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Introduction

• The cosmological constant problem is arguably the most important short-

coming today of our understanding of the physical world.

• It signifies the violent clash between gravity and quantum field theory,

more so than the black hole information paradox problem.

• In four-dimensional Einstein gravity a non-zero vacuum energy entails

irrevocably the acceleration of the univers:

Gµν =
1

2
Λ gµν

• Fine-tuning the cosmological constant does not solve the problem as we

can tune a single constant while the quantum corrections to the vacuum

energy are scale dependent.
reviews: Weinberg, Rubakov, Hebecker+Wetterich,Burgess
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The higher-dimensional hope

• It was argued by several authors that the existence of higher (than four)

dimensions offers the possibility to alleviate the cosmological constant prob-

lem.
Rubakov+Shaposhnikov, .....

• The rough idea is that the SM-induced vacuum energy, instead of curving

the 4-d world/brane, could be absorbed by bulk fields.

• For this idea to be effective, the mechanism must be quasi-generic: ”any”

cosmological constant must “relax”, absorbed by the bulk dynamics.

• Any such mechanism must be intertwined tightly with cosmology as we

have good reasons to believe that a large cosmological constant played an

important role in the early universe, with observable consequences today.
D. Kazanas, Englert+Brout,Sato,Guth,Starobinsky,Muchanov+Chibisov
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Brane worlds and early attempts

• String Theory D-branes offer a concrete, calculable realization of a brane

universe.
Polchinski

• Branes in a cutoff-AdS5 space were used to argue that this offers a context

in which brane-world scales run exponentially fast, putting the hierarchy

problem in a a very advantageous framework.
Randall+Sundrum

• It is in this context that the first attempts of “self tuning” of the brane

cosmological constant were made.
Arkani-Hamed+Dimopoulos+Kaloper+Sundrum,Kachru+Schulz+Silverstein,

• The models used a (probe) bulk scalar to ”absorb” the brane cosmological

constant, and provide solutions with a flat brane metric despite the non-zero

brane vacuum energy.

• The attempts failed as such solutions had invariantly a bad/naked bulk

singularity that rendered models incomplete.
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• More sophisticated setups were advanced and more general contexts have

been explored but without success: the naked bulk singularity was always

there.
Csaki+Erlich+Grojean+Hollowood,

• The Randall-Sundrum Z2 orbifold boundary conditions were relaxed to

consider even more general setups, but this did not improve the situation.
Padilla

• The RS setup and its siblings is related via holographic ideas to cutoff-

CFTs and this provides independent intuition on the physics.
Maldacena, Witten,Arkani-Hamed+Porrati+Randall

• In view of our current understanding of holography, these failures were

to be expected.

• Our goal: provide a 2.0 version of the self-tuning mechanism that is in

line with the dictums of holography.
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Emerged (Holographic) gravity and the SM

• We can envisage the physics of the SM+gravity (plus maybe other ingre-

dients) as emerging from 4d UV complete QFTs:
Kiritsis

a) A large N/strongly coupled stable (near-CFT)

b) The Standard Model

c) A massive sector of mass Λ, (the “messengers”) that couples the two

theories.

• (a) has a holographic description in a 5d space-time.

• For E ≪ Λ we can integrate out the “messenger” sector and obtain

directly the SM coupled to the bulk gravity.

• The holographic picture is that of a brane (the SM) embedded in the

bulk at r & 1
Λ.
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• Holography reproduces the brane world embedded in a higher dimensional

bulk.

• This picture has a UV cutoff: the messenger mass Λ.

• The configuration resembles string theory orientifolds and possible SM

embeddings have been classified in the past.
Anastasopoulos+Dijkstra+Kiritsis+Schellekens

• The SM couples to all operators/fields of the bulk QFT.

• Most of them they will obtain large masses of O(M) due to SM quantum

effects.

• The only protected fields are the metric, the universal axion ∼ Tr[F ∧ F ]

and possible vectors (aka graviphotos).

Self-tuning 2.0, Elias Kiritsis
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1rst order RG flows

• We start by first describing the large-N QFT equations in a first order
form. This is necessary later, in order to solve the Israel junction conditions.

• Consider a bulk (5d) Einstein-scalar theory (dual to the QFT dynamics
of a scalar operator O(x) and the stress tensor Tµν(x)):

Sbulk =M3
∫
d5x

√
−g

[
R−

1

2
(∂ϕ)2 − V (ϕ)

]
and a Poincaré-invariant ansatz

ds2 = du2 + e2A(u)(−dt2 + dx⃗2) , ϕ(u)

• This describes the ground-state saddle point of a holographic RG flow
(QFT).

• This will provide us flat brane solutions later.

• The independent bulk gravitational scalar-Einstein equations are

12Ȧ(u)2 −
1

2
ϕ̇2 + V (ϕ) = 0, , 6Ä(u) + ϕ̇2 = 0,
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• They can be written as first order (holographic RG) flow equations

Ȧ(u) := −
1

6
W (ϕ) , ϕ̇(u) =W ′(ϕ)

in terms of the “superpotential” W (ϕ) that satisfies

V (ϕ) =
1

2
W ′2(ϕ)−

1

3
W2(ϕ)

• The two systems are equivalent everywhere where ϕ̇ ̸= 0

• One of the integration constants is hidden in the non-linear superpotential

equation but.....

• It is fixed, by asking the gravitational solution is regular at the interior of

the space-time (IR in the QFT).

• The solutions are dual to RG flows from the UV (AdS boundary) to the

IR (typically AdS if IR CFT) with (holographic) β-function

dϕ

dA
= β(ϕ) = −6

d

dϕ
logW
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• Conclusion: given a bulk action, the solution is characterized by the

unique∗ superpotential function W (ϕ).

There are three integration constants in any solution:

• One appears in the ϕ̇ flow equation and is ϕ0 (“the source”) the value of

the coupling dual to O in the UV of the dual QFT.

• Another appears in the Ȧ flow equation, and is A0 an arbitrary length

scale that sets the unit of length in the UV QFT.

• The third appears in W : it is the vev of the operator O in the ground

state described by the solution: it is fixed by regularity in terms of ϕ0 and

A0.
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Brane+Bulk equations

• We are ready to consider bulk solutions with the SM brane inserted at

some radial position u = u0.

Sbulk =M3
∫
d5x

√
−g

[
R−

1

2
(∂Φ)2 − V (Φ)

]

Sbrane =M2δ(u−u0)
∫
d4x

√
−γ

[
WB(Φ)−

1

2
Z(Φ)γµν∂µΦ∂νΦ+ U(Φ)RB + · · ·

]
,

• The · · · above include the (renormalized) action of the Standard Model

fields and their couplings to the bulk fields Φ and gµν.

• The localized action on the brane is due to quantum effects of the SM

fields.

• WB(ϕ) is the cosmological term.
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• The QFT setup indicates that the magnitude of WB is of the order of

the cutoff of the whole description, namely the messenger scale Λ.

• The brane is at a fixed radial position u0. This separates the bulk space

into a part that contains the boundary (UV) and another (IR).

• The equations to solve are the bulk equations plus the Israel junction

conditions at u = u0.

8-
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• We denote by gUVab , g
IR
ab and ΦUV ,ΦIR the solutions for the metric and

scalar field on each side of the brane.

•
[
X

]IR
UV

is the jump of a quantity X across the defect.

• The Israel matching conditions are:

1. Continuity of the metric and scalar field:[
gab

]UV
IR

= 0,
[
Φ
]IR
UV

= 0

2. Discontinuity of the extrinsic curvature and normal derivative of Φ:[
Kµν − γµνK

]IR
UV

= −
1

√
−γ

δSbrane
δγµν

,

[
na∂aΦ

]IR
UV

=
δSbrane
δΦ

,

• These conditions involve the first radial derivatives of A and Φ

8-



• With the standard Poincaré invariant ansatz (with flat brane metric) we
have

ȦUV (u) = −
1

6
WUV (Φ(u)), Φ̇UV (u) =

dWUV

dΦ
(Φ(u))

ȦIR(u) = −
1

6
W IR(Φ(u)), Φ̇IR(u) =

dW IR

dΦ
(Φ(u)) .

• The scalar functions WUV,IR are both solutions to the superpotential
equation:

1

3
W2 −

1

2

(
dW

dΦ

)2
= V .

• The continuity conditions are

AUV (u0) = AIR(u0) = A0, ΦUV (u0) = ΦIR(u0) = Φ0.

• Only one initial condition (A∗,Φ∗) must be imposed in the UV and this
choice corresponds to the (relevant) coupling of the bulk CFT.
• The jump conditions are

W IR −WUV
∣∣∣
Φ0

=WB(Φ0) ,
dW IR

dΦ
−
dWUV

dΦ

∣∣∣∣∣
Φ0

=
dWB

dΦ
(Φ0)

Self-tuning 2.0, Elias Kiritsis
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Old Self-Tuning

• WUV and WIR are determined from the superpotential equation up to one

integration constant, CUV , CIR.

• For a generic brane potential WB(Φ), the two matching equations

W IR −WUV
∣∣∣
Φ0

=WB(Φ0) ,
dW IR

dΦ
−
dWUV

dΦ

∣∣∣∣∣
Φ0

=
dWB

dϕ
(Φ0)

will fix CUV , CIR for any generic value of Φ0.

• The fixed value of CIR typically leads to a bad IR singularity.

• Moreover Φ0 is a modulus and generates a massless mode (the radion).

Self-tuning 2.0, Elias Kiritsis
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Self-Tuning 2.0

• The IR constant CIR should be fixed by demanding that the IR singularity

is absent.

• Typically there is only one such solution to the superpotential equation

(or a discreet set).

• According to holography rules, the solution W IR should be fixed before

we impose the matching conditions.

• Once W IR is fixed by regularity, the Israel conditions will determine:

♠ The integration constant CUV in the UV superpotential

♠ The brane position in field space, Φ0.

• This is a desirable outcome as there would be no massless radion mode.

• It can be checked that generically such an equilibrium position exists.
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To recapitulate:

• We have shown that generically, a flat brane solution exists irrespective

of the details of the “cosmological constant” function WB(Φ)

• The position of the brane in the bulk, determined via Φ0, is fixed by the

dynamics. There is typically a single such equilibrium position.

• This is good news, but we are still far from “solving” the cosmological

constant problem.

• We must analyze the stability of such an equilibrium position.

• We must analyze the nature of gravity and the equivalence principle on

the brane.

Self-tuning 2.0, Elias Kiritsis
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Linear perturbations around a flat brane

• We investigate the dynamics of bulk fluctuations equations.

• There are several fluctuations that originate in the bulk metric.

• There is a scalar fluctuation due to the bulk scalar, Φ.

• Before we insert a brane in the bulk, it is known that there are two

non-trivial (propagating) fluctuations: ĥµν and a scalar mode ζ.

• The physical bulk scalar can be identified with the gauge-invariant com-

bination:

ζ = ψ −
A′

ϕ′o
χ.
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• In the presence of the brane there is also the embedding mode XA(σα).

• We choose the static gauge, so the embedding is completely specified by

the radial profile r(xµ).

• We consider a small deviation from the equilibrium position r0:

r(xµ) = r0 + ρ(xµ)

• The brane scalar mode ρ is known as the brane bending mode.

Self-tuning 2.0, Elias Kiritsis
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Induced gravity

• We proceed to solve the fluctuation equations:

• The tensor mode satisfies the Laplacian equation in the bulk

∂2r ĥµν + (d− 1)(∂rA)∂rĥµν + ∂ρ∂ρĥµν = 0

and the matching condition[
ĥ′IR − ĥ′UV

]
r0

= −U(ϕ0) e−A0 ∂µ∂µĥ(r0),

• This is a condition similar to DGP but instead of flat space we are in a

non-trivial bulk metric.
Dvali+Gabadadze+Porrati

Self-tuning 2.0, Elias Kiritsis
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The gravitational interaction on the brane

• The field equations together with the matching conditions can be ob-

tained by extremizing

S[h] =Md−1
∫
ddxdr

√
−ggab∂aĥ∂bĥ+Md−1

∫
r=r0

ddx
√
γ UB(ϕ)γµν∂µĥ∂νĥ,

where gab = eA(r)ηab and γµν = eA0 ηµν are the unperturbed bulk metric

and induced metric on the brane, respectively.

• We introduce brane-localized matter sources,

Sm =
∫
ddx

√
γ Lm(γµν, ψi)

where ψi denotes collectively the matter fields.

• The interaction of brane stress tensor Tµν can be written in terms of the

propagator G :

Sint = −
e4A0

2M3

∫
d4xd4x′ G(r0, x; r0, x

′)
(
Tµν(x)T

µν(x′)−
1

3
Tµ

µ(x)Tν
ν(x′)

)
13



• Notice that the combination above is appropriate for a massive graviton

exchange

• The metric on the brane after a rescaling is the flat metric γµν = ηµν.

• The brane-to-brane propagator in momentum space (G(r0, x; r0, x
′) →

G(p)) is given by:

G(p) = −
1

M3

D(p, r0)

1 + [U0D(p, r0)]p2

where D(p, r) is the bulk to bulk propagator.

• When

U0 D(p, r0) p2 ≫ 1 , G(p) ≃ −
1

M3U0

1

p2

the propagator is 4-dimensional and

M2
P = U0M

3

• D(p, r) is determined by the Laplacian in the UV and IR part of the

geometry, with continuity and unit jump at the brane.

13-



• The 4-d phase is always present at large enough and at low enough p2.

• The crossover scale is determined by the equation:

U0p
2D(p, r0) = 1

Self-tuning 2.0, Elias Kiritsis
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The characteristic scales

• There are the following characteristic distance scales that play a role,

besides r0.

• The transition scale rt around which D(r0, p) changes from small to large

momentum asymptotics:

D(r0, p) ≃


1

2p
p≫ 1

rt
,

d0 +O(p2) p≪ 1
rt

• The transition scale rt depends on r0 and the bulk QFT dynamics.

• The crossover scale, or DGP scale, rc:

rc ≡
U0

2
;

This scale determines the crossover between 5-dimensional and 4-dimensional

behavior, and enters the 4D Planck scale and the graviton mass.
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• The gap scale d0

d0 ≡ D(r0,0) =
∫ r0
0

dr′e−3AUV (r
′),

which governs the propagator at the largest distances (in particular it sets

the graviton mass as we will see).

• Typically, d0 . r0

• For example, in IR AdS we have

d0 ≃
r0
4

.

• In confining bulk backgrounds we have instead

d0 ≃
1

6Λ2 r0

• In the far IR, Λr0 ≫ 1 and d0 can be made arbitrarily small.

Self-tuning 2.0, Elias Kiritsis
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Massive gravity on the brane

• When rt > rc we have three regimes for the gravitational interaction on
the brane:

q

1/r1/r ct

4d massless5d4d massive

m4

• Massive 4d gravity (rt < rc)
• In this case, at all momenta above the transition scale, p ≫ 1/rt > 1/rc,
we are in the 4-dimensional regime of the DGP-like propagator.

q

1/r1/rc t

4d massless4d massive

m4

• The behavior is four-dimensional at all scales, and it interpolates between
massless and massive four-dimensional gravity.

Kiritsis+Tetradis+Tomaras

Self-tuning 2.0, Elias Kiritsis
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More on scales

• Some scales depend on the bulk dynamics=the nature of the RG flow.

• Some others depend on boundary conditions = the UV coupling constant

• The two important parameters for 4d gravity depend as follows on b.c.

m0

MP
∼
(
M

Λ

)2 1

N
2
3

, m0 MP =

(
M3

d0

)1
2

• d0 depends only on the bulk theory.

• The choice of a small ratio m0
MP

∼ 10−60 is (technically) natural from the

QFT point of view.

Self-tuning 2.0, Elias Kiritsis
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Scalar Perturbations

• The next step is to study the scalar perturbations. They are of interest

as they might destroy the equivalence principle.

• The equations for the scalar perturbations can be derived and they are

complicated.

• Unlike previous analysis of similar systems they cannot be factorized to a

relatively simple system as the graviton.

• There are two scalar modes on the brane:

• In one gauge, the brane bedding mode can be “eliminated” but the scalar

perturbation is discontinuous on the brane.

• In another gauge the perturbation is continuous but the brane bending

mode is present.
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• In general the two scalar modes couple to two charges: the “scalar
charge” and the trace of the brane stress tensor.

• The mode that couples to the scalar charge has a ”heavy” mass of the
order of the cutoff.

• The mode that couples to the trace of the stress-tensor has a mass that
is O(1) in cutoff units (like the graviton mass).

• All the stability conditions for the scalars depend on more details of the
brane induced functions WB(Φ), UB(Φ), ZB(Φ).

• They can be investigated further from the known parameter dependence
of the vacuum energy.

Kounnas+Pavel+Zwirner, Dimopoulos+Giudince+Tetradis

• There is a vDVZ discontinuity that (as usual) cannot be cancelled at the
linearized order, if the theory is positive.

• It should be cancelled by the Vainstein mechanism. To derive the relevant
constraints on parameters, we must study non-linear solutions of sources
on the brane.

Self-tuning 2.0, Elias Kiritsis
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dS or AdS solutions on the brane

• We may ask also the question: Can we obtain solutions where the brane
has not trivial curvature, ie dS4 or AdS4?

• It can be shown that with the (AdS5) boundary condition for the metric
to be flat, this is generically impossible.

• it becomes possible if the boundary condition for the metric is dS4 or
AdS4, ie. the quantum field theory dual to the bulk gravitational theory
lives on dS4 or AdS4.

• Then the bulk ansatz can be parametrized as

ds2 = du2 + e2A(u)ζµνdx
µdxν , Φ(u)

18



• We have developed the formalism to solve for holographic RG flows for
QFTs on constant curvature manifolds.
• We can then find solutions where the brane is ”self-tuning” but curved.

For a Mex-hat bulk potential and exponential WB(Φ) and U(Φ).

Self-tuning 2.0, Elias Kiritsis
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The cosmology of self-tuning branes

• The existence of self-tuning solutions is only a first step towards address-

ing the cosmological constant problem.

• The general problem to solve is the time dependent problem where the

brane is moving away from the equilibrium point.

• This problem is difficult to solve as in such a case both the bulk solution

and the brane are time dependent.

• We will try the probe approximation as it is solvable and can give useful

intuition on what happens.

• In such a case, the brane moves in a fixed bulk solution. Its motion

generates cosmology on the brane = mirage cosmology.
Kehagias+Kiritsis
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• For a standard Lorentz-invariant bulk solution, the induced brane metric
is

ds2brane =
(
u̇2 − e2A(u)

)
dt2 + e2A(u)dx⃗2 = −dτ2 + e2Adx⃗2

where u(t) is the brane position that is now a function of time and the
brane cosmic time is defined as

dτ =
√
e2A − u̇2 dt

while the brane Hubble constant is

H2 ≡
(
dA

dτ

)2
= A′2 u̇2 e−2A

1− u̇2 e−2A

19-



• The brane trajectory u(t) can be found by integrating the analogue of the

geodesic equations, that can be integrated once at the cost of introducing

an integration constant E, (“energy”).

• In the non-relativistic limit, the equations are those of a particle in a

potential.

• The minima are where the self-tuning solutions lie.

19-



• When the brane moves near the boundary, the brane geometry is dS

u(τ) = ℓ Heff τ , Heff =

√
WB

UB

∣∣∣∣
boundary

19-



• Early universe inflation can happen in an intermediate near-AdS region

(”walking” bulk theory).

• In such a case ϵ << 1 but η requires further study.
Hamada+Kiritsis+Nitti

Self-tuning 2.0, Elias Kiritsis
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Connecting the Hierarchy Problem

• We can include the Higgs scalar in the effective potential on the brane:

SHiggs =M2
p

∫
ddx

√
−γ

[
−X(Φ)|H|2 − S(Φ)|H|4 + T (Φ)R|H|2 + · · ·

]
• We must also add the equations of motion for the Higgs:

(X(Φ) + 2S(Φ)|H|2) H = 0

• Whether the hierarchy problem is solved at the self-tuning position relies

on whether X(Φ0) ≪ Λ.

• Typically, there is no reason for this to happen.

• Unless there is another bulk field a, so that X(a,Φ) and there are multiple

solutions for a the make X scan.

• A bulk field with such a property is an axion (=holographic relaxion).

Self-tuning 2.0, Elias Kiritsis
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Holographic axions

• They are dual to instanton density operator.

• They have no perturbative bulk potential

• Their source near the AdS-like boundary is related to the θ-angle of the

dual QFT as

a(u) = aUV +Qe−4uℓ + · · · , aUV = c
θ+2πk

Nc
, k ∈ Z

• It can be shown that the range of aUV is finite.

• Therefore for given θ there is a large O(Nc) number of saddle points with

different values of aUV .

• These different solutions give different Higgs masses and can make

X(a,Φ) vanish.

21



• Like the relaxion model, it is not clear yet, how to make the parameters

in X(a,Φ) “natural”.

Self-tuning 2.0, Elias Kiritsis
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Conclusions and Outlook

• A large-N QFT coupled holographically to the SM offers the possibility
of tuning the SM vacuum energy.

• The graviton fluctuations have DGP behavior while the graviton is mas-
sive at large enough distances.

• No unnatural tuning is needed to have a reasonable Planck scale. The
graviton mass can be very small in a natural fashion as well.

• There are however many extra constraints that need to be analyzed in
detail:

• Constraints from the healthy behavior of scalar modes. Constraints from
the equivalence principle and the Vainshtein mechanism

• The cosmological evolution must be completed by adding the rest of the
ingreedients

• And the solution to the hierarchy problem needs a good origin of the
function X and a mechanism to arrive at the right solution.

Self-tuning 2.0, Elias Kiritsis
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.

THANK YOU
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A simple numerical example

V (ϕ) = −12+
1

2

(
ϕ2 − 1

)2
−

1

2
,

• The flow is from ϕ = 0 (UV Fixed point) to ϕ = 1 (IR fixed point).

Wb(ϕ) = ω exp[γϕ].

ω = −0.01, γ = 5 ⇒ ϕ0 = 0.65.

• This gives, in conformal coordinates, r0 = 0.99.

24
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The bulk propagator

• At large Euclidean p2, we can approximate the bulk equations as in flat
space,

∂2rΨ
(p)(r) = p2Ψ(p)(r)

except for small r, where the effective Schrödinger potential is ∼ 1/r2 and
cannot be neglected.

• The solution satisfying appropriate boundary conditions (vanishing in the
IR and for r → 0) and jump condition is

Ψ(p)
IR =

sinh pr0
p

e−pr, Ψ(p)
UV =

e−pr0

p
sinh pr, p ≡

√
p2

• For large p, it is like in flat 5d space

D(p, r0) =
sinh pr0

p
e−pr0 ≃

1

2p
, pr0 ≫ 1

• At small momenta the bulk propagator has always an expansion in powers
of p2 and we can solve perturbatively in p2.
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• If the geometry is gapped, the expansion is analytic in p2

• If the geometry is gapless, then after some power of p non-analyticities

appear.

• We find that as p→ 0

D(p, r) = d0 + d2 p
2 + d4 p

4 + · · ·

The coefficients di can be explicitly computed from the bulk unperturbed

solution. For example

d0 = e3A0

∫ r0
0

dr′e−3AUV (r
′)
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The function D(r0, p) as a function of momentum, compared with 1/2p.

The transition scale 1/rt (solid line) is about 4 (in UV-AdS units)
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Scalar Perturbations

• The perturbations are

ds2 = a2(r)
[
(1 + 2ϕ)dr2 +2Aµdx

µdr+ (ηµν + hµν)dx
µdxν

]
, φ = φ̄(r) + χ

and the scalar ones are

ϕ, χ, Aµ = ∂µB, hµν = 2ψηµν +2∂µ∂νE,

plus the brane-bending mode ρ(x) defined as

r(xµ) = r0 + ρ(xµ)

• Unlike the tensor modes, these fields are not gauge-invariant. Under an

infinitesimal diff transformation (δr, δxµ) = (ξ5, gµν∂νξ) they transform as

δψ = −
a′

a
ξ5 , δϕ = −(ξ5)′ −

a′

a
ξ5 , δB = −ξ′ − ξ5

δE = −ξ , δχ = −φ̄′ξ5 , δρ = ξ5(r0, x).

• We partly fix the gauge by choosing B = 0.
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• We are still free to do radial gauge-transformations and r-independent

space-time diffeomorphisms and keep this gauge choice.

• The matching conditions become[
a2(r0 + ρ) (2ψηµν +2∂µ∂νE)

]UV
IR

= 0,
[
φ̄(r0 + ρ) + χ

]IR
UV

= 0

[
ψ̂

]UV
IR

= 0,
[
χ̂

]UV
IR

= 0,
[
E

]IR
UV

= 0

where we have defined the new bulk perturbations:

ψ̂(r, x) = ψ+A′(r)ρ(x), χ̂(r, x) = χ+ φ̄′(r)ρ(x) , A′ = a′/a

The gauge-invariant scalar perturbation has the same expression in terms

of these new continues variables:

ζ = ψ −
A′

φ̄′
χ = ψ̂ −

A′

φ̄′
χ̂.
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In general however ζ(r, x) is not continuous across the brane, since the
background quantity A′/φ̄′ jumps:[

ζ

]UV
IR

=

[
A′

φ̄′

]UV
IR

χ̂(r0)

Notice that this equation is gauge-invariant since, under a gauge transfor-
mation:

δχ̂(r, x) = −φ̄′(r)
[
ξ5(r, x)− ξ5(r0, x)

]
,

thus χ̂(r0) on the right hand side of equation (??) is invariant.

It is convenient to fix the remaining gauge freedom by imposing:

χ(r, x) = 0.

To do this, one needs different diffeomorphisms on the left and on the
right of the brane, since φ̄′ differs on both sides. The continuity for χ̂ then
becomes the condition:

ρUV (x)φ̄
′
UV (r0) = ρIR(x)φ̄

′
IR(r0)

i.e. the brane profile looks different from the left and from the right. This
is not a problem, since equation (??) tells us how to connect the two sides
given the background scalar field profile.
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In the χ = 0 gauge we have:

ζ = ψ = ψ̂ −A′ρ, χ̂(r0) = φ̄′(r0)ρ.

This makes it simple to solve for ϕ using the bulk constraint equation (in
particular, the rµ-component of the perturbed Einstein equation, for the
details see the Appendix:

ϕ =
a

a′
ψ′ =

a

a′
ψ̂′ +

(
a′

a
−
a′′

a

)
ρ

where it is understood that this relation holds both on the UV and IR sides.

In the gauge χ = B = 0, the second matching conditions to linear order in
perturbations, read(1− d)a′(r0)

(
2ψ̂ ηµν +2∂µ∂νE

)
+

1

2
a(r0)(φ̄

′)2ρ ηµν+

(∂µ∂ν − ηµν∂
σ∂σ)

(
E′ − ρ

) IR
UV

=
a2(r0)

2
WB(Φ0)

(
2ηµνψ̂+2∂µ∂νE

)
r0

+

a2(r0)

2

dWB

dφ

∣∣∣∣
Φ0

φ̄′(r0)ρ− (d− 2)UB(Φ0) (∂µ∂ν − ηµν∂
σ∂σ) ψ̂ ,
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φ̄′
a′
ψ̂′ +

(
(φ̄′)2

6a′
−
φ̄′′

aφ̄′

)
φ̄′ρ

IR
UV

=

= −
d2WB

dΦ2

∣∣∣∣
Φ0

φ̄′ρ +
ZB(Φ0)

a2
φ̄′∂σ∂σρ −

2(d− 1)

a2
dUB
dΦ

∣∣∣∣
Φ0

∂σ∂σψ̂

Using the background matching conditions in conformal coordinates,

a′

a2
= −

1

2(d− 1)
W, φ̄′ = a

dW

dΦ
,

one can see that the first two terms on each side cancel each other, and
we are left with an equation that fixes the matching condition for E′(r, x):
B E′ − ρ

IR
UV

= −2
UB(Φ0)

a(r0)
ψ̂(r0).

[
ψ̂

]IR
UV

= 0 ;
[
φ̄′ρ

]IR
UV

= 0 ;

φ̄′a
a′
ψ̂′
IR
UV

=

(ZB(Φ0)

a
∂µ∂µ −M2

b

)
φ̄′ρ−

6

a

dUB
dΦ

(Φ0)∂
µ∂µψ̂


r0
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where we have defined the brane mass:

M2
b ≡ a(r0)

d2Wb

dΦ2

∣∣∣∣
Φ0

+

((φ̄′)2
6

a

a′
−
φ̄′′

φ̄′

)IR
UV

.

Using the background Einstein’s equations this can also be written as:

M2
b =

[
a′

a
−
a′′

a′

]IR
UV

+ a

d2WB

dΦ2
−
[
d2W

dΦ2

]IR
UV

 ,

We can eliminate E

�E′ = −
a

a′

[
�ψ+

a

a′

(
2
a′2

a2
−
a′′

a

)
ψ′
]
.

Notice that the combination multiplying ψ′ can be written as (a/a′)(φ̄′)2/6.

The bulk equation for ζ (≡ ψ in this gauge) on both sides of the brane is:

ψ′′ +

(
3
a′

a
+2

z′

z

)
ψ′ + ∂µ∂µψ = 0,

where z = φ̄′a/a′.
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To summarize, we arrive at the following equations and matching condi-

tions, either in terms of ψ:

ψ′′ +

(
3
a′

a
+2

z′

z

)
ψ′ + ∂µ∂µψ = 0,

[
ψ

]IR
UV

= −
[
a′

aφ̄′

]IR
UV

φ̄′ρ,
[
φ̄′ρ

]IR
UV

= 0 ;

[
a2

a
′2

φ̄
′2

6
ψ′
]IR
UV

=

(
2UB(Φ0)

a
−
[
a

a′

]IR
UV

)
�
(
ψ+

a′

a
ρ

)
;

[
aφ̄′

a′
ψ′
]IR
UV

= −6
dUB
dΦ

(Φ0)�
(
ψ+

a′

a
ρ

)
+

(
ZB(Φ0)

a
�− M̃b

2
)
φ̄′ρ ;

� ≡ ∂µ∂µ, z ≡
aφ̄′

a′
, M̃b

2 = a

d2WB

dΦ2
−
[
d2W

dΦ2

]IR
UV

 .
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• in terms of ψ̂:

ψ̂′′ +

(
3
a′

a
+2

z′

z

)
ψ̂′ + ∂µ∂µψ̂ = S,

[
ψ̂

]IR
UV

= 0,
[
φ̄′ρ

]IR
UV

= 0 ;

[
a2

a
′2

φ̄
′2

6
ψ̂′
]IR
UV

= −
[
φ̄′

6

(
a′′a

a
′2

− 1

)]IR
UV

φ̄′ρ+

(
2UB(Φ0)

a
−
[
a

a′

]IR
UV

)
�ψ̂ ;

[
aφ̄′

a′
ψ̂′
]IR
UV

= −6
dUB
dΦ

(Φ0)�ψ̂+

(
ZB(Φ0)

a
�−M2

b

)
φ̄′ρ ;

� ≡ ∂µ∂µ, z ≡
aφ̄′

a′
, M2

b = M̃b
2 +

[
a′

a
−
a′′

a′

]IR
UV

,

S ≡ A′′′ρ+3(A′ +2z′/z)A′′ρ+A′�ρ.
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remarks:

• In both formulations there are 6 parameters in the system: 4 in the bulk (2 integration
constants in the UV, 2 in the IR) and 2 brane parameters (ρ on each side). From these
6 we can subtract one: a rescaling of the solution, which is not a true parameter since
the system is homogeneous in (ρ, ψ). There is a total of 4 matching conditions, plus
2 normalizability conditions if the IR is confining, or only one if it is not. Thus, in the
confining case, we should find a quantization condition for the mass spectrum, whereas
in the non-confining case the spectrum is continuous and the solution unique given
the energy. The goal will be to show that such solutions exist only for positive values
of m2, defined as the eigenvalue of �. To see this, one must go to the Schrodinger
formulation.

• Notice that something interesting happens when the second derivative of the brane

potential matches the discontinuity in the second derivative of the bulk superpotential:

in that case the brane mass term for ρ vanishes. For a generic brane potential of course

this is not the case, but it happens for example in fine-tuned models when the brane

position is not fixed by the zeroth-order matching conditions, for example when the

brane potential is chosen to be equal to the bulk superpotential, and a Z2 symmetry

is imposed. This is the generalization of the RS fine-tuning in the presence of a bulk

scalar. The fact that the mass term vanishes in this case must be related to the

presence of zero-modes (whether they are normalizable or not is a different story).
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To put the matching conditions in a more useful form, it is convenient to
eliminate ρL,R altogether :[

a′

a
ρ

]
= −[ψ], [φ̄′ρ] = 0

These can be solved to express the continuous quantities ψ̂(0) and φ̄′ρ in
terms of ψL,R only:

ψ̂(0) =
[z ψ]

[z]
, φ̄′ρ = −

[ψ]

[1/z]
, z =

aφ̄′

a′

Using these results, we obtain a relation between the left and right functions
and their derivatives:[

zψ′
]
= −6

dUB
dΦ

�[z ψ]

[z]
−

1

a

(
ZB�− a2M̃2

) [ψ]

[z−1]

[
z2ψ′

]
= 6

(
2
UB
a

−
[
a

a′

])
�[z ψ]

[z]

Since the left hand side is in general non-degenerate, these equations can
be solved to give ψ′

L and ψ′
R as linear combinations of ψL and ψR, ψ′
L(0)

ψ′
R(0)

 = Γ

 ψL(0)

ψR(0)


26-



with a suitable matrix Γ.
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RG

• W (ϕ) is the non-derivative part of the Schwinger source functional of the

dual QFT =on-shell bulk action.
de Boer+Verlinde2

Son−shell =
∫
ddx

√
γ W (ϕ) + · · ·

∣∣∣∣
u→uUV

• The renormalized action is given by

Srenorm =
∫
ddx

√
γ (W (ϕ)−Wct(ϕ)) + · · ·

∣∣∣∣
u→uUV

=

= constant
∫
ddx e

dA(u0)− 1
2(d−1)

∫ ϕ0
ϕUV

dϕ̃W
′

W + · · ·

• The statement that dSrenorm
du0

= 0 is equivalent to the RG invariance of

the renormalized Schwinger functional.

• It is also equivalent to the RG equation for ϕ.
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• We can show that

Tµ
µ = β(ϕ) ⟨O⟩

• The Legendre transform of Srenorm is the (quantum) effective potential

for the vev of the QFT operator O.

Self-tuning 2.0, Elias Kiritsis
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Detour: The local RG

• The holographic RG can be generalized straightforwardly to the local RG

ϕ̇ =W ′ − f ′ R+
1

2

(
W

W ′f
′
)′
(∂ϕ)2 +

(
W

W ′f
′
)
�ϕ+ · · ·

γ̇µν = −
W

d− 1
γµν −

1

d− 1

(
f R+

W

2W ′f
′(∂ϕ)2

)
γµν+

+2f Rµν +
(
W

W ′f
′ − 2f ′′

)
∂µϕ∂νϕ− 2f ′∇µ∇νϕ+ · · ·

Kiritsis+Li+Nitti

• f(ϕ), W (ϕ) are solutions of

−
d

4(d− 1)
W2 +

1

2
W ′2 = V , W ′ f ′ −

d− 2

2(d− 1)
W f = 1

• Like in 2d σ-models we may use it to define “geometric” RG flows.

Self-tuning 2.0, Elias Kiritsis
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Massive gravity on the brane

• When rt > rc we have three regimes for the gravitational interaction on
the brane:

G̃4(p) ≃



−
eA0

2rcMd−1

1

p2
p≫ 1

rc

−
eA0

Md−1

1

2p
1
rc

≫ p≫ m0

−
eA0

2rcMd−1

1

p2 +m2
0

p≪ m0, m2
0 ≡ 1

2rcd0

• The 4d gravitational coupling is the same in both IR and UV regimes.

q

1/r1/r ct

4d massless5d4d massive

m4

m2
4 = e−2A0

(d0d2 − e−A0d30U0)

(d222− d0d4)
29



The effective brane-to-brane propagator for rt > rc. The vertical lines

are:1/rt (solid), 1/rc (dashed), m0 (dotted).

29-



• Massive 4d gravity (rt < rc)

• In this case, at all momenta above the transition scale, p ≫ 1/rt > 1/rc,

we are in the 4-dimensional regime of the DGP-like propagator.

q

1/r1/rc t

4d massless4d massive

m4

• Below the transition, p ≪ 1/rt, we have again a massive-graviton propa-

gator.

• The behavior is four-dimensional at all scales, and it interpolates between

massless and massive four-dimensional gravity.
Kiritsis+Tetradis+Tomaras
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The effective brane-to-brane propagator for rt < rc. The vertical lines are:

1/rt (solid), 1/rc (dashed), m0 (dotted).
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Scalar Perturbations

• The next step is to study the scalar perturbations. They are of interest

as they might destroy the equivalence principle.

• The equations for the scalar perturbations can be derived and they are

complicated.

• Unlike previous analysis of similar systems they cannot be factorized to a

relatively simple system as the graviton.

• There are two scalar modes on the brane:

• In one gauge, the brane bedding mode can be “eliminated” but the scalar

perturbation is discontinuous on the brane.

• In another gauge the perturbation is continuous but the brane bending

mode is present.
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The effective quadratic interactions for the scalar modes are of the form

S4 = −
N
2

∫
d4x

√
γ((∂ϕ)2 +m2ϕ2)

• We need both N > 0 and m2 > 0.

The conditions that the scalars are not ghosts are

τ0 ≡ 6
WB

WUVWIR

∣∣∣∣
Φ0

− UB(Φ0) > 0 , Z0τ0 > 6
(
dUB
dΦ

)2 ∣∣∣∣
Φ0

(1)

• Asking also for no tachyons we obtain

d2WB

dΦ2

∣∣∣∣
Φ0

−
[
d2W

dΦ2

]IR
UV

> 0

30-



• In general the two scalar modes couple to two charges: the “scalar
charge” and the trace of the brane stress tensor.

• The mode that couples to the scalar charge has a ”heavy” mass of the
order of the cutoff.

• The mode that couples to the trace of the stress-tensor has a mass that
is O(1) in cutoff units (like the graviton mass).

• All the stability conditions for the scalars depend on more details of the
brane induced functions WB(Φ), UB(Φ), ZB(Φ).

• They can be investigated further from the known parameter dependence
of the vacuum energy.

Kounnas+Pavel+Zwirner, Dimopoulos+Giudince+Tetradis

• There is a vDVZ discontinuity that (as usual) cannot be cancelled at the
linearized order if the theory is positive.

• It should be cancelled by the Vainstein mechanism. To derive the relevant
constraints on parameters, we must study non-linear solutions of sources
on the brane.

Self-tuning 2.0, Elias Kiritsis
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