APPENDIX: Handedness in Grassmann and Clifford space

The handedness Γ (d) is one of the invariants of the group SO(d), with the infinites-
imal generators of the Lorentz group Sab, defined as

Γ (d) = αεa1a2...ad−1
ad S

a1a2 · Sa3a4 · · ·Sad−1ad , (9.47)

with α, which is chosen so that Γ (d) = ±1.
In the Grassmann case Sab is defined in Eq. (9.3), while in the Clifford case

Eq. (9.47) simplifies, if we take into account that Sab|a 6=b = i
2
γaγb and S̃ab|a 6=b =

i
2
γ̃aγ̃b, as follows

Γ (d) : = (i)d/2
∏
a

(
√
ηaaγa), if d = 2n . (9.48)
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December 2014, p.20-45 [ arXiv:1502.06786v1] [arXiv:1412.5866].
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Abstract. We review a bit our earlier novel string field theory [1,4] stressing the interesting
property, that it becomes expressed in terms of particle like objects called by us “objects”
which in our formalism do not at all develop in time. So in this way there is in our picture,
in spite of it being supposed to reproduce string theory with an arbitrary number strings
present - in this sense a string field theory -, in fact no time! This strange missing of time in
the formalism gives rise to slight speculations about the philosophy of the concept of time.
There is course then also no need for a Hamiltonian, but we construct or rather attempt to
do so, a fake Hamiltonian or phantasy Hamiltonian,

Povzetek. Avtorja predstavita svojo novo teorijo polja strun, v kateri nastopajo objekti
podobni delcem, ki se v uporabljenem formalizmu s časom ne spreminjajo. V tej teoriji tako
čas ne nastopa, čeprav bi naj reproducirala teorijo strun s poljubnim številom strun (zato jo
avtorja imenujeta teorija polja strun. Avtorja ob tem razpravljata o pojmu časa. V tej teoriji
tudi ni potrebe po hamiltonki, vendar jo vseeno poskusita konstruirati.

Novel String Field Theory and Unitarity, although in non-relativistic case
(Fake Scattering, Hope for finiteness).

10.1 Introduction

We have long worked on new/novel formulation [1] of the bosonic string theory
as a second quantized theory in the sense that we describe states with an arbitrary
number of strings, an achievement made earlier by String Field Theory by Kaku
and Kikkawa and by Witten and others (for Bosonic string theory [2]). Our ap-
proach has some similarity to the work by C. Thorn [3] in as far as we also use a
? Speaker: H.B. Nielsen

?? E-mail: hbech@nbi.dk
??? E-mail: msninomiya@gmail.com
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splitting of the string into small bits. We, however, did it after the description of
the single string has been resolved into right and left moving fields XµR(τ− σ) and
XµL(τ + σ) (using the often used notation in string theory in so called conformal
gauge) and most remarkably we achieve that we do not need any time develop-
ment for what is the analogue of Charles Thorns small bits, we call ours as said
somewhat different small parts for “objects”. The “objects ” stand, we could say,
still [4].

It is this property of our string field theory which seems so interesting, that
we indeed shall concentrate on precisely this no time development property in the
present article.

We thus seek in the present article to go backwards in the sense that we begin
by considering such objects, that do not develop, and then afterwards shall seek
by what we call “phantasy” to return to the string theory able to describe several
strings. We believe it would be not so terribly hard to make the same “object”
description of the various superstrings, presumably by having “objects” being
fermions with odd spin, but of course they should still not develop in time. Both
because it would complicate the presentation and because we have not developed
yet the string field theory of ours with such spin-objects yet - we did not even
quite finish the bosonic version - we shall keep to the boson string theory in the
present article.

The real motivation is to seek generalizations of the string theory. Indeed the
main reason that superstring theory is so popularly speculated to be the “theory
of everything” is that it avoids the ultraviolet divergence problems plaguing the
point particle quantum field theories. This avoidance of ultraviolet divergences
is connected with or a consequence of that the string scattering amplitudes - the
Veneziano models - are strongly indeed exponentially cut off for large momentum
transfer. In our “object” picture this cut off at large momentum transfer can be
traced back to that the distribution of the momenta of the objects is cut off in a
similar way.

The scattering in our picture of objects has the character of two composite
particles(∼ strings) composed from the “objects” exchange some collections of
objects with each other. Thus after the scattering the momenta of the final com-
posite particles (∼ strings) can only deviate from those in the initial state by the
momenta of the exchanged collections of objects. We shall namely remember the
for this argument to be valid extremely important point that the single object
never can change its momentum, because it does not develop at all, especially it
does not scatter by itself. The whole seeming scattering of the composite particles
composed from objects is purely “fake” in the sense that they are a result of some
objects being transfered from one compositum to another one.

(10.1 - 1 )Fake Scattering Concept
We are so fascinated by this idea of making a quantum field theory like theory,

so that in a fundamental sense there is No Time development, but when looking
at it appropriately, then you can “see” it as e.g. string field theory (a theory of
second quantized strings).

This fake-scattering concept is implemented in the “Novel string field theory”
, which we have put forward long ago.
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(10.1 - 2 )Hamiltonian =0 gives no time-development
So quantum mechanically the no time-development theory is just a Hilbert

space of the states, and they never develop - there is basically no time needed -.
In the “Novel string field theory” of ours the states in this Hilbert space are

described formally by a second quantized theory of particles that can occur in
different numbers just like in usual second quantized theory. We call these particles
“objects” and they are crudely to be considered small pieces of strings like in the
Charles Thorn’s string bit theory. But very importantly we first split the string
into bits, after we hav gone to the light cone variables on the string: τ − σ and
τ+ σ.

(10.1 - 3)Introduction of Fake Degrees of Freedom
In the philosophy that the true fundamental theory has no time (or say no

time development) means that all development with time has to be fake. That is
to say it has to be in some degrees of freedom, that do not really exist in nature,
but which we the physicists introduce formally so as to make a theory more in
agreement with our usual picture of how physics is.

Basically the idea is that we introduce some extra degrees of freedom that only
are there in phantasy, so that we construct formally a system/a world with some
extra variables or some extra information on its states. These extra inforations shall
however only in some way be adjusted to help describing the original degrees
of freedom, which we call the true degrees of freedom. In the case we here hope
to realize; the original or true degrees of freedom are the ones for the object.
But by the addition of the extra degrees of freedom we have in mind giving an
information about how the chains of the objects are glued together in possibly
different ways. These different ways we hope to describe by means of the extra
phantasy degrees of freedom. It is mainly how the cyclically ordered chains of
objects are, one can say the extra degrees of freedom should tell which objects
belong to which cyclically ordered chain. Thereby the extra phantasy degrees of
freedom also come to tell which objects belong to which string. Thus some strings
exchanging objects can be a pure phantasy happening. This is what is called than
scattering is a fake.

Abstractly we replace each basis vector in a basis for the second quantized
Hilbert space by a series of basis-vectors. So to each “fundamental basis vector”
we have a lot of basis-vectors in the extended theory only deviating from each
other by invented or fake degrees of freedom.

Then we allow the “fake-development” - the fake Hamiltonian - to only move
around the basis-vectors into each other which belong to the same fundamental
basisvector.

(10.1 - 4) A String Field Theory Inspired Example
To a good enough approximation the readers can imagine that our “objects”

(after some technical details of only using the “even” ones among them) are (scalar)
particles with position and momenta in a 25+1 dimensional world (or if we choose
an infinite momentum frame in 24 transverse dimensions), and that there in any
single particle state for such a particle can be a number of particles n = 0, 1, 2, ...,
just as in second quantization.
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To avoid the problems with relativity, Dirac sea [7] etc., we like to for peda-
gogical reasons effectively consider a non-relativistic theory, or almost equivalent
an infinite momentum frame formulation.

(10.1 - 5) The Pedagogical Non-relativistic model with Zero Hamiltonian
We consider a model with say non-relativistic bosons - so that they can occur

in any number in any sigle particle state -. To make the theory not develop in time
we want to simplify to make the Hamiltonian zero

H = 0, (10.1)

which in addition to having no interactions mean that we let the non-relativistic
mass

m→∞, (10.2)

so that even the kinetic term ~p2

2m
goes to zero.

We can choose a basis for the single particle states to be e.g. either the momen-
tum eigenstates or the position eigenstates (a priori as we wish).

(10.1 - 5 - 1)Second Quantizing our H = 0 Particle Model:
As basis to use in single particle Hilbert space we shall here choose the

position eigenstates because we like to investigate about a “nearness” concept (we
want to say if two particles described by such basis vectors chosen are close or far
apart.)

Then the corresponding basis in the second quantization state space is enu-
merated by a function, that to every position ~x assigns a number n(~x) giving the
number of particles with exactly the position ~x.

In other words a second quantized basis-vector can be described by the
number n(~x) of “objects”(=particles) in each position ~x:

n : R24 → {0, 1, 2, ...} (10.3)

and we cannot require it continuos unless we take it to be only constant, because a
continuous function mapping the real number type of space R24 into a discrete
space, the positive integers and 0, can only be constant if it is continuous.

However, we shall at this stage not describe about continuity.
(10.1 - 5 - 2)Second Quantized Basis
A basis - and this is the one we now have chosen to use - in the second

quantized state space consists of vectors like

|n > =
∏
~x

a†(~x)n(~x)√
n(~x)

|n = 0 > (10.4)

where a†(~x) is the creation operator for a particle at the position ~x. The symbol R
stands for the set of real numbers.

Remember

n : R24 → {0, 1, 2, ...}. (10.5)
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(10.1 - 5 - 3) Introduction of the Fake Degree of Freedom “The Successor
Function” f

Our extremely simple H = 0 theory just introduced has a priori nothing to do
with strings (nor much other sensible physics for that matter), but now we want
by just explaining to make it into a string field theory!

For each single one |n > of our basis states in the second quantized space we
want to introduce a “sucessor function ” f, which is a permutation of the particles
present in that state.

In the state |n > there are

N(n) =
∑
~x

n(~x) (10.6)

particles present. Here we assumed that there were not infinitely many particles
present.

The “Successor function” f is a Permutation of the Particles present in the
state |n >.

Assuming that there are only finitely many particles in a second quantized
state vector |n > we can think of these N(n) particles as true particles, and you
could define N(n)! permutations f of the N(n) particles present.

Fig. 10.1. The points denote the objects and the arrows denote the action of the permutation
function f. Since a permutation can be resolved into cyclic permutations, the objects will on
this drawing get into cyclically ordered chains.

We Think of a Phantasy-space with |n > replaced by N(n)! new phantasy
basis vectors representing the same true physics.

So the new basis-vectors in the second quantized space should be denoted

|n, f > = (|n >, f) where f ∈ PN(n) (10.7)

where again

N(n) =
∑
~x

n(~x) (10.8)

is the number of particles in the state |n >.
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Working with Phantasy space Makes Life Easier
Of course it is f which is the phantasy degree of freedom. It was just intro-

duced by us.
”Thus we can decide in the following rule:
We throw away all the choices of permutations f unless it fullfils the following

rule (we do so for some reason to be explained later): The position xfirst of a
particle first being mapped by f to f(fisrt) must have a position xf(first) close
to xfirst. That is to say, we require only to include in our phantasy space such
combinations that fshould satisfy f(first) is close to first, i.e. |xfirst − xff(first)|
should small.

If f does not obey this restriction,we simply take it out and let there be fewer
state vectors in the phantasy Hilbert space.”

So we can decide - just we like so for some reason to explained possibly later
- to say that we throw away all the choices of the permutation f, for which the
position of a particle ~xfirst and that of the particle into which f maps it ~xf(first)
are not close. I.e. we require only to include in our phantasy the f’s satisfying

f(first) close to first (10.9)

I.e.

|~xfirst − ~xf(first)| small. (10.10)

If f does not obey this restriction, we simply take it out and let there be fewer state
vectors in the phantasy Hilbert space.

We can phantasize that f describes successors in long almost connected
chains

We can choose the f permutations, we allow, to be such that they describe
connected closed loop chains of the particles in the state, so well it is possible.

From our purpose of making theory to be part of a speculated theory for
everything we could be allowed to postulate something - if beautiful enough - also
about the state of the universe, such as that the most likely type of state is one in
which the particles sit in long circular chains with rather small distance between
the neighbours and even further assumptions involving the momenta.

(10.1 - 6) About Fundamental Physics We can further only make assump-
tions about the Initial and /or Final states

After we settled on no time-development ( ∼ Hamiltonian being zero) we can
not as physicists looking for the right theory of nature anymore speculate about
the Hamiltonian, because that we already took to zero (as operator).

But we may want to have a bit of chance to assume a little bit to adjust to fit
our hoped for model to experimental information etc.

Then we have the chance of speculating about the initial state (which is also
the final state though, when no development).

Assumptions about Initial and final state
For our purpose with the string theory towards which we are driving in mind

we like to make assumptions about initial condition like this:
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Fig. 10.2. We think of the objects sitting (due to some assumed principle about the liklely
configuration of the objects) in cyclically ordered chains, that can be described by giving the
permutation function f as here illustrated by the arrows. The reader can imagine contuing
marking the arrows to tell how f acts.

• (a) An approximate constraint on the relative state of a couple of particles A
and f(A), namely

k(~xf(A) − ~xA) ≈ ~pf(A) + ~pA, (10.11)

where k is a constant, actually related (as to be seen) to the Regge slope α ′ so
important in string theory.

• (b) The particles shall approximately form cyclic chains.
• (c) And they shall even especially locally along the chains have a certain wave

function like they would have in string theory if they were identified with the
“objects” of ours (which we have not yet described in detail.)

(10.1 - 7) Assumptions about (Initial) State Formulated by Density Matrix
ρ

Whatever assumption about a quantum system one might want to make it
can in principle be written by means of a density matrix ρ.

ρ is a positive operator on the Hilbert space of state vectors for the system
normalized to Tr(ρ) = 1.

We have one ρfundamental for the “fundamental degrees of freedom, and we
can partly choose one ρfull for the combined system of the fundamental and the
phantasy degrees of freedom system. Then you can act

ρfundamental|n >

or

ρfull(|n >, f)

Density Matrix Relation
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We shall naturally require for consistency

< p|ρfundamental|n > =
∑
f

(< p|, f)ρfull(|n >, f) (10.12)

or formulated differently:

ρfundamental = Trw.r.t. phantasyρfull (10.13)

So far we talk about timeless density matrices.
But could we make a purely phantasy time development of only the phantasy

or f-degrees of freedom without disturbing the fundamental ( |n > , |p >,... )
degrees of freedom ?

Stringy Initial State Assumptions, and Phantasy Notation give String Field
Theory The point is we put a fairly large amount of string theory into assump-
tions about the initial state, partly because we cannot do it in the proper Hamil-
tonian.

The assumption,
“An approximate constraint on the relative state of a couple of particles A

and f(A), namely

k(~xf(A) − ~xA) ≈ ~pf(A) + ~pA, (10.14)

where k is a constant, actually related (as to be seen) to the Regge slope α ′ so
important in string theory.”

This assumption would if the particles did not have infinite masses mean that
the cyclic chain would move along itself.

(10.1 -8) Yet a complication in relating the trivial static theory to string
theory

The cyclic chains of particles are not simply the strings when we identify with
string theory - as it would be in Charles Thorns theory -, No.

We have to choose a starting point and go along the cyclical chain from that
with two marks in opposite directions along the chain, and then construct for
each step an average of the two “people” that started at the start. It is the series of
average under this trip of the two “people” that makes up the string.

In this way we get an open string from making this two “people” walk on a
cyclically ordered chain.

Main Point: Brought although a bit complicated a correspondence to String
Theory

To a set of strings in a known state - e.g. the ground state of their oscillations -
one can calculate the state of the corresponding particles (which we usually call
“objects”) sitting - ordered by the faked f description - in a cyclic chain for each
open string (we postpone the closed strings for the moment).

I.e. We can pretend to see string theory in our game with infinitely heavy
particles.

Most remarkably: When we calculated the overlap between two different sets
of strings represented as second quantized states of objects, we got - apart from a
wrong sign (a missing i) - the form of the Veneziano model.

As the typical example we considered an initial state with two cyclically
ordered chains of objects representing two open string in the states of the ground
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Fig. 10.3. How to construct an open string in terms of objects: You need only one cyclically
ordered chain for giving an open string with apart from a factor 2 having the points of the
string being the averages of the two object points in the pair. Of course one can pair the
objects in different ways even keeping to the continuous type of way illustrated, and that
then give the string at a different moment of time. To ensure that the reader identifies the
right small spots with the objects one may count that there are 26 objects on this drawing.
Corresponding to that there must be 14 points on the open string. The long curved arrows
just point to two objects forming a pair, but here are 14 “pairs”,corresponding to 14 points
on the string, the objects at the ends of the string being paired with themselves.

Fig. 10.4. How a closed string is constructed from objects: You need for that two cyclically
ordered chains of objects (as ordered by f, but f is not drawn on this figure) and except for
normalization by a factor 2 you construct the averages for pairs of objects with one object
in the one cyclically ordered chain and the other member of the pair in the other cyclically
ordered chain.
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state of bosonic strings. Then as final state we took a similar state of objects
corresponding to two ground state open string. We allowed, however, these open
strings to have arbitrary momenta. Then the overlap indeed run out to become
the four point Veneziano model for the two incoming and two outgoing particles
identified with the strings. We did though get two “small” problems: 1) We had
expected to get a Veneziano scattering amplitude being a sum of three Beta-
function terms, but we got only one term. 2) If we should expect the overlap we
calculated to be identified with the S-matrix element - as the S-matrix in theory
without time development would be expected to be 1 - we should have gotten the
Veneziano model with an extra factor i =

√
−1 because there is in the expression

for the S-matrix in terms of the amplitude which is real in lowest order Veneziano
model with an extra i.

But that was what we got at first.
Correspondence with Veneziano Model rather short via thinking on sur-

faces of string development

Fig. 10.5.

(10.1 - 9) Important step in Showing Veneziano Model from Our Novel
String field theory

You think of external ground state strings. They can be produced as in general
ground states - by a long imaginary time development with the appropriate
Hamiltonian. This development is then written as in complex time development
of the string, very reminiscent of what it always used in string theory to compute
say Veneziano model.

Very crudely we just give a motivation for this kind of functional integral
description of the strings.

Really we do it with a doubled string; i.e. we have a closed string diagram
describe the open string. So there are some complications but we did manage to
one of the three terms.

Changing Phantasy Degrees of Freedom can Change Number of Cyclic
Chains and thus of (Open) Strings
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For different “successor functions” f1 and f2 you can find different numbers
of cyclic chains even for completely the same configuration of the infinitely heavy
particles (=“objects”) and thus in fundamental physics-wise the same situation
|n >.

Take a fundamental physics situation |n > like this:

Fig. 10.6.

In choice f1 of the phantasy you have one open string, in another choice f2
of the Phantasy gives Two chains, thus Two open strings

Fig. 10.7. On this figure the reader sees the same points illustrating the “objects” as on
foregoing figure, and we hope the reader can see that one can have two separate cyclically
closed chains that though come very close to each other at some point. It is such cases
that the successor function f can be change a few places and still be in agreement with the
approximate requirement that the successor function maps one object to the next in a chain
to which it belongs.

Unification of strings can be change of f, thus phantasy, because changing
actually actually only a couple of values of the successor function f can cause that
e.g. a previously closed cyclically ordered chain of objects get split into two such



i
i

“proc20Vol1” — 2020/12/6 — 22:10 — page 209 — #225 i
i

i
i

i
i

10 Proposal for Compositeness of String out of Objects 209

chains. Since this would correspond to one open string being split into two, we
see that splitting can be easily described by changing f. Oppositely of course the
opposite change in f would mean a unification of two to become one open string.

Fig. 10.8.

10.2 Hamiltonian

How to make a purely Phantasy Hamiltonian
The exercise we want to do now is to see what Hamiltonian is allowed

working on the extended Hilbert space containing also the phantasy degrees of
freedom, so that the basis states are

(Extended) Basis states of the form (|n >, f) (10.15)

while

Fundamental basis states of the form |n > (10.16)

Thinking of matrices the extended operator (matrix) consists of a lot of blocks,
one block for each matrix element in the (original) fundamental Hamiltonian
(which is actually zero).

Attempting to find a phantasy Hamiltonian only moving the Phantsy De-
grees of Freedom

For any operator depending only on the physical degrees of freedom Owe
want the “only phantasy” Hamiltonian Hphantasy candidate to commute with it:

[O,Hphantasy] = 0. (10.17)

This condition is, however, too strong, since it would not allow the hamilto-
nian to depend at all on the “fundamental” degrees of freedom, because if so, the
conjugate variable to the one it depended on would be made to vary (and that we
wanted to exclude).
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We must be satisfied with only having this requirement approximately.
Not so good Argument that we can have a wanted Hphantasy approxi-

mately.
We want the development in the f or phantasy degrees of freedom only to

depend on that some cyclic chains come very close / touch; and that is dependent
on only very few particles/“objects”, so at least it does only involve at first few
among an extremely big number of “objects” in the interesting situation.

10.2.1 An Attempt to anHphantasy

If one thinks of using position eigen-state say, one could enumerate the particles
by the position ~x or we could say that the number Iwere a function of the position
~x defined for the values of the latter a particle, i.e. defined whenever n(~x) = 1 or
bigger. In the case when there are positions with more than one particle the particle
number I would in addition have to depend on a small i number enumerating the
particles at one special position ~x say. So we would in this more general case write

I = I(~x, i) = The number I of the i’th particle at the position ~x. (10.18)

where the I is then a name or a number assigned to the ith object at the position
~x). In order that at least Hamiltonian Hphantasy should commute with those
operators O that could be constructed out of the position operators of the “objects”
alone, we would have to make the Hphantasy operator at least not change the
second quantized state in the position basis formulation, when acting on it. As
soon as we would make an image of f say f(I) to be change to be an object sitting
at a different position than before the action, this could give rise to the change by
the action of some only on the positions depending operator, and thus this would
not be allowed.

This consideration would leave us with only the possibility that the action
with Hphantasy to change the image f(I) from what it starts being to the number
for an object with the same position.. That is to say that if say

f(J) = I(~x, i)before the action with Hphantasy, (10.19)

then after the action:

f(J) = I(~x, k) (where ~x is the same, but k can be different from i.) (10.20)

This means that under the operation of the phantasy Hamiltonian we can as
far as these ~x-representation considerations go change the f into another f let us
say f ′ obtained by multiplying it - in the permutation composition way - from the
right by a permutation of a subset of objects sitting on the same position. If P~x
denotes the subgroup of the permutations of the objects with position ~x, we can
say it would be allowed that the sucessor function f changes into f ′ with f ′ = f ◦ p
for some p ∈ P~x for some position ~x.

That is to say that worrying only about the (fundamental) position dependent
operators w.r.t. whether they commute with the phantasy hamiltonian we can
allow matrix elements like :

< n, f ◦ p|Hphantasy|n, f > = g (some nonzero value) (10.21)
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where p is a permutation of objects with the same position. (The value g, which
we must here introduce, will turn out to be proportional to the coupling constant,
also usually called g in the formulation of veneziano models.).

This proposal is, however, although it looks at first o.k. not good: The point
is that if we concentrate on some successor function f having resulted by mul-
tiplication with such a permutation p then you will in that state find that there
is an infinite uncertainty in the relative momentum for the two objects that had
the same ~x position. It would act much like they had scattered with a pointlike
interaction. This would mean indeed that the Hphantasy had changed the state of
the fundamental degrees of freedom and we wanted to avoid that. Because if our
playing or phantasy Hamiltonian truly change the state of the tue fundamental
degrees of freedom it is not truly only phantasy.

The occurence of the need for selecting a permutation of the objects sitting on
the position ~x say a priori is a little freedom to be specified, but in what we think
should be the most important situation:

• (10.2.1.a) That there are in most positions ~x no objects at all, i.e. most n(~x) = 0.
• (10.2.1.b) and the dominant part of the rest of the positions have just one object,

i.e. next to n = 0 it is the value n = 1 that is most common.
• (10.2.1.c) Continuing this way with falling numbers of positions the higher n,

the first and dominant value of n for which a non-trivial permutations of the
objects at the position is n = 2 for the position in question. And in this case
there is only one nontrivial (i.e. not unity) permutation of the objects at the position.
So in this most copious non-trivial case the permutation p is not ambiguous.

• (10.2.1.d) Finally we expect higher n-values than 2 to be extremely seldom,
and we may ignore approximately this possibility.

Of course it is so to speak the choice of the density matrix ρ which shall give
the a priori probability for how to find the system of objects that should be made
so that we have this probability for n taking a given value to fall rapidly with the
size of this value. It is actually very natural with such a property in the limit of the
~x-space going to a continuum.

The reader may check that we also without causing any problem for the
conservation under the phantasy Hamiltonian development of the operators
depending on the positions for the objects by also allowing

< n, f|Hphantasy|n, p ◦ f > = g∗ (the complex conjugate of g), (10.22)

so that we can achieve that the phantasy Hamiltonian is a Hermitian one in the
phantasy Hilbert space constructed as tensor product of the space with the f’s
as basis vector marks and the fundamental Hilbert space. So we can claim we
arrange:

Hphantasy = H†phantasy. (10.23)

10.2.2 The problem of keeping fundamental degrees of freedom fixed

But this proposedHphantasy will not commute with the relative momentum of the
typically two objects being permuted by p, because the expression we proposed
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depends on the relative position and thus will not commute with the conjugate
momentum.

Actually as already said it is impossible to solve this problem except at best
approximately somehow. If we truly arranged that the phantasy Hamiltonian
should commute with all operators from the fundamental degrees of freedom,
we would be forced to have a phantasy Hamiltonian only depending on the pure
phantasy degrees of freedom, and that would not be so fun.

But we anyhow want to speculate that such a phantasy Hamiltonian can act
approximately without disturbing the fundamental degrees of freedom signifi-
cantly. E.g. one could speculate that as described in the now following subsection,
it would approximately commute enough under assumption of the density matrix
distribution.

10.2.3 A rather bad example for idea of concreteHphantasy

Since we actually have just seen that a fully satisfactory phantasy Hamiltonian is
impossible (see the argument below formula (10.17)) , just propose one that has
difficulties in the sense of not commuting fully with the fundamental degrees of
freedom - meaning operators acting only on the original basis |n > space - would
still be of interest. To give the possibility to work on with the idea of constructing
a phantasy Hamiltonian that functions approximately let us indeed build the
proposal from an operator N(I, J) supposed to act on the space of fundamental
states and being effectively zero in all cases when the objects I and J are not close to
each other and only significant when these two objects are close to each other. You
may take it that it is so to speak a “nearness operator”, and that is why we called
in by the first letter N in the word “nearness”. Such an operator N(I, J) is to be
considered an operator of the same kind as an interaction between the two objects
I, and J, and thus could be written as a convolutions by some function possibly
involving smeared delta functions The operator N(I, J) of course only act on the
wave functions for just those two objects I and J, so it could be written acting on
the space of all the objects represented by wave function like ψ(x1, ..., xN) as

N(I, J)ψ(~x1, ...,~xN) =

=

∫ ∫
d~x ′Id

~x ′JK(~xI,~xJ;~x
′
I,~x
′
J)ψ(~x1, ..,~xI−1,~x

′
I,~xI+1, ...,~xJ−1,~x

′
J,~xJ+1, ...,~xN)

Of course in order thatN(I, J) be a nearness operator the to be chosen function
of four spatial vector K(~xI,~xJ;~x ′I,~xJ) should vanish for any of the four arguments
being far away from the other ones.

We should also think of it as being in spite of its locality rather smooth so
that it does not change the momenta of the objects i and J too much. Actually the
reader should understand that we are hoping for - the impossible - that we have
an operator just testing if the two objects numbered I and J are near each other, but
preferably without disturbing them. But we know from the discussions of Niels
Bohr etc. that in quantum mechanics you cannot measure without disturbing.

Anyway let us go on for pedagogical reasons as if we had arranged an op-
erator N(I, J) that could just observe without disturbing. This would be an only
classical intuition that could have that.
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If we anyway fall back on classical intuition, we could as well really take it
as if the operator also asked for nearness in momentum space, i.e. it should be
arranged to only be significant in size for the two objects having approximately
the same momenta also.

Supposing we now had a for practical purposes such nice operator checking
if two objects are in the approximately same point in the phase space N(I, J).

The idea then is that we shall by means of it construct a term in the phantasy
Hamiltonian that if N(I, J) is non-zero will permute the actions of the successor
function f on the two objects involved. That is to say that with a weightN(I, J) the
successor function f shall be changed so that the images of I and J are no longer as
at first f(I) and f(J) respectively, but oppositely f(J) and f(I).

This means that we define a term to be put into the phantasy Hamiltonian

HIJ = N(I, J)Pf→f◦pIJ , (10.24)

where Pf→f◦pIJ is an operator only acting on the phantasy-degrees of freedom , i.e.
on the f-part, by permuting the two object(numbers) I and J before the action of f.
Here the permutation pIJ means the permutation permuting the two objects i and
J.

The full proposal for the phantasy Hamiltonian should then be the sum over
all pairs of different objects (I, J), with IneJ.

That is to say we propose the phantasy Hamiltonian to be of the form:

Hphantasy =
∑

(I,J) with I 6=J

HIJ (10.25)

=
∑

(I,J) with I 6=J

N(I, J)Pf→f◦pIJ . (10.26)

This phantasy Hamiltonian is made so as give some topology change - change in
the way the objects are thought to hang together in chains (the cyclically ordered
chains) as the phantasy-time goes on, but only provided the chains almost coincide
where the change takes place. This will correspond also when translated into
strings shifting the topology of how they hang together to only glue the strings in
a new way at places where they touch. This is what you expect for physical strings
also: they only interfere when they touch.

As already stressed the Hphantasy here is at best approximately o.k.. We can
argue that it is not so bad again by remarking that if one thinks on strings with
infinitely many objects in them and that we can arrange the interaction between
the strings to be sufficiently weak - by putting the coupling g above absorbed in
N(I, J) sufficiently small - so that one only has about one interaction at a time,
meaning that only one out or two of infinitely many objects get disturbed by the
operators N(I, J).

10.2.4 Mathematically Formulated ApproximateHphantasy Restriction

One idea to make a concrete statement of the sought for purely phantasy hamil-
tonian, that should preferably only move the phantasy degrees of freedom f but
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not the fundamental degrees of freedom n, would be to replace the hoped for
[O,Hphantasy] = 0 requirement by the milder

Tr(ρ[O,Hphantasy]) = 0, (10.27)

for all genuinely fundamental operators O and the assumed density matrix ρ
expressing our assumption about the state of the system of “objects”. We should
presumably most wisely only take this relation in the limit of infinitely many
objects and then we can hope as just mentioned that a single object being a bit
pushed would not count very much, if it stands inside the quantum fluctuations.

It is easy to see by a bit of trivial algebra that if we choose Hphantasy to
commute with the density matrix ρwe get fulfilled (10.27).

This means that we should look for arranging that ourN(I, J)’s in the phantasy
Hamiltonian commute with the density (matrix) operator ρ.

10.2.5 Unitarity

Once we have settled on a formalism with a constructed phantasy Hamiltonian,
we can of course construct corresponding time development operators, say the
time-development operator from time t1 to time t2 would be

U(t2, t1) = exp(−iHphantasy), (10.28)

(of course a phantasy development). This time-development - which is also an
approximate S-matrix - would of course be a unitary operator acting in the space
extended with the phantasy degree of freedoms. Thinking of the development with
lowest order perturbation in the parameter g leading to the Veneziano model as
we have previously argued, it is essentially obvious that the higher orders will give
unitarity corrections to this Veneziano model. So the scheme with the phantasy
Hamiltonian should automatically lead to include these Veneziano model unitarity
corrections.

( Let us though at this point remind of the problem we had in deriving the
Veneziano model: when we did it in the infinite momentum frame - which is very
close to the non-relativistic game used in this article - we did not get but one of
the three terms we ought to have got. Of course then we shall also miss some of
the unitarity correction terms if we just use the here a bit simplified form.)

10.3 On the Concept of Time.

As a little parenthesis at this point let us point out that our picture with the
stressing of no time development, really means that in our object-description there
is at first no time. One can say that the time first comes in when we introduce the
phantasy degrees of freedom, and the phantasy Hamiltonian. In this sense the
concept of time comes into our scheme as a “phantasy” a fake. The fundamental
world has no time. Only by looking at situations in which the various pieces of
cyclic chains are screwed together in different combinations as existing at different
moments of time a time-concept pops up. That is to say that if one wants to make
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some ontological model for how a concept of time comes into physics, then we
here have the roots for some idea about that:

The time concept could be a phantasy degree of freedom which for some
reason could be a reasonable way of describing an a priori timeless physics.

Interestingly enough this attitude of time being a phantasy or fake concept is
not actually quite new in as far as we can claim that it is already present in general
relativity:

In general relativity all the coordinates and not only (but also) the time coordi-
nate t = x0 are arbitrary and phantasy or fake, in the sense even that the physicist
that chooses the coordinates, can decide what these coordinate shall be.

Crudely imposing quantum mechanics and reaching the Wheeler-DeWitt
equation one has by this Wheeler-DeWitt equation a restriction on the state, which
seemingly tell that the state of the gravity theory is the same at all times. The
most close to a Hamiltonian in the gravity theory is namely an integral over the
Wheeler-DeWitt equation quantity. This then means that one has got a constraint
that the Hamiltonian shall be zero as a constraint. So taking this at face-value one
has in gravity a very similar situation as to the one in our scheme: There is no time
development, except in some gauge-chosen or fake way.

10.4 Motivations

Purpose of this Faked Scattering String Theory Formulation
Hope you got the idea of considering a completely trivial H = 0 quantum

field theory and built up a story of e.g. strings just by defining some extra “phan-
tasy degrees of freedom”.

What is the purpose ?:

• (4-a) It is a method to make a second quantized string theory (competing with
works by Kaku and Kikkawa and by Witten, ... [2]). You can describe states
with several strings.
• (4-b) You may use the idea to look for further models sharing the great property

of string theory of not having the usual divergencies. Likely this is the only
hope for making theories, that make sense, in high dimensions.

Problem of Ultraviolet Divergences Worse the Higher Dimension of Space-
time

Each momentum-formulated loop intergal in a Feynman diagram bring a∫
...ddq integration and unless there are very many propagators in the loop we

cannot avoid divergence for large loop momenta q.

The higher dimension the more different loop integrals lead to divergencies.

To absorb the divergencies into bare coupling constants you need in high
dimensions so many that the theory ends up with infinitely many parameters, and
is in principle useless.

Direction of Hope for High Dimensional Theories: Formfactors
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One needs some factor that can make converge the loops in the high dimen-
sional theory, otherwise you have ultraviolet divergencies and in high dimensions
it gets too many different divergencies.

Best hope:
some exponentially falling off factor

Factor extra in loop ∝ exp(−k ∗ q2E) (10.29)

much like what one gets from formfactors when one has effective theories for
hadrons.

Suggestion:
Replace the particles in the high dimensional theory by composite (bound)

states, like the hadrons are composite in QCD.
Just Bound States Not Good Enough: Partons [9]
If as we now believe hadrons are bound states [8] but of quarks and gluons

called in this connection partons the effective vertices will NOT go down exponen-
tially for very big momentum transfers but will be dominated by the coupling to a
single parton and behave at the end more like in the theory of just particles. Thus
it will only help a part of the way, but finally at high momenta the divergencies
reappear.

Only if there are infinitely many constituents(=partons [9]) in the bound
states and they have Bjorken variable x = 0, you can postpone parton domi-
nance from popping up, and thus only then we can use the replacement of the
original particles in high dimensional theory by bound states.

Hadrons Scatter Crudely by Exchange of Bunches of Constituents
Hadron scattering at energies below where partons collisions become impor-

tant was described by exchange of other hadrons, pions, vector bosons like ω,
again hadrons which again consists of many partons. So it was mainly exchange
of lots of partons between one hadron and another one, while the single partons
hardly were seen.

Moderate energy Hadron scattering in terms of partons is much like the
fake-scattering of just exchanging bunches from one bound state to another
one.

(we here ignored the relativity and effects of vacuum)

10.4.1 Bound States Not Perfectly True for Our Fake Model

Let as a side remark call attention to that our model of the string in string theory
as “composed” of constituents which we called “objects” should presumably not
really be called composite in as far as when we stress that there is no interaction
it is not truly a bound state. You could of course think that one could the limit of
letting the interaction be weaker and weaker and thus at the end have the non-
interacting constituents. One could think of some weakly bound states such as
some molecules or atoms and then consider a process in which - for some reason a
very fast - exchange of say an electron or some other combination of electrons and
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nuclei, e.g. some whole atom takes place between a couple of different molecules.
If this exchange goes fast compared to the internal quantum mechanical motions
of the electrons around the nuclei in two scattering molecules one would make the
approximation of taking the scattering or exchange amplitude to be given simply
by the overlap of the wave function for the two incoming molecules with that
of the two molecules after the scattering. Such an overlap approximation for the
scattering or exchange process when it goes fast, would be completely analogous
to the type of approximation which we use in our calculations of the Veneziano
model amplitude in our fake scattering theory.

In a high energy hadron collision the meeting of the two hadrons goes rather
fast compared to the moving around of the constituents / partons in the hadrons.
So the usual low transverse momentum type of hadronic collisions are not so far
from the described case of a rather fast exchange between the molecules compared
to the moving around of the constituents. In this sense one might speculate whether
the rather fast passage of the hadrons could be described as being close to being
fake in the sense that the genuine interaction between the constituents first shows
up before or after the main hitting passage.

When a couple of partons really hit each other there is a fast interaction taking
place between the constituents it would not be analogous to the fake process even
in the short passage time.

10.5 Unitarity

A Major Achievement of Phantasy Hamiltonian Formulation is Unitarity of
Time-development Operator.

If the theory has a formal /phantasy time development given by a Hamilto-
nian Hphantasy then we have automatically that developing during some time
interval wil result in a unitary operator development.

Essentially unitary S-matrix.
Perturbation Expansion in Coefficient on the “Phantasy Hamiltonian”
Hphantasy
Really the overall scale of the Hphantasy is a matter of the time unit. In fact

there is no time in the theory before we introduce the phantasy degrees of freedom
and make them move.

Natural to make perturbation theory in the coefficient on Hphantasy.

Then we get one shift in the topology or way of connection of the cyclic chains
for each order in the perturbation. That corresponds to different topologies of
string surface diagrams as describing unitarity corrections to the Veneziano model.

10.6 Conclusion

This article was truly inspired by our novel string field theory on which we by
now have worked for long, and believe to have formulated a theory in which
many strings can be present, so that it is really a string field theory, in terms of
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what we called objects, which is really pieces of strings taken for right and left
movers separately.

The remarkable fact turning out of this our old formalism was that the objects,
meaning the bits making up the right and left mover degrees of freedom turned
out having zero Hamiltonian, zero time development.

As a pedagogical exercise to study such a system like our objects with zero
Hamiltonian we started by considering a second quantized system of infinitely
heavy non-relativistic particles they namely have vanishing Hamiltonian if they
do not have any interaction:

• We have put forward a very trivial second quantized theory (of infinitely heavy
non-relativistic particles identified as our earlier “objects”) and assumed for
it a Hamiltonian that is zero as operator. So no time development in this
“fundamental” theory. (It is this one which is the analogue of the theory of the
objects from our Novel String Field Theory.)

• We can only make it more interesting or adjustable by assuming something
about the state of it. Say by a density matrix ρfundamental. We use this option
to assume that the particles (=“objects”) sit in (long) closed chains (cyclic
chains).

• We interpret each cyclic chain to describe an open string in a string theory.
• We introduced a phantasy system of degrees of freedom by introducing a

“successor function” f, which puts all the “objects” (∼ particles ) into a series
of closed chains, thereby making explicit that such chains are assumed to be
present by the assumption about the likely state of the trivial second quantized
system.

• Mostly we imagine the cyclic ordering is given by the “fundamental” state
of the trivial theory, but in some cases it will be ambiguous which chains
there are. Then it is we introduce the fake/phantasy/f-variable to distinguish
possibilities.
• Then the idea was to make a Hamiltonian supposed to mainly make this fake

degree of freedom move, but approximately to avoid varying the “fundamen-
tal” degrees of freedom.
With this we then get a quite phantasy time. We only get time development
due to the phantasy degrees of freedom.
This could be used to realize the philosophy that the very concept of time
is indeed a fake concept, so that at the fundamental level there is no time,
but only a static state of the universe. Then only by introduction of a fake
overbuilding (analogous to our phantasy successor function f we obtain a
world seemingly having a time-concept.
Indeed different moments would corresponds to just different ways of looking
at the very same state, whatever the moment in question.

Conclusion on Hopes and Applications

• Really the formulation of ours is a solution of second quantized string theory,
in the sense that we could say we solved the time development by identifying
string theory with several strings with a theory without time development.
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• Hope to generalize our “object” picture to different models which have the
same great property as string theory of not having usual divergencies! This
would be absolutely needed in high dimensions, because with point particles
high dimensions cause rather hopeless divergencies.

• As a special case we may generalize to p-adic [5, 6] Veneziano model [10].
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Abstract. Dark stars are compact massive objects, described by Einstein gravitational field
equations with matter. The type we consider possesses no event horizon, instead, there is a
deep gravitational well with a very strong redshift factor. Observationally, dark stars can be
identified with black holes. Inside dark stars, Planck density of matter is reached, Planck
cores are formed, where the equations are modified by quantum gravity. In the paper,
several models of dark stars with Planck cores are considered, resulting in the following
hypothesis on the composition of dark matter. The galaxies are flooded with low-energetic
radiation from the dark stars. The particle type can be photons and gravitons from the
Standard Model, can also be a new type of massless particles. The model estimations show
that the extremely large redshift factor z ∼ 1049 and the emission wavelength λ0 ∼ 1014m can
be reached. The particles are not registered directly in the existing dark matter experiments.
They come in a density sufficient to explain the observable rotation curves. The emission has
a geometric dependence of density on radius ρ ∼ r−2, producing flat rotation curves. The
distribution of sources also describes the deviations from the flat shape. The model provides
a good fit of experimental rotation curves. Outbreaks caused by a fall of an external object
on a dark star lead to emission wavelength shifted towards smaller values. The model
estimations give the outbreak wavelength λ ∼ 1m compatible with fast radio bursts. The
paper raises several principal questions. White holes with Planck core appear to be stable.
Galactic rotation curves in the considered setup do not depend on the matter type. Inside
the galaxy, dark matter can be of hot radial type. At cosmological distances, it can behave
like the cold uniform type.

Povzetek. Temne zvezde so masivni kompaktni objekti, ki jih opišejo Einsteinove enačbe za
snov v gravitacijskem polju. Avtor obravnava posebno vrsto objektov: nimajo horizonta do-
godkov, določa jih globoka gravitacijska potencialna jama z zelo močnim rdečim premikom.
Učinkujejo kot črne luknje. Gostota doseže v notranjosti temnih zvezd Planckovo gostoto. V
tem Planckovem jedru se enačbe spremenijo zaradi kvantnih efektov gravitacije. Prispevek
obravnava vrsto modelov temnih zvezd s Planckovim jedrom ter postavi hipotezo o sestavi
temne snovi. Galaksije preplavlja nizkoenergijsko sevanje temnih zvezd. Delci tega sevanja
so lahko fotoni in gravitoni Standardnega modela, lahko so pa tudi brezmasni delci nove
vrste. Avtor oceni, da lahko sevanje doseže izjemno velik rdeči premik – z ∼ 1049 – in
valovne dolžine λ0 ∼ 1014m. Obstoječi detektorji temne snovi jih ne zaznajo neposredno.
Njihova gostota je dovolj velika, da pojasni izmerjene rotacijske krivulje galaksij. Gostota
sevanja se z radijem spreminja, ρ ∼ r−2, kar povzroči ravne rotacijske krivulje, porazdelitev

? E-mail: igor.nikitin@scai.fraunhofer.de
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izvorov sevanja pa poskrbi za odstopanja krivulj od ravnih. Model dobro tako dobro
opiše izmerjene rotacijske krivulje. Padec zunanjega objekta na temno zvezdo povzroči
izbruhe, valovna dolžina sevanja se premakne k manjsšim vrednostim. Model da oceno
za valovno dolžino sevanja λ ∼ 1m, kar se ujema s hitrimi radijskimi izbruhi (’fast radio
bursts’). Prispevek postavi vrsto bistvenih vprašanj: bele luknje s Planckovim jedrom se
zdijo stabilne, rotacijske krivulje galaksij v obravnavanem modelu niso odvisne od vrste
snovi — znotraj galaksije je temna snov lahko vroča z radialno odvisnostjo, pri kozmoloških
razdaljah pa se lahko obnaša kot hladna snov z enakomerno gostoto.

Keywords: Planck stars, RDM-stars, TOV-stars, dark matter

Fig. 11.1. On the left and in the center: an RDM-star – a black hole, coupled to radial flows
of dark matter. On the right: experimental rotation curves for three galaxies. Image from [3],
data from [4].

11.1 Introduction

Dark stars, also known as quasi black holes, boson stars, gravastars, fuzzballs,
are solutions of general theory of relativity, which first follow the Schwarzschild
profile and then are modified. Outside they are similar to black holes, inside they
are constructed differently, depending on the model of matter used. An overview
of these models can be found in the paper by Visser et al. “Small, dark and heavy:
but is this a black hole?” [1]. A recent advance has been reported by Holdom and
Ren in their paper “Not quite a black hole” [2]. Our contribution to this family
are RDM-stars [3], quasi black holes coupled to Radial Dark Matter. A typical
configuration of an RDM-star is shown on Fig.11.1 on the left and in the center.
It is a stationary solution, including T-symmetric superposition of ingoing and
outgoing radially directed flows of dark matter.

An RDM-star can be used as the simplest model of a spiral galaxy. In the limit
of weak gravitational fields, the dark matter flows radially converging towards
the center of the galaxy produce a typical geometric dependence of mass density
on the radius ρ ∼ r−2, which corresponds to constant orbital velocity v = Const,
flat rotation curve. It is a qualitatively correct behavior for many experimental
rotation curves at large distances, see Fig.11.1 on the right. We will show that
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a distribution of RDM-stars in the galaxy also allows to describe correctly the
deviations of rotation curves from the flat shape. The model of RDM-stars fits very
well the experimental rotation curves by Sofue et al. [4–8] and Salucci et al. [9–13].

In strong gravitational fields, RDM-stars behave interestingly. First of all, the
event horizon, typical for real black holes, is erased. Instead, a deep gravitational
well is formed, where the values of the redshift become enormously large. As a
result, for an external observer the star looks black, like a real black hole. Simulta-
neously, the mass density increases rapidly, reaching and exceeding the Planck
value.

This is where Planck stars come into play. This model is based on the calcula-
tions in quantum loop gravity, performed for a scalar field cosmology by Ashtekar
et al. [14–16]. According to these calculations, the mass density has a quantum
correction: ρX = ρ(1− ρ/ρc), where the critical density ρc ∼ ρP is of the order of
Planck value, ρ is the nominal density before the correction and ρX is the effective
density participating in Einstein field equations. As a result of this correction,
ρ = ρc corresponds to ρX = 0, at the critical density the gravity is effectively
switched off, while ρ > ρc corresponds to ρX < 0, in excess of critical density
the effective negative mass appears (exotic matter), with gravitational repulsion
(quantum bounce phenomenon). In the Planck star model by Rovelli, Vidotto [17],
Barceló et al. [18], a collapse of a star leads to the quantum bounce, is replaced by
extension, as a result, the black hole turns white.

In this paper we consider a stationary version of a Planck star, stabilized
under the pressure of the external matter (Planck core). We will consider two
stationary spherically symmetric models with a Planck core in the center. The
subject is related to the stability of white holes, earlier investigated in papers by
Ori and Poisson [19], Eardley [20], Zel’dovich, Novikov and Starobinskij [21]. It is
also related to the origin of fast radio bursts and gives an unusual viewpoint on
the nature of dark matter.

The paper is organized as follows. In Section 2 the model of RDM-stars is
considered. The main computations have been performed in the author’s earlier
paper [22], here a short overview of the results is given. In Section 3 the model of
TOV-stars with Planck core is presented. In Section 4 the nature of dark matter ac-
cording to the considered models is discussed. A theoretically interesting question
on stability of white holes is considered in the Appendix.

11.2 RDM-stars with Planck core

RDM-stars and rotation curves of galaxies. RDM-star geometry can be used as a
simplest model of dark matter distribution in spiral galaxies. Let us consider dark
matter flows radially converging towards the center of a galaxy, displayed on
Fig.11.1 center, in the limit of weak gravitational fields. The one-line calculation

ρdm ∼ r−2, Mdm ∼ r, v2 = GMdm/r = Const (11.1)

evaluates mass density, enclosed mass function and orbital velocity of stars.
Adding a concentrated mass in the center, v2 = GM0/r + Const, the rotation
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curve described by the sum of Keplerian and constant terms can be obtained. The
real rotation curves, displayed on Fig.11.1 right, possess a similar structure, with
Keplerian behavior at small distances and flat shape at large distances. The red
line shows a segment 2-20kpc where the rotation curve for the Milky Way can be
considered as approximately flat, with the Sun position at 8kpc. These plots show
that the real rotation curves deviate from a simple sum of Keplerian and constant
terms, revealing additional structures, oscillations. On the other hand, the model
with a single RDM-star in the center of the galaxy is also a simplification. Further
we consider a model of distributed RDM-stars, able to capture the additional
structures. Then we perform a calculation in the limit of strong gravitational fields
to analyze the interior structure of an RDM-star.

The detailed description of rotation curves in the RDM-model is based on two
assumptions: (1) all black holes are RDM-stars; (2) their density is proportional to
the concentration of the luminous matter in the galaxy. As a result, the dark matter
mass density can be represented by the integral

ρdm(x) =

∫
d3x ′ b(|x− x ′|) ρlm(x ′), b(r) = 1/(4πLKT )/r

2. (11.2)

Here ρlm is the density of luminous matter, the kernel b(r) represents a contribu-
tion of a single RDM-star and LKT is a parameter of length dimension, regulating
a coupling between the dark and the luminous matter. This form of coupling has
been proposed earlier in a context of a different model in works by Kirillov and
Turaev [23, 24]. The physical meaning of the LKT parameter is the radius at which
the enclosed mass of dark matter equals to the mass of the luminous matter, to
which it is coupled:Mdm(LKT ) =Mlm.

The detailed rotation curve of Milky Way, known also as Grand Rotation Curve
(GRC), has been constructed on the basis of various experimental data by Sofue et
al. [4–8]. This curve is presented on Fig.11.2 by data points with errors. Here one
can see several structures, including Keplerian contribution of the central black
hole (BH), inner and outer bulges (LM1,2), galactic disk (LM3), followed by dark
matter contribution (DM) and background outer part (bgr). The red line with the
marked Sun position represents the same 2-20kpc approximately flat interval as on
the previous figure. This part appears to be relatively small due to a much larger
range of distances involved in the analysis.

In paper [8], the distribution of luminous matter in the bulges is described
by exponential spheroid model, representing the mass density by an exponent ρlm ∼

exp(−r/a). For the galactic disk Freeman’s model [25] is used, with the surface mass
density described by similar exponent ρlm ∼ δ(z) exp(−r/RD). Taking these distri-
butions, the integral (11.2) and the resulting rotation curve v(r) can be evaluated
analytically. The lengthy explicit expressions per every structure are given in [22],
also used there as basis functions for the fitting procedure. For stability of the fit,
the relative coupling of dark matter to different structures of luminous matter
has been fixed as shown in Table 11.1. The λ-constants are used as multiplicative
factors to integrals (11.2). Since the different galactic structures may possess a
different density and different population of black holes, we can select different
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coupling constants for them. This procedure is equivalent to a readjustment of
the corresponding LKT -parameters, while we prefer to use a single LKT -parameter
and adjust the individual couplings by relative λ-factors. Three scenarios have
been considered in Table 11.1, the first one assigns all dark matter coupling to the
galactic disk, the second one introduces equal coupling among all structures, the
third one describes a prevailing coupling for the central structures.

The result of the fit is shown by curves on Fig.11.2. The green line represents
the total rotation curve, a quadratic sum over all structures. It has almost the
same shape for all three scenarios. Also, the separated contributions of different
structures are shown. They depend on the scenario, e.g., the third scenario with
prevailing dark matter coupling to central structures also shows a considerable
contribution of dark matter in the center. Table 11.2 presents the obtained fitting
parameters – the total masses and geometric sizes of the structures. In the con-
sidered modeling, the dark matter halo is sharply cut at the radius Rcut, further
providing Keplerian fall of the outer part of the rotation curve, followed by its lin-
ear increase due to the uniform background density. Interestingly, the parameters,
characterizing the outer part of the rotation curve, the total mass of dark matter
halo Mdm(Rcut) and the background density ρbgr, appear to be approximately
the same for the considered three scenarios.

Fig. 11.2. Detailed rotation curve for Milky Way, fitted by RDM-model. Blue points with
error bars – data from [8]. Green curve – fit by RDM-model from [22] for three coupling
scenarios (s1-3). Contributions of different galactic structures are also shown.

λKT s1 s2 s3
λsmbh 0 1 103

λ1 0 1 102

λ2 0 1 2
λdisk 1 1 1

Table 11.1. GRC fit: coupling coefficients for 3 scenarios

Other galaxies can be modeled with a concept of a Universal Rotation Curve (URC)
introduced by Salucci et al. [9–13]. It represents averaged experimental rotation
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par s1 s2 s3
Msmbh 3.6× 106 3.6× 106 3.2× 106

M1 5.5× 107 5.2× 107 3.6× 107

a1 0.0041 0.0039 0.0036

M2 9.7× 109 8.6× 109 8.2× 109

a2 0.13 0.13 0.13

Mdisk 3.2× 1010 2.7× 1010 3.5× 1010

RD 2.4 2.5 2.8

LKT 7.0 6.3 12.0

Rcut 58 45 53

Mdm(Rcut) 2.7× 1011 2.5× 1011 2.6× 1011

ρbgr 646 653 649

Table 11.2. GRC fit: the results*

* masses inM�, lengths in kpc, density inM�/kpc3

Fig. 11.3. Other galaxies: universal rotation curve, fitted by RDM model. The points with
error bars – data from [9]. Green curves – fit by RDM-model from [22]. The data and the fits
for different luminosity binsmag are separated.

curves of more than 1000 galaxies. Before averaging, the galaxies are subdivided
to bins over the magnitudemag and the curves v(r,mag) are normalized to the
values at optical radius: v/vopt, r/Ropt. Here, vopt = v(Ropt) and the optical
radius of the galaxy Ropt = 3.2RD is defined as a distance, under which 83% of
the luminous mass is located. The averaging smooths the individual features of
the curves, their local minima and maxima. The resulting experimental curves
appear to be more smooth and are shown by points with errors on Fig.11.3.

On these plots, the radius and velocity are presented in a linear scale, rather
than the logarithmic one used in previous plots. As a result, the earlier described
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central structures are shrinked to a single unresolved central contribution. The
modeling is accordingly simplified, preserving only the central and the disk con-
tributions. The basis functions are explicitly written in [22], the result of the fit is
presented by green curves on Fig.11.3.

The presented plots show that the model of distributed RDM-stars, based
on the Newtonian weak field limit and the proportionality assumptions above,
provides a good fit of the experimental rotation curves, for both GRC and URC
types.

Fig. 11.4. RDM-star model in strong fields. A typical solution in different coordinates (see
text).

RDM-star model in strong fields. The system to solve is combined from Einstein
gravitational field equations and geodesic equations:

Gµν = 8πG/c4 · Tµν, uν∇νuµ = 0, ∇µρuµ = 0. (11.3)

We consider the model with T-symmetric non-interacting superposition of ingoing
and outgoing flows of dark matter. Therefore, geodesic equations can be applied
separately for every flow, described by velocity field uµ and intrinsic mass density
ρ. A static spherically symmetric metric is chosen:

ds2 = −Adt2 + Bdr2 +Dr2(dθ2 + sin2 θ dφ2), (11.4)

where the profile A(r) > 0 describes the redshift and time delay effects, B(r) > 0
measures geometric deformation in radial direction. D = 1 can be put by con-
vention, so that r is aerial radial coordinate, the area of r-sphere is 4πr2. Time t
is measured by the clock of a distant observer, where A → 1 can be set. Energy-
momentum tensor is taken in a form

Tµν = ρ(uµ+u
ν
+ + uµ−u

ν
−), u± = (±ut, ur, 0, 0), (11.5)

a sum of T-symmetric radial flows of non-interacting dust matter.
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The equations (11.3) have been solved in [3, 22]. Geodesic equations possess
analytical solution

4πρ = c1/
(
r2ur
√
AB
)
, (11.6)

ut = c2/A, u
r =

√
c22 + c3A/

√
AB,

in G = c = 1 normalization. The integration constants c1−3 will be considered in
details later. The Einstein equations have a form

rA ′ = −A+AB+ 4c1B
√
c22 + c3A, (11.7)

rB ′ = B/A

(
A−AB+ 4c1c

2
2B/

√
c22 + c3A

)
,

they can be solved numerically. The typical solution is shown on Fig.11.4 left, in
(A,B)-coordinates. Initially, near the point x1, the curve has a hyperbolic form,
typical for Schwarzschild solution. The difference starts near the point x2, where
the Schwarzschild solution goes to infinity, the event horizon is formed. In the
considered solution, the dark matter acts like a barrier, preventing the formation
of the horizon. The solution then goes rapidly towards very small values of A and
B, where it exhibits a strong redshift and possesses a small proper length. Then the
solution goes to large values of A, a strong blueshift. The same solution is shown
in the central part of this figure, in logarithmic coordinates, and on the right part,
presenting a Misner-Sharp enclosed mass function:

x = log r, a = logA, b = logB, M = (1− B−1) r/2. (11.8)

In these coordinates the equations obtain the form more convenient for a numerical
solution

a ′x = −1+ eb + c4e
b−a

√
1+ c5ea, (11.9)

b ′x = 1− eb + c4e
b−a/

√
1+ c5ea, (11.10)

c4 = 4c1c2, c5 = c3/c
2
2. (11.11)

The convenience follows from the resolution of singularities, typical for polyno-
mial formulation, so that the resulting equations can be easily solved, e.g., by
Mathematica NDSolve algorithm. Also each term in these equations has a clearly
defined range of domination, so that normally only one term in the equation is
active. This simplifies the asymptotic analysis of the system.

The behavior of the mass function on Fig.11.4 right shows that the solution
is bounced off horizon line M = r/2, then falls very rapidly. This fall is related
to the phenomenon of mass inflation, described in the paper by Hamilton and
Pollack [26]. There is a positive feedback loop in black hole solutions with coun-
terstreaming matter flows: (1) increasing energy of the crossing flows leads to (2)
increasing pressure, that leads to (3) increasing gravity, that leads again to (1). As a
result, an accumulation of very large mass in the counterstreaming region happens.
For the considered solutions, the function M(r) decreases with decreasing r. To
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explain this property, one can imagine spherical shells of positive mass consequen-
tially removed from the star. Finally, the mass arrives to a negative central value,
a concentrated negative mass. It corresponds to the well known Schwarzschild
singularity of naked type and explains the appearance of a blueshift region in the
solution. On the other hand, the singularity is coated in a massive shell appearing
due to the mass inflation phenomenon, so that the total mass of the system remains
positive. Also, below we will introduce a quantum gravity cutoff in the model,
which will remove the naked singularity with most of surrounding structures.

The integration constants c1,2 > 0, while c3 = uµu
µ = −1, 0,+1 can take

three discrete values, corresponding to the type of dark matter particles: massive,
null or (theoretically) tachyonic. Interestingly, the solution in strong fields (A� 1)
depends on the matter type very weakly, since the corresponding term c3A in
the equations becomes small. Solution in weak fields (A ∼ 1) depends, at first, on
the parameter c5 that defines asymptotic radial velocity of the dark matter: for
c5 < −1, the massive radial flow has a turning point, the matter cannot escape;
c5 > −1, possible for all matter types, the matter can escape to large distances, the
case further considered:

c6 = c4
√
1+ c5, c7 = c4/

√
1+ c5, ε = (c6 + c7)/2. (11.12)

The parameter ε defines an asymptotic gravitating density ρgrav = ρeff + peff. The
effective density and pressure, produced by counterstreaming dark matter flows,
are defined as components of energy-momentum tensor Tνµ = diag(−ρeff, peff, 0, 0),
where

ρeff = c4/(8πr
2A)/

√
1+ c5A, peff = c4/(8πr

2A) ·
√
1+ c5A. (11.13)

In the weak field limit A ∼ 1 we obtain ρgrav = ε/(4πr2), Mgrav = εr, as in (11.1).
This makes ε a directly measurable parameter, in physical units ε = (v/c)2, where
v is the orbital velocity of stars at large distances from the galaxy center, for Milky
Way v ∼ 200km/s, ε ∼ 4 · 10−7.

Quantum gravity cutoff. Further, we omit index eff in the formulae, assuming that
the effective density and pressure are always considered. Also, for definiteness,
we fix the dark matter to null type (NRDM). The resulting model is equivalent to
a perfect fluid with the following equation of state (EOS):

ρ = pr, pt = 0, (11.14)

there is a relativistic relation between mass density and radial pressure, while the
transverse pressure is switched off. The formulae (11.14) become

ρ = pr = ε/(8πr
2A). (11.15)

Further, for illustration, we consider the solution for the Milky Way galaxy with a
concentrated RDM-star in the center. Fig.11.5 left shows the corresponding metric
profiles. The solution starts in point 1 far away from the center, then in point 2
attempts to go to the Schwarzschild regime. We remind that the scale is logarithmic
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Fig. 11.5. On the left: quantum gravity cutoff in RDM-model for Milky Way scenario. In
the center: a mechanism for generating FRB in RDM-model. On the right: simultaneous
analysis of rotation curves and FRBs in RDM-model. Images from [22].

and the metric profiles jump many orders of magnitude near the point 2. Then
they fall into abyss due to the red supershift phenomenon. Much earlier than the
A-profile reaches minimum in point 3, the Planck density is achieved ρ ∼ ρP. At
this point we stop the solution and place a Planck core below it. Since the B-profile
is also very small at this point and according to the formula (11.8), the Planck core
possesses negative total mass, whose repulsive force supports the whole system in
equilibrium. In further computations, only the order of the magnitude is important,
on necessity, corrections can be applied via phenomenological factors [22]. Taking
into account that ρP = l−2P in the units used, where lP is Planck length, also that
redshift factor falls rapidly at almost constant r ∼ rs, the value in the cutoff point
becomes

AQG = ε (lP/rs)
2/(8π). (11.16)

For the Milky Way, substituting the estimation of the ε-parameter above and the
known gravitational radius rs of the central black hole from Ghez et al. [27], we
obtain A1/2QG = 1.7 · 10−49. This value will be important for our further calculations.

RDM-stars as sources of Fast Radio Bursts. The common property for all dark star
solutions is the presence of high energetic phenomena and strong redshift in their
depths. Therefore, high energy photons created in these phenomena on the way out
can be shifted to a long wave diapason. This makes dark stars natural candidates
for sources of FRBs, the powerful flashes of extragalactic origin, registered in radio
band. The lowest FRB frequency of 111 MHz has been reported by Fedorova and
Rodin [28], the highest of 8 GHz – by Gajjar et al. [29]. Detailed experimental
characteristics of FRBs can be found in frbcat catalogue by Petroff et al. [30], there
is also a catalogue of existing FRB theories frbtheorycat by Platts et al. [31]. At the
time of this writing, 118 distinct FRB sources have been registered and 59 FRB
theories have been created.

A particular scenario with an RDM-star generating an FRB has been consid-
ered in [22]. An object of an asteroid mass falls onto the RDM-star. The gravita-
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tional field inside the star acts as an accelerator with super-strong ultrarelativistic
factor γ = A

−1/2
QG ∼ 1049. The nucleons N composing the asteroid enter in the

inelastic collisions with particles X forming the Planck core, producing the excited
states of a typical energy E(X∗) ∼

√
2mXEN. The high-energy photons formed

by the decay of X∗ with energy E(γ, in) ∼ E(X∗)/2 are subjected to super-strong
redshift factor γ−1 = A1/2QG ∼ 10−49. The γ-factors do not compensate each other
due to the presence of the square root in the formula. Thus, the outgoing energy
E(γ, out) ∼

√
mXmN/(2γ), the wavelength λout =

√
2λXλNγ. Taking λX ∼ lP, we

obtain a formula for FRB wavelength

λout = 2(2π)
1/4
√
λNrs /ε

1/4, (11.17)

containing only Compton wavelength of nucleon λN and (rs, ε)-parameters of the
RDM-star. Interestingly, Planck values are canceled out of the formula. Further,
taking λN = 1.32 · 10−15m, rs = 1.2 · 1010m, ε = 4 · 10−7, the wavelength and
frequency of FRB are

λout = 0.5m, νout = 0.6GHz, (11.18)

that falls in the observed range 0.111-8GHz of FRB frequencies.
Further evaluations can be found in [22]. A snowball mechanism is introduced

for generating a sequence of excited states, which produces the energy spectrum
of photons cut from above by the computed Eout value. The spectrum is open
towards low energy values, however, the increasing scatter broadening dilutes
the signal there. A common mechanism of stimulated emission (aka LASER)
can generate a short pulse of coherent radiation, by the scheme displayed on
Fig.11.5 center. Other parameters, such as pulse width and pulse delay, spectral
and beam efficiency, as well as polarization, repetition and periodicity, observed
for some FRBs, have been also discussed in [22]. Most of these parameters are
insensitive to the nature of the FRB source, being imparted by local environment
and/or interstellar/intergalactic medium on the way of signal propagation. These
parameters can be described by the known source independent astrophysical
mechanisms, such as scatter broadening and signal dispersion, as well as scenarios
with an FRB source passing through a planetary system or an asteroid belt.

The estimation above has been made for a simplified scenario with a con-
centrated RDM-star in the center of the galaxy with Milky Way alike parameters.
Fig.11.5 right shows more possibilities. The coordinates (rs, ε) are the gravita-
tional radius and the parameter defining the contribution of a particular black
hole (=RDM-star) to the galactic dark matter halo, ε = GMλ/(c2LKTN), where
M,λ, LKT are parameters from the fit of the galactic structures explained at the
beginning of this section, N is the number of black holes in the structure. The
band shows detected FRB frequencies between the lines (a) and (b), according
to (11.17). Two horizontal lines show two classes of solutions, supermassive and
stellar black holes, according to the scenarios considered above: (c) s2, (d) s3, (e)
corresponds to the minimal velocity value v ∼ 100km/s on the plots Fig.11.2, (f)
ε = 4 · 10−7 divided to N = 109 stellar black holes, (g) the same with N = 106, the
estimations of the number of stellar black holes are from Wheeler and Johnson [32]
and references therein.
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The main conclusion from the analysis of the plot on Fig.11.5 right is that
the band and the horizontal lines have an intersection, therefore the model of
RDM-stars is able to describe simultaneously the rotation curves and FRBs. More-
over, two solution classes exist, stellar and supermassive black holes. The plot
is constructed on the basis of Milky Way data, extracted from its highly detailed
rotation curve, and is valid for galaxies of similar structure. It would be interesting
to populate it with data from other galaxies, that depends on the availability of
rotation curves with a comparable detalization.

11.3 TOV-stars with Planck core

In this section we consider Tolman-Oppenheimer-Volkoff (TOV) stars. It is well
known system, described by EOS

wρ = pr = pt, (11.19)

differing from RDM-stars EOS (11.14) by the presence of two components of trans-
verse pressure Tµν = diag(−ρ, pr, pt, pt), equally distributed with the radial one
(isotropic pressure). Parameterw regulates the composition and temperature of the
star. Small values w = kT/(mc2) correspond to an ideal gas of massive particles of
a given temperature. In this section we will mainly consider an ultrarelativistic
plasma or photon gas, corresponding to the valuew = 1/3. The Einstein equations
have a form (see, e.g., Blau [33]):

wρ ′r = −(ρM/r2)(1+w)(1+ 4πr3wρ/M)(1− 2M/r)−1, (11.20)

M ′r = 4πr
2ρ, h ′r = 4πr(1− 2M/r)

−1ρ(1+w), (11.21)

where the metric coefficients are chosen as

A = e2hf, B = f−1, f = 1− 2M/r. (11.22)

A consequence of this system is so the called hydrostatic equation

r(p+ ρ)A ′r + 2Arp
′
r = 0, (11.23)

possessing an analytical solution

4πwρ = k1A
k2 (11.24)

with constants

k1 = 4πρ1w, k2 = −(1+ 1/w)/2, k3 = logk1. (11.25)

The system can be rewritten in logarithmic variables (11.8), to the form convenient
for a numerical solution:

a ′x = −1+ eb + 2e2x+k2a+b+k3 , (11.26)

b ′x = 1− eb + (2/w)e2x+k2a+b+k3 . (11.27)
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Fig. 11.6. TOV-star solutions. On the left: solutions with negative central mass, in the
center: with positive central mass, with phenomenon of Zel’dovich-Novikov-Starobinskij
explained, on the right: a typical behavior of metric coefficients.

They are complemented by initial data a1 = 0, b1 = − log(1 − 2M1/r1), where
w = 1/3, k2 = −2, k3 = log(4πρ1/3), ρ1 andM1 at a large r1 are given. The typical
solution is shown on Fig.11.6 left. The coordinates are x = log r and arcsinhM, the
last one possesses asymptotics ± log |2M| at large |M|, convenient to display all
features of a solution in a single plot.

Usually a regular solution is investigated, satisfying a condition M = 0 in the
center. This solution is shown by a thick line on the figure. We investigate what
happens if this condition is relaxed. If a solution with the same ρ1 is started with
smaller M1, below the regular line, it simply ends below this line in a negative
central value. More interesting, if the solution is started above the regular line,
it will not end in a positive central value and will not cross a horizon. Instead, it
bounces off the horizon, goes through the mass inflation and ends in an even more
negative central value. These solutions are clearly singular in the center, however,
they are of interest to us, since the quantum gravity cutoff considered below can
remove these singularities, replacing them with a regular Planck core.

For completeness we also consider a case of Fig.11.6 center, when the solu-
tion is started above the horizon line, physically under the horizon. It similarly
bounces off the horizon from inside and goes to the positive central value. If one
reverts the integration, the solution started under the horizon from a positive mass
Schwarzschild singularity will stay inside the horizon. This phenomenon was
discovered by Zel’dovich, Novikov, Starobinskij [21] investigating the formation of
white holes under the influence of matter ejected from the central singularity. The
system is described by similar equations and the result is that the ejected matter
never leaves the horizon and the white hole under the described circumstances
cannot explode. This effect (internal ZNS instability) is one of instability types
inherent to white holes, the other one (external Eardley instability) will be consid-
ered below in the Appendix. Mainly, in this paper, we consider a dual solution,
possessing negative mass Schwarzschild singularity and evolving outside of the
instability region.

The plot on Fig.11.6 right shows the typical evolution of metric coefficients,
appearing to be very similar to such plots for RDM-stars. An important difference
is that the redshift fall and the mass inflation for a TOV-star appear to be much
more moderate in comparison with an RDM-star of similar parameters. Table 11.3
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shows the scenario with a stellar mass compact object in a cosmic microwave back-
ground, described by TOV equations. Although the variation of metric coefficients
and enclosed mass in physical units is very large, it is still much smaller than the
analogous variations for RDM-stars.

model parameters M1 = 10M�, w = 1/3, ρ1 = ρcmb = 4 · 10−14 J/m3

starting point of r1 = 10
6m, a1 = 0, b1 = 0.0299773,

the integration M1/M� = 10

r2 = 29532.4m, a2 = −54.2719, b2 = 53.7265,
supershift begins M2/M1 − 1 = −3.64729 · 10−23,

r2 − 2GM2/c
2 = 1.37139 · 10−19m

r3 = 20638.1m,
supershift ends a3 = −107.522, b3 = −104.685,

log
10
(−M3/M�) = 46.3087

minimal radius r4 = 1.62 · 10−35m,
(Planck length), a4 = −17.6594, b4 = −195.278,

end of the integration M4 = 1.728 M3

Table 11.3. TOV-star, scenario with a stellar mass compact object in cosmic microwave
background

model parameters w = 1/3, ρ1 = ρcmb = 4 · 10−14 J/m3, aQG = −146.264

starting point of r1 = 1.13042 · 10−2m, a1 = 0, b1 = 0.0100503,
the integration M1 = 7.61132 · 1022kg

r2 = 1.13042 · 10−4m,
supershift begins a2 = −73.6529, b2 = 73.0876,

r2 − 2GM2/c
2 = 2.04973 · 10−36m

r3 = 7.89967 · 10−5m,
supershift ends a3 = −146.264, b3 = −143.408,

log
10
(−M3/M�) = 54.7085

minimal radius r4 = 1.62 · 10−35m,
(Planck length), a4 = −75.7824, b4 = −214.619,

end of the integration M4 = 1.72898 M3

Table 11.4. micro TOV-star, the critical case

Considering this scenario in more details, we see that r2 − rs ∼ 10−19m, the
object comes very close to the gravitational collapse. This is a distance where
the matter terms, initially weak, representing cosmic microwave background, are
amplified and start to dominate in the equation. Although this is the result of a
purely classical model, quantum considerations can change this number.
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Further, log10(−M3/M�) ∼ 46, in comparison with the mass of the observable
universe: log10(Muni/M�) ∼ 23. Thus, the considered compact object contains
a core of negative mass, by absolute value much greater than the mass of the
universe, compensated by the coat of TOV matter with almost the same posi-
tive mass. A similar computation for RDM-model gives an even larger number:
log10(−M3/M�) ∼ 10

5.
These enormous numbers could be the result of model idealization. Their

origin is the unrestrained phenomenon of mass inflation. It can be changed if
a (non-gravitational) interaction between the counterstreaming flows and cor-
responding corrections to EOS will be taken into account. Also, the considered
solutions are stationary and can take enormous amount of time to form. A qual-
itative interpretation of the obtained solutions is that a permission of negative
mass (Planck core) leads to a polarization of the solution to the parts with highly
positive and highly negative masses, almost compensating each other in the result.

The other origin of large numbers is Planck density: ρP = 5 · 1096kg/m3.
Straightforward estimation for the Planck density core of only R = 1mm radius
gives the massM = (4/3)πR3ρP = 2·1088kg, gravitational radius Rs = 2GM/c2 =
3 · 1061m, much larger than the mass and the radius of the observable universe
Muni = 10

53kg, Runi = 4 ·1026m. Such a core will immediately cover the universe
by its gravitational radius, with a large margin. To place such objects in our
universe, a mechanism for mass compensation is necessary. For instance, the
one of this paper, effectively negative masses created by quantum gravity and
coated by positive mass shells until the equilibrium with a moderate mass value
is reached.

Enormous reserve of energy hiding inside TOV-stars can fuel extremely high-
energetic phenomena. Figuratively speaking, if such a bubble bursts somewhere,
the consequences can be felt throughout the universe. Thus, it is natural to consider
these objects as potential sources of FRBs and we will do this, at first considering
the quantum gravity cutoff and formation of Planck core in the center of TOV-star.

Quantum gravity cutoff. Setting w = 1/3 in a solution of TOV hydrostatic equa-
tion (11.24), obtain ρ ∼ A−2. Therefore for the considered scenario with cosmic
microwave background: ρP/ρcmb = A−2

QG. Taking ρP = 4.633 · 10113J/m3 and
ρcmb = 4.19 · 10−14J/m3 from Longair [34], in energetic units, have AQG =

(ρcmb/ρP)
1/2 = 3 · 10−64, aQG = −146. The question now is whether such value

can be reached. For RDM-stars with physically interesting parameters the redshift
fall is enormous and the Planck density can be always reached before achieving
the minimum in a-dependence. For a TOV-star, the redshift fall and associated
density increase in solutions are moderate. The solutions shown in Fig.11.6 right
and Table 11.3 pass the minimum a3 before reaching aQG and the Planck density
for these solutions is not reached. The necessary condition for formation of the
Planck core is a3 < aQG. To investigate a satisfaction of this condition, we have
performed the following numerical experiment. Keeping the outer density fixed
to ρcmb, we changed the solution mass, or associated parameter x10s = log10 rs,
where rs is Schwarzschild radius in meters, in the range x10s ∈ [−10, 10]. After
the integration of TOV-equations, we detected the minimum a3 and found that
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it is well approximated by linear dependence a3 = −128.089 + 4.60519 · x10s.
As a result, a3 < aQG condition is satisfied at rs < rs,crit = 0.11mm (micro
TOV-stars), M < 7.6 · 1022kg, approximately Moon’s mass. The critical case is
shown in Table 11.4. The equality a3 = aQG and the resulting r2 ∼ rs confirms
this computation.

TOV-stars as sources of Fast Radio Bursts. Let us consider a photon of initially Planck
energy, Ein ∼ EP, λin ∼ lP, on the surface of the Planck core. After applying the
redshift, the outgoing wavelength λout = lPA

−1/2
QG = 0.9mm. Experimentally it

is λexp = 37.5mm, for the highest 8 GHz FRB detection of FRB121102 source [29].
The deviation factor λexp/λout ∼ 40 can still be considered as a good hit, taking
into account 127 orders of difference in the input density parameters ρcmb/ρP.
Technically, it can be compensated by an attenuation factor Ein = EP/N, the initial
photon is N ∼ 40 times weaker than Planck energy. A part of this factor can be
related with (1+z) cosmological redshift of the source, z ∼ 0.2−0.3, the remaining
factor to explain is N ∼ 30.

The analytical formula for the wavelength is also interesting:

λout = lP(ρcmb/ρP)
−1/4,

or, in Planck units, simply λout = ρ
−1/4
cmb , depending only on the cosmic microwave

background density.
Consideration of other FRB parameters proceeds similar to [22]. Most of the

parameters depend not on the source, but on its environment and propagation
medium of the signal. Here we consider one question: can the bursts repeat? For the
critical case rs = rs,crit and isotropic estimation of the total burst energy from Cao
et al. [35], there is an inner reserve of energy for 7.6 ·1022kg ·c2/(1032−34J) ∼ 106−8

bursts. The energy can be also refilled from the environment, e.g., a companion,
an asteroid belt, etc. In this refilling, when the threshold rs > rs,crit is passed, the
conditions for Planck core existence disappear. This can trigger the FRB, that will
return the system to rs < rs,crit state.

In summary, TOV-stars can also be the sources of FRB, or may represent a
species of these signals. Differently to FRB from RDM-star, triggered by the fall of
an asteroid, TOV-star signals can be autogenerated, possessing also a mechanism
for autonomous oscillations around the critical state.

Comparison of different models. While both RDM- and TOV-stars can generate FRBs,
the asymptotically flat rotation curves are generated only by RDM-stars. Only they
possess the necessary ρ ∼ r−2 dependence, while the considered TOV solutions
have ρ→ Const > 0 asymptotics.

On the other hand, in Barranco et al. [36] a different solution of the TOV system
has been investigated, possessing ρ ∼ r−2 dependence. It is a well known analytical
self-similar solution, whose existence follows from scale-invariance of the system,
see, e.g., the work by Visser and Yunes [37]. Due to the appropriate density profile,
this solution can be used to describe the rotation curves, a configuration known as
isothermal dark matter halo. In addition, the asymptotic velocity on this solution
appears to be (v/c)2 = 2w/(1 + w). The experimentally observed velocities are
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non-relativistic, achievable only for smallw. From here a conclusion is drawn, that
the dark matter composing the galaxies “must be cold”.

If one uses RDM model instead of TOV, a physically different system with the
absence of transverse pressure is formed. Here all types of dark matter produce
the same density profile ρ ∼ r−2 and the same asymptotically flat rotation curves.
The value of the orbital velocity is defined by the parameter (v/c)2 = ε, while
the type of the matter by the other parameter c5. As a result, the consideration of
rotation curves in the RDM model does not impose a restriction on the type of
dark matter in the galaxies.

Self-similar solutions of the TOV system form a very special class, different
from the ones considered in this section. The regular type solutions we consider
look like a ball of almost constant density, with a little bump of density in the
center, due to self-gravitation. The singular solutions we consider have the same
outer asymptotics, just possess a concentrated negative mass or a regular Planck
core in the center. Self-similar solutions possess such a strong self-gravitation, that
the whole solution shape is changed, also at large distances. This is possible only
at a very large mass of solution. Especially, for the photon gas we consider, the
mass should be enormous to make the light condense under its own gravitation.
The computation shows ρ∗1 = ε∗/(4πr21), M

∗
1 = ε∗r1, ε∗ = 2w/(1 + 6w +w2), in

geometrical units, for self-similar solution. With w = 1/3, at r1 = 3.1 · 1021 m, the
outer range of the Milky Way galaxy, it is ρ∗1 = 0.21 J/m3,M∗1 = 4.5·1017M�, being
compared with ρcmb = 4 · 10−14 J/m3, Mcmb = (4π/3)ρcmbr

3
1 = 2.8 · 104M�.

Thus, the mass characteristics of the system we consider are 13 orders of magnitude
below the formation of self-similar solutions.

The other question is an ability of Planck stars directly generate FRBs, inves-
tigated by Barrau, Rovelli, Vidotto in [38]. The BRV model considers a collapse
of primordial matter to a black hole going through the quantum bounce to the
eruption of the white hole. The eruption appears at a delayed time due to strong
gravitation. The time of recollapse depends on the mass of the star and is estimated
to t = 0.2M2, in Planck units. Equating it with Hubble time, the mass and the
size of Planck stars are estimated, created at the Big Bang and exploding “today”:
M = (5tH)

1/2 = 1.2 · 1023kg, rs = 2M = (20tH)
1/2 = 0.2mm. This estimation

comes close to the critical size of TOV-stars rs,crit = 0.11mm obtained in our
model.

The BRV model predicts an observable FRB signal at λ ∼ rs ∼ 0.2mm. The
cosmological redshift correction can be also applied. The result is numerically
similar to our model (λ ∼ 0.9mm), although obtained in a completely different
setup: recollapse of Planck stars vs redshift of photons of initially Planck energy
that arise in stationary TOV solutions with the Planck core in thermal equilibrium
with CMB. Our prediction λ ∼ ρ

−1/4
cmb and the BRV formula λ ∼ (20tH)

1/2 coincide
up to a numerical factor ∼ 4.7, if one takes into account cosmological constraints
Ωcmb = ρcmb/ρcrit = 4.2 · 10−5, ρcrit = 3H2/(8π), tH = 1/H.

In the original BRV model of Planck stars only non-repeating FRBs are pos-
sible. The work by Barceló et al. [18] proposes repeating recollapses and final
stabilization of an object due to dissipative effects. Such a stationary object can be
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equivalent to the RDM- and TOV-stars discussed here. After its formation, it can
produce both repeating and non-repeating FRBs depending on the environment.

The further paper by Barceló et al. [39] seems to “close” the topic of Planck
stars, referring to Eardley instability of the white hole part. Due to this instability,
the white holes under the influence of external radiation would turn into black
holes, not having time to emit the FRB. Below, in Appendix, we will bring a contra-
argument, showing that Eardley instability can be eliminated if the core of the
white hole possesses negative mass. Physically, it can be the Planck core, formed
as the result of quantum gravity corrections when the Planck density is reached.
Therefore the models from the Planck star family, as well as the FRB estimates
based on them, avoid the white hole instabilities in a self-consistent way.

11.4 Discussion: What is dark matter made of?

In this section we consider three hypotheses on the composition of dark matter,
based on the considered dark star models.

Hypothesis 1: the galactic dark matter can be cold, can be hot, producing the same
rotation curves.

It follows from the solution properties of the RDM model, the orbital velocity
depends only on intensity factor ε, not on matter constitution (cold/hot, M/N/T
cases, controlled by the other constant c5). It can be a new type of particles, which
can be sterile for interactions with the known matter sectors, i.e., enter only in
gravitational interactions with them. It can be almost sterile, i.e., other interactions
allowed at high energies in Planck cores, while extremely weak at low energies
outside.

One more fascinating possibility is that the dark matter is composed of known
particles, placed in an unusual condition. Let consider a photon of Planck energy,
emitted from the surface of the Planck core of an RDM-star: Ein ∼ EP, λin ∼ lP.
Applying the redshift A1/2QG ∼ 10−49, have λout = lPA

−1/2
QG ∼ 1014m. It is an

extremely large wavelength, about 4 light days, 16 times the Sun-Pluto distance.
Such longwave photons can not be registered by usual means, e.g., via radio
telescopes. Although the energy of every such photon is extremely small, they
come in numbers providing the necessary mass density to explain the rotation
curves of the galaxies. The detailed consideration shows that at the Planck core one
Planck energy particle per Planck area per Planck time is emitted, that corresponds
to Planck density and pressure on its surface. After that the factor A1/2QG is applied
twice, for redshift and gravitational time dilation, then the geometrical (rs/r)2

factor corresponds to the measured halo density ρ = pr = 1/l
2
P ·AQG · (rs/r)2 =

ε/(8πr2), where for the redshift factor the formula (11.16) is used.
In the considered scenario the particles should be massless. For massive

particles the Compton length must be greater than λout ∼ 1014m, obviously,
excluding lightest neutrino species and other massive particles. Those particles do
not overcome the gravitational barrier and remain bounded inside the RDM-star.
From the Standard Model, the only appropriate particles for this scenario can
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be photons and gravitons. Scenarios with massive particles should have a larger
starting energy to overcome the barrier.

Fig. 11.7. Illustration to hypothesis 2. On the left: the mass shells for massive, null and
tachyonic particles. In the center: a difference between Big Bang and Planck core light cones
structure. On the right: the world lines of dark matter particles captured by a wormhole.

Hypothesis 2: the emission of galactic dark matter from a Planck core is T-symmetric,
in future and in past directions.

We remind that an RDM-star contains two T-symmetric flows, ingoing and
outgoing ones. Fig.11.7 left shows the mass shells for momentum P or velocity u
vectors. There is a one-sheet tachyonic shell, containing both ingoing and outgoing
directions, and two-sheet massive/null shells, where these directions are separated.
In any case, we assume that all mass shells become completely occupied at the
Planck core. The reason can be an extremely high temperature, in Planck range
T ∼ TP, the one achievable at Big Bang. It is so hot there, that the vicinity of the
Planck core becomes insensitive to the external thermodynamical time arrow
and develops an own, T-symmetric thermodynamics. An important difference
in this context is that RDM singularity and Planck core are timelike, while Big
Bang singularity is spacelike. Different orientation of light cones can lead to the
absent time arrow (recovered T-symmetry) near the Planck core and its presence
near/after the Big Bang. This difference is shown in Fig.11.7 center, the Big Bang
light cones have only the upper part, while the Planck core light cones have both,
T-symmetrically occupied parts.

One technical remark about P0 < 0 parts of the mass shells. Although they
formally correspond to negative energy and seem to be related with negative
mass exotic matter, really they just correspond to T-conjugated flows of the same
particles as P0 > 0 counterparts. To verify this, consider T-reflection, that reverts
Pµ and uµ vectors, as well as orientation of the world lines, while preserves the
action A = m

∫
dτ|x ′µx

′µ|1/2 and the energy-momentum tensor Tµν = ρuµuν,
which are only physically important.

One more exotic possibility for T-symmetric emission is that the world lines
of dark matter are captured by a geometry of wormhole, as shown on Fig.11.7
right. The ingoing flows from one universe become outgoing in the other universe
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and vice versa. In a stationary scenario, their T-symmetric superposition can be
chosen.

Independently on the detailed properties of the considered models, the emis-
sion of T-symmetric type is necessary due to simple physical reasons. If only
outgoing flows would be present, the total mass of a dark matter halo could not be
greater than the mass of (quasi) black holes, from where it originates. Experimen-
tally, the halo mass is much greater than the mass of black holes. In the considered
setup, ingoing and outgoing flows compensate each other and allow for arbitrary
ratio between halo and black hole masses.

Fig. 11.8. Illustration to hypothesis 3. On the left: evolution of photon gas in standard
cosmology. In the center: the same with RDM-stars. On the right: Swiss cheese model with
galaxies filled by hot dark matter, surrounded by cold dark matter, in expanding universe.

Hypothesis 3: the cosmological dark matter mimics cold type.

The common opinion is that dark matter both in the galaxies and in between
them is cold, i.e., is composed of massive non-relativistic particles. The hot cosmo-
logical dark matter would lead to a different expansion rate of the universe. Let
us consider an evolution of uniform photon gas in standard cosmology, as shown
schematically on Fig.11.8 left. There is an initial flash, then the energy and the num-
ber density of photons fall in the expanding universe. For cold dark matter only
the density falls. This makes a difference to the evolution of the energy-momentum
tensor.

On the other hand, the distribution of dark matter photons in the RDM model
is different, see Fig.11.8 center. Their initial energy at Planck core is fixed: E ∼ EP,
the exit energy is also fixed by the local A1/2QG factor. If the resulting distribution
will possess a constant temperature, then in the long-range evolution it will behave
like cold dark matter.

The other possibility is that EOS of cosmological dark matter is not identical
to the galactic one. There is a class of Swiss cheese models, where the galaxies and
their halos do not change their size and structure under cosmological expansion
and move as a whole. The cosmological expansion acts only on the level where the
matter distribution can be considered as uniform. The galaxies coated in massive
halos can behave like macro-particles of cold dark matter, as shown on Fig.11.8
right. Internally they can be filled with hot radiation, externally produce the same
gravitational fields as cold massive particles.
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As we have mentioned earlier, while fitting the Milky Way rotation curve, the
experimental data are compatible with the presence of a cut of dark matter halo at
Rcut ∼ 50kpc. While this cut was taken in the model just phenomenologically, the
physical mechanisms for it can be constructed. Two-phase distribution, with hot
radial dark matter inside the galaxy joined to cold uniform dark matter outside,
can be used. It resembles a known phenomenon of termination shock on the border
of the Solar system, where the solar wind meets the interstellar medium. This can
be modeled similarly in galactic scales. A suitable mechanism for the termination
can be any kind of interaction of dark matter particles in the ingoing/outgoing
flows and the outer medium. In particular, it can be an absorption or a scatter of
longwave dark photons by the intergalactic medium.

11.5 Conclusion

In this paper we have experimented with the insertion of Planck core in several
earlier known astrophysical models. What becomes possible as a result of such
modification:

(1) RDM solutions can be properly continued to the strong field mode. These
are stationary solutions describing black holes, coupled to the radial flows of
dark matter. In weak fields, such configuration of dark matter can be used as a
model of spiral galaxies possessing realistic rotation curves. In this model, the
geometric dependence of the density on the distance ρ ∼ r−2, typical for the
RDM configuration in a single center approximation, gives flat rotation curves,
while assuming the coupling of all black holes in the galaxy to RDM, deviations
of the rotation curves from the flat shape are also described. In strong fields, a
peculiar phenomenon of erasing the event horizon occurs; instead, a spherical
region of super-strong redshift is formed. This phenomenon is accompanied by the
effect of mass inflation by Hamilton-Pollack, in a thin layer near the gravitational
radius a very large positive mass is accumulated, approximately compensated
by the negative mass of the Planck core. Outside, such an object, an RDM-star, is
perceived as a Schwarzschild black hole of limited mass.

(2) when an external body, for example, an asteroid, falls on an RDM-star, a
flash of high-energy photons occurs, then the super-strong redshift of the RDM-
star moves the flash frequency to the radio band. This process can be considered as
a mechanism for generating fast radio bursts. The calculations lead to the formula
for the wavelength λout = 2(2π)1/4(λNrs)

1/2/ε1/4, where λN is the Compton
wavelength of the nucleons that make up the asteroid, rs is the gravitational
radius of the RDM-star, ε = (v/c)2 is the parameter determining the orbital
velocity of stars v in the galaxy. Evaluation with the parameters of the Milky Way
galaxy gives the wavelength λout = 0.5m and the frequency νout = 0.6 GHz, in
the range 0.111 ... 8 GHz for the observed FRB frequencies.

(3) the Tolman-Oppenheimer-Volkoff system of equations describing the
equilibrium of isotropic matter, for the Planck core located in the center, also
has an interesting structure of solutions. For the matter, we consider photon
gas stitched with cosmic microwave background at infinity. As a result of the
calculation, a stationary solution with the parameters of a micro black hole rs <
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0.11 mm is obtained. With a smooth change in the external boundary condition
(slow accretion of external matter), autonomous oscillations arise in the system,
accompanied by self-generation of photonic flashes. In this model, a formula for
the outgoing wavelength is λout = lP(ρcmb/ρP)−1/4, numerically λout = 0.9mm,
νout = 333 GHz, that fall close to the observed FRB range.

(4) white holes become stable. We have examined the dynamics of white holes
in the Ori-Poisson model and showed that the insertion of negative mass core
eliminates both Eardley and Zel’dovich-Novikov-Starobinskij types of instability.

Based on the considered models, in frames of this work, we have proposed
three hypotheses about the composition of astrophysical dark matter.

(1) In galaxies, the dark matter can be cold or hot, massive, null or even
tachyonic, producing the same rotation curves. Particularly, it can be composed of
massless particles with initially Planck energy, finally redshifted to the extremely
large wavelength λout ∼ 1014m. More particularly, it can be composed of low
energy photons with such wavelength.

(2) The emission of dark matter particles happens in a T-symmetric way, in
future and in past directions. This allows to explain the abundance of dark matter
in comparison with the masses of its sources.

(3) At cosmological distances, the dark matter behaves like it is cold. Several
mechanisms for this behavior have been proposed.
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APPENDIX: Stability of white holes

The model by Ori-Poisson [19], describing a white hole or, more precisely, its
juncture with a black hole, can be considered as a simplification of the stationary
models presented in this paper. Instead of continuous superposition of ingoing
and outgoing shells of matter, there are precisely two shells, one ingoing, one
outgoing. The model is not stationary, it has a white hole as the initial state and
a black hole as the final state. The advantage of the model is the existence of an
analytical solution. The system is usually considered unstable, but we will now
show that it is not.

In addition to the previously described internal ZNS instability, there is ex-
ternal instability found in the work by Eardley [20]. In Ori-Poisson formulation,
the instability can be illustrated by the Penrose diagram on Fig.11.9 left. The origi-
nal white hole (1) explodes, completely releasing its mass into an outgoing null
shell (2). There is an ingoing null shell (3) of originally small energy. This shell
cannot enter the white hole, in principle (like a shell that cannot exit from the
interior of a black hole). Instead, it slows down at the horizon and after a long
wait (one can substitute here Hubble time, for instance) receives a super-strong



i
i

“proc20Vol1” — 2020/12/6 — 22:10 — page 243 — #259 i
i

i
i

i
i

11 On Dark Stars, Planck Cores and the Nature of Dark Matter 243

blue shift. It forms a thin super-energetic “blue sheet”. Upon its collision with the
outgoing shell, an analytically computable rearrangement of energy occurs. As a
result, a negligible part of the initial energy comes out (4). The ingoing blue sheet
disappears under the horizon of a newly formed black hole (5).

Fig. 11.9. Penrose diagrams for white holes in Ori-Poisson model. On the left: low efficient
white hole eruption, in the center: no signal case, on the right: T-symmetric case.

In Barceló et al. [39] an even more asymmetric scenario is considered, depicted
on Fig.11.9 center. Here not only the ingoing, but also the outgoing shell disappears
in the black hole. Absolutely nothing comes out of this system towards an external
observer.

One can immediately ask, how can it be that the black holes are stable, but
the white holes are not? What about T-symmetry? As a resolution of this paradox,
a T-symmetric scenario can be constructed, according to the principle “for each
incoming blue sheet, there is the same outgoing”. It is displayed on Fig.11.9 right.
Warning: the negative mass is required in the scenario. The original white hole
(1) explodes, emitting more energy than its own mass in the form of an outgoing
blue sheet (2). It leaves behind the core of negative mass (2’). After the collision
between equal blue sheets (2) and (3), a shell of the same energy as the ingoing
one comes out (4). The negative mass of the core is compensated by the incoming
blue sheet, a black hole of the same mass as the original white hole is formed (5).

The details of the computation are the following. The solution consists of 4
Schwarzschild’s patches, marked ABCD on the figures. Their masses are

mA =M− E, mB =M− dm, mC = m0, mD =M, (11.28)

where M is the mass of the white hole with the ingoing shell, dm is the mass of
the ingoing shell, E is the mass/energy of the outgoing shell (G = c = 1),m0 is a
remainder.

The computation is based on Dray-’t Hooft-Redmount (DTR) relation [40]:

fAfB = fCfD, fi = 1− 2mi/R, i = A,B,C,D, (11.29)

where R is the radius at shells intersection. Relative parameters are introduced:

ξ = R/(2M) − 1, α = dm/M, β = m0/M, η = E/M, (11.30)
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where ξmeasures the relative distance to the horizon, η is the relative efficiency of
white hole eruption. DTR relation results in the expression for the efficiency:

η = (1− α− β) ξ/(α+ ξ). (11.31)

As a side remark, in [19] a different global structure linking Schwarzschild’s
patches with a cosmological model was used, however, this does not influence the
obtained efficiency formula. Now, let us consider the exponential evolution of the
shell

ξ = ξ0 exp(−τ/(4M)). (11.32)

Here τ = 2t is the total time for the ingoing shell to reach the point of collision and
for the outgoing shell to reach the distant observer, therefore a double factor in the
formula. To bring in some values, for rs = 1.2 · 1010m it is an exponential process
where the distance is halved every minute and for τ = 13.8 · 109years the distance
factor takes an enormously small value ξ ∼ exp(−1016), practically insensitive to
the starting ξ0.

Considering (11.31) for β = 0, as in original Ori-Poisson paper, in the limit
0 < ξ � α � 1, obtain η ∼ ξ/α ∼ exp(−1016), a vanishingly small efficiency of
eruption.

Calculation with β < 0 reveals a different class of solutions: β ∼ −α/ξ results
in η ∼ 1, 100% efficiency, while for η = α, E = dm, the T-symmetric case is reached
selecting

β = −(α2 − ξ+ 2αξ)/ξ ∼ −α2/ξ. (11.33)

The result of this computation demonstrates that in Ori-Poisson model Eard-
ley instability can be eliminated if the system has a core of negative mass. Being
combined with the earlier obtained result, both types of instability, Eardley and
ZNS, can be removed from the white hole models by the introduction of a Planck
core. A noticeable numerical difference between Ori-Poisson energetic parameters
in comparison with those in the other considered models appears mainly due to
the under-exponent Hubble time delays for the processes, that run continuously
in the RDM and TOV models.
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Abstract. Being a unique multi-functional complex of science and education online, Virtual
Institute of Astroparticle Physics (VIA) operating on website http://viavca.in2p3.fr/site.html,
has provided the platform for completely electronic format of XXIII Bled Workshop ”What
comes beyond the Standard models?” in the pandemia conditions, excluding offline meet-
ings. We review VIA experience in presentation online for the most interesting theoretical
and experimental results, participation online in conferences and meetings, various forms of
collaborative scientific work as well as programs of education at distance, combining online
videoconferences with extensive library of records of previous meetings and Discussions on
Forum. Since 2014 VIA online lectures combined with individual work on Forum acquired
the form of Open Online Courses. Aimed to individual work with students the Course is
not Massive, but the account for the number of visits to VIA site converts VIA in a specific
tool for MOOC activity. VIA sessions, being a traditional part of Bled Workshops’ program,
became at XXIII Bled Workshop the only format of the meeting, challenging to preserve
the creative nonformal atmosphere of meetings in Bled, Slovenia. We openly discuss the
advantages and flaws of VIA platform for online meetings.

Povzetek. Virtual Institute of Astroparticle Physics (VIA, http://viavca.in2p3.fr/site.html)
je spletišče namenjeno znanosti in izobraževanju. Letos je kot spletna platforma omogočilo
XXIII. blejske delavnice, ker nam je pandemija preprečila delavnico v običajni obliki. Orga-
nizator in vodja spletišča predstavi izkušnje VIA pri spletni predstavitvi najbolj zanimivih
in aktualnih teoretičnih spoznanj, diskusij na daljavo na konferencah, delavnicah, videokon-
ferencah in drugih srečanjih ter izobraževanju preko spleta. Ponuja obsežen arhiv z (video)
zapisi preteklih dogodkov in diskusij na forumih spletišča. Od leta 2014 potekajo preda-
vanja preko interneta, ki jim sledijo pogovori, in ki so prerasla v izobraževanje na daljavo.
VIA ni namenjena velikemu številu udeležencev, ker pa ima veliko obiskov, je postala
orodje tudi za aktivnosti MOOC. Predavanja preko sistema VIA so že tradicionalni del
blejskih delavnic, letos pa je delavnica tekla samo preko interneta. Ker so Blejske delavnice
namenjene zelo poglobljenim diskusijam, je bilo letošnje vodenje delavnice za organizatorja
spletišca poseben izziv. Avtor odkrito obravnava prednosti in slabosti platforme VIA za
srečanja preko interneta.
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12.1 Introduction

Studies in astroparticle physics link astrophysics, cosmology, particle and nuclear
physics and involve hundreds of scientific groups linked by regional networks
(like ASPERA/ApPEC [1, 2]) and national centers. The exciting progress in these
studies will have impact on the knowledge on the structure of microworld and
Universe in their fundamental relationship and on the basic, still unknown, physi-
cal laws of Nature (see e.g. [3, 4] for review). The progress of precision cosmology
and experimental probes of the new physics at the LHC and in nonaccelerator
experiments, as well as the extension of various indirect studies of physics beyond
the Standard model involve with necessity their nontrivial links. Virtual Institute
of Astroparticle Physics (VIA) [5] was organized with the aim to play the role of
an unifying and coordinating platform for such studies.

Starting from the January of 2008 the activity of the Institute takes place on
its website [6] in a form of regular weekly videoconferences with VIA lectures,
covering all the theoretical and experimental activities in astroparticle physics and
related topics. The library of records of these lectures, talks and their presenta-
tions was accomplished by multi-lingual Forum. Since 2008 there were 215 VIA
online lectures, VIA has supported distant presentations of 152 speakers at 28
Conferences and provided transmission of talks at 78 APC Colloquiums.

In 2008 VIA complex was effectively used for the first time for participation
at distance in XI Bled Workshop [7]. Since then VIA videoconferences became a
natural part of Bled Workshops’ programs, opening the virtual room of discussions
to the world-wide audience. Its progress was presented in [8–18].

Here the current state-of-art of VIA complex, integrated since 2009 in the
structure of APC Laboratory, is presented in order to clarify the way in which
discussion of open questions beyond the standard models of both particle physics
and cosmology were presented at the virtual XXIII Bled Workshop on the platform
of VIA facility. In the conditions of pandemia, when all the offline meetings were
forbidden, VIA videoconferencing became the only possibility to continue in 2020
traditions of open discussions at Bled meetings.

12.2 VIA structure and activity

12.2.1 VIA activity

The structure of the VIA complex is illustrated by the Fig. 12.1. The home page,
presented on this figure, contains the information on the coming and records of the
latest VIA events. The upper line of menu includes links to directories (from left
to right): with general information on VIA (About VIA); entrance to VIA virtual
rooms (Rooms); the library of records and presentations (Previous), which contains
records of VIA Lectures (Previous→ Lectures), records of online transmissions
of Conferences (Previous→ Conferences), APC Colloquiums (Previous→ APC
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Fig. 12.1. The home page of VIA site
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Colloquiums), APC Seminars (Previous→ APC Seminars) and Events (Previous→ Events); Calendar of the past and future VIA events (All events) and VIA
Forum (Forum). In the upper right angle there are links to Google search engine
(Search in site) and to contact information (Contacts). The announcement of the
next VIA lecture and VIA online transmission of APC Colloquium occupy the
main part of the homepage with the record of the most recent VIA events below.
In the announced time of the event (VIA lecture or transmitted APC Colloquium)
it is sufficient to click on ”to participate” on the announcement and to Enter as
Guest (printing your name) in the corresponding Virtual room. The Calendar
shows the program of future VIA lectures and events. The right column on the
VIA homepage lists the announcements of the regularly up-dated hot news of
Astroparticle physics and related areas.

In 2010 special COSMOVIA tours were undertaken in Switzerland (Geneva),
Belgium (Brussels, Liege) and Italy (Turin, Pisa, Bari, Lecce) in order to test stability
of VIA online transmissions from different parts of Europe. Positive results of these
tests have proved the stability of VIA system and stimulated this practice at XIII
Bled Workshop. The records of the videoconferences at the XIII Bled Workshop
are available on VIA site [19].

Since 2011 VIA facility was used for the tasks of the Paris Center of Cos-
mological Physics (PCCP), chaired by G. Smoot, for the public program ”The
two infinities” conveyed by J.L.Robert and for effective support a participation
at distance at meetings of the Double Chooz collaboration. In the latter case, the
experimentalists, being at shift, took part in the collaboration meeting in such a
virtual way.

The simplicity of VIA facility for ordinary users was demonstrated at XIV Bled
Workshop in 2011. Videoconferences at this Workshop had no special technical
support except for WiFi Internet connection and ordinary laptops with their
internal webcams and microphones. This test has proved the ability to use VIA
facility at any place with at least decent Internet connection. Of course the quality
of records is not as good in this case as with the use of special equipment, but still
it is sufficient to support fruitful scientific discussion as can be illustrated by the
record of VIA presentation ”New physics and its experimental probes” given by
John Ellis from his office in CERN (see the records in [20]).

In 2012 VIA facility, regularly used for programs of VIA lectures and transmis-
sion of APC Colloquiums, has extended its applications to support M.Khlopov’s
talk at distance at Astrophysics seminar in Moscow, videoconference in PCCP,
participation at distance in APC-Hamburg-Oxford network meeting as well as to
provide online transmissions from the lectures at Science Festival 2012 in Univer-
sity Paris7. VIA communication has effectively resolved the problem of referee’s
attendance at the defence of PhD thesis by Mariana Vargas in APC. The referees
made their reports and participated in discussion in the regime of VIA video-
conference. In 2012 VIA facility was first used for online transmissions from the
Science Festival in the University Paris 7. This tradition was continued in 2013,
when the transmissions of meetings at Journées nationales du Développement
Logiciel (JDEV2013) at Ecole Politechnique (Paris) were organized [22].
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In 2013 VIA lecture by Prof. Martin Pohl was one of the first places at which the
first hand information on the first results of AMS02 experiment was presented [21].

In 2014 the 100th anniversary of one of the foundators of Cosmoparticle
physics, Ya. B. Zeldovich, was celebrated. With the use of VIA M.Khlopov could
contribute the programme of the ”Subatomic particles, Nucleons, Atoms, Universe:
Processes and Structure International conference in honor of Ya. B. Zeldovich 100th
Anniversary” (Minsk, Belarus) by his talk ”Cosmoparticle physics: the Universe
as a laboratory of elementary particles” [23] and the programme of ”Conference
YaB-100, dedicated to 100 Anniversary of Yakov Borisovich Zeldovich” (Moscow,
Russia) by his talk ”Cosmology and particle physics” [24].

In 2015 VIA facility supported the talk at distance at All Moscow Astrophysi-
cal seminar ”Cosmoparticle physics of dark matter and structures in the Universe”
by Maxim Yu. Khlopov and the work of the Section ”Dark matter” of the Interna-
tional Conference on Particle Physics and Astrophysics (Moscow, 5-10 October
2015). Though the conference room was situated in Milan Hotel in Moscow all the
presentations at this Section were given at distance (by Rita Bernabei from Rome,
Italy; by Juan Jose Gomez-Cadenas, Paterna, University of Valencia, Spain and by
Dmitri Semikoz, Martin Bucher and Maxim Khlopov from Paris) and its work was
chaired by M.Khlopov from Paris [29]. In the end of 2015 M. Khlopov gave his
distant talk ”Dark atoms of dark matter” at the Conference ”Progress of Russian
Astronomy in 2015”, held in Sternberg Astronomical Institute of Moscow State
University.

In 2016 distant online talks at St. Petersburg Workshop ”Dark Ages and White
Nights (Spectroscopy of the CMB)” by Khatri Rishi (TIFR, India) ”The information
hidden in the CMB spectral distortions in Planck data and beyond”, E. Kholupenko
(Ioffe Institute, Russia) ”On recombination dynamics of hydrogen and helium”,
Jens Chluba (Jodrell Bank Centre for Astrophysics, UK) ”Primordial recombination
lines of hydrogen and helium”, M. Yu. Khlopov (APC and MEPHI, France and
Russia)”Nonstandard cosmological scenarios” and P. de Bernardis (La Sapiensa
University, Italy) ”Balloon techniques for CMB spectrum research” were given
with the use of VIA system [30]. At the defense of PhD thesis by F. Gregis VIA
facility made possible for his referee in California not only to attend at distance at
the presentation of the thesis but also to take part in its successive jury evaluation.

Since 2018 VIA facility is used for collaborative work on studies of various
forms of dark matter in the framework of the project of Russian Science Foundation
based on Southern Federal University (Rostov on Don). In September 2018 VIA
supported online transmission of 17 presentations at the Commemoration day
for Patrick Fleury, held in APC [31].

The discussion of questions that were put forward in the interactive VIA
events is continued and extended on VIA Forum. Presently activated in En-
glish,French and Russian with trivial extension to other languages, the Forum
represents a first step on the way to multi-lingual character of VIA complex and
its activity. Discussions in English on Forum are arranged along the following
directions: beyond the standard model, astroparticle physics, cosmology, gravita-
tional wave experiments, astrophysics, neutrinos. After each VIA lecture its pdf
presentation together with link to its record and information on the discussion
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during it are put in the corresponding post, which offers a platform to continue
discussion in replies to this post.

12.2.2 VIA e-learning, OOC and MOOC

One of the interesting forms of VIA activity is the educational work at distance. For
the last eleven years M.Khlopov’s course ”Introduction to cosmoparticle physics”
is given in the form of VIA videoconferences and the records of these lectures and
their ppt presentations are put in the corresponding directory of the Forum [25].
Having attended the VIA course of lectures in order to be admitted to exam
students should put on Forum a post with their small thesis. In this thesis students
are proposed to chose some BSM model and to study the cosmological scenario
based on this chosen model. The list of possible topics for such thesis is proposed
to students, but they are also invited to chose themselves any topic of their own on
possible links between cosmology and particle physics. Professor’s comments and
proposed corrections are put in a Post reply so that students should continuously
present on Forum improved versions of work until it is accepted as admission for
student to pass exam. The record of videoconference with the oral exam is also
put in the corresponding directory of Forum. Such procedure provides completely
transparent way of evaluation of students’ knowledge at distance.

In 2018 the test has started for possible application of VIA facility to remote
supervision of student’s scientific practice. The formulation of task and discussion
of progress on work are recorded and put in the corresponding directory on Forum
together with the versions of student’s report on the work progress.

Since 2014 the second semester of the course on Cosmoparticle physics is
given in English and converted in an Open Online Course. It was aimed to develop
VIA system as a possible accomplishment for Massive Online Open Courses
(MOOC) activity [26]. In 2016 not only students from Moscow, but also from
France and Sri Lanka attended this course. In 2017 students from Moscow were
accompanied by participants from France, Italy, Sri Lanka and India [27]. The
students pretending to evaluation of their knowledge must write their small thesis,
present it and, being admitted to exam, pass it in English. The restricted number
of online connections to videoconferences with VIA lectures is compensated by
the wide-world access to their records on VIA Forum and in the context of MOOC
VIA Forum and videoconferencing system can be used for individual online work
with advanced participants. Indeed Google Analytics shows that since 2008 VIA
site was visited by more than 242 thousand visitors from 154 countries, covering
all the continents by its geography (Fig. 12.2). According to this statistics more
than half of these visitors continued to enter VIA site after the first visit. Still the
form of individual educational work makes VIA facility most appropriate for
PhD courses and it is planned to be involved in the International PhD program
on Fundamental Physics, which can be started on the basis of Russian-French
collaborative agreement. In 2017 the test for the ability of VIA to support fully
distant education and evaluation of students (as well as for work on PhD thesis
and its distant defense) was undertaken. Steve Branchu from France, who attended
the Open Online Course and presented on Forum his small thesis has passed exam
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Fig. 12.2. Geography of VIA site visits according to Google Analytics

at distance. The whole procedure, starting from a stochastic choice of number of
examination ticket, answers to ticket questions, discussion by professors in the
absence of student and announcement of result of exam to him was recorded and
put on VIA Forum [28].

In 2019 in addition to individual supervisory work with students the regular
scientific and creative VIA seminar is in operation aimed to discuss the progress
and strategy of students scientific work in the field of cosmoparticle physics.

In 2020 the regular course now for M2 students continued, but the problems of
adobe Connect, related with the lack of its support for Flash in coming 2021 made
necessary to find a solution on the platform of Zoom. This platform is rather easy
to use and provides records, while the lack of whiteboard tools for discussions
online can be solved by accomplishments of laptops by graphic tabloids.

12.2.3 Organisation of VIA events and meetings

First tests of VIA system, described in [5, 7–9], involved various systems of video-
conferencing. They included skype, VRVS, EVO, WEBEX, marratech and adobe
Connect. In the result of these tests the adobe Connect system was chosen and
properly acquired. Its advantages are: relatively easy use for participants, a possi-
bility to make presentation in a video contact between presenter and audience, a
possibility to make high quality records, to use a whiteboard tools for discussions,
the option to open desktop and to work online with texts in any format. This choice
however should be reconsidered in future or at least accomplished by Zoom in
view of the lack of support for Flash on which VIA site is based.

Initially the amount of connections to the virtual room at VIA lectures and
discussions usually didn’t exceed 20. However, the sensational character of the
exciting news on superluminal propagation of neutrinos acquired the number
of participants, exceeding this allowed upper limit at the talk ”OPERA versus
Maxwell and Einstein” given by John Ellis from CERN. The complete record of
this talk and is available on VIA website [32]. For the first time the problem of
necessity in extension of this limit was put forward and it was resolved by creation
of a virtual ”infinity room”, which can host any reasonable amount of participants.
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Starting from 2013 this room became the only main virtual VIA room, but for
specific events, like Collaboration meetings or transmissions from science festivals,
special virtual rooms can be created. This solution strongly reduces the price of the
licence for the use of the adobeConnect videoconferencing, retaining a possibility
for creation of new rooms with the only limit to one administrating Host for all of
them.

The ppt or pdf file of presentation is uploaded in the system in advance
and then demonstrated in the central window. Video images of presenter and
participants appear in the right window, while in the lower left window the
list of all the attendees is given. To protect the quality of sound and record, the
participants are required to switch out their microphones during presentation and
to use the upper left Chat window for immediate comments and urgent questions.
The Chat window can be also used by participants, having no microphone, for
questions and comments during Discussion. The interactive form of VIA lectures
provides oral discussion, comments and questions during the lecture. Participant
should use in this case a ”raise hand” option, so that presenter gets signal to switch
out his microphone and let the participant to speak. In the end of presentation
the central window can be used for a whiteboard utility as well as the whole
structure of windows can be changed, e.g. by making full screen the window with
the images of participants of discussion.

Regular activity of VIA as a part of APC includes online transmissions of
all the APC Colloquiums and of some topical APC Seminars, which may be of
interest for a wide audience. Online transmissions are arranged in the manner,
most convenient for presenters, prepared to give their talk in the conference room
in a normal way, projecting slides from their laptop on the screen. Having uploaded
in advance these slides in the VIA system, VIA operator, sitting in the conference
room, changes them following presenter, directing simultaneously webcam on
the presenter and the audience. If the advanced uploading is not possible, VIA
streaming is used - external webcam and microphone are directed to presenter
and screen and support online streaming.

12.2.4 VIA activity in the conditions of pandemia

The lack of usual offline connections and meetings in the conditions of pandemia
made the use of VIA facility especially timely and important. This facility sup-
ports regular weekly meetings of the Laboratory of cosmoparticle studies of the
structure and dynamics of Galaxy in Institute of Physics of Southern Federal Uni-
versity (Rostov on Don, Russia) and M.Khlopov’s scientific - creative seminar and
their announcements occupied their permanent position on VIA homepage (Fig.
12.3), while their records were put in respective place of VIA forum, like [33] for
Laboratory meetings.

The platform of VIA facility was used for regular Khlopov’s course ”Intro-
duction to Cosmoparticle physics” for M2 students of MEPHI (in Russian) and
supported regular seminars of Theory group of APC, keeping their records in VIA
library [34].

The programme of VIA lectures continued to present hot news of astroparticle
physics and cosmology, like talk by Zhen Cao from China on the progress of
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Fig. 12.3. Permanent announcements of regular VIA meetings of SFEDU laboratory and
Khlopov’s seminar

LHAASO experiment [35] or lecture by Sunny Vagnozzi from UK on the problem
of consistency of different measurements of the Hubble constant [36].

The results of this activity inspired the decision to hold XXIII Bled Workshop
online on the platform of VIA.

12.3 VIA platform for virtual XXIII Bled Workshop

VIA sessions at Bled Workshops continued the tradition coming back to the first
experience at XI Bled Workshop [7] and developed at XII, XIII, XIV, XV, XVI, XVII,
XVIII, XIX, XX, XXI and XXII Bled Workshops [8–18]. They became a regular but
supplementary part of the Bled Workshop’s program. It had to be the only form of
Workshop activity in 2020.

In the course of XXIII Bled Workshop, the list of open questions was stipulated,
which was proposed for wide discussion with the use of VIA facility. The list
of these questions was put on VIA Forum (see [37]) and all the participants of
VIA sessions were invited to address them during VIA discussions. During the
XXIII Bled Workshop the announcement of VIA sessions was put on VIA home
page, giving an open access to the videoconferences at the Workshop sessions.
The preliminary program as well as the corrected program for each day were
continuously put on Forum [37] with the slides and records of all the talks and
discussions [37].

Starting from the Opening of the Workshop VIA facility tried to preserve the
creative atmosphere of Bled discussions
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Fig. 12.4. Opening of XXIII Bled Workshop by Norma Mankoc- Borstnik

All the talks in the program of XXIII Bled Workshop were given in the format
videoconferences as the talks ”How far has so far the Spin-Charge-Family theory
succeeded to offer the explanation for the observed phenomena?” by Norma
Mankoc-Borstnik from Ljubljana, Slovenia (Fig. 12.5) or ”Gravitational footprints
of massive neutrinos and lepton number breaking” by A. Marciano, (Fig. 12.6),
from Rome (see records in [37]).

During the Workshop the VIA virtual room was open, inviting distant par-
ticipants to join the discussion and extending the creative atmosphere of these
discussions to the world-wide audience. The online format of Workshop provided
remote presentation of students’ scientific debuts in BSM physics and cosmology
as it was, in particular, presented in the interesting talk ”Formation of conserved
charges at the de Sitter space” by Valery Nikulin (Fig. 12.7) or in the talk ”Numeri-
cal simulation of dark atom interaction with nuclei” by Timur Bikbaev (Fig. 12.8).

The records of all these lectures and discussions can be found on VIA Forum
[37].

Though the technical problems didn’t make possible nonformal private dis-
cussions of participants, still VIA facility has managed to join scientists from
Mexico, USA, France, Russia, Slovenia, Denmark, India, China and many other
countries in discussion of open problems of physics and cosmology beyond the
Standard models.

12.4 Conclusions

The Scientific-Educational complex of Virtual Institute of Astroparticle physics
provides regular communication between different groups and scientists, working
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Fig. 12.5. The talk ”How far has so far the Spin-Charge-Family theory succeeded to offer
the explanation for the observed phenomena?” by Norma Mankoc-Borstnik at XXIII Bled
Workshop

Fig. 12.6. VIA talk ”Gravitational footprints of massive neutrinos and lepton number break-
ing” by A. Marciano from Rome at XXIII Bled Workshop
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Fig. 12.7. VIA talk ”Formation of conserved charges at the de Sitter space” by Valery Nikulin
at XXIII Bled Workshop

Fig. 12.8. VIA talk ”Formation of conserved charges at the de Sitter space” by Timur Bikbaev
at XXIII Bled Workshop
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in different scientific fields and parts of the world, the first-hand information
on the newest scientific results, as well as support for various educational pro-
grams at distance. This activity would easily allow finding mutual interest and
organizing task forces for different scientific topics of cosmology, particle physics,
astroparticle physics and related topics. It can help in the elaboration of strategy of
experimental particle, nuclear, astrophysical and cosmological studies as well as in
proper analysis of experimental data. It can provide young talented people from
all over the world to get the highest level education, come in direct interactive
contact with the world known scientists and to find their place in the fundamental
research. These educational aspects of VIA activity can evolve in a specific tool for
International PhD program for Fundamental physics. Involvement of young scien-
tists in creative discussions was an important aspect of VIA activity at XXIII Bled
Workshop. VIA applications can go far beyond the particular tasks of astroparticle
physics and give rise to an interactive system of mass media communications.

VIA sessions, which became a natural part of a program of Bled Workshops,
maintained in 2020 the platform for online discussions of physics beyond the
Standard Model for distant participants from all the world in the lack of possibility
of offline meetings. This discussion can continue in posts and post replies on VIA
Forum. The experience of VIA applications at Bled Workshops plays important role
in the development of VIA facility as an effective tool of e-science and e-learning.

One can summarize the advantages and flaws of online format of Bled Work-
shop. It makes possible to involve in the discussions scientists from all the world
(young scientists, especially) free of the expenses related with meetings in real
(voyage, accommodation, ...), but loses the advantage of nonformal discussions
at walks along the beautiful surrounding of the Bled lake and other places of
interest. The improvement of VIA technical support (e.g. by involvement of Zoom)
can provide better platform for nonformal online discussions, but in no case can
be the substitute for Bled meetings and its creative atmosphere in real. One can
summarize that VIA sessions should remain a useful but still supplementary tool
of Bled Workshop meetings in real, provided that such real meetings are possible.

Acknowledgements

The initial step of creation of VIA was supported by ASPERA. I express my tribute
to memory of P.Binetruy and express my gratitude to J.Ellis and S.Katsanevas
for permanent stimulating support, to J.C. Hamilton for support in VIA integra-
tion in the structure of APC laboratory, to K.Belotsky, A.Kirillov, M.Laletin and
K.Shibaev for assistance in educational VIA program, to A.Mayorov, A.Romaniouk
and E.Soldatov for fruitful collaboration, to K.Ganga, J.Errard, A.Kouchner and
D.Semikoz for collaboration in development of VIA activity in APC, to M.Pohl, C.
Kouvaris, J.-R.Cudell, C. Giunti, G. Cella, G. Fogli and F. DePaolis for cooperation
in the tests of VIA online transmissions in Switzerland, Belgium and Italy and to
D.Rouable for help in technical realization and support of VIA complex. The work
has been performed with a support of the Ministry of Science and Higher Educa-
tion of the Russian Federation, Project ”Fundamental problems of cosmic rays and
dark matter”, No 0723-2020-0040. I express my gratitude to the Organizers of Bled



i
i

“proc20Vol1” — 2020/12/6 — 22:10 — page 262 — #278 i
i

i
i

i
i

262 M.Yu. Khlopov
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13 June

Astri Kleppe

Tonight it all springs into blossom, Lilacs,
Bird Cherry
with strands of willow, weaving
the beginning; How
it all
was meant to be.

Birdsong, sound of running
steps, and soon
the larvae will be heading
for the Bird Cherry, enfolding it
in silver
and cocoons; and soon
the nights of August will bring
darkness
for Orion and the Moon;
But in this fair night, early June
it’s all in ecstasy, in vigil
for the blossom;
No one sleeps, the birds, the flies
are all awake.

Who are you then, I asked
the Lilacs
We are strangers here, the answer came,
and we belong to no one.
But tell me who you are, I begged
And flowers sprinkled over me,
a waterfall
of petals,
We just arrived, tonight,
what more is there to say?
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II

A loose dream from a corner of the Universe
is driving towards us, our island;
Clouds
awakening of granite and cadavers, blue
and earth;
A boomerang towards The Milky Way, its icy stars
and howling wolves, and tightly curved
around the little heat
from our own speed. We are but animals
of auguries, of hope and salt;
and though the dreams
of Leibniz,
Alan Guth and Hubble
led us, it was other tokens
that the Universe imagined,
of another
kind;
And suddenly this otherness
sticks out: a tree
With roots in galaxies and whispers,
in galactic summer, leaves
that dance in morning breeze
and drizzle, with a scent
of seed and clover, pregnant
visions,
over paths through rain-gray
grass.

Beware of those
who tread on dew and stop
under that tree. So slowly
night is turning, in this space
of the improbable, a darkness
where a tree can grow
from nothing, rise
with flower buds and day.
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BLED WORKSHOPS IN PHYSICS, VOL. 21, NO. 1

Zbornik 23. delavnice ‘What Comes Beyond the Standard Models’, Bled, 4. –
12. julij 2020 [Virtualna delavnica 6.–10. julij 2020]
Volume 1:Invited Talks

Proceedings to the 23rd workshop ’What Comes Beyond the Standard Models’,
Bled, July 4.–12., 2020 [Virtual Workshop, July 6.–10., 2020]
Volume 1: Invited Talks
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Izid publikacije je finančno podprla Javna agencija za raziskovalno dejavnost RS
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