The cosmological constant in supergravity and string theory

I. Antoniadis

Institute for Theoretical Physics, KU Leuven and LPTHE, Sorbonne Université, CNRS, Paris

24th International workshop: What comes beyond the standard models Online, 5-11 July 2021

Universe evolution: based on positive cosmological constant

Dark Energy

simplest case: infinitesimal (tuneable) +ve cosmological constant

• Inflation (approximate de Sitter)

describe possible accelerated expanding phase of our universe

Relativistic dark energy 70-75% of the observable universe negative pressure: $p = -\rho \Rightarrow$ cosmological constant

$$R_{ab} - \frac{1}{2}Rg_{ab} + \Lambda g_{ab} = \frac{8\pi G}{c^4}T_{ab} \Rightarrow \rho_{\Lambda} = \frac{c^4\Lambda}{8\pi G} = -p_{\Lambda}$$

Two length scales:

• $[\Lambda] = L^{-2} \leftarrow \text{size of the observable Universe}$ $\Lambda_{obs} \simeq 0.74 \times 3H_0^2/c^2 \simeq 1.4 \times (10^{26} \text{ m})^{-2}$ Hubble parameter $\simeq 73 \text{ km s}^{-1} \text{ Mpc}^{-1}$

•
$$\left[\frac{\Lambda}{G} \times \frac{c^3}{\hbar}\right] = L^{-4} \leftarrow \text{dark energy length} \simeq 85 \mu \text{m}$$

de Sitter spacetime

vacuum solution of Einstein equations with +ve cosmological constant and maximal symmetry: 10 isometries like flat space

hyperboloid from 5 dimensions: $-y_0^2 + \vec{y}^2 = \frac{1}{H^2}$ SO(4, 1) vs Poincaré E_4

 $R_{\mu\nu\lambda\rho} = H^2(g_{\mu\lambda}g_{\nu\rho} - g_{\mu\rho}g_{\nu\lambda})$ $R = 12H^2 = 4\Lambda$

Flat slicing: $ds^2 = -dt^2 + e^{2Ht} d\vec{x}^2$ exponential expansion

FRW with flat 3-space and scale factor $a(t) = e^{Ht}$

isometries: 3 space translations, 3 rotations, 1 scale, 3 special conformal

e.g. scale:
$$\vec{x} \rightarrow \omega^2 \vec{x}$$
 and $t \rightarrow t - \omega/H$

Closed slicing: $ds^2 = -dt^2 + \frac{1}{H^2}ch^2Ht d\Omega_3^2 \leftarrow \text{unit sphere } S^3$

Open slicing: $ds^2 = -dt^2 + \frac{1}{H^2}sh^2Ht dH_3^2 \leftarrow \text{unit hyperbolic } H^3$

de Sitter spacetime

$$ds^2 = -(1-H^2r^2)dt^2 + rac{dr^2}{1-H^2r^2} + r^2d\Omega_2^2 \quad \leftarrow ext{ unit sphere } S^2$$

describes 1/4 of the spacetime

similarity with a black hole metric:

no singularity but cosmological horizon at $r = H^{-1} \equiv r_{C}$ [18] [20]

Observed Universe: homogeneous, isotropic and (spacially) flat

 \Rightarrow all regions causally connected in the past

But in contradiction with Einstein's equations

observed universe has a huge number of causally disconnected regions

Inflation proposal:

postulates an exponentially expanding period in early times a small region becomes fast exponentially large \Rightarrow explains homogeneity, isotropy and flatness problems it needs 50-60 e-foldings of expansion at least

It predicts also small anisotropies from slight deviation from de Sitter space temperature/density perturbations from quantum fluctuations

Inflation:

Theoretical paradigm consistent with cosmological observations

But phenomelogical models with not real underlying theory

introduce a new scalar field that drives Universe expansion at early times

slow-roll region with V', V'' small compared to the de Sitter curvature

Standard Model of cosmology : ACDM

- J. Peebles: Nobel Prize 2019
- S. Perlmutter, A. Riess, B. Schmidt: Nobel Prize 2011 (Dark Energy)

The cosmological constant in Supergravity

Highly constrained: $\Lambda \geq -3m_{3/2}^2$

• equality \Rightarrow AdS (Anti de Sitter) supergravity

 $m_{3/2} = W_0$: constant superpotential

- inequality: dynamically by minimising the scalar potential
 ⇒ uplifting ∧ and breaking supersymmetry
- Λ is not an independent parameter for arbitrary breaking scale $m_{3/2}$ What about breaking SUSY with a $\langle D \rangle$ triggered by a constant FI-term? standard supergravity: possible only for a gauged $U(1)_R$ symmetry: absence of matter $\Rightarrow W_0 = 0 \rightarrow dS$ vacuum Friedman '77
- exception: non-linear supersymmetry

Non-linear SUSY in supergravity

I.A.-Dudas-Ferrara-Sagnotti '14

$$K = X\bar{X}$$
; $W = f X + W_0$

 $X \equiv X_{NL}$ nilpotent goldstino superfield [13]

$$X_{NL}^{2} = 0 \Rightarrow X_{NL}(y) = \frac{\chi^{2}}{2F} + \sqrt{2}\theta\chi + \theta^{2}F$$
$$\Rightarrow \quad V = |f|^{2} - 3|W_{0}|^{2} \quad ; \quad m_{3/2}^{2} = |W_{0}|^{2}$$

- V can have any sign contrary to global NL SUSY
- NL SUSY in flat space $\Rightarrow f = \sqrt{3} m_{3/2} M_p$
- R-symmetry is broken by W_0

gauge invariant at the Lagrangian level but non-local becomes local and very simple in the unitary gauge

Global supersymmetry: $\mathcal{L}_{\mathrm{FI}}^{new} = \xi_1 \int d^4\theta \frac{\mathcal{W}^2 \overline{\mathcal{W}}^2}{\mathcal{D}^2 \mathcal{W}^2 \overline{\mathcal{D}}^2 \overline{\mathcal{W}}^2} \mathcal{D} \overset{\text{gauge field-srength superfield}}{\mathcal{W}} = -\xi_1 \mathrm{D} + \mathrm{fermions}$

It makes sense only when $<\mathrm{D}>\neq$ 0 \Rightarrow SUSY broken by a D-term

Supergravity generalisation: straightforward

unitary gauge: goldstino = U(1) gaugino = 0 \Rightarrow standard sugra $-\xi_1 D$

Pure sugra + one vector multiplet \Rightarrow [11]

$$\mathcal{L} = R + \bar{\psi}_{\mu}\sigma^{\mu\nu\rho}D_{\rho}\psi_{\nu} + m_{3/2}\bar{\psi}_{\mu}\sigma^{\mu\nu}\psi_{\nu} - \frac{1}{4}F_{\mu\nu}^{2} - \left(-3m_{3/2}^{2} + \frac{1}{2}\xi_{1}^{2}\right)$$

- $\xi_1 = 0 \Rightarrow AdS$ supergravity
- $\xi_1 \neq 0$ uplifts the vacuum energy and breaks SUSY

e.g. $\xi_1 = \sqrt{6}m_{3/2} \Rightarrow$ massive gravitino in flat space

The cosmological constant in Supergravity I.A.-Chatrabhuti-Isono-Knoops '18

New FI-term introduces a cosmological constant in the absence of matter Presence of matter \Rightarrow non trivial scalar potential net result: $\xi_1 \rightarrow \xi_1 e^{K/3}$ but breaks Kähler invariance

However new FI-term in the presence of matter is not unique

Question: can one modify it to respect Kähler invariance?

Answer: yes, constant FI-term + fermions as in the absence of matter

 \Rightarrow constant uplift of the potential, Λ free (+ve) parameter besides $m_{3/2}$

In general $\xi_1 \rightarrow \xi_1 f(m_{3/2}[\phi, \bar{\phi}])$ I.A.-Rondeau '99

It can also be written in N = 2 supergravity

I.A.-Derendinger-Farakos-Tartaglino Mazzucchelli '19

String theory: vacuum energy and inflation models

related to the moduli stabilisation problem

Difficulties to find dS vacua led to a conjecture:

$$\frac{|\nabla V|}{V} \geq c \quad \text{or} \quad \min(\nabla_i \nabla_j V) \leq -c' \quad \text{in Planck units}$$

with c, c' positive order 1 constantsOoguri-Palti-Shiu-Vafa '18Dark energy: forbid dS minima but allow maximaInflation: forbid standard slow-roll conditions

Assumptions: heuristic arguments, no quantum corrections

 \longrightarrow here: explicit counter example

String moduli

String compactifications from 10/11 to 4 dims \rightarrow scalar moduli arbitrary VEVs: parametrize the compactification manifold

size of cycles, shapes, ..., string coupling

- N = 1 SUSY \Rightarrow complexification: scalar + i pseudoscalar $\equiv \phi_i$
- Low energy couplings: functions of moduli

Swampland Program

Not all effective field theories can consistently coupled to gravity

- anomaly cancellation is not sufficient
- consistent ultraviolet completion can bring non-trivial constraints

those which do not, form the 'swampland'

criteria \Rightarrow conjectures

supported by arguments based on string theory and black-hole physics

The first and most established example is the Weak Gravity Conjecture:

gravity is the weakest force implying a minimal non-trivial charge

$$q \ge m/\sqrt{2}$$
 in Planck units $8\pi G = \kappa^2 = 1$

Arkani-Hamed, Motl, Nicolis, Vafa '06

Reissner-Nordstøm black hole

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$
$$f(r) = 1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}} \qquad M = \frac{m}{8\pi}, \ Q^{2} = \frac{q^{2}}{32\pi^{2}}$$

~

 Q^2 : repulsive electric energy, while -2M: attractive gravity force [6]

Two horizons at
$$r=r_{\pm}$$
 satisfying $f(r)=$ 0: $r_{\pm}=M\left(1\pm\sqrt{1-rac{Q^2}{M^2}}
ight)$

• $Q^2 < M^2$: two real roots with $0 < r_-$ (inner) $< r_+$ (outer horizon) r_- hides the singularity at r = 0, while between horizons t is space like

•
$$Q^2 = M^2$$
: $r_- = r_+ \Rightarrow$ extremal BH

electric and gravity forces are balanced

• $Q^2 > M^2$: complex roots, no horizon \Rightarrow naked singularity at r = 0the repulsive force is stronger than gravity and forbids BH horizons Existence of states with $Q^2 > M^2$ minimal non-trivial charge

- \Rightarrow Charged black holes can decay
- no BH remnants
- since naked singularities are forbidden by the Weak Cosmic Censorship
- Next: generalisation to de Sitter space using similar arguments

I.A.-Benakli '20

Reissner-Nordstøm black hole in de Sitter space (6)

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

$$f(r) = 1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}} - \frac{\Lambda}{3}r^{2} \qquad M = \frac{m}{8\pi}, \ Q = \frac{q^{2}}{32\pi^{2}}, \ \Lambda = \frac{3}{l^{2}} = 3H^{2}$$

$$f(r) = 0 \Rightarrow 4 \text{ roots: one -ve (unphysical), one +ve, two +ve or complex}$$
Define $P(r) \equiv -r^{2}f(r) = l^{-2}r^{4} - r^{2} + 2Mr - Q^{2}$

$$\Rightarrow \text{ its discriminant } \Delta \propto -\frac{27}{l^{2}}(Ml)^{4} + (l^{2} + 36Q^{2})(Ml)^{2} - Q^{2}(l^{2} + 4Q^{2})^{2}$$

• $\Delta > 0 \Rightarrow 3$ positive roots: $0 < r_{-} < r_{+} < r_{C}$

 r_C : cosmological horizon ($\rightarrow \infty$ when $\Lambda \rightarrow 0$)

•
$$\Delta = 0 \Rightarrow r_{-} = r_{+} < r_{C}$$
, or $r_{-} < r_{+} = r_{C}$

• $\Delta < 0 \Rightarrow r_{\pm}$ complex and $r_C > 0$, or $r_- > 0$ and r_+, r_C complex

Reissner-Nordstøm black hole in de Sitter space

$\Delta > 0 \Rightarrow 3$ Horizons 4 Regions

 Δ is quadratic polynomial of $M^2 I^2$ with roots

$$M_{\pm}^{2}(I,Q^{2}) = \frac{1}{54I} \left[I(I^{2} + 36Q^{2}) \pm (I^{2} - 12Q^{2})^{3/2} \right]$$

 $\Delta < 0$ outside the roots (for $\mathit{I}^2 \geq 12 \mathit{Q}^2$), or for $\mathit{I}^2 \leq 12 \mathit{Q}^2$

For $\Delta > 0 \Rightarrow$ four regions: $0 < r_{-} < r_{+} < r_{C}$

• Region IV: $r > r_C$

t space-like, the cosmological constant dominant over all forces

- Region III: $r_+ \le r \le r_C$ $f(r) \sim 1$ constant
- **Region II:** $r_{-} \leq r \leq r_{+}$ BH interior

t space-like, dominance of gravitational attraction

• **Region I:** $0 < r \le r_{-}$ dominance of electromagnetic repulsion

Define Q_{\pm} : $M^2_{\pm}(I, Q^2_{\pm}) = M^2$ $Q_+ \leq Q_-$

Comparison of forces

 $M^2 < \frac{l^2}{27}: Q_+ \text{ does not exist}$ As $Q \nearrow$, $Q < Q_{-}$ and $M > M_{-}(I, Q^{2}) \Rightarrow r_{-} \nearrow$, $r_{+} \searrow$, $r_{C} \nearrow$ Region II shrinks with $r_+ \rightarrow r_-$ As $Q > Q_{-}$ and $M^{2} < M^{2}_{-}(I, Q^{2}) \Rightarrow \Delta < 0$ and Region II disappears The repulsive electric force is stronger and forbids BH horizons ② $\frac{l^2}{27} \le M^2 \le \frac{2l^2}{27}$: 3 horizons ⇒ $Q \in [Q_+, Q_-], M \in [M_-, M_+]$ As $Q \searrow$ towards $Q_+ \Rightarrow r_- \searrow$, $r_+ \nearrow$ and $r_C \searrow$ Region III shrinks For $Q < Q_+$ Region III disappears and dS space is 'eaten' by the BH As $Q \nearrow$ towards $Q_{-} \Rightarrow r_{-} \nearrow$, $r_{+} \searrow$ and $r_{C} \nearrow$ Region II disappears For $Q > Q_{-}$ the electric force is strong and forbids again BH horizons

Comparison of forces

Weak gravity conjecture in dS space [14]

• Small charge:
$$Q^2 \le \frac{l^2}{12} \left(q^2 \le \frac{\pi}{\Lambda G}\right)$$
:
 $M^2 < M_-^2(l, Q^2) = \frac{1}{54l} \left[l(l^2 + 36Q^2) - (l^2 - 12Q^2)^{3/2}\right]$
 \Rightarrow flat space limit: $Q^2 > M^2 + \frac{M^4}{l^2} + \mathcal{O}(1/l^4)$

• Large charge:
$$Q^2 \ge \frac{l^2}{12} \left(q^2 \ge \frac{\pi l^2}{3G}\right)$$
: $M^2 < \frac{3}{2} \frac{1}{l^2} \left(Q^2 + \frac{5}{36} l^2\right)^2$

 \Rightarrow strong curvature limit ($l \rightarrow 0$): $Q^2 > \sqrt{\frac{2}{3}}IM - \frac{5}{36}I^2$

independent of the Newton constant: $q > \left(\frac{32\pi^2}{3}\right)^{1/4}\sqrt{Im}$

Conclusions on WGC on dS space

Weak gravity conjecture in an accelerating Universe:

- existence of a state with charge larger than a minimal value generalising the flat space result $Q^2 > M^2$ in Planck units minimal charge depends on the mass and the Hubble constant
- small cosmological constant H < M (also $H < \frac{M_P}{\sqrt{12Q}}$) \Rightarrow power corrections to the flat result $Q^2 > M^2 + M^4 H^2$

• large cosmological constant \Rightarrow

minimal charge² linear in mass $Q_{\min}^2 \sim M/H$ constraints for particle physics models of inflation

Moduli stabilisation in type IIB

Compactification on a Calabi-Yau manifold $\Rightarrow N = 2$ SUSY in 4 dims

Moduli: Complex structure in vector multiplets

Kähler class & dilaton in hypermultiplets

 \Rightarrow decoupled kinetic terms

turn on appropriate 3-form fluxes (primitive self-dual) $\Rightarrow N = 1$ SUSY + orientifolds and D3/D7-branes

vectors and RR companions of geometric moduli are projected away \Rightarrow all moduli in N = 1 chiral multiplets + superpotential for the **complex structure & dilaton** \rightarrow fixed in a SUSY way Frey-Polchinski '02 Kähler moduli: no scale structure, vanishing potential (classical level) Non perturbative superpotential from gaugino condensation on D-branes \Rightarrow stabilisation in an AdS vacuum Derendinger-Ibanez-Nilles '85 Uplifting using anti-D3 branes Kachru-Kallosh-Linde-Trivedi '03 or D-terms and perturbative string corrections to the Kähler potential Large Volume Scenario Conlon-Quevedo et al '05 Ongoing debate on the validity of these ingredients in full string theory While perturbative stabilisation has the old Dine-Seiberg problem put together 2 orders of perturbation theory violating the expansion possible exception known from field theory: logarithmic corrections \rightarrow Coleman-Weinberg mechanism [31]

The Dine-Seiberg problem

Runaway potential towards vanishing string coupling or large volume

 \Rightarrow if there is perturbative minimum, it is likely to be at strong coupling or string size volume

Analogy with Coleman-Weinberg symmetry breaking

Effective potential in massless $\lambda \Phi^4$

$$V = \left\{ \sum_{N>1} c_N \lambda^N(\Phi) \right\} \Phi^4 \implies \text{minimum at } \lambda = 0 \text{ or } \mathcal{O}(1)$$

C-W perturbative symmetry breaking needs 2 couplings + logs: [37]

$$V_{\rm C-W} = \left(\lambda + c_1 e^4 \ln \frac{|\Phi|^2}{\mu^2}\right) |\Phi|^4 \Rightarrow |\Phi|_{\rm min}^2 \propto \mu^2 e^{-\frac{\lambda}{c_1 e^4}}$$

both λ and e are weak <1

realising this proposal in string theory:

- replace gaugino condensation by log corrections in the F-part potential
- use D-term uplifting as in LVS

Log corrections in string theory:

localised couplings + closed string propagation in $d \le 2$

Effective propagation of massless bulk states in $d \leq 2 \Rightarrow$ IR divergences [37]

d = 1: linear, d = 2: logarithmic

 \Rightarrow corrections to (brane) localised couplings

depending on the size of the bulk due to local closed string tadpoles

I.A.-Bachas '98

e.g. threshold corrections to 4d gauge coupling
 linear dilaton dependence on the 11th dim of M-theory [34]
 Type II strings: correction to the Kähler potential ↔ Planck mass

I.A.-Ferrara-Minasian-Narain '97

Log corrections in string theory

decompactification limit in the presence of branes

local tadpoles: $F(\vec{p}_{\perp}) \sim \left(2^{5-d} \prod_{i=1}^{d} (1+(-)^{n_i}) - 2 \sum_{a=1}^{16} \cos(\vec{p}_{\perp} \vec{y}_a)\right)$

Localised gravity kinetic terms

Corrections to the 4d Planck mass in type II strings

Large volume limit: localised Einstein-Hilbert term in the 6d internal space

I.A.-Minasian-Vanhove '02 [37]

10d: $R \wedge R \wedge R \wedge R \rightarrow \text{ in 4d: } \chi \mathcal{R}_{(4)}$ Euler number = $4(n_H - n_V)$ [40]

$$S_{\rm grav}^{IIB} = \frac{1}{(2\pi)^7 \alpha'^4} \int_{M_4 \times \mathcal{X}_6} e^{-2\phi} \mathcal{R}_{(10)} + \frac{\chi}{(2\pi)^4 \alpha'} \int_{M_4} \left(2\zeta(3) e^{-2\phi} + \frac{2\pi^2}{3} \right) \mathcal{R}_{(4)}$$

4-loop σ -model \nearrow vanishes for orbifolds

localisation width $w \sim |\chi| I_s = I_p^{(4)}$

in agreement with general arguments of localised gravity

Dvali-Gabadadze-Porrati '00

localisation width w

$$\sum_{i} k_{i} = 0, \ k_{1}^{2} = k_{2}^{2} = 0, \ k_{3}^{2} = -q^{2}$$

$$\sim \chi e^{-q^2/2w^2}$$
 Z_N orbifold: $\chi \sim N$

compute *w* in the large *N* limit by saddle point analysis of the integral over the 2d torus modulus

 $\Rightarrow w \sim l_s/\sqrt{N} \sim l_p^{(4)}$ [34]

in agreement with general arguments of localised gravity

Dvali-Gabadadze-Porrati '00

perturbative moduli stabilisation I.A.-Chen-Leontaris '18, '19

localised vertices from $\mathcal{R}_{(4)}$ can emit massless closed strings

 \Rightarrow local tadpoles in the presence of distinct 7-brane sources

propagation in 2d transverse bulk $ightarrow \log R_{\perp}$ corrections

exact computation: difficult either in CY or in orbifolds - genus 3/2

I. Antoniadis (Virtual Bled Workshop 2021)

perturbative moduli stabilisation I.A.-Chen-Leontaris '18, '19

Kähler potential:

$$\mathcal{K} = -2\ln\left(\mathcal{V} + \xi + \eta \ln \frac{\mathcal{V}_{\perp}}{w^2} + \mathcal{O}(\frac{1}{\mathcal{V}})\right) = -2\ln\left(\mathcal{V} + \eta \ln \mu^2 \mathcal{V}_{\perp}\right)$$

 $\xi = -\frac{1}{4}\chi f(g_s); \quad f(g_s) = \begin{cases} \zeta(3) \simeq 1.2 \quad \text{smooth CY} \\ \frac{\pi^2}{3}g_s^2 & \text{orbifolds} \end{cases} \quad \eta = -\frac{1}{2}g_s T_0 \xi \text{ [34]}$

Using 3 mutual orthogonal 7-brane stacks with D-terms (magnetic fluxes) and minimising with respect to transverse volume ratios [31]

$$\Rightarrow V \simeq \frac{3\eta W_0^2}{\mathcal{V}^3} \left(\ln \mu^6 \mathcal{V} - 4 \right) + 3 \frac{d}{\mathcal{V}^2} \quad \mathcal{W}_0: \text{ constant superpotential, } d: \text{ D-term}$$

dS minimum: $-0.007242 < {d\over \eta {\cal W}_0^2 \mu^6} \equiv
ho < -0.006738$ with ${\cal V} \simeq e^5/\mu^6$ [39]

FI D-terms

$$V_{D_i} = rac{d_i}{ au_i} \left(rac{\partial K}{\partial au_i}
ight)^2 \, = \, rac{d_i}{ au_i^3} + \mathcal{O}(\eta_j)$$

 au_i : world-volume modulus of D7_i-brane stack with $\mathcal{V} = (au_1 au_2 au_3)^{1/2}$

$$\eta_i \equiv \eta \implies V_{tot} = \frac{3\eta \mathcal{W}_0^2}{\mathcal{V}^3} \left(\ln(\mathcal{V}\mu^6) - 4 \right) + \frac{d_1}{\tau_1^3} + \frac{d_2}{\tau_2^3} + \frac{d_3\tau_1^3\tau_2^3}{\mathcal{V}^6}$$

minimising with respect to τ_1 and $\tau_2 \Rightarrow \frac{\tau_i}{\tau_j} = \left(\frac{d_i}{d_j}\right)^{1/3} \Rightarrow$

$$V_D = 3 \frac{d}{V^2}$$
 with $d = (d_1 d_2 d_3)^{1/3}$

2 extrema min+max $\rightarrow -0.007242 <
ho < -0.006738 \leftarrow$ +ve energy [37] [43]

perturbative moduli stabilisation I.A.-Chen-Leontaris '18, '19

$$\xi = -\frac{1}{4}\chi f(g_s); \quad f(g_s) = \begin{cases} \zeta(3) \simeq 1.2 & \text{smooth CY} \\ \frac{\pi^2}{3}g_s^2 & \text{orbifolds} \end{cases} \quad \eta = -\frac{1}{2}g_s T_0 \xi$$

dS minimum: $-0.007242 < rac{d}{\eta \mathcal{W}_0^2 \mu^6} \equiv
ho < -0.006738$ with $\mathcal{V} \simeq e^5/\mu^6$

exponentially large volume:

$$\mu = \frac{e^{\xi/6\eta}}{w} = \sqrt{|\chi|}e^{-\frac{1}{3g_s T_0}} \to 0 \quad \Rightarrow$$

weak coupling and

large χ or/and \mathcal{W}_0 from 3-form flux to keep ρ fixed

requirement: negative χ (η < 0) [34] and surplus of D7-branes (T_0 > 0)

Inflation possibilities

- Inflaton: canonically normalised $\phi = \sqrt{2/3} \ln \mathcal{V}$ (in Planck units)
- one relevant parameter: ho or $x = -\ln\left(-4
 ho/3\right) 16/3$

0 < x < 0.072 for dS minimum

• extrema $V'(\phi_{\pm})=0$

$$\phi_{+} - \phi_{-} = \sqrt{2/3} \left(W_0(-e^{-x-1}) - W_{-1}(-e^{-x-1}) \right)$$

 $W_{0/-1}$: Lambert functions satisfying $W(xe^x) = x$

$$\frac{V(\phi_{+})}{V(\phi_{-})} = \frac{\left(W_{0}(-e^{-x-1})\right)^{3} \left(2+3W_{-1}(-e^{-x-1})\right)}{\left(W_{-1}(-e^{-x-1})\right)^{3} \left(2+3W_{0}(-e^{-x-1})\right)}$$

• slow roll parameter
$$\eta(\phi_{-/+}) = \frac{V''(\phi_{-/+})}{V(\phi_{-/+})} = -9 \frac{1+W_{0/-1}(-e^{-x-1})}{\frac{2}{3}+W_{0/-1}(-e^{-x-1})}$$

successful inflation possible around the minimum from the inflection point

Inflation possibilities

• Friedmann equations with time replaced by the inflaton \Rightarrow

Hubble parameter $\rightarrow H'(\phi) = \mp \frac{1}{\sqrt{2}} \sqrt{3H^2(\phi) - V(\phi)}$

- slow-roll parameters: $\eta(\phi) = \frac{V''(\phi)}{V(\phi)}, \quad \epsilon(\phi) = \frac{1}{2} \left(\frac{V'(\phi)}{V(\phi)}\right)^2$
- number of e-folds by the end of inflation: $N(\phi) = \int_{\phi_{end}}^{\phi} \frac{d\phi}{\sqrt{2\epsilon}}$ Observational constraints at the horizon exit $\phi = \phi_*$:

1
$$N_* \simeq 50 - 60$$

- 2 spectral index of power spectrum $n_S 1 = 2\eta_* 6\epsilon_* \simeq -0.04$
- 3 amplitude of scalar perturbations $\mathcal{A}_{\mathcal{S}} = rac{V_*}{24\pi^2\epsilon_*} \simeq 2.2 imes 10^{-9}$

 \Rightarrow inflation possible around the minimum from the inflection point $_{\scriptscriptstyle [39]}$

dS vacuum metastability 141

- through tunnelling $H_c > H_-$ Coleman de Luccia instanton
- over the barrier $H_c < H_-$ Hawking Moss transition

$$\begin{aligned} \frac{H_c^2}{H_-^2} &\equiv -\frac{3V''(\phi_+)}{4V(\phi_-)} \\ \text{HM region: } \Gamma \sim e^{-B} \text{ ; } B \simeq \frac{24\pi^2}{V} \frac{\Delta V}{V} \\ \frac{\Delta V}{V} \simeq 24\sqrt{2}x^{3/2} \Rightarrow \\ B \simeq 3 \times 10^9 \text{ for } x \simeq 3 \times 10^{-4} \end{aligned}$$

Conclusions

Novel D-terms in supergravity that do not gauge the R-symmetry allow to write a positive cosmological constant even without matter fields their implementation in string theory: open problem

New mechanism of moduli stabilisation is string theory (type IIB)

- perturbative: weak coupling, large volume
- based on log corrections in the transverse volume of 7-branes due to local tadpoles induced by localised gravity kinetic terms arising only in 4 dimensions!
- can lead to de Sitter vacua in string theory explicit counter-example to dS swampland conjecture
- inflation possible around the minimum from the inflection point