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Color Confinement and Supersymmetric Features 
of Hadron Physics from Light-Front Holography

and Novel Features of QCD from Light-Front Holography II

Stan Brodsky  
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|p>=|u[ud]> quark-diquark cluster
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What Comes 
Beyond the Standard 

Models?
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Dosch, de Teramond, sjb L (Orbital Angular Momentum)

MESONS
[qq̄]

BARYONS
[qqq]

bosons fermions

Supersymmetric  
QCD Spectroscopy 





Fit to the slope of Regge trajectories, 
including radial excitations

Same Regge Slope for Meson, Baryons:  
Supersymmetric feature of hadron physics

mu = md = 46 MeV, ms = 357 MeV

From ↵g1(Q2)
Deur

� = 2 de Tèramond, Dosch, Lorce’, sjb

κ = λ = 0.523 ± 0.024

Universal Mass Scale



�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point
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Challenge: Compute Hadron Structure, 
Spectroscopy, and Dynamics from QCD!

• Color Confinement 

• Origin of the QCD Mass Scale 

• Meson and Baryon Spectroscopy 

• Universal Regge Slopes: n and L for Mesons, Baryons, 
Tetraquarks 

• Almost Massless Pion: GMOR Chiral Symmetry Breaking

 

• QCD Coupling at all Scales   

• Eliminate Scale Uncertainties and Scheme Dependence 

• Heavy Quark Distributions

3

Chiral symmetry breaking.–The chiral limit follows di-
rectly from (12) since all the coe�cients C vanish for
 6= 0 in this limit. From (12) we obtain

M2
⇡ = �(mu+md) +O

�
(mu+md)

2
�
, (14)

in the limit mu,md ! 0. It has the same linear depen-
dence in the quark mass as the Gell-Mann-Oakes-Renner
(GMOR) relation [43]

M2
⇡f

2
⇡ = �

1
2 (mu+md)hūu+d̄di+O

�
(mu+md)

2
�
, (15)

where the vacuum condensate h  i ⌘ 1
2 hūu + d̄di plays

the role of a chiral order parameter. The same linear de-
pendence in (14) arises for the (3 + 1) e↵ective LF Hamil-
tonian, since the constraints from the superconformal al-
gebra require that the contribution to the pion mass from
the transverse LF dynamics is identically zero [8].

The lowest mode eigenfunction in (11) has identi-
cal form as the approximate analytic solution obtained
in [21, 22], �(x) ⇠ x�1(1 � x)�2 , where the exponents
�i are determined by quark masses and the longitudinal
coupling g, which in QCD(1+1) has units of mass. In the
’t Hooft model [21] the longitudinal equation (4) becomes
the non-linear equation

 
m2

q

x
+

m2
q̄

1� x

!
�(x) +

g2NC

⇡
P

Z 1

0
dx0�(x)� �(x0)

(x� x0)2

= M2
k �(x), (16)

with ⇡m2
q/g

2NC�1+⇡�1 cot(⇡�1) = 0 from the x-power
expansion of (16) at x = ✏ and a similar expression from
the upper bound x = 1�✏. Spontaneous chiral symmetry
breaking occurs in the limit NC ! 1, followed by the
limit mq ! 0 with the result �i = (3m2

i /⇡g
2NC)1/2 from

the expansion of the transcendental equation above and

M2
⇡ = g

p
⇡NC/3 (mu +md) +O

�
(mu+md)

2
�
, (17)

from integrating (16) [21, 23]. Comparison with (14)
leads to � = g

p
⇡NC/3 = const, since g scales as

g ⇠ 1
p
NC and chiral logarithms are suppressed at

NC ! 1. We notice that both (14) and (17) receive
identical contributions from the potential and kinetic en-
ergy terms in agreement with the virial theorem.

Numerical results.–In practice, we need to know the
value of the scale � and the quark masses to compute
M2

k . In the heavy quark limit Eq. (10) coincides with the

heavy-quark e↵ective theory (HQET) result [44], which
requires that the confining scale is proportional to the
mass of the heavy meson:

p
�Q = C

p
MQ [13, 28]. The

value is C = 0.49± 0.02 GeV1/2 for MQ � 1.8 GeV [15],
namely � ' C2 = 0.24 GeV. We assume that this value
of the longitudinal confinement scale to remain constant,
a result supported by the large NC QCD(1 + 1) ’t Hooft
model discussed above. Thus, fixing C ' 0.5 GeV1/2

at all scales, we can determine the e↵ective light quark
masses mu and md from the measured pion mass and the
strange quark mass, ms, from the kaon mass using (12):
The value of the �(1020) mass is then a prediction. No-
tice that the �(1020) vector meson also has the transverse
mass component M? =

p
2� from the spin-spin interac-

tion in supersymmetric LF holographic QCD [9, 35] withp
� = 0.523 GeV.

TABLE I. Lowest expansion coe�cients C in (13).

 = 0  = 1  = 2  = 3  = 4  = 5  = 6
C(ud̄) 0.998 0 0.055 0 0.010 0 -0.003
C(us̄) 0.967 -0.231 0.100 -0.006 -0.009 0.013 -0.016
C(ss̄) 0.998 0 0.038 0 -0.045 0 -0.024
C(uc̄) 0.958 -0.267 0.097 -0.012 -0.003 0 -0.007
C(cc̄) 0.999 0 0.016 0 -0.020 0 -0.003

We show in Table I the values of the lowest expansion
coe�cients. The results for the light meson masses in
Fig. 1 correspond to the values mu = md = 28 MeV and
ms = 326 MeV. Meson masses are determined from the
stability plateau in Fig. 1. For light quark masses con-
tributions above max ' 20 introduce large uncertainties
from highly oscillatory integrands. In Fig. 2 we show the
e↵ect of the strong oscillations from the large  behavior
of the Jacobi Polynomials [46] by examining the variation
of the results for quark masses in the interval mq = 28
MeV to mq = 28⇥ 10�8 MeV.

FIG. 1. Numerical evaluation of ground state meson masses
from the stability plateau in the figure using (12). The hori-
zontal grey lines in the figure are the observed masses [45].

The distribution amplitude (DA) [47], X(x) ⌘p
x(1� x�(x), for the pion, kaon and J/ mesons are

shown in Fig. (3). Due to the rapid convergence of the
exponential wave function in the basis expansion (13),
very few modes are required to reproduce the invari-
ant mass ansatz. The DAs predicted by holographic LF
QCD at the initial nonperturbative scale should then

αs(Q2)

Valence and Higher Fock StatesℒQCD → ψH
n (xi, ⃗k ⊥i, λi)
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Supersymmetric Features of Hadron Physics 
from Superconformal Algebra 
and Light-Front Holography  6 July 2021

Supersymmetry in QCD

• A hidden symmetry of Color SU(3)C in hadron 
physics

• QCD: No squarks or gluinos!

• Emerges from Light-Front Holography and 
Super-Conformal Algebra

• Color Confinement

• Massless Pion in Chiral Limit

de Téramond, Dosch, Lorcé, sjb



Need a First Approximation to QCD 

 Comparable in simplicity to 
Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining 

Origin of hadronic mass scale

AdS/QCD 
Light-Front Holography  
Superconformal Algebra

     No parameters except for quark masses! 



Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

Instant Form Front Form 

z0 = 1
⇥QCD

z�

� = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed ⇥ = t + z/c

� = ct� z

z0 = 1
⇥QCD

z�

� = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed ⇥ = t + z/c

� = ct� z

Evolve in light-front time!Evolve in ordinary time

P.A.M Dirac, Rev. Mod. Phys. 21, 
392 (1949)

Dirac’s Amazing Idea: 
The “Front Form”

Casual, Boost Invariant!

 Trivial LF Vacuum (up to zero modes) 

Comparing light-front quantization with instant-time quantization

Philip D. Mannheim(Connecticut U.),  
Peter Lowdon(Ecole Polytechnique, CPHT),  
Stanley J. Brodsky(SLAC) 

• 	e-Print: 2005.00109 [hep-ph]

https://inspirehep.net/literature/1793836
https://inspirehep.net/authors/998943
https://inspirehep.net/institutions/902753
https://inspirehep.net/authors/1073966
https://inspirehep.net/institutions/909206
https://inspirehep.net/literature?q=a%20S.J.Brodsky.2
https://inspirehep.net/institutions/903206
https://arxiv.org/abs/2005.00109
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Measurements of hadron LF 
wavefunction are at fixed LF time

Like a flash photograph xbj = x =
k+

P+

 n(xi,~k?i ,�i)

Invariant under boosts!  Independent of Pμ 

Dirac: Front Form
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HQCD
LF |ψ>=M2|ψ>

Dirac’s Front Form: Fixed τ= t+ z/c

Bound States in Relativistic Quantum Field Theory: 

Light-Front Wavefunctions

Remarkable new insights from AdS/CFT, the duality 
between conformal field theory  and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ

Direct connection to QCD Lagrangian

 (xi,~k?i,�i)
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P0+Pz
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⇥ = d�s(Q2)
d lnQ2 < 0

u

LF Wavefunction: off-shell in invariant mass

x =
k+

P+
=

k0 + k3

P 0 + P 3



General remarks about orbital angular mo-
mentum
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Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3

Causal, Frame-independent.  Creation Operators on Simple Vacuum, 
Current Matrix Elements are Overlaps of LFWFS

|p, Jz >=
X

n=3

 n(xi,~k?i,�i)|n;xi,~k?i,�i >

Invariant under boosts!  Independent of Pμ 

Eigenstate of LF Hamiltonian 

 n(xi,~k?i ,�i)

HQCD
LF |�h >= M2

h|�h >



PDFs FFs

TMDs

Charges

GTMDs

GPDs

TMSDs

TMFFs

Transverse density in 
momentum space

Transverse density in position 
space

Longitudinal 

Transverse

Momentum space Position space

Lorce, 
Pasquini

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

Sivers, T-odd from lensing

Light-Front Wavefunctions
underly hadronic observables

DGLAP, ERBL Evolution
Factorization Theorems

Weak transition  
form factors

Diffractive DIS from FSI



Two Definitions of Vacuum State

Instant Form: Lowest Energy Eigenstate of Instant-
Form Hamiltonian

Front Form: Lowest Invariant Mass Eigenstate of Light-Front 
Hamiltonian

Frame-independent eigenstate at fixed LF time τ = t+z/c 
within causal horizon

Eigenstate defined at one time t over all space; 
Acausal! Frame-Dependent

Frame-independent description of the causal physical universe!



AdS5 

in collaboration with Guy de Teramond and H. Guenter Dosch

Changes in 
physical

length scale 
mapped to 

evolution in the 
5th dimension z 
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Supersymmetric Features of Hadron Physics 
from Superconformal Algebra 
and Light-Front Holography  7 July 2021

•Soft-wall dilaton profile breaks 
conformal invariance

•Color Confinement in z

•Introduces confinement scale κ

•Uses AdS5 as template for conformal 
theory

e'(z) = e+2z2

Dilaton-Modified AdS

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

https://indico.cern.ch/event/628450/
https://indico.cern.ch/event/628450/


AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(�µ⇥dxµdx⇥ � dz2),

xµ ⇤ ⇥xµ, z ⇤ ⇥z, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 ⇤ ⇥2x2, z ⇤ ⇥z.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z ⇤ 0 correspond to theQ⇤⌅, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 11

invariant measure

AdS/CFT

AdS5
Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Maldacena



Holographic Mapping of AdS Modes to QCD LFWFs

• Integrate Soper formula over angles:

F (q2) = 2⇥

⇧ 1

0
dx

(1� x)
x

⇧
�d�J0

⇥
�q

⌥
1� x

x

⇤
⇤̃(x, �),

with ⌃⇤(x, �) QCD effective transverse charge density.

• Transversality variable

� =
⌥

x

1� x

���
n�1⌅

j=1

xjb⇥j

���.

• Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

⇧ 1

0
dxJ0

⇥
�Q

⌥
1� x

x

⇤
= �QK1(�Q),

the solution for J(Q, �) = �QK1(�Q) !

Exploring QCD, Cambridge, August 20-24, 2007 Page 35

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

Drell-Yan-West: Form Factors are 
Convolution of LFWFs

Identical to Polchinski-Strassler Convolution of AdS Amplitudes

de Teramond, sjb
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LF(3+1)                AdS5

Light-Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for EM and gravitational current matrix elements 

and identical equations of motion

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb

(µR)2 = L2 � (J � 2)2

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Light-Front Holographic Dictionary



AdS Soft-Wall Schrödinger Equation for  
bound state  of  two scalar constituents:

U(z) = �4z2 + 2�2(L + S � 1)

• de Teramond, sjbPositive-sign dilaton

⇥
� d2

dz2
� 1� 4L2

4z2
+ U(z)

⇤
�(z) =M2�(z)

e'(z) = e+2z2

Derived from variation of Action for Dilaton-Modified AdS5 

Identical to Single-Variable Light-Front Bound State Equation in ζ! 
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�d⇥ np
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Light-Front Holography



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

Conformal Symmetry 
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation Unique 
Confinement Potential!

de Tèramond, Dosch, sjb

 ' 0.5 GeV

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!• Fubini, Rabinovici: 

e'(z) = e+2z2

Single variable  ζ

⇥
� d2

d⇣2 � 1�4L2

4⇣2 + U(⇣)
⇤
 (⇣) = M2 (⇣)

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

GeV units external to QCD: Only Ratios of Masses Determined



G. de Teramond, H. G. Dosch, sjb 

U(⇣2) = 4⇣2 + 22(J � 1)

z ! ⇣

Pion: Negative term  for J=0 cancels 
positive terms from LFKE and potentialm⇡ = 0 if mq = 0

Massless pion! 

~⇣2 = ~b2?x(1� x)



Prediction from AdS/QCD: Meson LFWF

�(x, k�)
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       “Soft Wall” 
model

�(x, k�)(GeV)

de Teramond, 
Cao, sjb⇥M(x, Q0) ⇥

�
x(1� x)

⇤M(x, k2
⇤)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

massless quarks

Note coupling  

k2
�, x

Provides Connection of Confinement to Hadron Structure

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

x

1� x

�⇡(x) =
4p
3⇡

f⇡

p
x(1� x)

f⇡ =
p

Pqq̄

p
3

8
 = 92.4 MeV Same as DSE!

e'(z) = e+2z

C. D. Roberts et al.
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where c is the dimensionless normalization factor

c�2 =
� 1

0
dx e

� 1
�2

„
m2

1
x +

m2
2

1�x

«

. (5)

The Fourier transform of (4) is the impact space LFWF

 ⌥(x,b⇥) =
c ⇥ 

⌅

⌦
x(1� x) e�

1
2 �2⇥2

, (6)

where the invariant quantity ⌃ is

⌃2 = x(1� x)b2
⇥ +

1
⇥4

⇤
m2

1

x
+

m2
2

1� x

⌅
. (7)

Impact space holographic LFWFs for the ⌅, K, D, �c, B
and �b mesons are depicted in Fig. 1.

The non-perturbative input to hard exclusive processes
and heavy hadron decays can be computed in terms of
gauge invariant hadronic distribution amplitudes (DAs),
which describe the momentum-fraction distribution of
partons at zero transverse impact distance in a Fock
state with a fixed number of constituents. The me-
son DA is computed from the transverse integral of the
valence quark light-front wavefunction in the light-cone
gauge [17]

⇧M (x,Q) =
� k2

⇥<Q2
d2k⇥
16⌅3

⌥M (x,k⇥), (8)

and thus ⇧(x) ⇥ ⇧(x,Q ⌅ ⇧) ⌅  ⌥(x,b⇥ ⌅ 0)/
 

4⌅.
From (6) we obtain the holographic distribution ampli-
tude ⇧(x)

⇧M (x) =
c ⇥

2⌅

⌦
x(1� x) e

� 1
2�2

»
m2

1
x +

m2
2

1�x

–

, (9)

in the soft wall model. The distribution amplitudes for
the ⌅, K, D, �c, mesons are shown in Fig. 2. Predictions
for the first and second moment of the meson distribution
amplitude

⌥⇤N �M =

⌥ 1
�1 ⇤N⇧M (⇤)
⌥ 1
�1 ⇧M (⇤)

, (10)

and comparison with available lattice computations are
given on Table I . In the chiral limit, the AdS distribu-
tion amplitude ⇧AdS(x) ⇤

⌦
x(1� x) gives for the second

moment ⌥⇤2�AdS ⌅ 1/4, compared with the asymptotic
value ⌥⇤2�PQCD ⌅ 1/5 from the PQCD asymptotic DA
⇧PQCD(x) ⇤ x(1� x) [17] .

...............

III. PARTONIC MASS SHIFT

We compute the partonic mass shift contribution to a
meson due to the constituents quark masses [21]

M2 =M2
massless +

⇧
m2

1

x

⌃
+
⇧

m2
2

1� x

⌃
, (11)

FIG. 1: Two-parton flavored meson holographic LFWF
⌅(x,b�): (a) |⇤+� = |ud�, (b) |K+� = |us�, (c) |D+� = |cd�,
(d) |�c� = |cc�, (e) |B+� = |ub� and (f) |�b� = |bb�. Values
for the quark masses used are mu = 2 MeV, md = 5 MeV,
ms = 95 Mev, mc = 1.25 GeV and mb = 4.2 GeV. The value
of ⇥ = 0.375 GeV is extracted from the pion form factor [16].

for the holographic LFWF (4). Results for the partonic
mass shift contribution �M =

�
M2 �M2

massless

⇥1/2 are
compared with hadronic masses on Table II.

.....

IV. CONCLUSIONS

..........

|�+ >= |ud̄ > |K+ >= |us̄ >

|D+ >= |cd̄ >

|�b >= |bb̄ >

|�c >= |cc̄ >

mu = 2 MeV
md = 5 MeV

ms = 95 MeV

mc = 1.25 GeV

mb = 4.2 GeV

� = 375 MeV

b[GeV�1]

x

|B+ >= |ub̄ >
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to constrain the non-minimal sea quark.
The value of the isovector axial charge gA = 1.2732(23)

is precisely determined by the neutron weak decay [58].
As shown in Table I, its values evaluated with a minimal
sea component, gA,min, are smaller than the experimental
value. To in the value of gA with the minimal shift u⌧ !

u⌧ + �⌧,u, ū⌧ ! ū⌧ + �⌧,u and similarly for the d-quark,
implies a positive shift �⌧=5,u and/or �⌧=6,d. Therefore,
we satisfy the sum rule by the shift �⌧=5,u and �⌧=6,d, and
take the variation between them as part of the theoretical
uncertainty.

10�3 10�2 10�1 100

x

0.0

0.2

0.4

0.6

0.8

x
[�

u
+

�
�

d +
] µ2 = 5 GeV2

This work(I)
This work(II)
This work(III)
NNPDFpol1.1
JLab-E06-014
JLab-E99-117
JLab-EG1b
HERMES
COMPASS

FIG. 1. Polarized distributions of the isovector combina-
tion x[�u+(x)��d+(x)] in comparison with NNPDF global
fit [15] and experimental data [6–10, 12]. Three sets of param-
eters, see Table I, are determined from the Dirac form factor
and unpolarized valence distributions. The bands represent
the variation with di↵erent approaches to saturate the axial
sum rule. The blue dashed curve shows the result with only
valence state contribution.

For the universal reparametrization function w(x), we
take the same form as in [50],

w(x) = x
1�x exp[�a(1 � x)2], (31)

with the parameter “a” fixed with the first moment of
unpolarized valence quark distributions. One can in
principle adopt any parametrization form that fulfills
the boundary conditions (7) and (8), and the predictive
power is kept by the universality of w(x) for all PDFs.
For comparison with measurements, we evolve the distri-
butions from 1.06GeV, which is the matching scale sug-
gested by the study of the strong coupling constant [59].
As shown in Figs. 1-3, our numerical results are in good
agreement with the global fit [15] and measurements [6–
10, 12]. The isovector combination �u+ � �d+, where
u+ and d+ stand for u + ū and d + d̄, is the distribu-
tion relevant to the axial charge sum rule (30). In Fig. 1,
the dashed blue curve is the contribution from the va-
lence state only, and the di↵erence with the full results,

FIG. 2. Polarized distributions of u, d, ū, and d̄ in comparison
with NNPDF global fit [15] and experimental data [10, 12].
The bands have the same meaning as in Fig. 1.

FIG. 3. Helicity asymmetries of u + ū and d + d̄ compared
with measurements. The bands and symbols have the same
meaning as in Fig. 1.

cases I, II and III, which include saturation of the ax-
ial sum rule is noticeable. This is consistent with the
analysis of the Pauli form factor in [60], which demon-
strates the significance of the sea quarks in describing
spin-related quantities. For each single flavor, shown in
Fig. 2, the variation of the results with three sets of co-
e�cients is large, because the sea quark coe�cients are
not well constrained by the procedure discussed above.
Furthermore, the truncation of the Fock state up to five-
quark states allowing only one pair of sea quarks may
potentially result in greater theoretical uncertainties for
each individual flavor. The axial sum rule provides an
important constraint but still leave some flexibility, like
adding the same term to uū and dd̄. Since the goal of this
letter is to introduce a new approach to study polarized
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cases I, II and III, which include saturation of the ax-
ial sum rule is noticeable. This is consistent with the
analysis of the Pauli form factor in [60], which demon-
strates the significance of the sea quarks in describing
spin-related quantities. For each single flavor, shown in
Fig. 2, the variation of the results with three sets of co-
e�cients is large, because the sea quark coe�cients are
not well constrained by the procedure discussed above.
Furthermore, the truncation of the Fock state up to five-
quark states allowing only one pair of sea quarks may
potentially result in greater theoretical uncertainties for
each individual flavor. The axial sum rule provides an
important constraint but still leave some flexibility, like
adding the same term to uū and dd̄. Since the goal of this
letter is to introduce a new approach to study polarized

Tianbo Liu, ∗ Raza Sabbir Sufian, Guy F. de T éramond, 

Hans Gunter Dösch,  Alexandre Deur, sjb

Polarized distributions for the 

isovector combination x[∆u+ (x) − ∆d+ (x)]

u+(x) = u(x) + ū(x)d+(x) = d(x) + d̄(x)

Δq(x) = q↑(x) − q↓(x)
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S = 0 S = 0

Soft Wall 
Model

mq = 0

Quark separation 
increases with L

Pion has 
zero mass!

Same slope in n and L!



Structure of the Vacuum in Light-Front Dynamics

• Results easily extended to light quarks masses (Ex: K-mesons)
[GdT, S. J. Brodsky and H. G.Dosch, arXiv:1405.2451 [hep-ph]]

• First order perturbation in the quark masses

�M2 = h |
X

a

m2
a/xa| i

• Holographic LFWF with quark masses
[S. J. Brodsky and GdT, arXiv:0802.0514 [hep-ph]

 (x, ⇣) ⇠
p

x(1� x) e�
1
2�

�m2
q

x +
m2

q
1�x

�
e�

1
2� ⇣2

• Ex: Description of diffractive vector meson production at HERA
[J. R. Forshaw and R. Sandapen, PRL 109, 081601 (2012)]

• For the K⇤

M2
n,L,S = M2

K± + 4�
✓

n +
J + L

2

◆

• Effective quark masses from reduction of higher Fock states as functionals of the valence state:

mu = md = 46 MeV, ms = 357 MeV

Niccolò Cabeo 2014, Ferrara, May 20, 2012
Page 33

De Tèramond, Dosch, sjb

from LF Higgs mechanism

Effective mass from m(p2) Roberts, et al.
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Timelike Pion Form Factor from AdS/QCD  
          and Light-Front Holography

s(GeV2)

F⇡(s) = (1� �) 1
(1� s
M2

⇢
) + � 1

(1� s
M2

⇢
)(1� s

M2
⇢0

)(1� s
M2

⇢00
)

Prescription for 
Timelike poles :

1
s�M2 + i

p
s�

log |F⇡(s)|
� = 0.17

M2
⇢n

= 42(1/2 + n)
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 probability



A.P.  Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form V (r) = Cr for heavy quarks

Harmonic Oscillator U(⇣) = 4⇣2 LF Potential for relativistic light quarks
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 Stan Brodsky
Bled Workshop

Supersymmetric Features of Hadron Physics 
from Superconformal Algebra 
and Light-Front Holography  6 July 2021

Remarkable Features of  
Light-Front Schrödinger Equation

•Relativistic, frame-independent

•QCD scale appears - unique LF potential

•Reproduces spectroscopy and dynamics of light-quark hadrons with 
one parameter

•Zero-mass pion for zero mass quarks!

•Regge slope same for n and L  -- not usual HO

•Splitting in L persists to high mass   -- contradicts conventional 
wisdom based on breakdown of chiral symmetry

•Phenomenology: LFWFs, Form factors, electroproduction

•Extension to heavy quarks

U(⇣) = 4⇣2 + 22(L + S � 1)

Dynamics + Spectroscopy! 



 Stan Brodsky
Bled Workshop

Supersymmetric Features of Hadron Physics 
from Superconformal Algebra 
and Light-Front Holography  6 July 2021

LFHQCD: Underlying Principles

• Poincarè Invariance: Independent of the observer’s Lorentz 
frame:  Quantization at Fixed Light-Front Time τ 

• Causality: Information within causal horizon:  Light-Front 

• Light-Front Holography: AdS5 = LF (3+1) 

• Introduces Mass Scale κ while retaining the Conformal 
Invariance of the Action (dAFF) 

• Unique Dilaton in AdS5:   

• Unique color-confining LF Potential 

• Superconformal Algebra:  Mass Degenerate 4-Plet:

U(⇣2) = 4⇣2

e+2z2

Meson qq̄ $ Baryon q[qq] $ Tetraquark [qq][q̄q̄]

z $ ⇣ where ⇣2 = b2?x(1� x)
Exploring QCD, Cambridge, August 20-24, 2007 Page 9



{Q,S+} = f �B + 2iD, {Q+, S} = f �B � 2iD

B =
1
2
[ +, ] =

1
2
�3{ , +} = 1

 =
1
2
(�1 � i�2),  + =

1
2
(�1 + i�2)

{Q,Q
+} = 2H, {S, S

+} = 2K

generates conformal algebra

[H,D]= i H, [H, K] =2 i D, [K, D] = - i K

Q =  +[�@x +
f

x
], Q+ =  [@x +

f

x
], S =  +x, S+ =  x

Haag, Lopuszanski, Sohnius (1974)

Superconformal Quantum Mechanics 

Q '
p

H, S '
p

K



�
� @2

⇣ + 4⇣2 + 22(LB + 1) +
4L2

B � 1
4⇣2

�
 +

J = M2 +
J

Baryon Equation

Meson Equation

M2(n,LB) = 42(n + LB + 1)

�
� @2

⇣ + 4⇣2 + 22LB +
4(LB + 1)2 � 1

4⇣2

�
 �J = M2 �J

�
� @2

⇣ + 4⇣2 + 22(J � 1) +
4L2

M � 1
4⇣2

�
�J = M2�J

M2(n,LM ) = 42(n + LM )

Meson-Baryon Degeneracy for LM=LB+1

S=1/2, P=+

LF Holography

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

Superconformal  
Quantum Mechanics 

Same   !
S=0, P=+

� = 2

de Téramond, Dosch, Lorcé, sjb



Superconformal Algebra
2X2 Hadronic Multiplets

&%
'$ue &%

'$e ee
�M , LB + 1  B+, LB

-R
†
�

&%
'$e ee
 B�, LB + 1

&%
'$e eu u
�T , LB

-R
†
�

Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, J
P = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m
2 =

P
n

i=1
m

2
i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e
� 1

2��m
2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m
2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.

12

Meson Baryon

Baryon

Bosons, Fermions with Equal Mass!

Proton: |u[ud]> Quark + Scalar Diquark
Equal Weight: L=0, L=1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! [qq]

3̄C ! 3̄C

Tetraquark: 
diquark + antidiquark
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7
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`

• Universal quark light-front kinetic energy 

• Universal quark light-front potential energy 

• Universal Constant Contribution from AdS 
and Superconformal Quantum Mechanics

�M2
LFKE = 2(1 + 2n + L)

�M2
LFPE = 2(1 + 2n + L)

Equal: 
Virial 

Theorem 

hyperfine spin-spin

�M2
spin = 22(L + 2S + B � 1)

M2
H

2
= (1 + 2n + L) + (1 + 2n + L) + (2L + 4S + 2B � 2)

Universal Hadronic Decomposition



M. Nielsen, 
sjbNew Organization of the Hadron Spectrum

Meson Baryon        Tetraquark





Fit to the slope of Regge trajectories, 
including radial excitations

Same Regge Slope for Meson, Baryons:  
Supersymmetric feature of hadron physics

mu = md = 46 MeV, ms = 357 MeV

From ↵g1(Q2)
Deur

� = 2

κ = λ = 0.523 ± 0.024

Universal Mass Scale

de Téramond, Dosch, Lorcé, sjb



Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

⇤+(�)n,L = ⇥2+L

⌅
2n!

(n + L)!
�3/2+Le�⇥2�2/2LL+1

n

�
⇥2�2

⇥

⇤�(�)n,L = ⇥3+L 1⇤
n + L + 2

⌅
2n!

(n + L)!
�5/2+Le�⇥2�2/2LL+2

n

�
⇥2�2

⇥

• Normalization ⇤
d� ⇤2

+(�) =
⇤

d� ⇤2
�(�) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4⇥2 (n + L + 1)

• “Chiral partners”
MN(1535)

MN(940)
=
⇤

2

LC 2011 2011, Dallas, May 23, 2011 Page 13

Quark Chiral 
Symmetry of 
Eigenstate!

Nucleon spin carried by quark orbital angular momentum 

Nucleon: Equal Probability for L=0,1

Jz = + 1/2 :
1

2
[ |Sz

q = + 1/2, Lz = 0 > + |Sz
q = − 1/2, Lz = + 1 > ]

R1
0 d⇣

R 1
0 dx 2

+(⇣
2, x) =

R1
0 d⇣

R 1
0 dx 2

�(⇣
2, x) = 1

2

Baryon LFWFsLF Holography
Superconformal  

Quantum Mechanics 



x,~k? x,~k? + ~q?

 (xi,~k
0
?i) (xi,~k?i)

p

�⇤

~k0?i = ~k?i + (1� xi)~q?struck
~k0?i = ~k?i � xi~q?spectators

< p + q|j+(0)|p >= 2p+F (q2)

p + q

~q?q+ = 0

q2
? = Q2 = �q2

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Form Factors are 
Overlaps of LFWFs

Interaction  
picture

Drell &Yan, West 
Exact LF formula!

Front Form

Drell, sjb



For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression

F1(q
2) =

⇧

a

⌥
[dx][d2k⇧]

⇧

j

ej

�
⌅⇥�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇥

a(xi,k⇧i, ⇥i)
 
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2)

2M
=

⇧

a

⌥
[dx][d2k⇧]

⇧

j

ej
1

2
⇥ (11)

�
� 1

qL
⌅⇥�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇤

a(xi,k⇧i, ⇥i) +
1

qR
⌅⇤�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇥

a(xi,k⇧i, ⇥i)
 

,

F3(q2)

2M
=

⇧

a

⌥
[dx][d2k⇧]

⇧

j

ej
i

2
⇥ (12)

�
� 1

qL
⌅⇥�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇤

a(xi,k⇧i, ⇥i)�
1

qR
⌅⇤�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇥

a(xi,k⇧i, ⇥i)
 

.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

⌥
[dx] [d2k⇧] ⇤

⇧

�i,ci,fi

⇤
n⌃

i=1

�⌥ ⌥ dxi d2k⇧i

2(2⇤)3

⇥⌅

16⇤3�

�

1�
n⇧

i=1

xi

⇥

�(2)

�
n⇧

i=1

k⇧i

⇥

, (13)

where n denotes the number of constituents in Fock state a and we sum over the
possible {⇥i}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function di�erentiate between the struck and spectator constituents; namely, we
have [13, 15]

k⌅
⇧j = k⇧j + (1� xj)q⇧ (14)

for the struck constituent j and

k⌅
⇧i = k⇧i � xiq⇧ (15)

for each spectator i, where i ⌅= j. Note that because of the frame choice q+ = 0, only
diagonal (n⌅ = n) overlaps of the light-front Fock states appear [14].
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Drell, sjb
A(⇤,�⌅) = 1

2⇥

�
d�e

i
2⇤�M(�,�⌅)

P+, �P⌅

xiP
+, xi

�P⌅+ �k⌅i

� = Q2

2p·q

x̂, ŷ plane

M2(L) ⇤ L

Must have �↵z = ±1 to have nonzero F2(q2)

-

� = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

⇤(x, b⌅)

x

b⌅(GeV)�1

Identify z ⇤ ⇥ =
q

x(1� x) b⌅

Nonzero Proton Anomalous Moment --> 
Nonzero orbital  quark angular momentum

Exact LF Formula for Pauli Form Factor

Lz=+1 Lz=0



7th International Conference on High Energy Physics in the LHC Era7th International Conference on High Energy Physics in the LHC Era

 Stan Brodsky
Bled Workshop

Supersymmetric Features of Hadron Physics 
from Superconformal Algebra 
and Light-Front Holography  7 July 2021

Underlying Principles

• Polncarè Invariance: Independent of the observer’s Lorentz 
frame:  Quantization at Fixed Light-Front Time τ 

• Causality: Information within causal horizon:  Light-Front 

• Light-Front Holography: AdS5 = LF (3+1) 

• Introduce mass scale κ while retaining the Conformal Invariance 
of the Action (dAFF) 

• Unique Dilaton in AdS5:   

• Unique color-confining LF Potential 

• Superconformal Algebra:  Mass Degenerate 4-Plet:

U(⇣2) = 4⇣2

e+2z2

Meson qq̄ $ Baryon q[qq] $ Tetraquark [qq][q̄q̄]

z $ ⇣ where ⇣2 = b2?x(1� x)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

“Emergent Mass”

https://indico.cern.ch/event/628450/
https://indico.cern.ch/event/628450/


Supersymmetry across the light and heavy-light spectrum
de Téramond, Dosch, Lorcé, sjb



Supersymmetry across the light and heavy-light spectrum

Heavy charm quark mass does not break supersymmetry

de Téramond, Dosch, Lorcé, sjb



a


a

Superpartners for states with one c quark

predictions             beautiful agreement!M. Nielsen, sjb 47



Supersymmetry across the light and heavy-light spectrum

Heavy bottom quark mass does not break supersymmetry

de Téramond, Dosch, Lorcé, sjb



Structure of Hadron Bound-State Equations in LFHQCD

4 Heavy-light and heavy-heavy hadronic sectors

• Extension to the heavy-light hadronic sector

[H. G. Dosch, GdT, S. J. Brodsky, PRD 92, 074010 (2015), PRD 95, 034016 (2017)]

• Extension to the double-heavy hadronic sector

[M. Nielsen and S. J. Brodsky, PRD, 114001 (2018)]

[M. Nielsen, S. J. Brodsky, GdT, H. G. Dosch, F. S. Navarra, L. Zou, PRD 98, 034002 (2018)]

• Extension to the isoscalar hadronic sector

[L. Zou, H. G. Dosch, GdT,S. J. Brodsky, arXiv:1901.11205 [hep-ph]]

Bound States in QCD, St Goar, 9 April 2019

Page 12



5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb

e�(z) = e+2z2



•Can be used as standard QCD coupling

•Well measured

•Asymptotic freedom at large Q2

•Computable at large Q2 in any pQCD 
scheme

•Universal  β0,  β1

Bjorken sum rule defines effective charge ↵g1(Q2)
Z 1

0
dx[gep

1 (x,Q2)� gen
1 (x,Q2)] ⌘ ga

6
[1� ↵g1(Q2)

⇡
]



Matching Scale

Matching the couplings from LFHQCD and pQCD

 12

Bjorken sum rule:

Imposing continuity for α 
and its first derivative

Effective coupling in LFHQCD 
(valid at low-Q2)

A. Deur, S.J. Brodsky, G.F. de Téramond,  
Phys. Lett. B 750, 528 (2015); J. Phys. G 44, 105005 (2017).

Analytic, defined at all scales, IR Fixed Point

Running Coupling from AdS/QCD
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Bjorken sum�1
p-n measurements

A. Deur  04/14/2021 ILCAC seminar

 αg1 from the Bjorken Sum data 

Q2(GeV2)

Γ
1p-

n

JLab EG4
JLab EG4/E97110
JLab EG1-DVCS
JLab EG1b

JLab E94010/EG1a
JLab EG1a
DESY HERMES

CERN COMPASS (2015)

SLAC E143
SLAC E155

JLab RSS

pQCD leading twist
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0 1 2 3 4 5

} Prel
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.
Γ1

p-n≙   gA(1-      )1
6

αg1

π

0

0.2
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1

10 -1 1 10
Q (GeV)

α
g1
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αg1/π Hall A/CLAS (2004)

αg1/π CLAS EG4 (2021 prelim.)
αg1/π Hall A/EG4 (2021 prelim.)

αg1/π JLab CLAS (2008)
αg1/π JLab CLAS (2014)

αg1(τ)/π OPAL
αF3/π

αg1/π DESY HERMES
αg1/π CERN COMPASS
αg1/π SLAC E142/E143
αg1/π SLAC E154/E155
αg1/π JLab RSS
αg1/π CERN SMC



Low Q2 limit

First experimental evidence of nearly conformal behavior (i.e. no Q2-dependence) of QCD at low Q2. 
!33

3.66 3.20

 A. Deur  04/14/2021 ILCAC seminar

αg1 = π
⇒ dαg1 

dQ2
=       (        -         )3π

4gA Mp
2Mn

2
�

anomalous 
magnetic moment

� 2 ��2

8M2

-�2 Q2

Nucleon 
mass

Q (GeV)

α
g1

(Q
)/π

αg1/π Hall A/CLAS (2004)
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αg1/π CERN SMC

GDH limit

0

0.2

0.4

0.6

0.8

1

10 -1 1 10

At Q2 = 0, a sum rule related to the 
Bjorken sum rule exists: the Gerasimov-
Drell-Hearn (GDH) sum rule:  

At Q2 = 0, GDH sum rule: 

    Γ1=                                    

⇒ Q2 = 0 constraints:

A. Deur



Perturbative QCD

Holographic QCD

(asymptotic freedom)

Q0

Non−perturbative

0

0.2

0.4

0.6

0.8

1

10
-1

1 10

Q (GeV)

α
g
1
(Q

)/
π

Transition scale Q0

Perturbative QCD
(Asymptotic Freedom)

↵s
g1

(Q2)
⇡

Nonperturbative QCD 
(Quark Confinement)

All-Scale QCD Coupling

e�
Q2

42

Deur, de Tèramond, sjbm⇢ =
p

2
mp = 2

� ⌘ 2

 = 0.513± 0.007 GeV
Fit to Bj + DHG Sum Rules:

Q0 = 0.87± 0.08 GeV

MS schemeReverse Dimensional Transmutation!

Use Q0 for starting 
DGLAP  and ERBL 

Evolution

Experiment:
⇤MS = 0.332± 0.017 GeV

5-Loop � Prediction:
⇤MS = 0.339± 0.019 GeV
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FIG. 2. Solid (blue) curve: predicted process-independent
RGI running-coupling α̂PI(k2), Eq. (6). The shaded (blue)
band bracketing this curve combines a 95% confidence-level
window based on existing lattice-QCD results for the gluon
two-point function with an error of 10% in the continuum
extraction of the RGI product LF in Eqs. (1). World data
on αg1

[55–80]. The shaded (yellow) band on k > 1GeV
represents αg1

obtained from the Bjorken sum by using QCD
evolution [81–83] to extrapolate high-k2 data into the depicted
region, following Refs. [55, 56]; and, for additional context, the
dashed (red) curve is the light-front holographic model of αg1

canvassed in Ref. [45].

charge αg1(k
2) are depicted in Fig. 2 and therein com-

pared with our prediction for the process-independent
RGI running-coupling α̂PI(k2). Owing to asymptotic
freedom, all reasonable definitions of a QCD effective
charge must agree on k2 ! 1GeV2 and our approach
guarantees this connection. To be specific, in terms of
the widely-used MS running coupling [3]:

αg1(k
2) = α

MS
(k2)(1 + 1.14α

MS
(k2) + . . .) , (8a)

α̂PI(k
2) = α

MS
(k2)(1 + 1.09α

MS
(k2) + . . .) , (8b)

where Eq. (8a) may be built from, e.g. Refs. [84, 85].
Significantly, there is also near precise agreement with

data on the IR domain, k2 " m2
0, and complete accord

on k2 ≥ m2
0. Fig. 1 makes plain that any agreement on

k2 ∈ [0.01, 1]GeV2 is non-trivial because ghost-gluon in-
teractions produce as much as 40% of α̂PI(k2) on this
domain: if these effects were omitted from the gluon
vacuum polarisation, then αg1 and α̂PI would differ by
roughly a factor of two on the critical domain of transi-
tion between strong and perturbative QCD.

5: Conclusions.—We have defined and calculated a
process-independent running-coupling for QCD, α̂PI(k2)
[Eq. (6), Fig. 1]. This is a new type of effective charge,
which is an analogue of the Gell-Mann–Low effective cou-
pling in QED, being completely determined by the gauge-
boson two-point function. Our prediction for α̂PI(k2) is

parameter-free, being obtained by combining the self-
consistent solution of a set of Dyson-Schwinger equa-
tions with results from lattice-QCD; and it smoothly uni-
fies the nonperturbative and perturbative domains of the
strong-interaction theory. This process-independent run-
ning coupling is known to unify a vast array of observ-
ables, e.g. the pion mass and decay constant, and the
light meson spectrum [86]; the parton distribution am-
plitudes of light- and heavy-mesons [87–89], associated
elastic and transition form factors [90, 91], etc.
Finally, and perhaps surprisingly at first sight, α̂PI(k2)

is almost pointwise identical at infrared momenta to the
process-dependent effective charge, αg1 , defined via the
Bjorken sum rule, one of the most basic constraints on
our knowledge of nucleon spin structure, and in com-
plete agreement on the domain of perturbative momenta
[Fig. 2]. Equivalence on the perturbative domain is guar-
anteed for any two reasonable definitions of QCD’s ef-
fective charge, but here the subleading terms differ by
just 4% [Eqs. (8)]. An excellent match at infrared mo-
menta, i.e. below the scale at which perturbation theory
would locate the Landau pole, is non-trivial; and crucial
to this agreement is the careful treatment and incorpo-
ration of a special class of gluon-ghost scattering effects.
One is naturally compelled to ask how these two appar-
ently unrelated definitions of a QCD effective charge can
be so similar? We attribute this outcome to a physi-
cally useful feature of the Bjorken sum rule, viz. it is
an isospin non-singlet relation and hence contributions
from many hard-to-compute processes are suppressed,
and these same processes are omitted in our computa-
tion of α̂PI(k2).
The analysis herein unifies two vastly different ap-

proaches to understanding the infrared behaviour of
QCD, one essentially phenomenological and the other de-
liberately computational, embedded within QCD. There
is no Landau pole in our predicted running coupling.
In fact, there is an inflection point at

√
k2 = 0.7GeV,

marking a transition wall at which, as momenta de-
creasing from the ultraviolet promote growth in the cou-
pling, that coupling turns away from the Landau pole,
the growth slows, and finally the coupling saturates:
α̂PI(k2 = 0) ≈ 0.9π [Fig. 2]. This unification identifies
the Bjorken sum rule as a near direct means by which to
gain empirical insight into a QCD analogue of the Gell-
Mann–Low effective charge.
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We unify two widely different approaches to understanding the infrared behaviour of quantum
chromodynamics (QCD), one essentially phenomenological, based on data, and the other computa-
tional, realised via quantum field equations in the continuum theory. Using the latter, we explain
and calculate a process-independent running-coupling for QCD, a new type of effective charge that
is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is
almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which
provides one of the most basic constraints on our knowledge of nucleon spin structure. This re-
veals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD’s
Gell-Mann–Low effective charge.

1: Introduction.— In quantum gauge field theories de-
fined in four spacetime dimensions, the Lagrangian cou-
plings and masses do not remain constant. Instead, ow-
ing to the need for ultraviolet (UV) renormalisation, they
come to depend on a mass scale, which can often be re-
lated to the energy or momentum at which a given pro-
cess occurs. The archetype is quantum electrodynamics
(QED), for which a sensible perturbation theory can be
defined [1]. Within this framework, owing to the Ward
identity [2], there is a single running coupling, measur-
ing the strength of the photon–charged-fermion vertex,
which can be obtained by summing the collection of vir-
tual processes that change the bare photon into a dressed
object, viz. by computing the photon vacuum polarisa-
tion. QED’s running coupling is known to great accuracy
[3] and the running has been observed directly [4, 5].

A new coupling appears when electromagnetism is
combined with weak interactions to produce the Stan-
dard Electroweak Model [6]. It may be characterised by
sin2 θW , where θW is a scale-dependent angle which spec-
ifies the particular mixing between the model’s defining
neutral gauge bosons that produces the observed photon
and Z0-boson. A perturbation theory can also be de-
fined for the electroweak theory [7] so that sin2 θW can
be computed and compared with precise experiments [3].

At first sight, the addition of quantum chromodynam-
ics (QCD) [8] to the Standard Model does not quali-
tatively change anything, despite the presence of four
possibly distinct strong-interaction vertices (gluon-ghost,
three-gluon, four-gluon and gluon-quark) in the renor-
malised theory. An array of Slavnov-Taylor identities
(STIs) [9, 10], implementing BRST symmetry [11, 12]
(a generalisation of non-Abelian gauge invariance for the
quantised theory) ensures that a single running coupling
characterises all four interactions on the domain within
which perturbation theory is valid. The difference here
is that whilst QCD is asymptotically free and extant ev-

idence suggests that perturbation theory is valid at large
momentum scales, all dynamics is nonperturbative at
those scales typical of everyday strong-interaction phe-
nomena, e.g. ζ ! mp, where mp is the proton’s mass.

The questions that arise are how many distinct run-
ning couplings exist in nonperturbative QCD, and how
can they be computed? Given that there are four individ-
ual, apparently UV-divergent interaction vertices in the
perturbative treatment of QCD, there could be as many
as four distinct couplings at infrared (IR) momenta. (Of
course, if nonperturbatively there are two or more cou-
plings, they must all become equivalent on the perturba-
tive domain.) In our view, nonperturbatively, too, QCD
possesses a unique running coupling. The alternative ad-
mits the possibility of a different renormalisation-group-
invariant (RGI) intrinsic mass-scale for each coupling and
no guarantee of a connection between them. In such cir-
cumstances, BRST symmetry would likely be irreparably
broken by nonperturbative dynamics and one would be
pressed to conclude that QCD was non-renormalisable
owing to IR dynamics. There is no empirical evidence
to support such a conclusion: QCD does seem to be a
well-defined theory at all momentum scales, owing to the
dynamical generation of gluon [13–18] and quark masses
[19–21], which are large at IR momenta.

2: Process-independent running coupling.—Poincaré co-
variance is of enormous importance in modern physics,
e.g. it places severe limitations on the nature and number
of those independent amplitudes that are required to fully
specify any one of a gauge theory’s n-point Schwinger
functions (Euclidean Green functions). Analyses and
quantisation procedures that violate Poincaré covariance
lead to a rapid proliferation in the number of such func-
tions. For example, the gluon 2-point function (propaga-
tor, Dµν) is completely specified by one scalar function
in the class of linear covariant gauges; but, in the class of
axial gauges, two unconnected functions are required and
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Using SU(6) flavor symmetry and normalization to static quantities
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we find qτðxÞ ∼ ð1 − xÞ2τ−3, which is precisely the Drell-
Yan inclusive counting rule at x → 1 [63–65], correspond-
ing to the form factor behavior at large Q2 (3).
From Eq. (10), it follows that the conditions (13) are

equivalent to f0ð1Þ ¼ 0 and f00ð1Þ ≠ 0. Since logðxÞ∼
1 − x for x ∼ 1, a simple ansatz for fðxÞ consistent with
(7), (11), and (13) is

fðxÞ ¼ 1

4λ

!
ð1 − xÞ log

"
1

x

#
þ að1 − xÞ2

$
; ð14Þ

with a being a flavor-independent parameter. From (10),

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð15Þ

an expression that incorporates Regge behavior at small x
and inclusive counting rules at large x.
Nucleon GPDs.—The nucleon GPDs are extracted from

nucleon FF data [66–70] choosing specific x and t depend-
ences of the GPDs for each flavor. One then finds the best
fit reproducing the measured FFs and the valence PDFs. In
our analysis of nucleon FFs [56], three free parameters are
required: these are r, interpreted as an SU(6) breaking
effect for the Dirac neutron FF, and γp and γn, which
account for the probabilities of higher Fock components
(meson cloud) and are significant only for the Pauli FFs.
The hadronic scale λ is fixed by the ρ-Regge trajectory [28],
whereas the Pauli FFs are normalized to the experimental
values of the anomalous magnetic moments.
Helicity nonflip distributions: Using the results from [56]

for the Dirac flavor FFs, we write the spin nonflip valence
GPDs Hqðx; tÞ ¼ qðxÞ exp ½tfðxÞ& with

uvðxÞ ¼
"
2 −

r
3

#
qτ¼3ðxÞ þ

r
3
qτ¼4ðxÞ; ð16Þ

dvðxÞ ¼
"
1 −

2r
3

#
qτ¼3ðxÞ þ

2r
3
qτ¼4ðxÞ; ð17Þ

for the u and d PDFs normalized to the valence content of
the proton:

R
1
0 dxuvðxÞ ¼ 2 and

R
1
0 dxdvðxÞ ¼ 1. The PDF

qτðxÞ and the profile function fðxÞ are given by (9) and
(10), and wðxÞ is given by (15). Positivity of the PDFs
implies that r ≤ 3=2, which is smaller than the value r ¼
2.08 found in [56]. We shall use the maximum value
r ¼ 3=2, which does not change significantly our results
in [56].
The PDFs (16) and (17) are evolved to a higher

scale μ with the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation [71–73] in the M̄S scheme using
the HOPPET toolkit [74]. The initial scale is chosen at the
matching scale between LFHQCD and perturbative QCD
(pQCD) as μ0 ¼ 1.06'0.15 GeV [75] in the M̄S scheme at
next-to-next-to-leading order (NNLO). The strong cou-
pling constant αs at the scale of the Z-boson mass is set to

0.1182 [76], and the heavy quark thresholds are set with
M̄S quark masses as mc¼ 1.28 GeV and mb¼ 4.18 GeV
[76]. The PDFs are evolved to μ2 ¼ 10 GeV2 at NNLO to
compare with the global fits by the MMHT [5], CT [6], and
NNPDF [77] collaborations as shown in Fig. 1. The value
a ¼ 0.531' 0.037 is determined from the first moment of
the GPD,

R
1
0 dxxH

q
vðx; t ¼ 0Þ ¼ Aq

vð0Þ from the global data
fits with average values Au

vð0Þ ¼ 0.261' 0.005 and
Ad
vð0Þ ¼ 0.109' 0.005. The model uncertainty (red band)

includes the uncertainties in a and μ0 [78]. We also indicate
the difference between our results and global fits in Fig. 2.
The t dependence of Hq

vðx; tÞ is illustrated in Fig. 3.
Since our PDFs scale as qðxÞ ∼ x−1=2 for small x, the
Kuti-Weisskopf behavior for the nonsinglet structure
functions F2pðxÞ − F2nðxÞ ∼ x½uvðxÞ − dvðxÞ& ∼ x1=2 is
satisfied [79,80].
Helicity-flip distributions: The spin-flip GPDsEq

vðx; tÞ ¼
eqvðxÞ exp ½tfðxÞ& follow from the flavor Pauli FFs in [56]
given in terms of twist-4 and twist-6 contributions

eqvðxÞ ¼ χq½ð1 − γqÞqτ¼4ðxÞ þ γqqτ¼6ðxÞ&; ð18Þ

normalized to the flavor anomalous magnetic momentR
1
0 dxeqvðxÞ ¼ χq, with χu ¼ 2χp þ χn ¼ 1.673 and
χd ¼ 2χn þ χp ¼ −2.033. The factors γu and γd are

FIG. 1. Comparison for xqðxÞ in the proton from LFHQCD (red
bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6]
(cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD
results are evolved from the initial scale μ0 ¼ 1.06'0.15 GeV.

FIG. 2. Difference between our PDF results and global fits.
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LFHQCD: An overview

Polarized GPDs and PDFs (HLFHS Collaboration, 2019)

• Separation of chiralities in the AdS action allows computation of the matrix elements of the axial current

including the correct normalization, once the coefficients c⌧ are fixed for the vector current

• Helicity retention between quark and parent hadron (pQCD prediction): limx!1
�q(x)
q(x) = 1

• No spin correlation with parent hadron: limx!0
�q(x)
q(x) = 0
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3

We choose the harmonic-traceless gauge @Lh
L
M =

1
2@Mh = 0 and consider the propagation of the
gravitational fluctuation hMN with components along
Minkowski coordinates hzz = hzµ = hµz = 0. From
(3) we obtain the linearized Einstein equations

� z
3

e'g(z)
@z

⇣
e
'g(z)

z3
@zh

⌫
µ

⌘
+ @⇢@

⇢
h

⌫
µ = 0, (7)

where hµ⌫ couples to the transverse and traceless part
of the EMT in (4). The boundary limit of the gravi-
ton probe is a plane wave along the physical coordi-
nates with polarization indices along the transverse di-
rections h

⌫
µ (x, z ! 0) = ✏

⌫
µ e

�iq·x, where q
2 = �Q

2
<

0. We thus write h
⌫
µ (x, z) = ✏

⌫
µ e

�iq·x
H(q2, z), with

H(q2 = 0, z) = H(q2, z = 0) = 1. For a soft-wall profile
'g(z) = ��gz

2 [63] the solution to (7) is given by

H(a, ⇠) = � (2 + a)U (a,�1, ⇠) (8)

= a (2 + a)

Z 1

0
dx x

a�1(1 � x)e�⇠x(1�x)
,

where a = Q
2
/4�g, ⇠ = �gz

2, and U(a, b, z) is the Tri-
comi confluent hypergeometric function.

The usual expression of the GFF from the hadronic
matrix elements of the EMT

⌦
P

0 ��T ⌫
µ

��P
↵
=

�
P

⌫
P

0
µ + PµP

0⌫�
A(Q2), (9)

follows from extracting the delta function from momen-
tum conservation in (6). We obtain for A(Q2) [61, 62]

A⌧ (Q
2) =

Z 1

0

dz

z3
H(Q2

, z)�2
⌧ (z), (10)

with A⌧ (0) = 1. Upon substituting in (10) the x-integral
representation of the bulk-to-boundary propagator (8)
and the AdS twist-⌧ hadron bound-state solution [20],

�⌧ (z) ⇠ z
⌧
e
��qz

2/2, we find

A⌧ (Q
2) = ⌧(⌧ � 1)B (⌧ � 1, 2 + a)

2F1 (a, ⌧ � 1; ⌧ + 1 + a; r) , (11)

where B(u, v) is the Euler Beta function, 2F1(a, b; c; z) is
the Gauss hypergeometric function and r = 1 � �g/�q.
The action Sq[�] (5) is modified by the dilaton term

e
'q(z) = e

�qz
2

with �q = 1/4↵0
⇢ ' (0.5GeV)2, specific

to the light front mapping to physical 3 + 1 dimensional
space in HLFQCD [20] and the constraints imposed by
the superconformal algebraic structure [24]. The “glu-
onic component” Sg[h] (3) is not constrained by addi-

tional symmetries and is modified by e
'g(z) = e

��gz
2

with �g = 1/4↵0
P ' 1GeV2, from the Pomeron slope.

The interaction term Si[h,�] (4) has no deformation term
and does not introduce an additional scale.

The GFF given by (11) does not possess analytic con-
tinuation between the space-like, q2 < 0, and time-like,

q
2
> 0 domains; in fact, the hypergeometric function

2F1 in (11) grows monotonically for q
2
> 0 yielding un-

physical results. This problem can be overcome, how-
ever, by noticing that the physical scale in the interac-
tion term (4) is determined by the Pomeron scale which
interacts with the small components of a high virtuality
hadron over a distance ⇠ 1/

p
↵P , meaning that, e↵ec-

tively, the scales �g and �q become comparable in the
interaction term, making the ratio r in (11) to vanish.
Since 2F1(a, b; c; 0) = 1 we are led to

A⌧ (Q
2) =

1

N⌧
B
�
⌧ � 1, 2 � ↵P (Q

2)
�
, (12)

with N⌧ = B (⌧ � 1, 2 � ↵P (0)), the result of the gener-
alized Veneziano model [25, 28, 29] for a spin-two cur-
rent; and consistent with opposite dilaton sign solution
between �q and �g. Alternatively, if we impose the struc-
ture of the Veneziano amplitude we can relate the dif-
ferent scales appearing in the interaction term and, by
writing (12), we have extended the holographic results
for zero Regge intercept, to arbitrary Regge trajectories,
and in particular to the spin-two Pomeron trajectory.
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FIG. 1. Gluon gravitational form factor Ag(Q2) of the pro-
ton (red) and the pion (blue). The dashed curves indicate
the uncertainty from the variation of �g by ±5%. The value
Ag(0) corresponds to the momentum fraction carried by glu-
ons: 0.225 for the proton and 0.429 for the pion.

For integer twist the GFF (12) can be expressed as a
product of ⌧ � 1 time-like poles located at

�Q
2 = M

2
n =

1

↵
0
P

(n+ 2 � ↵P (0)) , (13)

the radial excitation spectrum of the spin-2 exchanged
particles in the leading C = + Pomeron trajectory (1).
The lowest state in this trajectory, the 2++, has the mass
M ' 1.92 GeV, compared with the lattice results M '
(2.15 � 2.4) GeV [39, 64–66]. The lowest mass glueball
0++ lies on a daughter trajectory. The predictions for the
GFF, Ag(Q2), for the nucleon and pion are presented in
Fig. 1. We find for the gluon mass squared radius

hr2gi =
6

Ag(0)

dA
g(t)

dt

���
t=0

, (14)
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Guy F. de Téramond,1 H. G. Dosch,2 Tianbo Liu,3, ⇤

Raza Sabbir Sufian,4, 5, † Stanley J. Brodsky,6 and Alexandre Deur5

(HLFHS Collaboration)
1Laboratorio de F́ısica Teórica y Computacional, Universidad de Costa Rica, 11501 San José, Costa Rica
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The holographic light-front QCD framework provides a unified nonperturbative description of the
hadron mass spectrum, form factors and quark distributions. In this article we extend holographic
QCD in order to describe the gluonic distribution in both the proton and pion from the coupling of
the metric fluctuations induced by the spin-two Pomeron with the energy momentum tensor in anti-
de Sitter space, together with constraints imposed by the Veneziano model without additional free
parameters. The gluonic and quark distributions are shown to have significantly di↵erent e↵ective
QCD scales.

Introduction.— The gluonic composition of hadrons
plays a key role in understanding the confining phase of
quantum chromodynamics (QCD), which is still an unre-
solved issue in modern particle physics. A key nonpertur-
bative feature of color-confining hadron dynamics is the
intrinsic gluon distribution which exists in hadrons over
a time scale independent of the resolution of the external
probe. The coupling of the rank-two energy-momentum
tensor (EMT), the tensor which couples to gravity [1–
3], provides fundamental constraints on the quark and
gluon generalized parton distribution functions (GPDs)
of a hadron [4–6]. Gravitational form factors (GFFs),
the hadronic matrix elements of the EMT, describe the
coupling of a hadron to the graviton and thus provide in-
formation on the dynamics of quarks and gluons within
hadrons due to the internal shear forces and pressure
distributions of the quarks and gluons [7–9]. In this let-
ter, we present an extended holographic light-front QCD
framework for studying the gluon GFFs and provide pre-
dictions for the intrinsic gluon distributions of hadrons
without introducing additional parameters.

In addition to the role of gluons as fundamental con-
stituents and as the glue that binds the quarks into
hadrons, the knowledge of gluon distributions within
hadrons is also essential for the understanding of the
Higgs boson production [10] and particle production cross
sections at small-momentum fraction x. The near thresh-
old production of heavy vector quarkonium [11], such as
the J/ and ⌥, is dominated by the gluon EMT: It is
expected to shed light on the QCD trace anomaly at
the origin of the proton mass [12]. On the other hand,
the intrinsic gluon parton distribution function (PDF)
of the pion, the lightest QCD bound state, is of par-
ticular theoretical interest for understanding nonpertur-
bative aspects of QCD, such as the connection of the

spontaneous breaking of chiral symmetry and confine-
ment [13]. Because of the special role of the pion in
QCD, there have been sustained e↵orts and proposals to
explore its gluon distribution [14], along with that of the
nucleon, one of the main goals of the upcoming Electron-
Ion-Collider [15, 16].
Holographic light-front QCD (HLFQCD), a nonper-

turbative framework based on the gauge/gravity corre-
spondence [17] and its light-front (LF) holographic map-
ping [18–20], has the remarkable feature that it repro-
duces, within its expected precision, the hadronic spectra
with the minimal number of parameters: the confining
scale � and e↵ective quark masses. The e↵ective con-
fining interaction for mesons and baryons is determined
by an underlying superconformal algebraic structure [21–
23], which leads to unexpected connections across the
full hadron spectrum [24]. It reproduces the structure
of hadronic spectra as predicted by dual models, most
prominently the Veneziano model [25] with its typical
features: linear Regge trajectories with a universal slope
and the existence of “daughter trajectories”.
The form factors (FFs) obtained within the HLFQCD

framework can be expressed by Euler-Beta functions [26,
27], a feature also predicted by the generalized Veneziano
model [28, 29], which includes the electromagnetic (EM)
current and the FFs: FEM(t) ⇠ B (�, 1 � ↵⇢(t)), where
↵⇢(t) is the trajectory of the ⇢-vector-meson, coupling
to the quark current in the hadron. We emphasize that,
within HLFQCD, the parameter �, related to the fall-
o↵ of the EM FF at large momentum transfer t, is not
arbitrary, but fixed by the twist structure of the Fock
state, � = ⌧ � 1, consistent with the exclusive counting
rules [30, 31]: The twist ⌧ is the number of constituents
N , ⌧ = N (⌧ = N +L for LF orbital angular momentum
L).

3

We choose the harmonic-traceless gauge @Lh
L
M =

1
2@Mh = 0 and consider the propagation of the
gravitational fluctuation hMN with components along
Minkowski coordinates hzz = hzµ = hµz = 0. From
(3) we obtain the linearized Einstein equations

� z
3

e'g(z)
@z

⇣
e
'g(z)

z3
@zh

⌫
µ

⌘
+ @⇢@

⇢
h

⌫
µ = 0, (7)

where hµ⌫ couples to the transverse and traceless part
of the EMT in (4). The boundary limit of the gravi-
ton probe is a plane wave along the physical coordi-
nates with polarization indices along the transverse di-
rections h

⌫
µ (x, z ! 0) = ✏

⌫
µ e

�iq·x, where q
2 = �Q

2
<

0. We thus write h
⌫
µ (x, z) = ✏

⌫
µ e

�iq·x
H(q2, z), with

H(q2 = 0, z) = H(q2, z = 0) = 1. For a soft-wall profile
'g(z) = ��gz

2 [63] the solution to (7) is given by

H(a, ⇠) = � (2 + a)U (a,�1, ⇠) (8)

= a (2 + a)

Z 1

0
dx x

a�1(1 � x)e�⇠x(1�x)
,

where a = Q
2
/4�g, ⇠ = �gz

2, and U(a, b, z) is the Tri-
comi confluent hypergeometric function.

The usual expression of the GFF from the hadronic
matrix elements of the EMT

⌦
P

0 ��T ⌫
µ

��P
↵
=

�
P

⌫
P

0
µ + PµP

0⌫�
A(Q2), (9)

follows from extracting the delta function from momen-
tum conservation in (6). We obtain for A(Q2) [61, 62]

A⌧ (Q
2) =

Z 1

0

dz

z3
H(Q2

, z)�2
⌧ (z), (10)

with A⌧ (0) = 1. Upon substituting in (10) the x-integral
representation of the bulk-to-boundary propagator (8)
and the AdS twist-⌧ hadron bound-state solution [20],

�⌧ (z) ⇠ z
⌧
e
��qz

2/2, we find

A⌧ (Q
2) = ⌧(⌧ � 1)B (⌧ � 1, 2 + a)

2F1 (a, ⌧ � 1; ⌧ + 1 + a; r) , (11)

where B(u, v) is the Euler Beta function, 2F1(a, b; c; z) is
the Gauss hypergeometric function and r = 1 � �g/�q.
The action Sq[�] (5) is modified by the dilaton term

e
'q(z) = e

�qz
2

with �q = 1/4↵0
⇢ ' (0.5GeV)2, specific

to the light front mapping to physical 3 + 1 dimensional
space in HLFQCD [20] and the constraints imposed by
the superconformal algebraic structure [24]. The “glu-
onic component” Sg[h] (3) is not constrained by addi-

tional symmetries and is modified by e
'g(z) = e

��gz
2

with �g = 1/4↵0
P ' 1GeV2, from the Pomeron slope.

The interaction term Si[h,�] (4) has no deformation term
and does not introduce an additional scale.

The GFF given by (11) does not possess analytic con-
tinuation between the space-like, q2 < 0, and time-like,

q
2
> 0 domains; in fact, the hypergeometric function

2F1 in (11) grows monotonically for q
2
> 0 yielding un-

physical results. This problem can be overcome, how-
ever, by noticing that the physical scale in the interac-
tion term (4) is determined by the Pomeron scale which
interacts with the small components of a high virtuality
hadron over a distance ⇠ 1/

p
↵P , meaning that, e↵ec-

tively, the scales �g and �q become comparable in the
interaction term, making the ratio r in (11) to vanish.
Since 2F1(a, b; c; 0) = 1 we are led to

A⌧ (Q
2) =

1

N⌧
B
�
⌧ � 1, 2 � ↵P (Q

2)
�
, (12)

with N⌧ = B (⌧ � 1, 2 � ↵P (0)), the result of the gener-
alized Veneziano model [25, 28, 29] for a spin-two cur-
rent; and consistent with opposite dilaton sign solution
between �q and �g. Alternatively, if we impose the struc-
ture of the Veneziano amplitude we can relate the dif-
ferent scales appearing in the interaction term and, by
writing (12), we have extended the holographic results
for zero Regge intercept, to arbitrary Regge trajectories,
and in particular to the spin-two Pomeron trajectory.

FIG. 1. Gluon gravitational form factor Ag(Q2) of the pro-
ton (red) and the pion (blue). The dashed curves indicate
the uncertainty from the variation of �g by ±5%. The value
Ag(0) corresponds to the momentum fraction carried by glu-
ons: 0.225 for the proton and 0.429 for the pion.

For integer twist the GFF (12) can be expressed as a
product of ⌧ � 1 time-like poles located at

�Q
2 = M

2
n =

1

↵
0
P

(n+ 2 � ↵P (0)) , (13)

the radial excitation spectrum of the spin-2 exchanged
particles in the leading C = + Pomeron trajectory (1).
The lowest state in this trajectory, the 2++, has the mass
M ' 1.92 GeV, compared with the lattice results M '
(2.15 � 2.4) GeV [39, 64–66]. The lowest mass glueball
0++ lies on a daughter trajectory. The predictions for the
GFF, Ag(Q2), for the nucleon and pion are presented in
Fig. 1. We find for the gluon mass squared radius

hr2gi =
6

Ag(0)

dA
g(t)

dt

���
t=0

, (14)
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The holographic light-front QCD framework provides a unified nonperturbative description of the
hadron mass spectrum, form factors and quark distributions. In this article we extend holographic
QCD in order to describe the gluonic distribution in both the proton and pion from the coupling of
the metric fluctuations induced by the spin-two Pomeron with the energy momentum tensor in anti-
de Sitter space, together with constraints imposed by the Veneziano model without additional free
parameters. The gluonic and quark distributions are shown to have significantly di↵erent e↵ective
QCD scales.

Introduction.— The gluonic composition of hadrons
plays a key role in understanding the confining phase of
quantum chromodynamics (QCD), which is still an unre-
solved issue in modern particle physics. A key nonpertur-
bative feature of color-confining hadron dynamics is the
intrinsic gluon distribution which exists in hadrons over
a time scale independent of the resolution of the external
probe. The coupling of the rank-two energy-momentum
tensor (EMT), the tensor which couples to gravity [1–
3], provides fundamental constraints on the quark and
gluon generalized parton distribution functions (GPDs)
of a hadron [4–6]. Gravitational form factors (GFFs),
the hadronic matrix elements of the EMT, describe the
coupling of a hadron to the graviton and thus provide in-
formation on the dynamics of quarks and gluons within
hadrons due to the internal shear forces and pressure
distributions of the quarks and gluons [7–9]. In this let-
ter, we present an extended holographic light-front QCD
framework for studying the gluon GFFs and provide pre-
dictions for the intrinsic gluon distributions of hadrons
without introducing additional parameters.

In addition to the role of gluons as fundamental con-
stituents and as the glue that binds the quarks into
hadrons, the knowledge of gluon distributions within
hadrons is also essential for the understanding of the
Higgs boson production [10] and particle production cross
sections at small-momentum fraction x. The near thresh-
old production of heavy vector quarkonium [11], such as
the J/ and ⌥, is dominated by the gluon EMT: It is
expected to shed light on the QCD trace anomaly at
the origin of the proton mass [12]. On the other hand,
the intrinsic gluon parton distribution function (PDF)
of the pion, the lightest QCD bound state, is of par-
ticular theoretical interest for understanding nonpertur-
bative aspects of QCD, such as the connection of the

spontaneous breaking of chiral symmetry and confine-
ment [13]. Because of the special role of the pion in
QCD, there have been sustained e↵orts and proposals to
explore its gluon distribution [14], along with that of the
nucleon, one of the main goals of the upcoming Electron-
Ion-Collider [15, 16].
Holographic light-front QCD (HLFQCD), a nonper-

turbative framework based on the gauge/gravity corre-
spondence [17] and its light-front (LF) holographic map-
ping [18–20], has the remarkable feature that it repro-
duces, within its expected precision, the hadronic spectra
with the minimal number of parameters: the confining
scale � and e↵ective quark masses. The e↵ective con-
fining interaction for mesons and baryons is determined
by an underlying superconformal algebraic structure [21–
23], which leads to unexpected connections across the
full hadron spectrum [24]. It reproduces the structure
of hadronic spectra as predicted by dual models, most
prominently the Veneziano model [25] with its typical
features: linear Regge trajectories with a universal slope
and the existence of “daughter trajectories”.
The form factors (FFs) obtained within the HLFQCD

framework can be expressed by Euler-Beta functions [26,
27], a feature also predicted by the generalized Veneziano
model [28, 29], which includes the electromagnetic (EM)
current and the FFs: FEM(t) ⇠ B (�, 1 � ↵⇢(t)), where
↵⇢(t) is the trajectory of the ⇢-vector-meson, coupling
to the quark current in the hadron. We emphasize that,
within HLFQCD, the parameter �, related to the fall-
o↵ of the EM FF at large momentum transfer t, is not
arbitrary, but fixed by the twist structure of the Fock
state, � = ⌧ � 1, consistent with the exclusive counting
rules [30, 31]: The twist ⌧ is the number of constituents
N , ⌧ = N (⌧ = N +L for LF orbital angular momentum
L).
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Momentum fraction carried by gluons in the pion:
Ag(0)⇡ = 0.429
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We choose the harmonic-traceless gauge @Lh
L
M =

1
2@Mh = 0 and consider the propagation of the
gravitational fluctuation hMN with components along
Minkowski coordinates hzz = hzµ = hµz = 0. From
(3) we obtain the linearized Einstein equations
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where hµ⌫ couples to the transverse and traceless part
of the EMT in (4). The boundary limit of the gravi-
ton probe is a plane wave along the physical coordi-
nates with polarization indices along the transverse di-
rections h

⌫
µ (x, z ! 0) = ✏

⌫
µ e

�iq·x, where q
2 = �Q
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0. We thus write h
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µ (x, z) = ✏
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H(q2, z), with

H(q2 = 0, z) = H(q2, z = 0) = 1. For a soft-wall profile
'g(z) = ��gz

2 [63] the solution to (7) is given by

H(a, ⇠) = � (2 + a)U (a,�1, ⇠) (8)
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,

where a = Q
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2, and U(a, b, z) is the Tri-
comi confluent hypergeometric function.

The usual expression of the GFF from the hadronic
matrix elements of the EMT
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follows from extracting the delta function from momen-
tum conservation in (6). We obtain for A(Q2) [61, 62]

A⌧ (Q
2) =

Z 1

0

dz

z3
H(Q2

, z)�2
⌧ (z), (10)

with A⌧ (0) = 1. Upon substituting in (10) the x-integral
representation of the bulk-to-boundary propagator (8)
and the AdS twist-⌧ hadron bound-state solution [20],
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⌧
e
��qz

2/2, we find

A⌧ (Q
2) = ⌧(⌧ � 1)B (⌧ � 1, 2 + a)

2F1 (a, ⌧ � 1; ⌧ + 1 + a; r) , (11)

where B(u, v) is the Euler Beta function, 2F1(a, b; c; z) is
the Gauss hypergeometric function and r = 1 � �g/�q.
The action Sq[�] (5) is modified by the dilaton term

e
'q(z) = e

�qz
2

with �q = 1/4↵0
⇢ ' (0.5GeV)2, specific

to the light front mapping to physical 3 + 1 dimensional
space in HLFQCD [20] and the constraints imposed by
the superconformal algebraic structure [24]. The “glu-
onic component” Sg[h] (3) is not constrained by addi-

tional symmetries and is modified by e
'g(z) = e

��gz
2

with �g = 1/4↵0
P ' 1GeV2, from the Pomeron slope.

The interaction term Si[h,�] (4) has no deformation term
and does not introduce an additional scale.

The GFF given by (11) does not possess analytic con-
tinuation between the space-like, q2 < 0, and time-like,

q
2
> 0 domains; in fact, the hypergeometric function

2F1 in (11) grows monotonically for q
2
> 0 yielding un-

physical results. This problem can be overcome, how-
ever, by noticing that the physical scale in the interac-
tion term (4) is determined by the Pomeron scale which
interacts with the small components of a high virtuality
hadron over a distance ⇠ 1/

p
↵P , meaning that, e↵ec-

tively, the scales �g and �q become comparable in the
interaction term, making the ratio r in (11) to vanish.
Since 2F1(a, b; c; 0) = 1 we are led to

A⌧ (Q
2) =

1

N⌧
B
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⌧ � 1, 2 � ↵P (Q
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, (12)

with N⌧ = B (⌧ � 1, 2 � ↵P (0)), the result of the gener-
alized Veneziano model [25, 28, 29] for a spin-two cur-
rent; and consistent with opposite dilaton sign solution
between �q and �g. Alternatively, if we impose the struc-
ture of the Veneziano amplitude we can relate the dif-
ferent scales appearing in the interaction term and, by
writing (12), we have extended the holographic results
for zero Regge intercept, to arbitrary Regge trajectories,
and in particular to the spin-two Pomeron trajectory.

FIG. 1. Gluon gravitational form factor Ag(Q2) of the pro-
ton (red) and the pion (blue). The dashed curves indicate
the uncertainty from the variation of �g by ±5%. The value
Ag(0) corresponds to the momentum fraction carried by glu-
ons: 0.225 for the proton and 0.429 for the pion.

For integer twist the GFF (12) can be expressed as a
product of ⌧ � 1 time-like poles located at
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2
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the radial excitation spectrum of the spin-2 exchanged
particles in the leading C = + Pomeron trajectory (1).
The lowest state in this trajectory, the 2++, has the mass
M ' 1.92 GeV, compared with the lattice results M '
(2.15 � 2.4) GeV [39, 64–66]. The lowest mass glueball
0++ lies on a daughter trajectory. The predictions for the
GFF, Ag(Q2), for the nucleon and pion are presented in
Fig. 1. We find for the gluon mass squared radius

hr2gi =
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���
t=0

, (14)
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The holographic light-front QCD framework provides a unified nonperturbative description of the
hadron mass spectrum, form factors and quark distributions. In this article we extend holographic
QCD in order to describe the gluonic distribution in both the proton and pion from the coupling of
the metric fluctuations induced by the spin-two Pomeron with the energy momentum tensor in anti-
de Sitter space, together with constraints imposed by the Veneziano model without additional free
parameters. The gluonic and quark distributions are shown to have significantly di↵erent e↵ective
QCD scales.

Introduction.— The gluonic composition of hadrons
plays a key role in understanding the confining phase of
quantum chromodynamics (QCD), which is still an unre-
solved issue in modern particle physics. A key nonpertur-
bative feature of color-confining hadron dynamics is the
intrinsic gluon distribution which exists in hadrons over
a time scale independent of the resolution of the external
probe. The coupling of the rank-two energy-momentum
tensor (EMT), the tensor which couples to gravity [1–
3], provides fundamental constraints on the quark and
gluon generalized parton distribution functions (GPDs)
of a hadron [4–6]. Gravitational form factors (GFFs),
the hadronic matrix elements of the EMT, describe the
coupling of a hadron to the graviton and thus provide in-
formation on the dynamics of quarks and gluons within
hadrons due to the internal shear forces and pressure
distributions of the quarks and gluons [7–9]. In this let-
ter, we present an extended holographic light-front QCD
framework for studying the gluon GFFs and provide pre-
dictions for the intrinsic gluon distributions of hadrons
without introducing additional parameters.

In addition to the role of gluons as fundamental con-
stituents and as the glue that binds the quarks into
hadrons, the knowledge of gluon distributions within
hadrons is also essential for the understanding of the
Higgs boson production [10] and particle production cross
sections at small-momentum fraction x. The near thresh-
old production of heavy vector quarkonium [11], such as
the J/ and ⌥, is dominated by the gluon EMT: It is
expected to shed light on the QCD trace anomaly at
the origin of the proton mass [12]. On the other hand,
the intrinsic gluon parton distribution function (PDF)
of the pion, the lightest QCD bound state, is of par-
ticular theoretical interest for understanding nonpertur-
bative aspects of QCD, such as the connection of the

spontaneous breaking of chiral symmetry and confine-
ment [13]. Because of the special role of the pion in
QCD, there have been sustained e↵orts and proposals to
explore its gluon distribution [14], along with that of the
nucleon, one of the main goals of the upcoming Electron-
Ion-Collider [15, 16].
Holographic light-front QCD (HLFQCD), a nonper-

turbative framework based on the gauge/gravity corre-
spondence [17] and its light-front (LF) holographic map-
ping [18–20], has the remarkable feature that it repro-
duces, within its expected precision, the hadronic spectra
with the minimal number of parameters: the confining
scale � and e↵ective quark masses. The e↵ective con-
fining interaction for mesons and baryons is determined
by an underlying superconformal algebraic structure [21–
23], which leads to unexpected connections across the
full hadron spectrum [24]. It reproduces the structure
of hadronic spectra as predicted by dual models, most
prominently the Veneziano model [25] with its typical
features: linear Regge trajectories with a universal slope
and the existence of “daughter trajectories”.
The form factors (FFs) obtained within the HLFQCD

framework can be expressed by Euler-Beta functions [26,
27], a feature also predicted by the generalized Veneziano
model [28, 29], which includes the electromagnetic (EM)
current and the FFs: FEM(t) ⇠ B (�, 1 � ↵⇢(t)), where
↵⇢(t) is the trajectory of the ⇢-vector-meson, coupling
to the quark current in the hadron. We emphasize that,
within HLFQCD, the parameter �, related to the fall-
o↵ of the EM FF at large momentum transfer t, is not
arbitrary, but fixed by the twist structure of the Fock
state, � = ⌧ � 1, consistent with the exclusive counting
rules [30, 31]: The twist ⌧ is the number of constituents
N , ⌧ = N (⌧ = N +L for LF orbital angular momentum
L).

4

hr2gip = 2.93/�g = (0.34 fm)2 and hr2gi⇡ = 2.41/�g =
(0.31 fm)2 for the proton and pion, indicating a gluon-
mass distribution concentrated in a rather small region
compared with the spread of the charge [39], and also
smaller than the proton mass radius found in [61, 67–
69]. The normalization used in Fig. 1 is discussed below.

Gluon distribution functions.— Recent calculations of
the gluon distribution functions in the hadrons have been
performed using holographic approaches, such as in [70–
73]. Following the unified approach advanced in [26, 33]
we determine in the present work the unpolarized gluon
distributions in the nucleon and pion without introducing
any new free parameters. In the nonperturbative domain,
low virtuality gluons interact strongly with each other
to generate the color confinement potential so that one
cannot distinguish individual gluon quanta. At higher
virtualities constituent gluons appear as new degrees of
freedom. The lowest gluonic Fock state of the proton is
|uudgi and, for simplicity, we consider this Fock state
to be the dominant contribution to the intrinsic gluon
distribution.

Using (12) and the integral representation of the Beta
function, the gravitational form factor A⌧ (t) can be writ-
ten in the reparametrization invariant form

A⌧ (t) =
1

N⌧

Z 1

0
dxw

0(x)w(x)1�↵(t)
⇥
1 � w(x)

⇤⌧�2
, (15)

provided that w(x) satisfies the constraints w(0) = 0,
w(1) = 1 and w

0(x) � 0 [26, 33].
The GFF can also be expressed as the first moment of

the gluon GPD at zero skewness, Hg
⌧ (x, t) ⌘ H

g
⌧ (x, ⇠ =

0, t),

A
g
⌧ (t) =

Z 1

0
x dxH

g
⌧ (x, t) =

Z 1

0
x dx g⌧ (x)e

tf(x)
, (16)

where f(x) is the profile function and g⌧ (x) is the
collinear gluon PDF of twist-⌧ . Comparing (16) with
the holographic expression (15) we find that both func-
tions, f(x) and g⌧ (x), are determined in terms of the
reparametrization function, w(x), by

fP (x) = ↵
0
P log

⇣ 1

w(x)

⌘
, (17)

g⌧ (x) =
1

N⌧

w
0(x)

x
[1 � w(x)]⌧�2

w(x)1�↵P (0)
, (18)

where g⌧ (x) is normalized by
R 1
0 dx xg⌧ (x) = 1 .

If we identify x with the hadron LF momentum frac-
tion, physical constraints on w(x) are imposed at small
and large-x [74]. At x ! 0, w(x) ⇠ x from Regge the-
ory [75], and at x ! 1 from the inclusive-exclusive count-
ing rule [32], g⌧ (x) ⇠ (1 � x)2⌧�3, which fixes w0(1) = 0.
The leading (1�x)-exponent determined in [76] by fitting
the NNPDF gluon distribution [77] is consistent with the
large-x counting rule.

The gluon distribution of the proton can be expressed
as the sum of contributions from all Fock states, g(x) =P

⌧ c⌧g⌧ (x), where the coe�cients, c⌧ , represent the nor-
malization of each Fock component. In practice, one has
to apply a truncation up to some value of ⌧ . In this study
we only keep the leading term, ⌧ = 4, and determine the
coe�cient c⌧=4 using the momentum sum rule

Z 1

0
dx x

⇥
g(x) +

X

q

q(x)
⇤
= 1, (19)

where q runs over all quark flavors. It also corresponds
to the sum rule of the helicity-conserving GFF A(t),
A

g(0) +
P

q A
q(0) = 1, which is a measure of the mo-

mentum fraction carried by each constituent. Similarly
the helicity-flip GFF B(t) provides a measure of the or-
bital angular momentum carried by each constituent of
a hadron at t = 0 and it is at the origin of Ji’s sum
rule [5]. The constraint Bg(0)+

P
q B

q(0) = 0 was origi-
nally derived from the equivalence principle [78] and can
be formally derived Fock state by Fock state in LF quan-
tization [79].
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FIG. 2. Unpolarized gluon distribution in the proton (top
panel) and pion (bottom panel) from HLFQCD and compari-
son with global fits. The figures on left and right are the same
distributions with di↵erent scales for xg(x) and x to enhance
the view of the small and large-x regions respectively.

Taking the quark distributions and the
reparametrization function w(x) from Ref. [33],
w(x) = x

1�x exp[�0.480(1 � x)2], we determine
c⌧=4 = 0.225 ± 0.006 and thus the gluon distribution
at the input scale µ0 = 1.057GeV. Together with the
quark distributions, we evolve the gluon distribution
to µ

2 = 10GeV2. The model results are compared in
Fig. 2 with global analyses of gluon PDFs [77, 80, 81].
Contributions from higher Fock states are expected to
be suppressed at large x, and may a↵ect the overall
normalization through the momentum sum rule: Higher
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The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal
dynamics with its chiral limit protected by the superconformal algebraic structure which governs its
transverse dynamics. The scale in the longitudinal light-front Hamiltonian determines the confine-
ment strength in this direction: It is also responsible for most of the light meson ground state mass
consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the break-
ing of chiral symmetry are found to be di↵erent manifestations of the same underlying dynamics
like in ’t Hooft large NC QCD(1 + 1) model.

Introduction.–In spite of the important progress of Eu-
clidean lattice gauge theory, a basic understanding of the
mechanism of color confinement and its relation to chi-
ral symmetry breaking in QCD, two fundamental phe-
nomena of strong interactions, has remained an unsolved
problem. Recent developments based on superconfor-
mal quantum mechanics [1, 2] in light-front quantiza-
tion [3] and its holographic embedding on a higher dimen-
sional gravity theory [4] (gauge/gravity correspondence)
have led to new analytic insights into the structure of
hadrons and their dynamics [5–10]. This new approach
to nonperturbative QCD dynamics, holographic light-
front QCD, leads to e↵ective semi-classical relativistic
bound-state equations for arbitrary spin [11], and it in-
corporates fundamental properties which are not appar-
ent from the QCD Lagrangian, such as the emergence of
the hadron mass scale, the prediction of a massless pion
in the chiral limit, and the remarkable connections be-
tween meson, baryon and tetraquark spectroscopy across
the full hadron spectrum [12–15]. Phenomenological ex-
tensions of the holographic QCD approach also describe
the running of the QCD coupling ↵s(Q2) in the nonper-
turbative domain [16, 17] and provide nontrivial connec-
tions between the dynamics of form factors and polarized
and unpolarized quark distributions with pre-QCD non-
perturbative approaches such as Regge theory and the
Veneziano model [18–20].

In this letter we examine the e↵ect of longitudi-
nal light-front dynamics for the computation of hadron
masses, confinement, and chiral symmetry breaking mo-
tivated by the previous work in Refs. [21–30]. Although
light-front holography, based on the Maldacena conjec-
ture [4] and the superconformal algebraic structure in [2],
determines the confinement potential in the light-front
(LF) transverse coordinates in the zero quark mass chi-
ral limit [10], an extension is required to incorporate
color-confining LF longitudinal dynamics for non-zero
quark masses [31]. This extension of holographic LF
QCD (HLFQCD) should preserve its successful predic-
tions while restoring 3-dimensional rotational invariance
in the heavy-quark limit.

A simple ansatz to account for quark masses in holo-
graphic LF QCD was introduced in [26] based on the
o↵-shell dependence of the LF wave function on the in-
variant mass which controls the bound state. For a two-
parton state this amounts to the substitution k2

?
x(1�x) !

k2
?

x(1�x) + m2
1

x + m2
2

1�x in the ground-state Gaussian wave
function to include the expression for the LF kinetic en-
ergy with quark masses: It is also the invariant mass
squared s = (pq + pq̄)2 of the qq̄ pair. This substitution
leads to the longitudinal wave function [26]

�(x) = N e�
1
2�

�
m2

1
x +

m2
2

1�x

�
, (1)

with N a normalization factor [32]. The variable x is the
LF longitudinal momentum fraction x = k+/P+ and k?
is the relative transverse momentum. The partonic mass
shift contribution to hadron masses [33],

�M2 =

Z 1

0
dx�(x)

hm2
q

x
+

m2
q̄

1� x

i
�(x), (2)

used in [26, 28] does not account for the explicit contri-
bution from a longitudinal potential to hadron masses.
As we shall show in this letter, we can extend our holo-
graphic framework by combining the longitudinal dy-
namics with the transverse superconformal results in a
semiclassical approximation consistent with our previous
holographic results [9, 10].
Longitudinal dynamics in HLFQCD.–We start from

the semiclassical LF transverse [5, 9] and longitudi-
nal [27, 30] Hamiltonian wave equations for mesons

✓
�

d2

d⇣2
�

1� 4L2

4⇣2
+ U?(⇣)

◆
�(⇣) = M2

?�(⇣), (3)

 
m2

q

x
+

m2
q̄

1� x
+ Uk(x)

!
�(x) = M2

k �(x), (4)

in the approximation where transverse and longitudinal
dynamics are separated. The variable ⇣ in (3) is the
invariant transverse variable, ⇣2 = x(1 � x)b2

?, with
b? the transverse impact distance conjugate to the rel-
ative transverse momentum k?, and L is the relative
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Introduction.–In spite of the important progress of Eu-
clidean lattice gauge theory, a basic understanding of the
mechanism of color confinement and its relation to chi-
ral symmetry breaking in QCD, two fundamental phe-
nomena of strong interactions, has remained an unsolved
problem. Recent developments based on superconfor-
mal quantum mechanics [1, 2] in light-front quantiza-
tion [3] and its holographic embedding on a higher dimen-
sional gravity theory [4] (gauge/gravity correspondence)
have led to new analytic insights into the structure of
hadrons and their dynamics [5–10]. This new approach
to nonperturbative QCD dynamics, holographic light-
front QCD, leads to e↵ective semi-classical relativistic
bound-state equations for arbitrary spin [11], and it in-
corporates fundamental properties which are not appar-
ent from the QCD Lagrangian, such as the emergence of
the hadron mass scale, the prediction of a massless pion
in the chiral limit, and the remarkable connections be-
tween meson, baryon and tetraquark spectroscopy across
the full hadron spectrum [12–15]. Phenomenological ex-
tensions of the holographic QCD approach also describe
the running of the QCD coupling ↵s(Q2) in the nonper-
turbative domain [16, 17] and provide nontrivial connec-
tions between the dynamics of form factors and polarized
and unpolarized quark distributions with pre-QCD non-
perturbative approaches such as Regge theory and the
Veneziano model [18–20].

In this letter we examine the e↵ect of longitudi-
nal light-front dynamics for the computation of hadron
masses, confinement, and chiral symmetry breaking mo-
tivated by the previous work in Refs. [21–30]. Although
light-front holography, based on the Maldacena conjec-
ture [4] and the superconformal algebraic structure in [2],
determines the confinement potential in the light-front
(LF) transverse coordinates in the zero quark mass chi-
ral limit [10], an extension is required to incorporate
color-confining LF longitudinal dynamics for non-zero
quark masses [31]. This extension of holographic LF
QCD (HLFQCD) should preserve its successful predic-
tions while restoring 3-dimensional rotational invariance
in the heavy-quark limit.

A simple ansatz to account for quark masses in holo-
graphic LF QCD was introduced in [26] based on the
o↵-shell dependence of the LF wave function on the in-
variant mass which controls the bound state. For a two-
parton state this amounts to the substitution k2

?
x(1�x) !

k2
?

x(1�x) + m2
1

x + m2
2

1�x in the ground-state Gaussian wave
function to include the expression for the LF kinetic en-
ergy with quark masses: It is also the invariant mass
squared s = (pq + pq̄)2 of the qq̄ pair. This substitution
leads to the longitudinal wave function [26]

�(x) = N e�
1
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1
x +
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, (1)

with N a normalization factor [32]. The variable x is the
LF longitudinal momentum fraction x = k+/P+ and k?
is the relative transverse momentum. The partonic mass
shift contribution to hadron masses [33],

�M2 =

Z 1

0
dx�(x)
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x
+

m2
q̄

1� x
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�(x), (2)

used in [26, 28] does not account for the explicit contri-
bution from a longitudinal potential to hadron masses.
As we shall show in this letter, we can extend our holo-
graphic framework by combining the longitudinal dy-
namics with the transverse superconformal results in a
semiclassical approximation consistent with our previous
holographic results [9, 10].
Longitudinal dynamics in HLFQCD.–We start from

the semiclassical LF transverse [5, 9] and longitudi-
nal [27, 30] Hamiltonian wave equations for mesons
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Introduction.–In spite of the important progress of Eu-
clidean lattice gauge theory, a basic understanding of the
mechanism of color confinement and its relation to chi-
ral symmetry breaking in QCD, two fundamental phe-
nomena of strong interactions, has remained an unsolved
problem. Recent developments based on superconfor-
mal quantum mechanics [1, 2] in light-front quantiza-
tion [3] and its holographic embedding on a higher dimen-
sional gravity theory [4] (gauge/gravity correspondence)
have led to new analytic insights into the structure of
hadrons and their dynamics [5–10]. This new approach
to nonperturbative QCD dynamics, holographic light-
front QCD, leads to e↵ective semi-classical relativistic
bound-state equations for arbitrary spin [11], and it in-
corporates fundamental properties which are not appar-
ent from the QCD Lagrangian, such as the emergence of
the hadron mass scale, the prediction of a massless pion
in the chiral limit, and the remarkable connections be-
tween meson, baryon and tetraquark spectroscopy across
the full hadron spectrum [12–15]. Phenomenological ex-
tensions of the holographic QCD approach also describe
the running of the QCD coupling ↵s(Q2) in the nonper-
turbative domain [16, 17] and provide nontrivial connec-
tions between the dynamics of form factors and polarized
and unpolarized quark distributions with pre-QCD non-
perturbative approaches such as Regge theory and the
Veneziano model [18–20].

In this letter we examine the e↵ect of longitudi-
nal light-front dynamics for the computation of hadron
masses, confinement, and chiral symmetry breaking mo-
tivated by the previous work in Refs. [21–30]. Although
light-front holography, based on the Maldacena conjec-
ture [4] and the superconformal algebraic structure in [2],
determines the confinement potential in the light-front
(LF) transverse coordinates in the zero quark mass chi-
ral limit [10], an extension is required to incorporate
color-confining LF longitudinal dynamics for non-zero
quark masses [31]. This extension of holographic LF
QCD (HLFQCD) should preserve its successful predic-
tions while restoring 3-dimensional rotational invariance
in the heavy-quark limit.

A simple ansatz to account for quark masses in holo-
graphic LF QCD was introduced in [26] based on the
o↵-shell dependence of the LF wave function on the in-
variant mass which controls the bound state. For a two-
parton state this amounts to the substitution k2
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x(1�x) !
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function to include the expression for the LF kinetic en-
ergy with quark masses: It is also the invariant mass
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used in [26, 28] does not account for the explicit contri-
bution from a longitudinal potential to hadron masses.
As we shall show in this letter, we can extend our holo-
graphic framework by combining the longitudinal dy-
namics with the transverse superconformal results in a
semiclassical approximation consistent with our previous
holographic results [9, 10].
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Transverse and Longitudinal LF Confinement

Longitudinal contribution for nonzero quark mass
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LF orbital angular momentum L ⌘ |Lz
|max. As dis-

cussed by Chabysheva and Hiller [27], it is natural to
identify the potential for longitudinal dynamics with the
potential which underlies the t’Hooft model for large-NC

QCD (1+1) [27], and it has the same form as the in-
stantaneous LF potential which appears from gluon ex-
change in A+ = 0 LF gauge in QCD (3+1). As noted in
Refs. [27, 30], the resulting longitudinal eigenvalue equa-
tion for the longitudinal mass M2

k can be combined with

the holographic LF transverse equation (3) for M2
? to

incorporate massive quarks.
We write the meson LF wave function  as

 (x, ⇣,') =

s
x(1� x)

2⇡⇣
eiL'�(x)�(⇣), (5)

normalized to
R 1
0 dx�2(x) = 1 and

R1
0 d⇣ �2(⇣) = 1,

where we have factored out the longitudinal, trans-
verse and orbital dependence since the total e↵ective
LF Hamiltonian is written as the sum of longitudinal
and transverse components. The longitudinal mass M2

k
thus appears as a separation constant in the transverse
equation (3), namely M2

? ! M2
� M2

k [27]. As a re-
sult, the structure of the superconformal equation in the
transverse direction is not modified, even by heavy quark
masses, as long as transverse and longitudinal dynamics
can be separated. We have included in (5) the normal-
ization factor

p
x(1� x) which arises from the precise

mapping of AdS form factors to light-front physics in the
limit of zero quark masses [34].

The transverse LF equation (3) has a similar structure
as the wave equations derived in five-dimensional AdS
provided that one identifies ⇣ = z [5], the holographic
fifth-dimensional coordinate of AdS. This precise map-
ping allows us to relate the LF confinement potential U?
to the dilaton profile which modifies AdS space [9]. The
assumption of superconformal algebra then uniquely de-
termines the form of the transverse confining potential
for both mesons and nucleons [7, 8]: For mesons it is
given by [8, 35]

U?(⇣) = �2⇣2 + 2�(J � 1). (6)

In the factorized approximation, the radial and orbital
excitations are determined by the transverse potential
(6) with eigenvalues [9]

M2
?(n, J, L) = 4�
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n+
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◆
, (7)

and eigenfunctions

�n,L(⇣) = �(1+L)/2

s
2n!

(n+L)!
⇣1/2+Le��⇣2/2LL

n(�⇣
2).

(8)
For the longitudinal component we will adopt the ef-

fective potential introduced by Li, Maris, Zhao and Vary

in [30] to generate a convenient orthonormal basis func-
tions in the LF longitudinal momentum variable x. It is
given by

Uk(x) = ��2@x (x(1� x) @x) , (9)

and contains the term �2x(1� x)z̃2 required to form an
oscillator potential in the LF longitudinal as well as in the
transverse directions. The longitudinal spatial variable
z̃ conjugate to the longitudinal momentum-x, z̃ ⇠ i@x,
is the frame-independent Io↵e coordinate of Miller and
Brodsky [36]. The potential (9) was introduced in the
context of basis light-front quantization [37, 38] and was
further used in [39–42].
The scale � in (9) is the longitudinal confinement

scale and has units of mass. In contrast, the trans-
verse confinement scale � in (6) has dimensions of mass
squared, but both scales are connected in the heavy
quark mass limit. To show this, consider the limit
mq,mq̄ ! mQ,mQ̄ � k?, kz, � ! �Q. In the non-

relativistic limit we find x = mQ+kz

mQ+mQ
, x =

mQ�kz

mQ+mQ
: It

leads to the non-relativistic rotationally-invariant poten-
tial U(r) ! V (r) = U(r)

mQ+mQ
= 1

2µ!
2r2, and the con-

straint

! = � =
�Q

mQ +mQ

, (10)

where µ =
mQmQ̄

mQ+mQ
and r2 = b2

?+ b2z, with bz the canon-

ical conjugate to kz, bz = i@kz .
In order to compute the longitudinal meson mass con-

tribution for an arbitrary LF wave function �(x), it is
convenient to perform an expansion in terms of the com-
plete basis of orthonormal functions generated by the lon-
gitudinal LF Hamiltonian equation (4) for the specific
potential (9)

�↵,�
 (x) = Nx↵/2(1� x)�/2P (↵,�)

 (1� 2x). (11)

Thus,
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X
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2(,↵,�), (12)

where ⌫2(,↵,�) = 1
4 (↵+ � + 2)(2 + ↵+ � + 2), with

↵ = 2mq/� and � = 2mq̄/� as shown in the Appendix.
For the invariant mass ansatz Eq. (1)
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a very rapid convergence is found [27, 30] for the basis
function (11).
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Guy F. de Téramond1, ⇤ and Stanley J. Brodsky2, †
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The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal
dynamics with its chiral limit protected by the superconformal algebraic structure which governs its
transverse dynamics. The scale in the longitudinal light-front Hamiltonian determines the confine-
ment strength in this direction: It is also responsible for most of the light meson ground state mass
consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the break-
ing of chiral symmetry are found to be di↵erent manifestations of the same underlying dynamics
like in ’t Hooft large NC QCD(1 + 1) model.

Introduction.–In spite of the important progress of Eu-
clidean lattice gauge theory, a basic understanding of the
mechanism of color confinement and its relation to chi-
ral symmetry breaking in QCD, two fundamental phe-
nomena of strong interactions, has remained an unsolved
problem. Recent developments based on superconfor-
mal quantum mechanics [1, 2] in light-front quantiza-
tion [3] and its holographic embedding on a higher dimen-
sional gravity theory [4] (gauge/gravity correspondence)
have led to new analytic insights into the structure of
hadrons and their dynamics [5–10]. This new approach
to nonperturbative QCD dynamics, holographic light-
front QCD, leads to e↵ective semi-classical relativistic
bound-state equations for arbitrary spin [11], and it in-
corporates fundamental properties which are not appar-
ent from the QCD Lagrangian, such as the emergence of
the hadron mass scale, the prediction of a massless pion
in the chiral limit, and the remarkable connections be-
tween meson, baryon and tetraquark spectroscopy across
the full hadron spectrum [12–15]. Phenomenological ex-
tensions of the holographic QCD approach also describe
the running of the QCD coupling ↵s(Q2) in the nonper-
turbative domain [16, 17] and provide nontrivial connec-
tions between the dynamics of form factors and polarized
and unpolarized quark distributions with pre-QCD non-
perturbative approaches such as Regge theory and the
Veneziano model [18–20].

In this letter we examine the e↵ect of longitudi-
nal light-front dynamics for the computation of hadron
masses, confinement, and chiral symmetry breaking mo-
tivated by the previous work in Refs. [21–30]. Although
light-front holography, based on the Maldacena conjec-
ture [4] and the superconformal algebraic structure in [2],
determines the confinement potential in the light-front
(LF) transverse coordinates in the zero quark mass chi-
ral limit [10], an extension is required to incorporate
color-confining LF longitudinal dynamics for non-zero
quark masses [31]. This extension of holographic LF
QCD (HLFQCD) should preserve its successful predic-
tions while restoring 3-dimensional rotational invariance
in the heavy-quark limit.

A simple ansatz to account for quark masses in holo-
graphic LF QCD was introduced in [26] based on the
o↵-shell dependence of the LF wave function on the in-
variant mass which controls the bound state. For a two-
parton state this amounts to the substitution k2

?
x(1�x) !

k2
?

x(1�x) + m2
1

x + m2
2

1�x in the ground-state Gaussian wave
function to include the expression for the LF kinetic en-
ergy with quark masses: It is also the invariant mass
squared s = (pq + pq̄)2 of the qq̄ pair. This substitution
leads to the longitudinal wave function [26]

�(x) = N e�
1
2�

�
m2

1
x +

m2
2

1�x

�
, (1)

with N a normalization factor [32]. The variable x is the
LF longitudinal momentum fraction x = k+/P+ and k?
is the relative transverse momentum. The partonic mass
shift contribution to hadron masses [33],

�M2 =

Z 1

0
dx�(x)

hm2
q

x
+

m2
q̄

1� x

i
�(x), (2)

used in [26, 28] does not account for the explicit contri-
bution from a longitudinal potential to hadron masses.
As we shall show in this letter, we can extend our holo-
graphic framework by combining the longitudinal dy-
namics with the transverse superconformal results in a
semiclassical approximation consistent with our previous
holographic results [9, 10].
Longitudinal dynamics in HLFQCD.–We start from

the semiclassical LF transverse [5, 9] and longitudi-
nal [27, 30] Hamiltonian wave equations for mesons

✓
�

d2

d⇣2
�

1� 4L2

4⇣2
+ U?(⇣)

◆
�(⇣) = M2

?�(⇣), (3)

 
m2

q

x
+

m2
q̄

1� x
+ Uk(x)

!
�(x) = M2

k �(x), (4)

in the approximation where transverse and longitudinal
dynamics are separated. The variable ⇣ in (3) is the
invariant transverse variable, ⇣2 = x(1 � x)b2

?, with
b? the transverse impact distance conjugate to the rel-
ative transverse momentum k?, and L is the relative
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2SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA

(Dated: April 18, 2021)

The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal
dynamics with its chiral limit protected by the superconformal algebraic structure which governs its
transverse dynamics. The scale in the longitudinal light-front Hamiltonian determines the confine-
ment strength in this direction: It is also responsible for most of the light meson ground state mass
consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the break-
ing of chiral symmetry are found to be di↵erent manifestations of the same underlying dynamics
like in ’t Hooft large NC QCD(1 + 1) model.

Introduction.–In spite of the important progress of Eu-
clidean lattice gauge theory, a basic understanding of the
mechanism of color confinement and its relation to chi-
ral symmetry breaking in QCD, two fundamental phe-
nomena of strong interactions, has remained an unsolved
problem. Recent developments based on superconfor-
mal quantum mechanics [1, 2] in light-front quantiza-
tion [3] and its holographic embedding on a higher dimen-
sional gravity theory [4] (gauge/gravity correspondence)
have led to new analytic insights into the structure of
hadrons and their dynamics [5–10]. This new approach
to nonperturbative QCD dynamics, holographic light-
front QCD, leads to e↵ective semi-classical relativistic
bound-state equations for arbitrary spin [11], and it in-
corporates fundamental properties which are not appar-
ent from the QCD Lagrangian, such as the emergence of
the hadron mass scale, the prediction of a massless pion
in the chiral limit, and the remarkable connections be-
tween meson, baryon and tetraquark spectroscopy across
the full hadron spectrum [12–15]. Phenomenological ex-
tensions of the holographic QCD approach also describe
the running of the QCD coupling ↵s(Q2) in the nonper-
turbative domain [16, 17] and provide nontrivial connec-
tions between the dynamics of form factors and polarized
and unpolarized quark distributions with pre-QCD non-
perturbative approaches such as Regge theory and the
Veneziano model [18–20].

In this letter we examine the e↵ect of longitudi-
nal light-front dynamics for the computation of hadron
masses, confinement, and chiral symmetry breaking mo-
tivated by the previous work in Refs. [21–30]. Although
light-front holography, based on the Maldacena conjec-
ture [4] and the superconformal algebraic structure in [2],
determines the confinement potential in the light-front
(LF) transverse coordinates in the zero quark mass chi-
ral limit [10], an extension is required to incorporate
color-confining LF longitudinal dynamics for non-zero
quark masses [31]. This extension of holographic LF
QCD (HLFQCD) should preserve its successful predic-
tions while restoring 3-dimensional rotational invariance
in the heavy-quark limit.

A simple ansatz to account for quark masses in holo-
graphic LF QCD was introduced in [26] based on the
o↵-shell dependence of the LF wave function on the in-
variant mass which controls the bound state. For a two-
parton state this amounts to the substitution k2

?
x(1�x) !

k2
?

x(1�x) + m2
1

x + m2
2

1�x in the ground-state Gaussian wave
function to include the expression for the LF kinetic en-
ergy with quark masses: It is also the invariant mass
squared s = (pq + pq̄)2 of the qq̄ pair. This substitution
leads to the longitudinal wave function [26]

�(x) = N e�
1
2�

�
m2

1
x +

m2
2

1�x

�
, (1)

with N a normalization factor [32]. The variable x is the
LF longitudinal momentum fraction x = k+/P+ and k?
is the relative transverse momentum. The partonic mass
shift contribution to hadron masses [33],

�M2 =

Z 1

0
dx�(x)

hm2
q

x
+

m2
q̄

1� x

i
�(x), (2)

used in [26, 28] does not account for the explicit contri-
bution from a longitudinal potential to hadron masses.
As we shall show in this letter, we can extend our holo-
graphic framework by combining the longitudinal dy-
namics with the transverse superconformal results in a
semiclassical approximation consistent with our previous
holographic results [9, 10].
Longitudinal dynamics in HLFQCD.–We start from

the semiclassical LF transverse [5, 9] and longitudi-
nal [27, 30] Hamiltonian wave equations for mesons

✓
�

d2

d⇣2
�

1� 4L2

4⇣2
+ U?(⇣)

◆
�(⇣) = M2

?�(⇣), (3)

 
m2

q

x
+

m2
q̄

1� x
+ Uk(x)

!
�(x) = M2

k �(x), (4)

in the approximation where transverse and longitudinal
dynamics are separated. The variable ⇣ in (3) is the
invariant transverse variable, ⇣2 = x(1 � x)b2

?, with
b? the transverse impact distance conjugate to the rel-
ative transverse momentum k?, and L is the relative

<latexit sha1_base64="rpcj/ZiC1whOB5rNzgjs+B8tFpI=">AAACEHicbVC7TgJBFJ3FF+Jr1dJmIhixkOxuoTYmRBtLTFwgYYHMDrMwYfaRmVkDLvsJNv6KjYXG2Fra+TcOj0LBk9zk5Jx7c+89bsSokIbxrWWWlldW17LruY3Nre0dfXevKsKYY2LjkIW87iJBGA2ILalkpB5xgnyXkZrbvx77tXvCBQ2DOzmMSNNH3YB6FCOppLZ+XLDbyWiUwkvoCNr1UcuCg6J5OjiBiSMp6xD4kLasQlvPGyVjArhIzBnJgxkqbf3L6YQ49kkgMUNCNEwjks0EcUkxI2nOiQWJEO6jLmkoGiCfiGYyeSiFR0rpQC/kqgIJJ+rviQT5Qgx9V3X6SPbEvDcW//MasfQumgkNoliSAE8XeTGDMoTjdGCHcoIlGyqCMKfqVoh7iCMsVYY5FYI5//IiqVol86xk3Vr58tUsjiw4AIegCExwDsrgBlSADTB4BM/gFbxpT9qL9q59TFsz2mxmH/yB9vkDl2abCw==</latexit>

U|| = �2x(1� x)z̃2

G. A. Miller, sjb
<latexit sha1_base64="ogoCsUgYlIOAyIj6q+OqkNNmPf4="></latexit>

Io↵e length z̃: conjugate to LF x = k+

P+
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stantaneous LF potential which appears from gluon ex-
change in A+ = 0 LF gauge in QCD (3+1). As noted in
Refs. [27, 30], the resulting longitudinal eigenvalue equa-
tion for the longitudinal mass M2

k can be combined with

the holographic LF transverse equation (3) for M2
? to

incorporate massive quarks.
We write the meson LF wave function  as

 (x, ⇣,') =

s
x(1� x)

2⇡⇣
eiL'�(x)�(⇣), (5)

normalized to
R 1
0 dx�2(x) = 1 and

R1
0 d⇣ �2(⇣) = 1,

where we have factored out the longitudinal, trans-
verse and orbital dependence since the total e↵ective
LF Hamiltonian is written as the sum of longitudinal
and transverse components. The longitudinal mass M2

k
thus appears as a separation constant in the transverse
equation (3), namely M2

? ! M2
� M2

k [27]. As a re-
sult, the structure of the superconformal equation in the
transverse direction is not modified, even by heavy quark
masses, as long as transverse and longitudinal dynamics
can be separated. We have included in (5) the normal-
ization factor

p
x(1� x) which arises from the precise

mapping of AdS form factors to light-front physics in the
limit of zero quark masses [34].

The transverse LF equation (3) has a similar structure
as the wave equations derived in five-dimensional AdS
provided that one identifies ⇣ = z [5], the holographic
fifth-dimensional coordinate of AdS. This precise map-
ping allows us to relate the LF confinement potential U?
to the dilaton profile which modifies AdS space [9]. The
assumption of superconformal algebra then uniquely de-
termines the form of the transverse confining potential
for both mesons and nucleons [7, 8]: For mesons it is
given by [8, 35]

U?(⇣) = �2⇣2 + 2�(J � 1). (6)

In the factorized approximation, the radial and orbital
excitations are determined by the transverse potential
(6) with eigenvalues [9]

M2
?(n, J, L) = 4�

✓
n+

J + L

2

◆
, (7)

and eigenfunctions

�n,L(⇣) = �(1+L)/2

s
2n!

(n+L)!
⇣1/2+Le��⇣2/2LL

n(�⇣
2).

(8)
For the longitudinal component we will adopt the ef-

fective potential introduced by Li, Maris, Zhao and Vary

in [30] to generate a convenient orthonormal basis func-
tions in the LF longitudinal momentum variable x. It is
given by

Uk(x) = ��2@x (x(1� x) @x) , (9)

and contains the term �2x(1� x)z̃2 required to form an
oscillator potential in the LF longitudinal as well as in the
transverse directions. The longitudinal spatial variable
z̃ conjugate to the longitudinal momentum-x, z̃ ⇠ i@x,
is the frame-independent Io↵e coordinate of Miller and
Brodsky [36]. The potential (9) was introduced in the
context of basis light-front quantization [37, 38] and was
further used in [39–42].
The scale � in (9) is the longitudinal confinement

scale and has units of mass. In contrast, the trans-
verse confinement scale � in (6) has dimensions of mass
squared, but both scales are connected in the heavy
quark mass limit. To show this, consider the limit
mq,mq̄ ! mQ,mQ̄ � k?, kz, � ! �Q. In the non-

relativistic limit we find x = mQ+kz

mQ+mQ
, x =

mQ�kz

mQ+mQ
: It

leads to the non-relativistic rotationally-invariant poten-
tial U(r) ! V (r) = U(r)

mQ+mQ
= 1

2µ!
2r2, and the con-

straint

! = � =
�Q

mQ +mQ

, (10)

where µ =
mQmQ̄

mQ+mQ
and r2 = b2

?+ b2z, with bz the canon-

ical conjugate to kz, bz = i@kz .
In order to compute the longitudinal meson mass con-

tribution for an arbitrary LF wave function �(x), it is
convenient to perform an expansion in terms of the com-
plete basis of orthonormal functions generated by the lon-
gitudinal LF Hamiltonian equation (4) for the specific
potential (9)

�↵,�
 (x) = Nx↵/2(1� x)�/2P (↵,�)

 (1� 2x). (11)

Thus,

M2
k = �2

Z 1

0
dx�(x)

⇣
� @x (x(1� x)@x)

+
1

4

h↵2

x
+

�2

1� x

i⌘
�(x) = �2

X



C2
 ⌫

2(,↵,�), (12)

where ⌫2(,↵,�) = 1
4 (↵+ � + 2)(2 + ↵+ � + 2), with

↵ = 2mq/� and � = 2mq̄/� as shown in the Appendix.
For the invariant mass ansatz Eq. (1)

N exp

⇢
�
�2

8�

✓
↵2

x
+

�2

1� x

◆�
=

X



C �(x), (13)

a very rapid convergence is found [27, 30] for the basis
function (11).

Longitudinal Confinement

Li, Maris, Zhao, Vary
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k+2 LF interaction in A+ = 0 gauge
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The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal
dynamics with its chiral limit protected by the superconformal algebraic structure which governs its
transverse dynamics. The scale in the longitudinal light-front Hamiltonian determines the confine-
ment strength in this direction: It is also responsible for most of the light meson ground state mass
consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the break-
ing of chiral symmetry are found to be di↵erent manifestations of the same underlying dynamics
like in ’t Hooft large NC QCD(1 + 1) model.

The lowest mode eigenfunction in (??) has identical

form as the approximate analytic solution obtained in [?
? ], �(x) ⇠ x�1(1� x)�2 , where the exponents �i are de-

termined by quark masses and the longitudinal coupling

g, which in QCD(1+1) has units of mass. In the ’t Hooft

model [? ] the longitudinal equation (??) becomes the

non-linear equation

 
m2

q

x
+

m2
q̄

1� x

!
�(x) +

g2NC

⇡
P

Z 1

0
dx0�(x)� �(x0

)

(x� x0)2

= M2
k �(x), (1)

with ⇡m2
q/g

2NC�1+⇡�1 cot(⇡�1) = 0 from the x-power

expansion of (??) at x = ✏ and a similar expression from

the upper bound x = 1�✏. Spontaneous chiral symmetry

breaking occurs in the limit NC ! 1, followed by the

limit mq ! 0 with the result �i = (3m2
i /⇡g

2NC)
1/2

from

the expansion of the transcendental equation above and

M2
⇡ = g

p
⇡NC/3 (mu +md) +O

�
(mu+md)

2
�
, (2)

from integrating (??) [? ? ]. Comparison with (??)
leads to � = g

p
⇡NC/3 = const, since g scales as g ⇠

1
p
NC and chiral logarithms are suppressed at NC !

1. We notice that both (??) and (??) receive identical

contributions from the potential and kinetic energy terms

in agreement with the virial theorem.
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ment strength in this direction: It is also responsible for most of the light meson ground state mass
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The lowest mode eigenfunction in (??) has identical

form as the approximate analytic solution obtained in [?
? ], �(x) ⇠ x�1(1� x)�2 , where the exponents �i are de-

termined by quark masses and the longitudinal coupling

g, which in QCD(1+1) has units of mass. In the ’t Hooft

model [? ] the longitudinal equation (??) becomes the

non-linear equation

 
m2

q

x
+

m2
q̄

1� x

!
�(x) +

g2NC

⇡
P

Z 1

0
dx0�(x)� �(x0

)

(x� x0)2

= M2
k �(x), (1)

with ⇡m2
q/g

2NC�1+⇡�1 cot(⇡�1) = 0 from the x-power

expansion of (??) at x = ✏ and a similar expression from

the upper bound x = 1�✏. Spontaneous chiral symmetry

breaking occurs in the limit NC ! 1, followed by the

limit mq ! 0 with the result �i = (3m2
i /⇡g

2NC)
1/2

from

the expansion of the transcendental equation above and

M2
⇡ = g

p
⇡NC/3 (mu +md) +O

�
(mu+md)

2
�
, (2)

from integrating (??) [? ? ]. Comparison with (??)
leads to � = g

p
⇡NC/3 = const, since g scales as g ⇠

1
p
NC and chiral logarithms are suppressed at NC !

1. We notice that both (??) and (??) receive identical

contributions from the potential and kinetic energy terms

in agreement with the virial theorem.
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1Laboratorio de F́ısica Teórica y Computacional, Universidad de Costa Rica, 11501 San José, Costa Rica
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dynamics with its chiral limit protected by the superconformal algebraic structure which governs its
transverse dynamics. The scale in the longitudinal light-front Hamiltonian determines the confine-
ment strength in this direction: It is also responsible for most of the light meson ground state mass
consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the break-
ing of chiral symmetry are found to be di↵erent manifestations of the same underlying dynamics
like in ’t Hooft large NC QCD(1 + 1) model.

The lowest mode eigenfunction in (??) has identical

form as the approximate analytic solution obtained in [?
? ], �(x) ⇠ x�1(1� x)�2 , where the exponents �i are de-

termined by quark masses and the longitudinal coupling

g, which in QCD(1+1) has units of mass. In the ’t Hooft

model [? ] the longitudinal equation (??) becomes the

non-linear equation

 
m2

q

x
+

m2
q̄

1� x

!
�(x) +

g2NC

⇡
P

Z 1

0
dx0�(x)� �(x0

)

(x� x0)2

= M2
k �(x), (1)

with ⇡m2
q/g

2NC�1+⇡�1 cot(⇡�1) = 0 from the x-power

expansion of (??) at x = ✏ and a similar expression from

the upper bound x = 1�✏. Spontaneous chiral symmetry

breaking occurs in the limit NC ! 1, followed by the

limit mq ! 0 with the result �i = (3m2
i /⇡g

2NC)
1/2

from

the expansion of the transcendental equation above and

M2
⇡ = g

p
⇡NC/3 (mu +md) +O

�
(mu+md)

2
�
, (2)

from integrating (??) [? ? ]. Comparison with (??)
leads to � = g

p
⇡NC/3 = const, since g scales as g ⇠

1
p
NC and chiral logarithms are suppressed at NC !

1. We notice that both (??) and (??) receive identical

contributions from the potential and kinetic energy terms

in agreement with the virial theorem.
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�(x) ⇠ x
2mq
� (1� x)

2mq̄
�
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Interpret <  ̄ > as an in-hadron condensate
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The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal
dynamics with its chiral limit protected by the superconformal algebraic structure which governs its
transverse dynamics. The scale in the longitudinal light-front Hamiltonian determines the confine-
ment strength in this direction: It is also responsible for most of the light meson ground state mass
consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the break-
ing of chiral symmetry are found to be di↵erent manifestations of the same underlying dynamics
like in ’t Hooft large NC QCD(1 + 1) model.

Chiral symmetry breaking.–The chiral limit follows di-
rectly from (??) since all the coe�cients C vanish for
 6= 0 in this limit. From (??) we obtain

M2
⇡ = �(mu+md) +O

�
(mu+md)

2
�
, (1)

in the limit mu,md ! 0. It has the same linear depen-
dence in the quark mass as the Gell-Mann-Oakes-Renner
(GMOR) relation

M2
⇡f

2
⇡ = �

1
2 (mu+md)hūu+d̄di+O

�
(mu+md)

2
�
, (2)

where the “vacuum condensate” h  i ⌘ 1
2 hūu+d̄di plays

the role of a chiral order parameter. The same linear de-
pendence arises for the (3 + 1) e↵ective LF Hamiltonian,
since the constraints from the superconformal algebra re-
quire that the contribution to the pion mass from the
transverse LF dynamics is identically zero.

Interpret as in-hadron condensate.

The lowest mode eigenfunction in (??) has identical
form as the approximate analytic solution obtained in [?
? ], �(x) ⇠ x�1(1� x)�2 , where the exponents �i are de-
termined by quark masses and the longitudinal coupling

g, which in QCD(1+1) has units of mass. In the ’t Hooft
model [? ] the longitudinal equation (??) becomes the
non-linear equation

 
m2

q

x
+

m2
q̄

1� x

!
�(x) +

g2NC

⇡
P

Z 1

0
dx0�(x)� �(x0)

(x� x0)2

= M2
k �(x), (3)

with ⇡m2
q/g

2NC�1+⇡�1 cot(⇡�1) = 0 from the x-power
expansion of (3) at x = ✏ and a similar expression from
the upper bound x = 1�✏. Spontaneous chiral symmetry
breaking occurs in the limit NC ! 1, followed by the
limit mq ! 0 with the result �i = (3m2

i /⇡g
2NC)1/2 from

the expansion of the transcendental equation above and

M2
⇡ = g

p
⇡NC/3 (mu +md) +O

�
(mu+md)

2
�
, (4)

from integrating (3) [? ? ]. Comparison with (1) leads to
� = g

p
⇡NC/3 = const, since g scales as g ⇠ 1

p
NC and

chiral logarithms are suppressed at NC ! 1. We notice
that both (1) and (4) receive identical contributions from
the potential and kinetic energy terms in agreement with
the virial theorem.

Roberts, Richards, Horn, Chang
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The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal
dynamics with its chiral limit protected by the superconformal algebraic structure which governs its
transverse dynamics. The scale in the longitudinal light-front Hamiltonian determines the confine-
ment strength in this direction: It is also responsible for most of the light meson ground state mass
consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the break-
ing of chiral symmetry are found to be di↵erent manifestations of the same underlying dynamics
like in ’t Hooft large NC QCD(1 + 1) model.

Expand in complete orthonormal basis

�↵,�
 (x) = Nx↵/2(1� x)�/2P (↵,�)

 (1� 2x). (1)

M2
k = �2

Z 1

0
dx�(x)

⇣
� @x (x(1� x)@x)

+
1

4

h↵2

x
+

�2

1� x

i⌘
�(x) = �2

X



C2
 ⌫

2(,↵,�), (2)

where ⌫2(,↵,�) = 1
4 (↵+ � + 2)(2 + ↵+ � + 2), with

↵ = 2mq/� and � = 2mq̄/�.
a very rapid convergence is found [? ? ] for the basis

function (1).
Chiral symmetry breaking.–The chiral limit follows di-

rectly from (2) since all the coe�cients C vanish for
 6= 0 in this limit. From (2) we obtain

M2
⇡ = �(mu+md) +O

�
(mu+md)

2
�
, (3)

in the limit mu,md ! 0. It has the same linear depen-
dence in the quark mass as the Gell-Mann-Oakes-Renner
(GMOR) relation

M2
⇡f

2
⇡ = �

1
2 (mu+md)hūu+d̄di+O

�
(mu+md)

2
�
, (4)

where the “vacuum condensate” h  i ⌘ 1
2 hūu+d̄di plays

the role of a chiral order parameter. The same linear de-
pendence arises for the (3 + 1) e↵ective LF Hamiltonian,

since the constraints from the superconformal algebra re-
quire that the contribution to the pion mass from the
transverse LF dynamics is identically zero.
Interpret as in-hadron condensate.
The lowest mode eigenfunction in (1) has identical

form as the approximate analytic solution obtained in [?
? ], �(x) ⇠ x�1(1� x)�2 , where the exponents �i are de-
termined by quark masses and the longitudinal coupling
g, which in QCD(1+1) has units of mass. In the ’t Hooft
model [? ] the longitudinal equation (??) becomes the
non-linear equation

 
m2

q

x
+

m2
q̄

1� x

!
�(x) +

g2NC

⇡
P

Z 1

0
dx0�(x)� �(x0)

(x� x0)2

= M2
k �(x), (5)

with ⇡m2
q/g

2NC�1+⇡�1 cot(⇡�1) = 0 from the x-power
expansion of (6) at x = ✏ and a similar expression from
the upper bound x = 1�✏. Spontaneous chiral symmetry
breaking occurs in the limit NC ! 1, followed by the
limit mq ! 0 with the result �i = (3m2

i /⇡g
2NC)1/2 from

the expansion of the transcendental equation above and

M2
⇡ = g

p
⇡NC/3 (mu +md) +O

�
(mu+md)

2
�
, (6)

from integrating (6) [? ? ]. Comparison with (4) leads to
� = g

p
⇡NC/3 = const, since g scales as g ⇠ 1

p
NC and

chiral logarithms are suppressed at NC ! 1. We notice
that both (4) and (7) receive identical contributions from
the potential and kinetic energy terms in agreement with
the virial theorem.
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The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal
dynamics with its chiral limit protected by the superconformal algebraic structure which governs its
transverse dynamics. The scale in the longitudinal light-front Hamiltonian determines the confine-
ment strength in this direction: It is also responsible for most of the light meson ground state mass
consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the break-
ing of chiral symmetry are found to be di↵erent manifestations of the same underlying dynamics
like in ’t Hooft large NC QCD(1 + 1) model.

Expand in complete orthonormal basis

�↵,�
 (x) = Nx↵/2(1� x)�/2P (↵,�)

 (1� 2x). (1)

M2
k = �2

Z 1

0
dx�(x)

⇣
� @x (x(1� x)@x)

+
1

4

h↵2

x
+

�2

1� x

i⌘
�(x) = �2

X



C2
 ⌫

2(,↵,�), (2)

where ⌫2(,↵,�) = 1
4 (↵+ � + 2)(2 + ↵+ � + 2), with

↵ = 2mq/� and � = 2mq̄/�.
a very rapid convergence is found [? ? ] for the basis

function (1).
Chiral symmetry breaking.–The chiral limit follows di-

rectly from (2) since all the coe�cients C vanish for
 6= 0 in this limit. From (2) we obtain

M2
⇡ = �(mu+md) +O

�
(mu+md)

2
�
, (3)

in the limit mu,md ! 0. It has the same linear depen-
dence in the quark mass as the Gell-Mann-Oakes-Renner
(GMOR) relation

M2
⇡f

2
⇡ = �

1
2 (mu+md)hūu+d̄di+O

�
(mu+md)

2
�
, (4)

where the “vacuum condensate” h  i ⌘ 1
2 hūu+d̄di plays

the role of a chiral order parameter. The same linear de-
pendence arises for the (3 + 1) e↵ective LF Hamiltonian,

since the constraints from the superconformal algebra re-
quire that the contribution to the pion mass from the
transverse LF dynamics is identically zero.
Interpret as in-hadron condensate.
The lowest mode eigenfunction in (1) has identical

form as the approximate analytic solution obtained in [?
? ], �(x) ⇠ x�1(1� x)�2 , where the exponents �i are de-
termined by quark masses and the longitudinal coupling
g, which in QCD(1+1) has units of mass. In the ’t Hooft
model [? ] the longitudinal equation (??) becomes the
non-linear equation

 
m2

q

x
+

m2
q̄

1� x

!
�(x) +

g2NC

⇡
P

Z 1

0
dx0�(x)� �(x0)

(x� x0)2

= M2
k �(x), (5)

with ⇡m2
q/g

2NC�1+⇡�1 cot(⇡�1) = 0 from the x-power
expansion of (6) at x = ✏ and a similar expression from
the upper bound x = 1�✏. Spontaneous chiral symmetry
breaking occurs in the limit NC ! 1, followed by the
limit mq ! 0 with the result �i = (3m2

i /⇡g
2NC)1/2 from

the expansion of the transcendental equation above and

M2
⇡ = g

p
⇡NC/3 (mu +md) +O

�
(mu+md)

2
�
, (6)

from integrating (6) [? ? ]. Comparison with (4) leads to
� = g

p
⇡NC/3 = const, since g scales as g ⇠ 1

p
NC and

chiral logarithms are suppressed at NC ! 1. We notice
that both (4) and (7) receive identical contributions from
the potential and kinetic energy terms in agreement with
the virial theorem.

Mode expansion 
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Chiral symmetry breaking.–The chiral limit follows di-
rectly from (12) since all the coe�cients C vanish for
 6= 0 in this limit. From (12) we obtain

M2
⇡ = �(mu+md) +O

�
(mu+md)

2
�
, (14)

in the limit mu,md ! 0. It has the same linear depen-
dence in the quark mass as the Gell-Mann-Oakes-Renner
(GMOR) relation [43]

M2
⇡f

2
⇡ = �

1
2 (mu+md)hūu+d̄di+O

�
(mu+md)

2
�
, (15)

where the vacuum condensate h  i ⌘ 1
2 hūu + d̄di plays

the role of a chiral order parameter. The same linear de-
pendence in (14) arises for the (3 + 1) e↵ective LF Hamil-
tonian, since the constraints from the superconformal al-
gebra requires that the contribution to the pion mass
from the transverse LF dynamics is identically zero [8].

The lowest mode eigenfunction in (11) has identi-
cal form as the approximate analytic solution obtained
in [21, 22], �(x) ⇠ x�1(1 � x)�2 , where the exponents
�i are determined by quark masses and the longitudinal
coupling g, which in QCD(1+1) has units of mass. In the
’t Hooft model [21] the longitudinal equation (4) becomes
the non-linear equation

 
m2

q

x
+

m2
q̄

1� x

!
�(x) +

g2NC

⇡
P

Z 1

0
dx0�(x)� �(x0)

(x� x0)2

= M2
k �(x), (16)

with ⇡m2
q/g

2NC�1+⇡�1 cot(⇡�1) = 0 from the x-power
expansion of (16) at x = ✏ and a similar expression from
the upper bound x = 1�✏. Spontaneous chiral symmetry
breaking occurs in the limit NC ! 1, followed by the
limit mq ! 0 with the result �i = (3m2

i /⇡g
2NC)1/2 from

the expansion of the transcendental equation above and

M2
⇡ = g

p
⇡NC/3 (mu +md) +O

�
(mu+md)

2
�
, (17)

from integrating (16) [21, 23]. Comparison with (14)
leads to � = g

p
⇡NC/3 = const, since g scales as

g ⇠ 1
p
NC and chiral logarithms are suppressed at

NC ! 1. We notice that both (14) and (17) receive
identical contributions from the potential and kinetic en-
ergy terms in agreement with the virial theorem.

Numerical results.–In practice, we need to know the
value of the scale � and the quark masses to compute
M2

k . In the heavy quark limit Eq. (10) coincides with the

heavy-quark e↵ective theory (HQET) result [44], which
requires that the confining scale is proportional to the
mass of the heavy meson:

p
�Q = C

p
MQ [13, 28]. The

value is C = 0.49± 0.02 GeV1/2 for MQ � 1.8 GeV [15],
namely � ' C2 = 0.24 GeV. We assume that this value
of the longitudinal confinement scale to remain constant,
a result supported by the large NC QCD(1 + 1) ’t Hooft
model discussed above. Thus, fixing C ' 0.5 GeV1/2

at all scales, we can determine the e↵ective light quark
masses mu and md from the measured pion mass and the
strange quark mass, ms, from the kaon mass using (12):
The value of the �(1020) mass is then a prediction. No-
tice that the �(1020) vector meson also has the transverse
mass component M? =

p
2� from the spin-spin interac-

tion in supersymmetric LF holographic QCD [9, 35] withp
� = 0.523 GeV.

TABLE I. Lowest expansion coe�cients C in (13).

 = 0  = 1  = 2  = 3  = 4  = 5  = 6
C(ud̄) 0.998 0 0.055 0 0.010 0 -0.003
C(us̄) 0.967 -0.231 0.100 -0.006 -0.009 0.013 -0.016
C(ss̄) 0.998 0 0.038 0 -0.045 0 -0.024
C(uc̄) 0.958 -0.267 0.097 -0.012 -0.003 0 -0.007
C(cc̄) 0.999 0 0.016 0 -0.020 0 -0.003

We show in Table I the values of the lowest expansion
coe�cients. The results for the light meson masses in
Fig. 1 correspond to the values mu = md = 28 MeV and
ms = 326 MeV. Meson masses are determined from the
stability plateau in Fig. 1. For light quark masses con-
tributions above max ' 20 introduce large uncertainties
from highly oscillatory integrands. In Fig. 2 we show the
e↵ect of the strong oscillations from the large  behavior
of the Jacobi Polynomials [46] by examining the varia-
tion of the results for quark masses in interval mq = 28
MeV to mq = 28⇥ 10�8 MeV.

π

K
ϕ
D
ηc

0 5 10 15 20 25
0.1

0.5
1

5

κ+ 1

M
(G
eV

)

FIG. 1. Numerical evaluation of ground state meson masses
from the stability plateau in the figure using (12). The hori-
zontal grey lines in the figure are the observed masses [45].

The distribution amplitude (DA) [47], X(x) ⌘p
x(1� x�(x), for the pion, kaon and J/ mesons are

shown in Fig. (3). Due to the rapid convergence of the
exponential wave function in the basis expansion (13),
very few modes are required to reproduce the invari-
ant mass ansatz. The DAs predicted by holographic LF
QCD at the initial nonperturbative scale should then

<latexit sha1_base64="nYr8uoRdKu2zkmHP0RpCmp43U7M=">AAACbnicbVFNb9NAEF2br2K+UpA4UCFGpEg9RXYOlGNFLxyL1LSVkigar8fOKutda3dclEY98ge58Ru48BNYpz5Ay0gjvX0z83b2bd5o5TlNf0bxvfsPHj7aeZw8efrs+YvB7sszb1snaSKttu4iR09aGZqwYk0XjSOsc03n+eq4q59fkvPKmlNeNzSvsTKqVBI5UIvB9+TYmtBQkZEEtoTK2dYU4BmZoCZvDdToPXn4pngJys gg75WpYH+2wqbB/SQ5XRIsrVNX1jDqIEFr6BbyoR04FEtVtY4AQ3ZHm3tyl1T0yqNkMRimo3QbcBdkPRiKPk4Wgx+zwsq2JsNSB5FpljY836BjJTVdJ7PWU4NyhRVNAzQYXjLfbO26hg+BKaC0LqRh2LJ/T2yw9n5d56GzRl7627WO/F9t2nL5ab5Rpmk52HlzUdlqYAud91AoR5L1OgCUToVdQS7RoeTwQ50J2e0n3wVn41H2cTT+Oh4efe7t2BF74r04EJk4FEfiizgREyHFr2g3ehPtRb/j1/Hb+N1Naxz1M6/EPxEf/AFPn7rn</latexit>

Convergence of ground state meson masses with increasing 
The horizontal grey lines in the figure are the observed masses.
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FIG. 2. Numerical evaluation of the pion mass for quark
masses in the range mq = 28 MeV (upper blue dotted line)
to mq = 28 ⇥ 10�8 MeV (lower mauve dotted line) manifest
the spurious divergence of the numerical results from highly
oscillatory integrands at large `, in sharp contrast with the
exact chiral result (17).

tion [47–49]. The Dyson-Schwinger results for the pion
DA [50] are very similar to the chiral result X(x) =p

x(1� x) from LF holographic mapping [34].
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FIG. 3. Light-front distribution amplitudes X(x) for the ⇡,
K, D and J/ mesons: the red curve is the invariant mass
result, dot dashed black curves are individual modes in the
expansion (16), dashed blue curve represent the sum of modes
in the figure. Notice that the J/ result is well described by
the zero mode alone.

We can extend our analysis to the heavy quark sector
provided that longitudinal and transverse dynamics can
be separated to a good approximation. In contrast with
the light quark mass sector, mq,mq̄ ⌧ �, most of the
hadron mass in the heavy sector, mQ,mQ̄ � �, comes
from quark masses. The expansion coe�cients of the
invariant mass wave function (16) for the the uc and cc
mesons are shown in Table I. We determine the e↵ective
charm quark mass from the ⌘c using (14) and compute,
for example, the mass of the D meson as a prediction.

We find for MD a value within 14% of its measured value
for mc ' 1.4 GeV. Our simple approximation does not
include the contribution from one-gluon exchange, which
becomes relevant for heavy quark masses.
Conclusions and Outlook.–The light-front semiclassi-

cal approximation described in this article determines the
confinement strength in the longitudinal direction as well
as the e↵ective scale of chiral symmetry breaking. As
such, it accounts for most of the meson mass, consistent
with the GMOR relation and the spontaneous breaking
of chiral symmetry. Following [27] we have separated
the light-front longitudinal and transverse dynamics and
adopted from [30] a potential which generates a conve-
nient basis function in the longitudinal direction. It al-
lows us to expand the LF invariant mass wave function
(1), reducing, in practice, the highly complex and non-
local four-dimensional LF QCD Hamiltonian to a set of
two independent second order di↵erential equations, con-
sistent with the local structure of semiclassical AdS equa-
tions in the holographic variable [51, 52]. In the limit of
heavy quark masses, the combined potential reduces to
a rotational-invariant oscillator thus establishing a con-
nection of the longitudinal and transverse scales.
The origin and physical interpretation of the longitu-

dinal scale �, which has the role of a condensate h ̄ i,
remains to be explored, but as we have shown here, it is
related to the dimensionful constant g in QCD(1 + 1) at
large NC . In QCD lattice field theory, for example, the
structure of the vacuum is sampled in the Euclidean re-
gion where non-trivial field configurations from the gauge
topology provide a mechanism for symmetry breaking
through the Banks-Casher relation, h ̄ i = �⇡⇢(0), with
⇢(0) the density or Dirac-zero modes [53, 54]. However,
the relation between chiral symmetry breaking and con-
finement has remained elusive. In this context, it has
been argued that the chiral condensate, usually viewed
as a constant mass scale which fills all spacetime, is in-
stead contained within hadrons, therefore a property of
hadron dynamics [50, 55].
The fact that the nonzero pion mass is a consequence of

longitudinal LF confinement is a remarkable result. One
would expect, for example, from the two-dimensional
’t Hooft [21] or Schwinger [22] models in light-front coor-
dinates, that the pion mass from the mechanism of chiral
symmetry breaking originates in the longitudinal compo-
nent of the wave function [23], since the kinetic quark
mass terms only depend on the longitudinal variable.
However, this would not be the case if the transverse ki-
netic and potential energy of the pion would not exactly
cancel as required by the superconformal structure of the
transverse LF Hamiltonian. The pion plays a special role
since it is the unique hadronic state of zero mass. Since
it does not have a baryonic partner, the pion breaks the
meson-baryon hadronic supersymmetry [8]. In contrast,
the proton mass (as well as the mass of radial and or-
bital hadron excited states) is generated by the addition



c

Singapore

The Onset of Color Transparency 
in Holographic Light-Front QCD

Onset of color transparency in holographic light-front QCD

Stanley J. Brodsky⇤

SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA

Guy F. de Téramond†
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Color transparency in nuclei is a fundamental QCD property measured in semi-exclusive hard

scattering where mesons are produced at high transverse momentum Q2 > 3 GeV
2
. A recent

JLab measurement for protons fails, however, to observe QCD color transparency up to Q2
of 14.2

(GeV/c)
2
exacting all current models. Using the holographic light-front QCD framework we predict

the Q2
behavior of the transverse-impact cross section, its precise dependence on the twist ⌧ , the

number of constituents of the hadron bound state, and the quark current which triggers the initial

formation of the small hadron configuration in nuclei. We find a significant Q2
delay in the onset

of color transparency at intermediate energies for twist ⌧ > 2.

I. INTRODUCTION

One of the most remarkable properties predicted by
QCD is Color Transparency (CT) –the ability of a hadron
produced at high momentum transfer Q to transit a nu-
cleus without absorption. This property reflects the fact
that the dynamics of a hadron produced in a hard scat-
tering reaction is dominated by its valence Fock state
where its quark constituents have small transverse sep-
aration a? / 1/Q, and thus propagate as a small-size
color-singlet [1, 2]. For example, the semi-exclusive elec-
troproduction process eA ! e

0
HX, where the hadron H

is produced with large transverse momentum opposite to
the scattered lepton is dominated by the hard scatter-
ing of its valence quark constituents at small transverse
separation. The scattered hadron H thus propagates as
a small color singlet, and the e↵ects of the nuclear envi-
ronment are power-law suppressed. The same principle
underlies the theory of hard exclusive reactions [3] and
predictions such as QCD counting rules for hadronic form
factors and exclusive cross sections [4, 5]. Measurements
of CT can thus distinguish between the predictions of
conventional nuclear physics and the onset of quark and
gluon degrees of freedom.

The absence of nuclear absorption as a function of
momentum transfer has been confirmed in many semi-
exclusive hard scattering reactions where mesons are pro-
duced at high transverse momentum squared of order
Q

2
> 3 GeV2 [2]. However, a recent measurement for

protons by the Hall C Collaboration [6], does not observe
CT in quasielastic 12C(e, e0p) up to Q

2 of 14.2 (GeV/c)2,
thus setting strong constraints on the onset of color trans-
parency and all available models.

In this letter we use the extended holographic light-
front QCD framework [7, 8] to predict the behavior of
the transverse-impact cross section as a function of Q2.

⇤ sjbth@slac.stanford.edu
† gdt@asterix.crnet.cr

We find that the transverse-impact area depends on the
twist, the number of components of a given Fock state,
and the quark current which couples to a given hadron
triggering the initial formation of a small hadron configu-
ration in nuclei. This critical dependence on the number
of components modifies the relative onset of color trans-
parency, for example, of a proton or deuteron as com-
pared with the observed onset of pion transparency in
nuclei.

Our analysis, based on the results from holographic
light-front QCD [7, 8], is rooted on the gauge/gravity
correspondence [9], light-front (LF) quantization [10], su-
perconformal quantum mechanics [11–13] and the gener-
alized Veneziano model [14–16]. Our framework provides
nontrivial connections between the dynamics of form fac-
tors and polarized and unpolarized quark distributions
with analytic structures found in pre-QCD studies, such
as Regge trajectories and the Veneziano model [17, 18].
These nonperturbative structures are found to be most
relevant for the present analysis of the dynamics of color
transparency.

II. HOLOGRAPHIC LIGHT-FRONT QCD
RESULTS

We write the flavor form factor for twist ⌧ in terms of
the generalized parton distribution (GPD) at zero skew-
ness Hq(x, t) ⌘ H

q(x, ⇠ = 0, t) [19–21]

F
q
⌧ (t) =

Z 1

0
dxH

q(x, t)

=

Z 1

0
dx q⌧ (x) exp [tf(x)] , (1)

where q⌧ (x) is the longitudinal parton distribution func-
tion (PDF) and f(x) the profile function. In light-front
quantization the form factor has an exact single-particle

with
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Discussion Session 1:
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Recent overview: S. J. Brodsky, GdT and H. G. Dosch [arXiv:2004.07756 [hep-ph]].
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• QCD:  Gauge theory properties and quantum coherence 

• Small-size color dipole moment interacts weakly in nuclei

at high Q2

A

�(e+A ! e0 + p+X) ! Z d�
dt (ep ! e0p0)

1

e+A ! e0 + p+X

1



Color transparency fundamental prediction of QCD

4

e
e'

p p'
• Introduced by Mueller and Brodsky, 1982

• Vanishing of initial/final state interaction of 
hadrons with nuclear medium in exclusive 
processes at high momentum transfer

• Hadron fluctuates to small transverse size (quantum mechanics)

• Maintains this small size as it propagates out of the nucleus (relativity)

• Experiences reduced attenuation in nucleus, color screened (strong force)

JLab Seminar 2019

Holly Suzmila-Vance

e+A ! e0 + p+X

1



Color transparency fundamental prediction of QCD

5

CT onset
1.0

TA

Q0
2 Q2➝

Complete transparency

Glauber

• Not predicted by strongly interacting 
hadronic picture → arises in picture of 
quark-gluon interactions

• QCD: color field of singlet objects vanishes 
as size is reduced

• Signature is a rise in nuclear transparency, 
TA, as a function of the momentum 
transfer, Q2

!" =
$"
% $& (free nucleon 

cross section)

(nuclear cross section)

e

e'

p p'

JLab Seminar 2019

e+A ! e0 + p+X

1

Q2 !

1

14 GeV 2 < Q2 < 20 GeV 2

Q2 > 20 GeV 2

1

Two-Stage Color Transparency for ProtonHolly Suzmila-Vance

Dirac Domain



Color Transparency

• Fundamental test of gauge theory in hadron physics 

• Small color dipole moment interacts weakly in nuclei 

• Complete coherence at high energies 

• Many tests in hard exclusive processes 

• Clear Demonstration of CT from Diffractive Di-Jets 

• Explains Baryon Anomaly at RHIC 

• Small color dipole moment interacts weakly in nuclei

Bertsch, Gunion, Goldhaber, sjb 

Mueller, sjb 
 

d�

dt
(eA! ep(A� 1)) = Z

d�

dt
(ep! ep) at high momentum transfer



Previous Measurements: Mesons
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Hall C E01-107 pion electro-production
CLAS E02-110 rho electro-production

A(e,e’!+)
A(e,e’ρ0)

Enhancements consistent with CT (increasing with Q2 and A) observed

JLab Seminar 2019



Measuring the onset in the 12 GeV era!

14

(this experiment)

A(e,e’p) experiment can reach higher proton momenta 
in 12 GeV upgrade

JLab Seminar 2019Ruling out color transparency in quasi-elastic 12C(e,e
0
p) up to Q2 of 14.2 (GeV/c)2
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Quasielastic 12C(e, e0p) scattering was measured at space-like 4-momentum transfer squared
Q2 = 8, 9.4, 11.4, and 14.2 (GeV/c)2, the highest ever achieved to date. Nuclear transparency
for this reaction was extracted by comparing the measured yield to that expected from a plane-wave
impulse approximation calculation without any final state interactions. The measured transparency
was consistent with no Q2 dependence, up to proton momenta of 8.5 GeV/c, ruling out the quan-
tum chromodynamics e↵ect of color transparency at the measured Q2 scales in exclusive (e, e0p)
reactions. These results impose strict constraints on models of color transparency for protons.

At low energies, the strong interaction is well described
in terms of nucleons (protons and neutrons) exchanging
mesons [1], whereas at high energies, perturbative
Quantum Chromodynamics (pQCD) characterizes the
strong force in terms of quarks and gluons carrying
color charge. Although these two descriptions are well

understood in their respective energy scales, the transi-
tion between them is not uniquely identified. Quantum
Chromodynamics (QCD) predicts that protons produced
in exclusive processes at su�ciently high 4-momentum
transfer (Q), will experience suppressed final (initial)
state interactions resulting in a significant enhancement
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Quasielastic 12C(e, e0p) scattering was measured at space-like 4-momentum transfer squared
Q2 = 8, 9.4, 11.4, and 14.2 (GeV/c)2, the highest ever achieved to date. Nuclear transparency
for this reaction was extracted by comparing the measured yield to that expected from a plane-wave
impulse approximation calculation without any final state interactions. The measured transparency
was consistent with no Q2 dependence, up to proton momenta of 8.5 GeV/c, ruling out the quan-
tum chromodynamics e↵ect of color transparency at the measured Q2 scales in exclusive (e, e0p)
reactions. These results impose strict constraints on models of color transparency for protons.

At low energies, the strong interaction is well described
in terms of nucleons (protons and neutrons) exchanging
mesons [1], whereas at high energies, perturbative
Quantum Chromodynamics (pQCD) characterizes the
strong force in terms of quarks and gluons carrying
color charge. Although these two descriptions are well

understood in their respective energy scales, the transi-
tion between them is not uniquely identified. Quantum
Chromodynamics (QCD) predicts that protons produced
in exclusive processes at su�ciently high 4-momentum
transfer (Q), will experience suppressed final (initial)
state interactions resulting in a significant enhancement
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(which is not unnatural for discussing effects of nuclear size) we may regard3 antishadowing and the EMC effect as

merely resulting from Fourier transforming a flat distribution (of finite length) in x−! This is corroborated in Fig. 11b,
where the reverse transform back to momentum (xB-) space is made, under the assumption that R

A(x−,Q2) is unity
for x− < w (and takes the values of Fig. 11a for x− > w). It is seen that the antishadowing and (most of) the EMC

effect is reproduced assuming no nuclear dependence in coordinate space for x− <∼ 5 fm. The nuclear effects can thus
be ascribed solely to shadowing.

The parton distribution qA(x−,Q2) in coordinate space is insensitive to the region of Fermi motion at large xB in
Fig. 9, where the structure function F2(xB,Q2) is small. The sizeable nuclear dependence of RAF2(xB,Q

2) at large xB
reflects the ratio of very small F2, which do not appreciably affect the inverse Fourier transform (11).

SIZE OF HARD SUBPROCESSES

The third aspect of shape that I would like to discuss concerns the size of coherent hard subprocesses in scattering

involving large momentum transfers. As sketched in Fig. 12, in inclusive DIS (ep→ eX) we expect that the virtual

photon (whose transverse coherence length is ∼ 1/Q) scatters off a single quark. The quark is typically part of a Fock
state with a hadronic,∼ 1 fm size. In elastic scattering (ep→ ep), where the entire Fock state must coherently absorb

the momentum, one might on the other hand expect [11] that only compact Fock states of the photon, with transverse

sizes r⊥ ∼ 1/Q will contribute. Thus the dynamics of inclusive and exclusive processes appears to be quite different.
In particular, the dependence on the electric charges of the quarks is expected to be, qualitatively,

σ(ep→ eX) ∝ ∑
q

e2q Inclusive, DIS

(13)

σ(ep→ ep) ∝ (∑
q

eq)
2 Exclusive, form factor

 







 





 

 

 

 

FIGURE 12. The virtual photon scatters from single quarks in inclusive deep inelastic scattering (left). If the valence quarks
absorb equal shares of the momentum transfer in the exclusive ep→ ep process (right) only compact Fock states can contribute.

In contrast to these expectations the data suggests a close connection between inclusive and exclusive scattering.

The resonance production ep→ eN∗ cross sections (including N∗ = p) average the DIS scaling curve when plotted at

the same value of xB (or of the related Nachtmann variable ξ ) [12]. Examples of this Bloom-Gilman duality are shown
in Fig. 13. A natural explanation of duality is that the same Fock states of the proton contribute in both cases [13].

Resonance formation occurs on a longer time scale than the hard subprocess, hence is incoherent with it and cannot

change the total cross section. Only the local mass distribution (resonance bumps) is sensitive to the hadronization

time scale.

3 Understanding the dynamics of nuclear dependence in momentum space is nevertheless interesting in its own right. See [10] for recent ideas about
the origin of the antishadowing enhancement.
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Appendix A: Form factors and parton distributions
in light-front QCD

The light-front formalism provides an exact repre-
sentation of current matrix elements in terms of the
overlap of frame-independent light-front wave functions
in a light-front Fock basis expansion with components
 n(xi,k?i,�i), where the internal partonic coordinates,
the longitudinal momentum fraction xi and the trans-
verse momentum k?i, obey the momentum conservation
sum rules

Pn
i=1 xi = 1, and

Pn
i=1 k?i = 0. The LFWFs

also depend on �i, the projection of the constituent’s spin
along the z direction.

In terms of overlap of LFWFs in momentum space the
electromagnetic form factor is given by the Drell-Yan-
West (DYW) expression [27, 30]

F (q2) =

X

n

nY

i=1

Z
dxi

Z
d
2k?i

2(2⇡)3
16⇡3

�

⇣
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nX

j=1

xj

⌘
�
(2)
⇣ nX

j=1

k?j

⌘

X

j

ej 
⇤
n(xi,k

0
?i,�i) n(xi,k?i,�i), (A1)

where the variables of the light-front Fock components
in the final state are given by k0

?i = k?i + (1 � xi)q?
for a struck constituent quark and k0

?i = k?i �xi q? for
each spectator. The formula is exact if the sum is over
all Fock states n.

The DYW expression for the form factor can be writ-
ten in impact space by Fourier transforming (A1) in mo-
mentum space to impact transverse space [22]. This is
a convenient form to obtain the impact dependent rep-
resentation of GPDs [23], but also for the holographic
mapping of AdS results, since the form factor can be ex-
pressed in terms of the product of light-front wave func-
tions with identical variables. To this purpose, we express
(A1) in terms of n�1 independent transverse impact vari-
ables b?j , j = 1, 2, . . . , n � 1, conjugate to the relative
transverse momentum coordinate k?i, and label by n the
active charged parton which interacts with the current.
Using the Fourier expansion

 n(xj ,k?j) =

(4⇡)(n�1)/2
n�1Y

j=1

Z
d
2b?j exp

⇣
i

n�1X

k=1

b?k · k?k

⌘
 n(xj ,b?j),

(A2)

we find [22, 24]

F (q2) =

X

n

n�1Y

j=1

Z
dxj

Z
d
2b?j exp

⇣
iq? ·

n�1X

j=1

xjb?j

⌘
| n(xj ,b?j)|2 ,

(A3)

corresponding to a change of transverse momentum xjq?
for each of the n � 1 spectators. The internal parton
variables, the longitudinal momentum fraction xi and
the transverse impact coordinate b?i obey the sum rulesPn

i=1 xi = 1 and
Pn

i=1 b?i = 0.

The form factor in light-front quantization has an exact
representation in terms of a single particle density [22, 24]

F (q2) =

Z 1

0
dx ⇢(x,q?), (A4)

where ⇢(x,q?) is given by

⇢(x,q?) =
X
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exp
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xjb?j

⌘
| n(xj ,b?j)|2 . (A5)

The integration in (A5) is over the coordinates of the
n� 1 spectator partons, and x = xn is the coordinate of
the active charged quark.

We can also write the form factor (A4) in terms
of a single-particle transverse distribution ⇢(x,a?) in
transverse-impact space [22]

F (q2) =

Z 1

0
dx

Z
d
2a?e

ia?·q?q(x,a?), (A6)
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of a single-particle transverse distribution ⇢(x,a?) in
transverse-impact space [22]

F (q2) =

Z 1

0
dx

Z
d
2a?e

ia?·q?q(x,a?), (A6) 5

where a? =
Pn�1

j=1 xjb?j is the x-weighted transverse
position coordinate of the n � 1 spectators. From (A5)
we obtain the corresponding transverse density

q(x,a?) =

Z
d
2q?

(2⇡)2
e
�ia?·q?⇢(x,q?) (A7)

=
X

n

n�1Y
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dxj
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d
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1� x�

n�1X
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xj

⌘

�
(2)

⇣ n�1X
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xjb?j � a?
⌘
| n(xj ,b?j)|2 .

The procedure is valid for any Fock state n, and thus the
results can be summed over n to obtain an exact repre-
sentation of the impact parameter dependent parton dis-
tribution introduced in Ref. [23], which gives the proba-
bility to find a quark with longitudinal light front momen-
tum fraction x at a transverse distance a? [25]. Using
(A4) and (A7) we can also compute the charge distribu-
tion of a hadron in the light-front transverse plane [31]

⇢(a?) =

Z
d
2q

(2⇡)2
e
�ia?·q?F (q2)

=

Z 1

0
dx q(x,a?). (A8)
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Appendix A: Form factors and parton distributions
in light-front QCD

The light-front formalism provides an exact repre-
sentation of current matrix elements in terms of the
overlap of frame-independent light-front wave functions
in a light-front Fock basis expansion with components
 n(xi,k?i,�i), where the internal partonic coordinates,
the longitudinal momentum fraction xi and the trans-
verse momentum k?i, obey the momentum conservation
sum rules

Pn
i=1 xi = 1, and

Pn
i=1 k?i = 0. The LFWFs

also depend on �i, the projection of the constituent’s spin
along the z direction.

In terms of overlap of LFWFs in momentum space the
electromagnetic form factor is given by the Drell-Yan-
West (DYW) expression [27, 30]

F (q2) =

X

n

nY

i=1

Z
dxi

Z
d
2k?i

2(2⇡)3
16⇡3

�

⇣
1�

nX

j=1

xj

⌘
�
(2)
⇣ nX

j=1

k?j

⌘

X

j

ej 
⇤
n(xi,k

0
?i,�i) n(xi,k?i,�i), (A1)

where the variables of the light-front Fock components
in the final state are given by k0

?i = k?i + (1 � xi)q?
for a struck constituent quark and k0

?i = k?i �xi q? for
each spectator. The formula is exact if the sum is over
all Fock states n.

The DYW expression for the form factor can be writ-
ten in impact space by Fourier transforming (A1) in mo-
mentum space to impact transverse space [22]. This is
a convenient form to obtain the impact dependent rep-
resentation of GPDs [23], but also for the holographic
mapping of AdS results, since the form factor can be ex-
pressed in terms of the product of light-front wave func-
tions with identical variables. To this purpose, we express
(A1) in terms of n�1 independent transverse impact vari-
ables b?j , j = 1, 2, . . . , n � 1, conjugate to the relative
transverse momentum coordinate k?i, and label by n the
active charged parton which interacts with the current.
Using the Fourier expansion

 n(xj ,k?j) =

(4⇡)(n�1)/2
n�1Y

j=1

Z
d
2b?j exp

⇣
i

n�1X

k=1

b?k · k?k

⌘
 n(xj ,b?j),

(A2)

we find [22, 24]

F (q2) =

X

n

n�1Y

j=1

Z
dxj

Z
d
2b?j exp

⇣
iq? ·

n�1X

j=1

xjb?j

⌘
| n(xj ,b?j)|2 ,

(A3)

corresponding to a change of transverse momentum xjq?
for each of the n � 1 spectators. The internal parton
variables, the longitudinal momentum fraction xi and
the transverse impact coordinate b?i obey the sum rulesPn

i=1 xi = 1 and
Pn

i=1 b?i = 0.

The form factor in light-front quantization has an exact
representation in terms of a single particle density [22, 24]

F (q2) =

Z 1

0
dx ⇢(x,q?), (A4)

where ⇢(x,q?) is given by

⇢(x,q?) =
X

n

n�1Y

j=1

Z
dxj

Z
d
2b?j �

⇣
1� x�

n�1X

j=1

xj

⌘

exp
⇣
iq? ·

n�1X

j=1

xjb?j

⌘
| n(xj ,b?j)|2 . (A5)

The integration in (A5) is over the coordinates of the
n� 1 spectator partons, and x = xn is the coordinate of
the active charged quark.

We can also write the form factor (A4) in terms
of a single-particle transverse distribution ⇢(x,a?) in
transverse-impact space [22]

F (q2) =

Z 1

0
dx

Z
d
2a?e

ia?·q?q(x,a?), (A6)

Drell-Yan-West Formula in Impact Space
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GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
!
τ − 1;

1

2
−

t
4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
0

Þð1þ Q2

M2
1

Þ ' ' ' ð1þ Q2

M2
τ−2
Þ
; ð4Þ

with M2
n ¼ 4λðnþ 1

2Þ; n ¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ

PHYSICAL REVIEW LETTERS 120, 182001 (2018)

182001-2

GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
!
τ − 1;

1

2
−

t
4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
0

Þð1þ Q2

M2
1

Þ ' ' ' ð1þ Q2

M2
τ−2
Þ
; ð4Þ

with M2
n ¼ 4λðnþ 1

2Þ; n ¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ

PHYSICAL REVIEW LETTERS 120, 182001 (2018)

182001-2

1
2 � t

4� = 1� ↵R(t)

1

↵R(t) = ⇢ Regge Trajectory

1

p
� =  = m⇢p

2
= 0.548 GeV

1

M0 = m⇢

1

N⌧ = B(⌧ � 1, 1� ↵(0))

1



4

FIG. 3.

ACKNOWLEDGMENTS

We thank . . . The work of SJB is supported in part
by the Department of Energy, Contract DE–AC02–
76SF00515, SLAC-PUB-XXXXX.

Appendix A: Form factors and parton distributions
in light-front QCD

The light-front formalism provides an exact repre-
sentation of current matrix elements in terms of the
overlap of frame-independent light-front wave functions
in a light-front Fock basis expansion with components
 n(xi,k?i,�i), where the internal partonic coordinates,
the longitudinal momentum fraction xi and the trans-
verse momentum k?i, obey the momentum conservation
sum rules

Pn
i=1 xi = 1, and

Pn
i=1 k?i = 0. The LFWFs

also depend on �i, the projection of the constituent’s spin
along the z direction.

In terms of overlap of LFWFs in momentum space the
electromagnetic form factor is given by the Drell-Yan-
West (DYW) expression [27, 30]

F (q2) =

X

n

nY

i=1

Z
dxi

Z
d
2k?i

2(2⇡)3
16⇡3

�

⇣
1�

nX

j=1

xj

⌘
�
(2)
⇣ nX

j=1

k?j

⌘

X

j

ej 
⇤
n(xi,k

0
?i,�i) n(xi,k?i,�i), (A1)

where the variables of the light-front Fock components
in the final state are given by k0

?i = k?i + (1 � xi)q?
for a struck constituent quark and k0

?i = k?i �xi q? for
each spectator. The formula is exact if the sum is over
all Fock states n.

The DYW expression for the form factor can be writ-
ten in impact space by Fourier transforming (A1) in mo-
mentum space to impact transverse space [22]. This is
a convenient form to obtain the impact dependent rep-
resentation of GPDs [23], but also for the holographic
mapping of AdS results, since the form factor can be ex-
pressed in terms of the product of light-front wave func-
tions with identical variables. To this purpose, we express
(A1) in terms of n�1 independent transverse impact vari-
ables b?j , j = 1, 2, . . . , n � 1, conjugate to the relative
transverse momentum coordinate k?i, and label by n the
active charged parton which interacts with the current.
Using the Fourier expansion

 n(xj ,k?j) =

(4⇡)(n�1)/2
n�1Y

j=1

Z
d
2b?j exp

⇣
i

n�1X

k=1

b?k · k?k

⌘
 n(xj ,b?j),

(A2)

we find [22, 24]

F (q2) =

X

n

n�1Y

j=1

Z
dxj

Z
d
2b?j exp

⇣
iq? ·

n�1X

j=1

xjb?j

⌘
| n(xj ,b?j)|2 ,

(A3)

corresponding to a change of transverse momentum xjq?
for each of the n � 1 spectators. The internal parton
variables, the longitudinal momentum fraction xi and
the transverse impact coordinate b?i obey the sum rulesPn

i=1 xi = 1 and
Pn

i=1 b?i = 0.

The form factor in light-front quantization has an exact
representation in terms of a single particle density [22, 24]

F (q2) =

Z 1

0
dx ⇢(x,q?), (A4)

where ⇢(x,q?) is given by

⇢(x,q?) =
X

n

n�1Y

j=1

Z
dxj

Z
d
2b?j �

⇣
1� x�

n�1X

j=1

xj

⌘

exp
⇣
iq? ·

n�1X

j=1

xjb?j

⌘
| n(xj ,b?j)|2 . (A5)

The integration in (A5) is over the coordinates of the
n� 1 spectator partons, and x = xn is the coordinate of
the active charged quark.

We can also write the form factor (A4) in terms
of a single-particle transverse distribution ⇢(x,a?) in
transverse-impact space [22]

F (q2) =

Z 1

0
dx

Z
d
2a?e

ia?·q?q(x,a?), (A6)

P
i xi = 1

1

~a? ⌘
Pn�1

j=1 xj
~b?j

1

3

down or absorbed with greater probability as compared
with a pion projectile with a smaller transverse impact
area for the same Q

2. The particle with a larger num-
ber of constituents will thus require a larger Q2 to have
the same transparency: the onset of color transparency
will be higher when compared with the fewer components
projectile.

To illustrate this point consider for example an experi-
ment that measures CT for the deuteron in eA ! De

0
X,

where the deuteron is produced isolated with large trans-
verse momentum q opposite to the electron. As a result
of the LF cluster decomposition, the deuteron wave func-
tion factorizes into two distinct nucleon wave functions
convoluted with a two-body reduced form factor fR [29],
FD

�
Q

2
�

= fR

�
Q

2
�
Fp

�
1
4Q

2
�
Fn

�
1
4Q

2
�
, where fR(Q2)

is computed from the overlap of the reduced two-body
light-front wave functions (LFWFs): Q

2
fR(Q2) ' const

at large Q
2. The nucleon form factors FN are evalu-

ated at Q2
/4, since both nucleons share the momentum

transferred to the bound state by the incoming probe.
Therefore CT for eA ! De

0
X should occur at a Q

2 scale
four times higher than CT in eA ! pe

0
X.

We expect a similar e↵ect in comparing the relative CT
of nucleons with pions where the detailed dependence on
the individual constituents in the LFWF is essential. The
integrand of (A5) is in fact a function of q?·xjb?j where
the transverse coordinate b?j in impact space is the vari-
able conjugate to the LF relative transverse momentum
of particle j and xj represents its longitudinal momentum
fraction. The index j is summed over the n � 1 specta-
tors: It corresponds to a change of transverse momentum
xjq? for each spectator particle and this dependence is
crucial to study the relative CT of di↵erent hadrons.

The spatial transverse-size dependence of the impact-
parameter on the momentum transfer t = �Q

2 is com-
puted from the expectation value of the profile function
f(x) = ha2?(x)i/4

ha2?(t)i⌧ =

R
dx 4f(x)⇢⌧ (x, t)R

dx⇢⌧ (x, t)

= 4F⌧ (t)
�1 d

dt
F⌧ (t)

=
1

�
[ (⌧ � ↵(t))�  (1� ↵(t)] , (8)

where the distribution ⇢⌧ (x, t) = q⌧ (x) exp [tf(x)].
The result (10) follows directly from the expression
of the form factor (5) since B(u, v)�1

@vB(u, v) =
( (v)�  (u+ v)), with  (z) the digamma function
 (z) = �(z)�1 d

dz�(z).
For integer twist ⌧ = N we can use the recurrence

relation for the digamma function  (z + 1) �  (z) = 1
z

to obtain

ha2?(t)i⌧ =
1

�

⌧�1X

j=1

1

j � ↵(t)
, (9)

an expression reminiscent of the classical Regge pole
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the number of constituents ⌧ implies a significant delay in the

onset of color transparency at intermediate energies for ⌧ > 2.

IV. DISCUSSION OF RESULTS

As we show in Fig. 2 the gap in the transverse impact
area for di↵erent twist is more significative at intermedi-
ate energies and for low twist values, particularly between
twist two and three. For example, the e↵ective transverse
impact surface for twist two at 8 GeV2 is similar to that
of twist 3 at 20 GeV2; or the impact surface at 4 GeV2

for twist 2 is similar to that of twist 4 also at 20 GeV2,
thus implying an important delay in the CT onset at in-
termediate energies in terms of the quark constituents.
For the proton this is particularly relevant since it con-
tains twist-3 but also twist-4 in its LFWF to generate
its anomalous magnetic moment, thus requiring a larger
onset in CT as measured in [6].
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down or absorbed with greater probability as compared
with a pion projectile with a smaller transverse impact
area for the same Q

2. The particle with a larger num-
ber of constituents will thus require a larger Q2 to have
the same transparency: the onset of color transparency
will be higher when compared with the fewer components
projectile.

To illustrate this point consider for example an experi-
ment that measures CT for the deuteron in eA ! De

0
X,

where the deuteron is produced isolated with large trans-
verse momentum q opposite to the electron. As a result
of the LF cluster decomposition, the deuteron wave func-
tion factorizes into two distinct nucleon wave functions
convoluted with a two-body reduced form factor fR [29],
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/4, since both nucleons share the momentum

transferred to the bound state by the incoming probe.
Therefore CT for eA ! De
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X should occur at a Q
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four times higher than CT in eA ! pe
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We expect a similar e↵ect in comparing the relative CT
of nucleons with pions where the detailed dependence on
the individual constituents in the LFWF is essential. The
integrand of (A5) is in fact a function of q?·xjb?j where
the transverse coordinate b?j in impact space is the vari-
able conjugate to the LF relative transverse momentum
of particle j and xj represents its longitudinal momentum
fraction. The index j is summed over the n � 1 specta-
tors: It corresponds to a change of transverse momentum
xjq? for each spectator particle and this dependence is
crucial to study the relative CT of di↵erent hadrons.
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of the form factor (5) since B(u, v)�1
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In contrast with the dependence of the transverse impact
area as a function of x (4), the behavior in Q

2 depends on
twist and the Regge intercept ↵(0) of the vector meson
coupling with the quark current in the hadron.
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the number of constituents ⌧ implies a significant delay in the

onset of color transparency at intermediate energies for ⌧ > 2.

IV. DISCUSSION OF RESULTS

As we show in Fig. 2 the gap in the transverse impact
area for di↵erent twist is more significative at intermedi-
ate energies and for low twist values, particularly between
twist two and three. For example, the e↵ective transverse
impact surface for twist two at 8 GeV2 is similar to that
of twist 3 at 20 GeV2; or the impact surface at 4 GeV2

for twist 2 is similar to that of twist 4 also at 20 GeV2,
thus implying an important delay in the CT onset at in-
termediate energies in terms of the quark constituents.
For the proton this is particularly relevant since it con-
tains twist-3 but also twist-4 in its LFWF to generate
its anomalous magnetic moment, thus requiring a larger
onset in CT as measured in [6].
. . .

V. CONCLUSIONS AND OUTLOOK

. . .

For large Q2 :Light-Front Holography:

The scale Q2
⌧ required for Color Transparency grows with twist ⌧

1

Color Transparency is controlled by the transverse-spatial size ~a2?
and its dependence on the momentum transfer Q2 = �t :

1

~a2?(Q
2) = �4

d
dQ2 F (Q2)

F (Q2)

1

Proton radius squared at Q2 = 0

1



2

representation (Appendix A)

F (q2) =

Z 1

0
dx

Z
d
2a?e

ia?·q?q(x,a?), (2)

where the light-front transverse-impact distribution
q(x,a?) is the Fourier transform of the distribution
⇢(x, t) ⌘ q(x) exp [tf(x)] [22–25]

q(x,a?) =

Z
d
2q?

(2⇡)2
e
�ia?·q?⇢ (x,q?)

=
1

4⇡
exp

✓
� a2?
4f(x)

◆
q(x)

f(x)
. (3)

The spatial transverse-size dependence of the impact-
parameter on the longitudinal momentum fraction x is

ha2?(x)i =
R
d
2a?a2?q(x,a?)R
d2a?q(x,a?)

= �H
�
x,�Q

2
��1 r2

QH
�
x,�Q

2
� ���

Q2=0

= 4f(x), (4)

thus uniquely determined by the hadron’s profile func-
tion. At large momentum transfer �t = Q

2 the main
support of the integral in (1) comes from the regime
f(x) ⇠ 1/Q2, and one finds the expected dimensional
result for the scaling behavior of the impact transverse
size [1], namely ha2?(Q2)i ⇠ 1

Q2 .

In LF holographic QCD the form factor is expressed
in terms of Euler’s Beta function B(u, v) = B(v, u) =
�(u)�(v)
�(u+v) . It has the reparametrization invariant integral

representation [17]

F (t)⌧ =
1

N⌧
B (1� ⌧, 1� ↵(t))

=
1

N⌧

Z 1

0
dxw

0(x)w(x)�↵(t) [1� w(x)]⌧�2
, (5)

where ↵(t) = ↵(0) + ↵
0
t is the Regge trajectory of the

vector meson which couples to the quark current in the
hadron and N⌧ is a normalization factor. The trajectory
↵(t) can be computed within the superconformal light-
front holographic framework and its intercept ↵(0) incor-
porates the quark masses [12, 13, 26]. The function w(x)
is a flavor independent function with w(0) = 0, w(1) = 1
and w

0(x) � 0. The profile function f(x) and the PDF
q⌧ (x) are determined by w(x)

f(x) =
1

4�
log

⇣ 1

w(x)

⌘
, (6)

q⌧ (x) =
1

N⌧
w

0(x)w(x)�↵(0)[1� w(x)]⌧�2
, (7)

with ↵
0 = 1/4�. Boundary conditions at x ! 0 fol-

low from the Regge behavior, w(x) ⇠ x, and at x ! 1
from the inclusive-exclusive counting rules [27], q⌧ (x) ⇠

(1 � x)2⌧�3, which fix w
0(1) = 0. These physical condi-

tions, together with the constraints written above, basi-
cally determine the form of w(x).
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area for the same Q

2. The particle with a larger num-
ber of constituents will thus require a larger Q2 to have
the same transparency: the onset of color transparency
will be higher when compared with the fewer components
projectile.

To illustrate this point consider for example an experi-
ment that measures CT for the deuteron in eA ! De
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X,

where the deuteron is produced isolated with large trans-
verse momentum q opposite to the electron. As a result
of the LF cluster decomposition, the deuteron wave func-
tion factorizes into two distinct nucleon wave functions
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of nucleons with pions where the detailed dependence on
the individual constituents in the LFWF is essential. The
integrand of (A5) is in fact a function of q?·xjb?j where
the transverse coordinate b?j in impact space is the vari-
able conjugate to the LF relative transverse momentum
of particle j and xj represents its longitudinal momentum
fraction. The index j is summed over the n � 1 specta-
tors: It corresponds to a change of transverse momentum
xjq? for each spectator particle and this dependence is
crucial to study the relative CT of di↵erent hadrons.
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puted from the expectation value of the profile function
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where the distribution ⇢⌧ (x, t) = q⌧ (x) exp [tf(x)].
The result (10) follows directly from the expression
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In contrast with the dependence of the transverse impact
area as a function of x (4), the behavior in Q

2 depends on
twist and the Regge intercept ↵(0) of the vector meson
coupling with the quark current in the hadron.
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onset of color transparency at intermediate energies for ⌧ > 2.

IV. DISCUSSION OF RESULTS

As we show in Fig. 2 the gap in the transverse impact
area for di↵erent twist is more significative at intermedi-
ate energies and for low twist values, particularly between
twist two and three. For example, the e↵ective transverse
impact surface for twist two at 8 GeV2 is similar to that
of twist 3 at 20 GeV2; or the impact surface at 4 GeV2

for twist 2 is similar to that of twist 4 also at 20 GeV2,
thus implying an important delay in the CT onset at in-
termediate energies in terms of the quark constituents.
For the proton this is particularly relevant since it con-
tains twist-3 but also twist-4 in its LFWF to generate
its anomalous magnetic moment, thus requiring a larger
onset in CT as measured in [6].
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Appendix A: Form factors and parton distributions
in light-front QCD

The light-front formalism provides an exact repre-
sentation of current matrix elements in terms of the
overlap of frame-independent light-front wave functions
in a light-front Fock basis expansion with components
 n(xi,k?i,�i), where the internal partonic coordinates,
the longitudinal momentum fraction xi and the trans-
verse momentum k?i, obey the momentum conservation
sum rules

Pn
i=1 xi = 1, and

Pn
i=1 k?i = 0. The LFWFs

also depend on �i, the projection of the constituent’s spin
along the z direction.

In terms of overlap of LFWFs in momentum space the
electromagnetic form factor is given by the Drell-Yan-
West (DYW) expression [27, 30]
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where the variables of the light-front Fock components
in the final state are given by k0

?i = k?i + (1 � xi)q?
for a struck constituent quark and k0

?i = k?i �xi q? for
each spectator. The formula is exact if the sum is over
all Fock states n.

The DYW expression for the form factor can be writ-
ten in impact space by Fourier transforming (A1) in mo-
mentum space to impact transverse space [22]. This is
a convenient form to obtain the impact dependent rep-
resentation of GPDs [23], but also for the holographic
mapping of AdS results, since the form factor can be ex-
pressed in terms of the product of light-front wave func-
tions with identical variables. To this purpose, we express
(A1) in terms of n�1 independent transverse impact vari-
ables b?j , j = 1, 2, . . . , n � 1, conjugate to the relative
transverse momentum coordinate k?i, and label by n the
active charged parton which interacts with the current.
Using the Fourier expansion

 n(xj ,k?j) =

(4⇡)(n�1)/2
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⇣
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(A2)

we find [22, 24]
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(A3)

corresponding to a change of transverse momentum xjq?
for each of the n � 1 spectators. The internal parton
variables, the longitudinal momentum fraction xi and
the transverse impact coordinate b?i obey the sum rulesPn

i=1 xi = 1 and
Pn

i=1 b?i = 0.

The form factor in light-front quantization has an exact
representation in terms of a single particle density [22, 24]
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The integration in (A5) is over the coordinates of the
n� 1 spectator partons, and x = xn is the coordinate of
the active charged quark.

We can also write the form factor (A4) in terms
of a single-particle transverse distribution ⇢(x,a?) in
transverse-impact space [22]
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down or absorbed with greater probability as compared
with a pion projectile with a smaller transverse impact
area for the same Q

2. The particle with a larger num-
ber of constituents will thus require a larger Q2 to have
the same transparency: the onset of color transparency
will be higher when compared with the fewer components
projectile.

To illustrate this point consider for example an experi-
ment that measures CT for the deuteron in eA ! De

0
X,

where the deuteron is produced isolated with large trans-
verse momentum q opposite to the electron. As a result
of the LF cluster decomposition, the deuteron wave func-
tion factorizes into two distinct nucleon wave functions
convoluted with a two-body reduced form factor fR [29],
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2. The nucleon form factors FN are evalu-

ated at Q2
/4, since both nucleons share the momentum

transferred to the bound state by the incoming probe.
Therefore CT for eA ! De
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four times higher than CT in eA ! pe
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We expect a similar e↵ect in comparing the relative CT
of nucleons with pions where the detailed dependence on
the individual constituents in the LFWF is essential. The
integrand of (A5) is in fact a function of q?·xjb?j where
the transverse coordinate b?j in impact space is the vari-
able conjugate to the LF relative transverse momentum
of particle j and xj represents its longitudinal momentum
fraction. The index j is summed over the n � 1 specta-
tors: It corresponds to a change of transverse momentum
xjq? for each spectator particle and this dependence is
crucial to study the relative CT of di↵erent hadrons.

The spatial transverse-size dependence of the impact-
parameter on the momentum transfer t = �Q

2 is com-
puted from the expectation value of the profile function
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The result (10) follows directly from the expression
of the form factor (5) since B(u, v)�1
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an expression reminiscent of the classical Regge pole

structure of the scattering amplitude. For large values
of the momentum transfer t = �Q

2 it leads to

ha2?(Q2)i⌧ ! 4(⌧ � 1)
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In contrast with the dependence of the transverse impact
area as a function of x (4), the behavior in Q

2 depends on
twist and the Regge intercept ↵(0) of the vector meson
coupling with the quark current in the hadron.

FIG. 2. The transverse impact area as a function of Q2
and

the number of constituents ⌧ implies a significant delay in the

onset of color transparency at intermediate energies for ⌧ > 2.

IV. DISCUSSION OF RESULTS

As we show in Fig. 2 the gap in the transverse impact
area for di↵erent twist is more significative at intermedi-
ate energies and for low twist values, particularly between
twist two and three. For example, the e↵ective transverse
impact surface for twist two at 8 GeV2 is similar to that
of twist 3 at 20 GeV2; or the impact surface at 4 GeV2

for twist 2 is similar to that of twist 4 also at 20 GeV2,
thus implying an important delay in the CT onset at in-
termediate energies in terms of the quark constituents.
For the proton this is particularly relevant since it con-
tains twist-3 but also twist-4 in its LFWF to generate
its anomalous magnetic moment, thus requiring a larger
onset in CT as measured in [6].
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overlap of frame-independent light-front wave functions
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 n(xi,k?i,�i), where the internal partonic coordinates,
the longitudinal momentum fraction xi and the trans-
verse momentum k?i, obey the momentum conservation
sum rules
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i=1 xi = 1, and
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along the z direction.
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electromagnetic form factor is given by the Drell-Yan-
West (DYW) expression [27, 30]
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where the variables of the light-front Fock components
in the final state are given by k0

?i = k?i + (1 � xi)q?
for a struck constituent quark and k0

?i = k?i �xi q? for
each spectator. The formula is exact if the sum is over
all Fock states n.

The DYW expression for the form factor can be writ-
ten in impact space by Fourier transforming (A1) in mo-
mentum space to impact transverse space [22]. This is
a convenient form to obtain the impact dependent rep-
resentation of GPDs [23], but also for the holographic
mapping of AdS results, since the form factor can be ex-
pressed in terms of the product of light-front wave func-
tions with identical variables. To this purpose, we express
(A1) in terms of n�1 independent transverse impact vari-
ables b?j , j = 1, 2, . . . , n � 1, conjugate to the relative
transverse momentum coordinate k?i, and label by n the
active charged parton which interacts with the current.
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corresponding to a change of transverse momentum xjq?
for each of the n � 1 spectators. The internal parton
variables, the longitudinal momentum fraction xi and
the transverse impact coordinate b?i obey the sum rulesPn

i=1 xi = 1 and
Pn

i=1 b?i = 0.

The form factor in light-front quantization has an exact
representation in terms of a single particle density [22, 24]
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The integration in (A5) is over the coordinates of the
n� 1 spectator partons, and x = xn is the coordinate of
the active charged quark.

We can also write the form factor (A4) in terms
of a single-particle transverse distribution ⇢(x,a?) in
transverse-impact space [22]
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Appendix A: Form factors and parton distributions
in light-front QCD

The light-front formalism provides an exact repre-
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The integration in (A5) is over the coordinates of the
n� 1 spectator partons, and x = xn is the coordinate of
the active charged quark.

We can also write the form factor (A4) in terms
of a single-particle transverse distribution ⇢(x,a?) in
transverse-impact space [22]
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where the light-front transverse-impact distribution
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thus uniquely determined by the hadron’s profile func-
tion. At large momentum transfer �t = Q

2 the main
support of the integral in (1) comes from the regime
f(x) ⇠ 1/Q2, and one finds the expected dimensional
result for the scaling behavior of the impact transverse
size [1], namely ha2?(Q2)i ⇠ 1

Q2 .

In LF holographic QCD the form factor is expressed
in terms of Euler’s Beta function B(u, v) = B(v, u) =
�(u)�(v)
�(u+v) . It has the reparametrization invariant integral
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where ↵(t) = ↵(0) + ↵
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t is the Regge trajectory of the

vector meson which couples to the quark current in the
hadron and N⌧ is a normalization factor. The trajectory
↵(t) can be computed within the superconformal light-
front holographic framework and its intercept ↵(0) incor-
porates the quark masses [12, 13, 26]. The function w(x)
is a flavor independent function with w(0) = 0, w(1) = 1
and w

0(x) � 0. The profile function f(x) and the PDF
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low from the Regge behavior, w(x) ⇠ x, and at x ! 1
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(1 � x)2⌧�3, which fix w
0(1) = 0. These physical condi-

tions, together with the constraints written above, basi-
cally determine the form of w(x).

FIG. 1. Transverse-impact dependence of a hadron on the

longitudinal momentum fraction x. At large x, equivalently
at large values of Q2

, the hadron behaves as a pointlike ob-

ject. This behavior is attributed to be at the origin of color

transparency in nuclei.

We show in Fig. 1 the transverse-impact dependence
on the longitudinal momentum fraction x. This behav-
ior is universal and depends only on the profile function
f(x) (6) which, in LF holographic QCD, is determined
by the hadron mass scale �, a flavor independent con-
stant in the light sector, and the longitudinal function
w(x) which is also flavor independent [12]. It is also in-
dependent of the number of components of a hadron and
of the nature of the lepton current which scatters o↵ the
hadron. At large x, equivalently at large values of Q2, the
hadron converges to its pointlike configuration (PLC) as
expected in a very high momentum transfer reaction. We
use the specific form of w(x) given in Refs. [17, 18] where
the value of the mass scale  ⌘

p
� = 0.523± 0.024 GeV

is determined from the di↵erent light hadron channels,
including all radial and orbital excitations [28].

III. ONSET OF COLOR TRANSPARENCY

We have shown above that the transverse-impact de-
pendence on the longitudinal momentum fraction x is
universal, however the relative transparency is not. In
fact, one expects form general considerations that the
initial formation of a PLC for a bound state with a large
number of constituents –the deuteron for example, with
a larger phase space, has a lower probability to fluctuate
to a small configuration as compared with a two-particle
bound state, say the pion. Consequently, it would present
to the nuclear environment a larger transverse impact
area as it travels across the nucleon and will be slowed

3

down or absorbed with greater probability as compared
with a pion projectile with a smaller transverse impact
area for the same Q

2. The particle with a larger num-
ber of constituents will thus require a larger Q2 to have
the same transparency: the onset of color transparency
will be higher when compared with the fewer components
projectile.

To illustrate this point consider for example an experi-
ment that measures CT for the deuteron in eA ! De

0
X,

where the deuteron is produced isolated with large trans-
verse momentum q opposite to the electron. As a result
of the LF cluster decomposition, the deuteron wave func-
tion factorizes into two distinct nucleon wave functions
convoluted with a two-body reduced form factor fR [29],
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, where fR(Q2)

is computed from the overlap of the reduced two-body
light-front wave functions (LFWFs): Q

2
fR(Q2) ' const

at large Q
2. The nucleon form factors FN are evalu-

ated at Q2
/4, since both nucleons share the momentum

transferred to the bound state by the incoming probe.
Therefore CT for eA ! De

0
X should occur at a Q

2 scale
four times higher than CT in eA ! pe

0
X.

We expect a similar e↵ect in comparing the relative CT
of nucleons with pions where the detailed dependence on
the individual constituents in the LFWF is essential. The
integrand of (A5) is in fact a function of q?·xjb?j where
the transverse coordinate b?j in impact space is the vari-
able conjugate to the LF relative transverse momentum
of particle j and xj represents its longitudinal momentum
fraction. The index j is summed over the n � 1 specta-
tors: It corresponds to a change of transverse momentum
xjq? for each spectator particle and this dependence is
crucial to study the relative CT of di↵erent hadrons.

The spatial transverse-size dependence of the impact-
parameter on the momentum transfer t = �Q

2 is com-
puted from the expectation value of the profile function
f(x) = ha2?(x)i/4

ha2?(t)i⌧ =

R
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where the distribution ⇢⌧ (x, t) = q⌧ (x) exp [tf(x)].
The result (10) follows directly from the expression
of the form factor (5) since B(u, v)�1

@vB(u, v) =
( (v)�  (u+ v)), with  (z) the digamma function
 (z) = �(z)�1 d

dz�(z).
For integer twist ⌧ = N we can use the recurrence

relation for the digamma function  (z + 1) �  (z) = 1
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to obtain
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, (9)

an expression reminiscent of the classical Regge pole

structure of the scattering amplitude. For large values
of the momentum transfer t = �Q

2 it leads to

ha2?(Q2)i⌧ ! 4(⌧ � 1)

Q2
. (10)

In contrast with the dependence of the transverse impact
area as a function of x (4), the behavior in Q

2 depends on
twist and the Regge intercept ↵(0) of the vector meson
coupling with the quark current in the hadron.

FIG. 2. The transverse impact area as a function of Q2
and

the number of constituents ⌧ implies a significant delay in the

onset of color transparency at intermediate energies for ⌧ > 2.

IV. DISCUSSION OF RESULTS

As we show in Fig. 2 the gap in the transverse impact
area for di↵erent twist is more significative at intermedi-
ate energies and for low twist values, particularly between
twist two and three. For example, the e↵ective transverse
impact surface for twist two at 8 GeV2 is similar to that
of twist 3 at 20 GeV2; or the impact surface at 4 GeV2

for twist 2 is similar to that of twist 4 also at 20 GeV2,
thus implying an important delay in the CT onset at in-
termediate energies in terms of the quark constituents.
For the proton this is particularly relevant since it con-
tains twist-3 but also twist-4 in its LFWF to generate
its anomalous magnetic moment, thus requiring a larger
onset in CT as measured in [6].
. . .
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down or absorbed with greater probability as compared
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area for the same Q
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ber of constituents will thus require a larger Q2 to have
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will be higher when compared with the fewer components
projectile.
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IV. DISCUSSION OF RESULTS

As we show in Fig. 2 the gap in the transverse impact
area for di↵erent twist is more significative at intermedi-
ate energies and for low twist values, particularly between
twist two and three. For example, the e↵ective transverse
impact surface for twist two at 8 GeV2 is similar to that
of twist 3 at 20 GeV2; or the impact surface at 4 GeV2

for twist 2 is similar to that of twist 4 also at 20 GeV2,
thus implying an important delay in the CT onset at in-
termediate energies in terms of the quark constituents.
For the proton this is particularly relevant since it con-
tains twist-3 but also twist-4 in its LFWF to generate
its anomalous magnetic moment, thus requiring a larger
onset in CT as measured in [6].
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Hall C E01-107 pion electro-production
CLAS E02-110 rho electro-production

A(e,e’!+)
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Enhancements consistent with CT (increasing with Q2 and A) observed

JLab Seminar 2019
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Discussion 1: HLFQCD G. F. de Téramond

• Transverse-impact size dependence on t = �Q
2

from expectation value of the profile function �(x)

h�(t)i⌧ =

R
dx�(x)⇢⌧ (x, t)R

dx⇢⌧ (x, t)

=
1

F⌧ (t)

d

dt
F⌧ (t) =

1

4�
[ (⌧ � ↵(t))�  (1� ↵(t)]

with  the digamma function

• For integer twist ⌧ = N

ha
2
?(t)i⌧ ⌘ 4h�(t)i⌧

=
1

�

⌧�1X

j=1

1

j � ↵(t)

• At large values t = �Q
2

ha
2
?(Q

2)i⌧ !
4(⌧ � 1)

Q2

• The Q
2

required to contract all of the valence constituents of to a color-singlet domain of given trans-

verse size, grows as the number of spectators and depends also on the properties of the quark current
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3

down or absorbed with greater probability as compared
with a pion projectile with a smaller transverse impact
area for the same Q

2. The particle with a larger num-
ber of constituents will thus require a larger Q2 to have
the same transparency: the onset of color transparency
will be higher when compared with the fewer components
projectile.

To illustrate this point consider for example an experi-
ment that measures CT for the deuteron in eA ! De

0
X,

where the deuteron is produced isolated with large trans-
verse momentum q opposite to the electron. As a result
of the LF cluster decomposition, the deuteron wave func-
tion factorizes into two distinct nucleon wave functions
convoluted with a two-body reduced form factor fR [29],
FD

�
Q

2
�

= fR

�
Q

2
�
Fp

�
1
4Q

2
�
Fn

�
1
4Q

2
�
, where fR(Q2)

is computed from the overlap of the reduced two-body
light-front wave functions (LFWFs): Q

2
fR(Q2) ' const

at large Q
2. The nucleon form factors FN are evalu-

ated at Q2
/4, since both nucleons share the momentum

transferred to the bound state by the incoming probe.
Therefore CT for eA ! De

0
X should occur at a Q

2 scale
four times higher than CT in eA ! pe

0
X.

We expect a similar e↵ect in comparing the relative CT
of nucleons with pions where the detailed dependence on
the individual constituents in the LFWF is essential. The
integrand of (A5) is in fact a function of q?·xjb?j where
the transverse coordinate b?j in impact space is the vari-
able conjugate to the LF relative transverse momentum
of particle j and xj represents its longitudinal momentum
fraction. The index j is summed over the n � 1 specta-
tors: It corresponds to a change of transverse momentum
xjq? for each spectator particle and this dependence is
crucial to study the relative CT of di↵erent hadrons.

The spatial transverse-size dependence of the impact-
parameter on the momentum transfer t = �Q

2 is com-
puted from the expectation value of the profile function
f(x) = ha2?(x)i/4

ha2?(t)i⌧ =

R
dx 4f(x)⇢⌧ (x, t)R

dx⇢⌧ (x, t)

= 4F⌧ (t)
�1 d

dt
F⌧ (t)

=
1

�
[ (⌧ � ↵(t))�  (1� ↵(t)] , (8)

where the distribution ⇢⌧ (x, t) = q⌧ (x) exp [tf(x)].
The result (10) follows directly from the expression
of the form factor (5) since B(u, v)�1

@vB(u, v) =
( (v)�  (u+ v)), with  (z) the digamma function
 (z) = �(z)�1 d

dz�(z).
For integer twist ⌧ = N we can use the recurrence

relation for the digamma function  (z + 1) �  (z) = 1
z

to obtain

ha2?(t)i⌧ =
1

�

⌧�1X

j=1

1

j � ↵(t)
, (9)

an expression reminiscent of the classical Regge pole

structure of the scattering amplitude. For large values
of the momentum transfer t = �Q

2 it leads to

ha2?(Q2)i⌧ ! 4(⌧ � 1)

Q2
. (10)

In contrast with the dependence of the transverse impact
area as a function of x (4), the behavior in Q

2 depends on
twist and the Regge intercept ↵(0) of the vector meson
coupling with the quark current in the hadron.
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FIG. 2. The transverse impact area as a function of Q2
and

the number of constituents ⌧ implies a significant delay in the

onset of color transparency at intermediate energies for ⌧ > 2.

IV. DISCUSSION OF RESULTS

As we show in Fig. 2 the gap in the transverse impact
area for di↵erent twist is more significative at intermedi-
ate energies and for low twist values, particularly between
twist two and three. For example, the e↵ective transverse
impact surface for twist two at 8 GeV2 is similar to that
of twist 3 at 20 GeV2; or the impact surface at 4 GeV2

for twist 2 is similar to that of twist 4 also at 20 GeV2,
thus implying an important delay in the CT onset at in-
termediate energies in terms of the quark constituents.
For the proton this is particularly relevant since it con-
tains twist-3 but also twist-4 in its LFWF to generate
its anomalous magnetic moment, thus requiring a larger
onset in CT as measured in [6].
. . .

V. CONCLUSIONS AND OUTLOOK

. . .
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Light-Front HolographyTransparency scale Q 
increases with twist
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Transparency controlled by transverse size
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5% increase for T⇡ in 12C at Q2 = 4 GeV 2 implies 5% increase for Tp at Q2 = 18 GeV 2
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Color transparency fundamental prediction of QCD

5

CT onset
1.0

TA

Q0
2 Q2➝

Complete transparency

Glauber

• Not predicted by strongly interacting 
hadronic picture → arises in picture of 
quark-gluon interactions

• QCD: color field of singlet objects vanishes 
as size is reduced

• Signature is a rise in nuclear transparency, 
TA, as a function of the momentum 
transfer, Q2

!" =
$"
% $& (free nucleon 

cross section)

(nuclear cross section)

e

e'

p p'

JLab Seminar 2019

e+A ! e0 + p+X

1

Q2 !

1

14 GeV 2 < Q2 < 20 GeV 2

Q2 > 20 GeV 2

1

Two-Stage Color Transparency for ProtonHolly Suzmila-Vance

Dirac Domain



Two-Stage Color Transparency

If Q2 is in the intermediate range, then the twist-3 state will propagate through 
the nuclear medium with minimal absorption, and the protons which survive 
nuclear absorption will only have L = 0 (twist-3). 
The twist-4 L = 1 state which has a larger transverse size will be absorbed. 

Thus 50% of the events in this range of Q2 will have full color transparency 
and 50% of the events will have zero color transparency (T = 0). 
\The ep → eʹpʹ cross section will have the same angular and Q2 dependence as 
scattering of the electron on an unphysical proton which has no Pauli form factor. 

14 GeV 2 < Q2 < 20 GeV 2

Q2 > 20 GeV 2

1

However, if the momentum transfer is increased to Q2 > 20 GeV2, all events will have 
full color transparency, and the ep → eʹpʹ cross section will have the same angular and Q2 

dependence as scattering of the electron on a physical proton eigenstate, with both Dirac 
and Pauli form factor components. 

14 GeV 2 < Q2 < 20 GeV 2

Q2 > 20 GeV 2

1



Color Transparency and Light-Front Holography

• Essential prediction of QCD

• LF Holography: Spectroscopy, dynamics, structure

• Transverse size predicted by LF Holography as a function of Q

• Q scale for CT increases with twist, number of constituents

• Two-Stage Proton Transparency: Equal probability L=0,1

• No contradiction with present experiments

Q2
0(p) ' 18 GeV 2 vs. Q2

0(⇡) ' 4 GeV 2 for onset of color transparency in 12C

1
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J. J. Aubert et al. [European Muon Collaboration], “Pro-
duction Of Charmed Particles In 250-Gev Mu+ - Iron In-
teractions,” Nucl. Phys. B 213, 31 (1983).

Evidence for Intrinsic Charm

Measurement of Charm Structure Function! 

DGLAP / Photon-Gluon Fusion: factor of 30 too small

factor of 30 !

Two Components (separate evolution):

c(x,Q2) = c(x, Q2)extrinsic + c(x, Q2)intrinsic

gluon splitting 
(DGLAP)

 New Analysis:
R.D. Ball, et al. [NNPDF Collaboration],

  “A Determination of the Charm Content 
of the Proton,''

  arXiv:1605.06515 [hep-ph].

< xcc̄ >p' 1%

x c(x,Q)

EMC
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Probability (QED) � 1
M4

�

Probability (QCD) � 1
M2

Q

Proton Self Energy  
Intrinsic Heavy Quarks

Collins, Ellis, Gunion, Mueller, sjb 
M. Polyakov, et al. 

• Collins, Ellis, Gunion, Mueller, sjb; 

Fixed LF time

Q

Q

Rigorous OPE Analysis

Hoyer, Peterson, Sakai, sjb
S. Gardner, sjb
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Probability (QED) � 1
M4

�

Probability (QCD) � 1
M2

Q

Proton 5-quark Fock State : 
Intrinsic Heavy Quarks

Collins, Ellis, Gunion, Mueller, sjb 
Polyakov, et al. 

 

xQ � (m2
Q + k2

�)1/2

Q

Q

QCD predicts  
Intrinsic 

Heavy Quarks 
at high x!

Minimal off-
shellness!

Use AdS/QCD LFWF

g ! QQ̄ at low x: High M2
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Coalescence of Comoving Charm and Valence Quarks
Produce J/ψ, Λc and other Charm Hadrons at High xF

X

Spectator counting rules 
dN

dxF
/ (1� xF )2nspect�1

Coalesece of comovers produces high xF heavy hadrons

⇤c  H(xi,~k?i,�i)

LFWF maximum at equal rapidity

maximum at minimal invariant mass  

High xF hadrons combine most of the comovers, fewest spectators

—> Asymmetries of leading hadrons 

Vogt, sjb



Barger, Halzen, Keung

Intrinsic c 
(active and 
spectator)

DGLAP (fusion)

Δy = log x
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• Rigorous prediction of QCD, OPE

• Color-Octet Color-Octet Fock State! 

• Probability

• Large Effect at high x

• Greatly increases kinematics of colliders  such as Higgs production 
at high xF (Kopeliovich, Schmidt, Soffer, Goldhaber, sjb)

• Severely underestimated in conventional parameterizations of 
heavy quark distributions (Pumplin, Tung)

• Many empirical tests  (Gardener, Karliner, ..)
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sPQQ̄

Pcc̄/p ⇥ 1%

Q

Q̄

b⌅ = O(1/MQ)

Hoyer, Peterson, Sakai, sjb

Intrinsic Heavy-Quark Fock States
M. Polyakov, et. al

Review:  G. Lykasov, et al



Properties of  Non-Perturbative 
Five-Quark Fock-State

• Dominant configuration: mininum off-
shell, same rapidity

• Heavy quarks have most of the LF 
momentum  

• Correlated with proton quantum 
numbers

• Duality with meson-baryon channels

• Strangeness, charm asymmetry at x > 0.1

u
d

u
Q̄
Q

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

< xQ > ∝ m2
Q + k2

⊥
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Figure 3: The cross section of inclusive Higgs production in fb, coming

from the nonperturbative intrinsic bottom distribution, at both LHC

(
√

s = 14 TeV, solid curve) and Tevatron (
√

s = 2 TeV, dashed curve)

energies.

that the cross section for inclusive Higgs production from intrinsic bottom is much

higher than the one coming from intrinsic charm. Although it is true that the Higgs-

quark coupling, proportional to mQ, cancels in the cross section with PIQ ∝ 1/m2
Q,

the matrix element between IQ and Higgs wave functions has an additional mQ factor.

This is because the Higgs wave function is very narrow and the overlap of the two

wave functions results in ΨQQ(0) ∝ mQ. Thus, the cross section rises as m2
Q, as we

see in the results.

We can compare our predictions for inclusive Higgs production coming from

IB with our previous ansatz for the Higgs production gluon-gluon fusion process

xdN/dx = 6(1 − x)5. At the maximum (xF = 0.9) of the IB curve we get a value of

roughly 50 fb, while there gluon-gluon gives 0.067 fb. Thus this high-xF region is the

ideal place to look for Higgs production coming from intrinsic heavy quarks.

We obtain essentially the same curves for Tevatron energies (
√

s = 2 TeV) , al-

though the rates are reduced by a factor of approximately 3.

We also show in Fig.4 the results for Higgs production coming from the perturba-

tive charm distribution. The magnitude of the production cross section is considerably
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Intrinsic Heavy Quark Contribution  to 
Inclusive Higgs Production⌅ = t + z/c
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p
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Constraints on charm-anticharm asymmetry in the nucleon from lattice QCD
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Abstract

We present the first lattice QCD calculation of the charm quark contribution to the nucleon electromagnetic form fac-
tors Gc

E,M(Q2) in the momentum transfer range 0  Q2
 1.4 GeV2. The quark mass dependence, finite lattice spacing

and volume corrections are taken into account simultaneously based on the calculation on three gauge ensembles in-
cluding one at the physical pion mass. The nonzero value of the charm magnetic moment µc

M = �0.00127(38)stat(5)sys,
as well as the Pauli form factor, reflects a nontrivial role of the charm sea in the nucleon spin structure. The nonzero
Gc

E(Q2) indicates the existence of a nonvanishing asymmetric charm-anticharm sea in the nucleon. Performing a non-
perturbative analysis based on holographic QCD and the generalized Veneziano model, we study the constraints on the
[c(x)� c̄(x)] distribution from the lattice QCD results presented here. Our results provide complementary information
and motivation for more detailed studies of physical observables that are sensitive to intrinsic charm and for future
global analyses of parton distributions including asymmetric charm-anticharm distribution.

Keywords: Intrinsic charm, Form factor, Parton distributions, Lattice QCD, Light-front holographic QCD,
JLAB-THY-20-3155, SLAC-PUB-17515

1. Introduction

The charm-anticharm sea in the nucleon has received
great interest in nuclear and particle physics for its par-
ticular significance in understanding high energy re-
actions associated with charm production. Quantum
Chromodynamics (QCD), the underlying theory of the
strong interaction with quarks and gluons as the funda-
mental degrees of freedom, allows heavy quarks in the
nucleon-sea to have both perturbative “extrinsic” and
nonperturbative “intrinsic” origins. The extrinsic sea
arises from gluon splitting triggered by a probe in the
reaction. It can be calculated order-by-order in pertur-
bation theory if the probe is hard. The intrinsic sea is
encoded in the nucleon wave functions.

The existence of nonperturbative intrinsic charm (IC)
was originally proposed in the BHPS model [1] and in
the subsequent calculations [2, 3, 4] following the orig-
inal proposal [1]. Proper knowledge of the existence of
IC and an estimate of its magnitude will elucidate some

fundamental aspects of nonperturbative QCD. There-
fore, the main goal of this article is to investigate the
existence of a nonzero “intrinsic” charm of nonpertur-
bative origin in the nucleon. In the case of light-front
(LF) Hamiltonian theory, the intrinsic heavy quarks of
the proton are associated with higher Fock states such
as |uudQQ̄i in the hadronic eigenstate of the LF Hamil-
tonian; this implies that the heavy quarks are multi-
connected to the valence quarks. The probability for the
heavy-quark Fock states scales as 1/m2

Q in non-Abelian
QCD. Since the LF wavefunction is maximal at mini-
mum o↵-shell invariant mass; i.e., at equal rapidity, the
intrinsic heavy quarks carry large momentum fraction
xQ. A key characteristic is di↵erent momentum and spin
distributions for the intrinsic Q and Q̄ in the nucleon; for
example the charm-anticharm asymmetry, since the co-
moving quarks are sensitive to the global quantum num-
bers of the nucleon [5].

IC was also proposed in meson-baryon fluctuation
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in agreement with the qualitative analysis at the begin-
ning of this section that the charm quark tends to carry
larger momentum than the anticharm quark based on the
charm quark form factors from the lattice calculation.
From the x[c(x)� c̄(x)] distribution obtained combining

Figure 3: The distribution function x[c(x) � c̄(x)] obtained from the
LFHQCD formalism using the lattice QCD input of charm electro-
magnetic form factors Gc

E,M(Q2). The outer cyan band indicates an
estimate of systematic uncertainty in the x[c(x) � c̄(x)] distribution
obtained from a variation of the hadron scale c by 5%.

LQCD results of Gc
E,M(Q2) and LFHQCD formalism,

we can calculate the first moment of the di↵erence of
c(x) and c̄(x) PDFs to be

hxic�c̄ =

Z 1

0
dx x [c(x) � c̄(x)] = 0.00047(15). (15)

The [c(x) � c̄(x)] distribution result is about 3 times
smaller in magnitude than the s(x)� s̄(x) distribution ob-
tained with the same formalism [46]. Although a small
asymmetry could be a result of the cancellation of two
relatively large c(x) and c̄(x) distributions, it is possible
that the intrinsic charm and anticharm distributions are
both small. Furthermore, the charm and anticharm dis-
tributions at high energy scales are dominated by the ex-
trinsic sea from perturbative radiations. The experimen-
tal observation and isolation of the intrinsic charm e↵ect
are extremely challenging in such cases. Thus it is not
surprising that the recent measurement of J/ and D0

productions by the LHCb collaboration [13] found no
intrinsic charm e↵ect. An ideal place to investigate the
intrinsic charm would be the J/ or open charm produc-
tions at relatively low energies, e.g., at JLab, although
it is also possible to see intrinsic charm e↵ects in very
accurate measurements of high energy reactions. In ad-
dition, lepton-nucleon scattering may provide a cleaner

probe than nucleon-nucleon scattering to help reduce
backgrounds and increase the chance to observe the in-
trinsic charm e↵ect, and therefore the future EIC will
provide such opportunities.

The nonzero value of Gc
E(Q2) can also originate

from the interference of the q ! gq ! cc̄q and
q ! ggq ! cc̄q sub-processes, without the exis-
tence of IC. However, as mentioned earlier, this extrin-
sic [c(x) � c̄(x)] asymmetry which arises at the next-to-
next-to-leading order level is negligible [38]. Moreover,
according to [38], this extrinsic asymmetry would re-
sult in a much smaller and negative value of the first
moment of [c(x) � c̄(x)] distribution hxic�c̄ compared to
hxic�c̄ = 0.00047(15) obtained in this calculation. A
negative value for hxic�c̄ would also result in a positive
[c(x)� c̄(x)] distribution at small x and a negative distri-
bution at large x, in contrast to the [c(x)� c̄(x)] distribu-
tion we have obtained here. But the evidence based on
the [s(x) � s̄(x)] distribution in [46], the EMC measure-
ment [8], and perturbative QCD computation [38] seem
to indicate extremely small values of extrinsic charm for
x > 0.1. The present determination of the [c(x) � c̄(x)]
distribution gives a strong evidence from LQCD for the
existence of nonperturbative intrinsic heavy quarks in
the nucleon wavefunction at large x ⇠ 0.4 � 0.5 with
a magnitude consistent with experimental signals. A
consequence of this result is Higgs production at large
xF > 0.8 in pp collisions at the LHC from the di-
rect coupling of the Higgs to the intrinsic heavy quark
pair [81].

4. Conclusion and outlook

In this article, we have presented the first lattice
QCD calculation of the charm quark electromagnetic
form factors in the physical limit. This first lattice
QCD calculation indicates that a nonzero charm elec-
tric form factor corresponds to the intrinsic charm-
anticharm asymmetry in the nucleon sea, thereby pro-
viding an indication of the existence of nonzero intrinsic
charm based on a first-principles calculation. In addi-
tion, the nonzero value of the charm magnetic form fac-
tor indicates a nonzero orbital angular momentum con-
tribution to the nucleon coming from the charm quarks.
We have discussed that the existence of IC is supported
by QCD and how an accurate knowledge of the intrinsic
charm can help to remove bias in the global fits of PDFs
and related phenomenological studies.

Motivated by the new lattice results, we have used the
nonperturbative light-front holographic framework in-
corporating the QCD inclusive-exclusive connection at
large x to determine the [c(x)� c̄(x)] asymmetry up to a
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tric form factor corresponds to the intrinsic charm-
anticharm asymmetry in the nucleon sea, thereby pro-
viding an indication of the existence of nonzero intrinsic
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tribution to the nucleon coming from the charm quarks.
We have discussed that the existence of IC is supported
by QCD and how an accurate knowledge of the intrinsic
charm can help to remove bias in the global fits of PDFs
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with Nτ defined in (40). In the conformal limit, ΔM2 ¼ 0,
we have R ¼ 8

9. Incorporating quark masses,ΔM2
ϕ ¼ 1.96λ,

we have R ¼ 0.80. This small-x behavior leads to the
condition Is ≥ ð1 − RÞα from Eq. (70). Together with
α ≥ Ns we have the condition

Ns ≤ α ≤
1

1 − R
Is: ð76Þ

Because the ratio qτ¼5ðxÞ=qτ¼6ðxÞ is monotonically
increasing, the condition (76) ensures sðxÞ ≥ 0 and
s̄ðxÞ ≥ 0 over the full range of x.
The solution which minimizes the strange sea probability

corresponds to α ¼ Ns and Is ¼ ð1 − RÞNs with longi-
tudinal quark distributions

sðxÞ ¼ Nsqτ¼5ðxÞ þ ðIs − NsÞqτ¼6ðxÞ; ð77Þ

s̄ðxÞ ¼ Isqτ¼6ðxÞ: ð78Þ

We show in Fig. 7 the holographic results for the individual
quark distributions sðxÞ and s̄ðxÞ. The results correspond to
the lower bound Is ¼ 0.92%. As we discussed in Sec. II,
the strange distribution sðxÞ should have its support for

larger values of the longitudinal momentum x, as compared
with s̄ðxÞ, to lead to negative sðxÞ − s̄ðxÞ asymmetry at
small-x and to a positive asymmetry at large-x. This
important property is verified for the holographic quark
distributions shown in Fig. 7. One can observe in Fig. 7
(left) that the high-twist suppression at large-x from local
counting rules is significant for the sðxÞ leading-twist-5
distribution above x ∼ 0.7 and for the s̄ðxÞ twist-6 distri-
bution above x ∼ 0.6.
The positive form factor Fs

1ðQ2Þ obtained from the
lattice calculations [5,6], shown in Fig. 2, requires that
the strange quarks are more concentrated at small trans-
verse separation compared with the antistrange quarks (See
Sec. II). As shown in Fig. 8 this is indeed the case for the
LFHQCD results computed from the coordinate space
transverse distribution given by Eq. (18).

V. DISCUSSIONS AND CONCLUSIONS

In this article, we have demonstrated that a nonzero
strangeness contribution to the spacelike electromagnetic
form factor of the nucleon Fs

1ðQ2Þ ≠ 0 implies a strange-
antistrange asymmetry in the nucleon’s light-front wave
function and thus in the nucleon PDF.

FIG. 7. The distributions xsðxÞ (continuous curves) and xs̄ðxÞ (dashed curves) correspond to the minimum intrinsic strange probability
Is ¼ 0.2Ns with Ns ¼ 0.047,

ffiffiffi
λ

p
¼ 0.534 GeV, and M2

ϕ ¼ 1.96λ. The results with massless quarks are included for comparison.

FIG. 8. Light-front holographic results for the asymmetric strange and antistrange quark distributions in transverse coordinate space
corresponding to the minimum possible intrinsic strange probability.
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Challenge: Compute Hadron Structure, 
Spectroscopy, and Dynamics from QCD!

• Color Confinement 

• Origin of the QCD Mass Scale 

• Meson and Baryon Spectroscopy 

• Exotic States: Tetraquarks, Pentaquarks, Gluonium, 

• Universal Regge Slopes: n, L, Mesons and Baryons 

• Almost Massless Pion: GMOR Chiral Symmetry Breaking

 

• QCD Coupling at all Scales   

• Eliminate Scale Uncertainties and Scheme Dependence 

3

Chiral symmetry breaking.–The chiral limit follows di-
rectly from (12) since all the coe�cients C vanish for
 6= 0 in this limit. From (12) we obtain

M2
⇡ = �(mu+md) +O

�
(mu+md)

2
�
, (14)

in the limit mu,md ! 0. It has the same linear depen-
dence in the quark mass as the Gell-Mann-Oakes-Renner
(GMOR) relation [43]

M2
⇡f

2
⇡ = �

1
2 (mu+md)hūu+d̄di+O

�
(mu+md)

2
�
, (15)

where the vacuum condensate h  i ⌘ 1
2 hūu + d̄di plays

the role of a chiral order parameter. The same linear de-
pendence in (14) arises for the (3 + 1) e↵ective LF Hamil-
tonian, since the constraints from the superconformal al-
gebra require that the contribution to the pion mass from
the transverse LF dynamics is identically zero [8].

The lowest mode eigenfunction in (11) has identi-
cal form as the approximate analytic solution obtained
in [21, 22], �(x) ⇠ x�1(1 � x)�2 , where the exponents
�i are determined by quark masses and the longitudinal
coupling g, which in QCD(1+1) has units of mass. In the
’t Hooft model [21] the longitudinal equation (4) becomes
the non-linear equation

 
m2

q

x
+

m2
q̄

1� x

!
�(x) +

g2NC

⇡
P

Z 1

0
dx0�(x)� �(x0)

(x� x0)2

= M2
k �(x), (16)

with ⇡m2
q/g

2NC�1+⇡�1 cot(⇡�1) = 0 from the x-power
expansion of (16) at x = ✏ and a similar expression from
the upper bound x = 1�✏. Spontaneous chiral symmetry
breaking occurs in the limit NC ! 1, followed by the
limit mq ! 0 with the result �i = (3m2

i /⇡g
2NC)1/2 from

the expansion of the transcendental equation above and

M2
⇡ = g

p
⇡NC/3 (mu +md) +O

�
(mu+md)

2
�
, (17)

from integrating (16) [21, 23]. Comparison with (14)
leads to � = g

p
⇡NC/3 = const, since g scales as

g ⇠ 1
p
NC and chiral logarithms are suppressed at

NC ! 1. We notice that both (14) and (17) receive
identical contributions from the potential and kinetic en-
ergy terms in agreement with the virial theorem.

Numerical results.–In practice, we need to know the
value of the scale � and the quark masses to compute
M2

k . In the heavy quark limit Eq. (10) coincides with the

heavy-quark e↵ective theory (HQET) result [44], which
requires that the confining scale is proportional to the
mass of the heavy meson:

p
�Q = C

p
MQ [13, 28]. The

value is C = 0.49± 0.02 GeV1/2 for MQ � 1.8 GeV [15],
namely � ' C2 = 0.24 GeV. We assume that this value
of the longitudinal confinement scale to remain constant,
a result supported by the large NC QCD(1 + 1) ’t Hooft
model discussed above. Thus, fixing C ' 0.5 GeV1/2

at all scales, we can determine the e↵ective light quark
masses mu and md from the measured pion mass and the
strange quark mass, ms, from the kaon mass using (12):
The value of the �(1020) mass is then a prediction. No-
tice that the �(1020) vector meson also has the transverse
mass component M? =

p
2� from the spin-spin interac-

tion in supersymmetric LF holographic QCD [9, 35] withp
� = 0.523 GeV.

TABLE I. Lowest expansion coe�cients C in (13).

 = 0  = 1  = 2  = 3  = 4  = 5  = 6
C(ud̄) 0.998 0 0.055 0 0.010 0 -0.003
C(us̄) 0.967 -0.231 0.100 -0.006 -0.009 0.013 -0.016
C(ss̄) 0.998 0 0.038 0 -0.045 0 -0.024
C(uc̄) 0.958 -0.267 0.097 -0.012 -0.003 0 -0.007
C(cc̄) 0.999 0 0.016 0 -0.020 0 -0.003

We show in Table I the values of the lowest expansion
coe�cients. The results for the light meson masses in
Fig. 1 correspond to the values mu = md = 28 MeV and
ms = 326 MeV. Meson masses are determined from the
stability plateau in Fig. 1. For light quark masses con-
tributions above max ' 20 introduce large uncertainties
from highly oscillatory integrands. In Fig. 2 we show the
e↵ect of the strong oscillations from the large  behavior
of the Jacobi Polynomials [46] by examining the variation
of the results for quark masses in the interval mq = 28
MeV to mq = 28⇥ 10�8 MeV.

FIG. 1. Numerical evaluation of ground state meson masses
from the stability plateau in the figure using (12). The hori-
zontal grey lines in the figure are the observed masses [45].

The distribution amplitude (DA) [47], X(x) ⌘p
x(1� x�(x), for the pion, kaon and J/ mesons are

shown in Fig. (3). Due to the rapid convergence of the
exponential wave function in the basis expansion (13),
very few modes are required to reproduce the invari-
ant mass ansatz. The DAs predicted by holographic LF
QCD at the initial nonperturbative scale should then

αs(Q2)

Valence and Higher Fock StatesℒQCD → ψH
n (xi, ⃗k ⊥i, λi)
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LFHQCD: Underlying Principles

• Poincarè Invariance: Independent of the observer’s Lorentz 
frame:  Quantization at Fixed Light-Front Time τ 

• Causality: Information within causal horizon:  Light-Front 

• Light-Front Holography: AdS5 = LF (3+1) 

• Introduce Mass Scale κ while retaining the Conformal 
Invariance of the Action (dAFF) 

• Unique Dilaton in AdS5:   

• Unique color-confining LF Potential 

• Superconformal Algebra:  Mass Degenerate 4-Plet:

U(⇣2) = 4⇣2

e+2z2

Meson qq̄ $ Baryon q[qq] $ Tetraquark [qq][q̄q̄]

z $ ⇣ where ⇣2 = b2?x(1� x)
Exploring QCD, Cambridge, August 20-24, 2007 Page 9
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Invariance Principles of Quantum Field Theory

• Polncarè Invariance:  Physical predictions must be 
independent of the observer’s Lorentz frame:  Front Form 

• Causality: Information within causal horizon:  Front Form 

• Gauge Invariance: Physical predictions of gauge theories 
must be independent of the choice of gauge 

• Scheme-Independence: Physical predictions of 
renormalizable theories must be independent of the 
choice of the renormalization scheme —               
Principle of Maximum Conformality (PMC) 

• Mass-Scale Invariance:                                     
Conformal Invariance of the Action (DAFF) 

https://indico.cern.ch/event/628450/
https://indico.cern.ch/event/628450/
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The Running Coupling in QED 

- Vertex- and wavefunction renormalization cancel exactly in QED due to the 
Ward-Takahashi identity - the running coupling is physical!

- Independent of the initial renormalization scale

- Obeys renormalization group properties;
renormalization scheme- and scale-invariance, transitivity, etc...

- The argument of the running coupling is the ‘final scale’ that resums all non-
conformal terms; a function of scheme and renormalization scale

{ci}

a(τ, {ci})

τ

A

B

C

D

E F

- Resummed perturbative QED = dressed 
skeleton expansion; 

- the perturbative coefficients are those of the 
would-be conformal theory

- Let’s give this lesson a name so we don’t forget:
The Principal of Maximum Conformality

S.J. Brodsky, X.-G. Wu; Phys.Rev. D86 (2012) 054018, [arxiv:1208.0700]

PHYSICAL REVIEW D VOLUME 28, NUMBER 1 1 JULY 1983

On the elimination of scale ambiguities in perturbative quantum chromodynamics

Stanley J. Brodsky
Institute for Advanced Study, Princeton, New Jersey 08540

and Stanford Linear Accelerator Center, Stanford Unioersity, Stanford, California 94305*

G. Peter Lepage
Institute for Aduanced Study, Princeton, New Jersey 08540

and Laboratory ofNuclear Studies, Cornell Unioersity, Ithaca, New York I4853*

Paul B.Mackenzie
Fermilab, Batavia, Illinois 6D51D
(Received 23 November 1982)

We present a new method for resolving the scheme-scale ambiguity that has plagued perturbative
analyses in quantum chromodynamics (QCD) and other gauge theories. For aphelian theories the
method reduces to the standard criterion that only vacuum-polarization insertions contribute to the
effective coupling constant. Given a scheme, our procedure automatically determines the coupling-
constant scale appropriate to a particular process. This leads to a new criterion for the convergence
of perturbative expansions in QCD. We examine a number of well known reactions in QCD, and
find that perturbation theory converges well for all processes other than the gluonic width of the Y.
Our analysis calls into question recent determinations of the QCD coupling constant based upon Y
decay.

I. INTRODUCTION the for orthopositronium is much

Physics Letters B 279 (1992) 352-358 
North-Holland PHYSICS LETTERS B 

On some possible extensions 
of the Brodsky-Lepage-Mackenzie approach 
beyond the next-to-leading order 
G. Grunberg  
Centre de Physique Theorique, Ecole Polytechnique, F-91128 Palaiseau, France 

and 

A.L. Kataev 1 
Randall Laboratory of Physics, University of Michigan. Ann Arbor, M148109-1120, USA 

Received 20 May 1991; revised manuscript received 20 January 1992 

Noting that the choice of  renormalization point advocated by Brodsky, Lepage and Mackenzie ( BLM ) is the flavor independent 
prescription which removes all f-dependence from the next-to-leading order coefficients, we consider the possible generalization 
which requires all higher order coefficients ri to be f-independent constants r,*. We point out that in QCD, setting ri= r,* is always 
possible, but leaves us with an ambiguous prescription. We consider an alternative possibility within the framework of  the BLM 
approach and apply the corresponding prescription to the next-to-next-to-leading approximation of trtot(e+e - ~hadrons)  in QCD. 
The analogous questions and the special features of the BLM and effective charge approaches in QED are also discussed. 

PHYSICAL REVIEW D VOLUME 51, NUMBER 7 1 APRIL 1995

Commensurate scale relations in quantum chromodynamics

Stanley J. Brodsky
Stanford Linear Accelerator Center, Stanford University, Stanford, California 9)909

Hung Jung Lu*
Department of Physics, University of Maryland, College Park, Maryland 20742

(Received 4 May 1994)

We use the BLM method to relate perturbatively calculable observables in +CD, including the
annihilation ratio R +, , the heavy quark potential, and radiative corrections to structure function
sum rules. The commensurate scale relations connecting the effective charges for observables A and
B have the forin cry(Qq) = nor(Qg) (1+regis —P + ), where the coefficient rqg~ is independent
of the number of ffavors f contributing to coupling constant renormalization. The ratio of scales
Qz/Qir is unique at leading order and guarantees that the observables A and B pass through new
quark thresholds at the same physical scale. We also show that the commensurate scales satisfy the
renormalization group transitivity rule which ensures that predictions in PQCD are independent of
the choice of an intermediate renormalization scheme C. In particular, scale-Axed predictions can
be made without reference to theoretically constructed renormalization schemes such as MS. +CD
can thus be tested in a new and precise way by checking that the observables track both in their
relative normalization and in their commensurate scale dependence. The generalization of the BLM
procedure to higher order assigns a different renormalization scale for each order in the perturbative
series. The scales are determined by a systematic resummation of running coupling constant effects.
The application of this procedure to relate known physical observables in +CD gives rather simple
results. In particular, we find that up to light-by-light-type corrections all terms involving (s,
and m in the relation between the annihilation ratio R + and the Bjorken sum rule for polarized
electroproduction are automatically absorbed into the renormalization scales. The final series has

Scale setting using the extended renormalization group and the principle of maximum
conformality: The QCD coupling constant at four loops

Stanley J. Brodsky1,* and Xing-Gang Wu1,2,†

1SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
2Department of Physics, Chongqing University, Chongqing 401331, China

(Received 30 November 2011; published 22 February 2012)

A key problem in making precise perturbative QCD predictions is to set the proper renormalization

scale of the running coupling. The extended renormalization group equations, which express the

invariance of the physical observables under both the renormalization scale- and scheme-parameter

transformations, provide a convenient way for estimating the scale- and scheme-dependence of the

physical process. In this paper, we present a solution for the scale equation of the extended renormal-

ization group equations at the four-loop level. Using the principle of maximum conformality (PMC)/

Brodsky-Lepage-Mackenzie (BLM) scale-setting method, all nonconformal f!ig terms in the perturbative

expansion series can be summed into the running coupling, and the resulting scale-fixed predictions are

independent of the renormalization scheme. The PMC/BLM scales can be fixed order-by-order. As a

useful reference, we present a systematic and scheme-independent procedure for setting PMC/BLM scales

up to next-to-next-to-leading order. An explicit application for determining the scale setting of Reþe"ðQÞ
up to four loops is presented. By using the world average "MS

s ðMZÞ ¼ 0:1184& 0:0007, we obtain the

asymptotic scale for the ’t Hooft scheme associated with the MS scheme, !0tH
MS

¼ 245þ9
"10 MeV, and the

asymptotic scale for the conventional MS scheme, !MS ¼ 213þ19
"8 MeV.

DOI: 10.1103/PhysRevD.85.034038 PACS numbers: 12.38.Aw, 11.10.Gh, 11.15.Bt

PHYSICAL REVIEW D 85, 034038 (2012)

Progress in Particle and Nuclear Physics 72 (2013) 44–98
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Review

The renormalization scale-setting problem in QCD
Xing-Gang Wua,⇤, Stanley J. Brodskyb, Matin Mojazab,c

a Department of Physics, Chongqing University, Chongqing 401331, PR China
b SLAC National Accelerator Laboratory, Stanford University, CA 94039, USA
c CP3-Origins, Danish Institute for Advanced Studies, University of Southern Denmark, DK-5230, Denmark

a r t i c l e i n f o

Keywords:
Renormalization group
Renormalization scale
BLM/PMC
QCD

a b s t r a c t

A key problem in making precise perturbative QCD predictions is to set the proper renor-
malization scale of the running coupling. The conventional scale-setting procedure assigns
an arbitrary range and an arbitrary systematic error to fixed-order pQCD predictions. In
fact, this ad hoc procedure gives results which depend on the choice of the renormaliza-
tion scheme, and it is in conflict with the standard scale-setting procedure used in QED.
Predictions for physical results should be independent of the choice of the scheme or other
theoretical conventions. We review current ideas and points of view on how to deal with
the renormalization scale ambiguity and show how to obtain renormalization scheme-
and scale-independent estimates.We begin by introducing the renormalization group (RG)
equation and an extended version, which expresses the invariance of physical observ-
ables under both the renormalization scheme and scale-parameter transformations. The
RG equation provides a convenient way for estimating the scheme- and scale-dependence

Review of past
30 years development

Systematic All-Orders Method to Eliminate Renormalization-Scale and
Scheme Ambiguities in Perturbative QCD

Matin Mojaza*

CP3-Origins, Danish Institute for Advanced Studies, University of Southern Denmark, DK-5230 Odense, Denmark
and SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Stanley J. Brodsky†

SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Xing-Gang Wu‡

Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China
(Received 13 January 2013; published 10 May 2013)

We introduce a generalization of the conventional renormalization schemes used in dimensional

regularization, which illuminates the renormalization scheme and scale ambiguities of perturbative

QCD predictions, exposes the general pattern of nonconformal f!ig terms, and reveals a special

degeneracy of the terms in the perturbative coefficients. It allows us to systematically determine the

argument of the running coupling order by order in perturbative QCD in a form which can be readily

automatized. The new method satisfies all of the principles of the renormalization group and eliminates an

unnecessary source of systematic error.

DOI: 10.1103/PhysRevLett.110.192001 PACS numbers: 12.38.Bx, 11.10.Gh, 11.15.Bt, 12.38.Aw

PRL 110, 192001 (2013) P HY S I CA L R EV I EW LE T T E R S
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Recent Breakthrough!Principle of Maximum Conformality (PMC)
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Shift scale of αs to µPMC
R to eliminate {βR

i }− terms

Conformal Series

Choose renormalization scheme; e.g. αR
s (µ

init
R )

Choose µinit
R ; arbitrary initial renormalization scale

Identify {βR
i }− terms using nf − terms

through the PMC −BLM correspondence principle

Result is independent of µinit
R and scheme at fixed order

No renormalization scale ambiguity! 

Result is independent of  
Renormalization scheme  

and initial scale! 

QED Scale Setting at NC=0 

Eliminates unnecessary  
systematic uncertainty

PMC/BLM

Set multiple renormalization scales -- 
Lensing, DGLAP, ERBL Evolution ...

δ-Scheme automatically             
identifies β-terms!

Scale fixed at each order

Principle of Maximum Conformality
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Thrust Distribution in Electron-Positron Annihilation using the Principle of
Maximum Conformality

Sheng-Quan Wang1,2,∗ Stanley J. Brodsky2,† Xing-Gang Wu3,‡ and Leonardo Di Giustino2,4§
1Department of Physics, Guizhou Minzu University, Guiyang 550025, P.R. China

2SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA
3Department of Physics, Chongqing University, Chongqing 401331, P.R. China and

4Department of Science and High Technology, University of Insubria, via valleggio 11, I-22100, Como, Italy
(Dated: February 6, 2019)

We present a comprehensive and self-consistent analysis for the thrust distribution by using the
Principle of Maximum Conformality (PMC). By absorbing all nonconformal terms into the running
coupling using PMC via renormalization group equation, the scale in the running coupling shows
the correct physical behavior and the correct number of active flavors is determined. The resulting
PMC predictions agree with the precise measurements for both the thrust differential distributions
and the thrust mean values. Moreover, we provide a new remarkable way to determine the running
of the coupling constant αs(Q

2) from the measurement of the jet distributions in electron-positron
annihilation at a single given value of the center-of-mass energy

√
s.

PACS numbers: 12.38.Bx, 13.66.Bc, 13.66.Jn, 13.87.-a

The event shape observables in electron-positron an-
nihilation play a crucial role in understanding Quantum
Chromodynamics (QCD). In the last three decades, the
event shape observables have been extensively studied ex-
perimentally and theoretically. In particular, the three-
jet production at the lowest order is directly proportional
to the QCD strong coupling constant, and thus the rele-
vant event shape observables have been used to determine
the coupling constant (see e.g. [1] for a review).

Due to the simple initial leptonic state, the three-jet
event shape observables can be measured with a high pre-
cision, especially at LEP [2–5]. The precision of experi-
mental measurements calls for an equally precise theoret-
ical prediction for three-jet event shapes. The next-to-
leading order (NLO) QCD calculations are known since
1980 [6–11], and the next-to-next-to-leading order (NN-
LO) calculations have been carried out in Refs.[12–16].
Despite the significant progress made in the last years
for both the pQCD calculations [17, 18] and the resum-
mation of large logarithms (see e.g. [19, 20]), the main
obstruction to achieve an accurate value of αs is not the
lack of precise experimental data but the dominant un-
certainties of the theoretical calculations, mainly due to
the choice of the renormalization scale µr.

It is well known that using the conventional scale set-
ting, the renormalization scale is simply set at the center-
of-mass energy µr =

√
s, and the uncertainties are evalu-

ated by varying the scale within an arbitrary range, e.g.
µr ∈ [

√
s/2, 2

√
s]. The three-jet event shape distribu-

tions using the conventional scale setting do not match
the experimental data, and the extracted values of αs in
general deviate from the world average [21].

The conventional procedure of setting the renormal-
ization scale introduces an inherent scheme-and-scale de-
pendence for the pQCD predictions. The scheme de-
pendence of the pQCD violates the fundamental prin-

ciple of the renormalization group invariance. The con-
ventional procedure gives wrong predictions for the A-
belian theory–Quantum Electrodynamics (QED), where
the scale of the coupling constant α can be set unam-
biguously by using the Gell-Mann-Low procedure [22].
The resulting perturbative series is in general factorially
divergent at large orders like n!βn

0 α
n
s –the “renormalon”

problem [23]. It has always been discussed whether the
inclusion of higher-order terms would suppress the scale
uncertainty; however, by simply varying the scale within
a given range of values fixed a priori, the estimation of
unknown higher-order terms is unreliable, and one can-
not judge whether the poor pQCD convergence is the
intrinsic property of pQCD series, or is due to improper
choice of scale.

The Principle of Maximum Conformality (PMC) [24–
28] provides a systematic way to eliminate renormaliza-
tion scheme-and-scale ambiguities. Since the PMC pre-
dictions do not depend on the choice of the renormal-
ization scheme, PMC scale setting satisfies the principles
of renormalization group invariance [29, 30]. The PMC
procedure reduces in the Abelian limit, NC → 0 [31], to
the standard Gell-Mann-Low method. The PMC deter-
mines the renormalization scale by absorbing the β terms
that govern the behavior of the running coupling via the
renormalization group equation. The divergent renor-
malon terms disappear and the convergence of pQCD
series can be thus greatly improved.

The thrust (T ) variable [32, 33] is one of the most fre-
quently studied three-jet event shape observables, which
is defined as

T =

max
!n

∑
i
|#pi · #n|

∑
i
|#pi|

, (1)

where the sum runs over all particles in the hadronic
final state, and the #pi denotes the three-momentum of

Renormalization scale depends on the thrust
Not constant !

e+e− → Z → qq̄g + ⋯

S.-Q. Wang, L. Di Giustino,   
X.-G. Wu, sjb

T. Gehrmann, N. H äfliger,       
P. F. Monni
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FIG. 2. The thrust differential distributions using the con-
ventional (Conv.) and PMC scale settings. The dotdashed,
dashed and dotted lines are the conventional results at LO,
NLO and NNLO, respectively. The solid line is the PMC re-
sult. The bands for the theoretical predictions are obtained
by varying µr ∈ [MZ/2, 2MZ ]. The PMC prediction elim-
inates the scale µr uncertainty. The experimental data are
taken from the ALEPH [2], DELPH [3], OPAL [4], L3 [5] and
SLD [31] experiments.

• By fitting the conventional predictions to the ex-
perimental data, the extracted coupling constants
are deviated from the world average, and are also
plagued by significant µr uncertainty [32].

Due to the kinematical constraints, the domain of the
thrust distribution at LO and of the PMC scale is re-
stricted to the range of 0 ≤ (1 − T ) ≤ 1/3. After ap-
plying the PMC, in addition to the small values and the
monotonically increasing behavior of the PMC scale, the
magnitude of the conformal coefficients are small and its
behavior is very different from that of the conventional
scale setting. The resulting PMC predictions are in a-
greement with the experimental data with high precision
over the (1 − T ) region, while they show a slight de-
viation near the two-jet and multi-jet regions. Based on
the conventional scale setting, Ref.[8] has also found that
outside of the region of 0.04 ≤ (1−T ) ≤ 0.33, the pQCD
predictions are unreliable. Thus, in order to improve the
predictions near the two-jet and multi-jet regions, the
higher pQCD calculations may be needed for the PM-
C analysis. In addition, as we have already mentioned
above, the non-perturbative effects should be taken into
account in the two-jet region.
In addition to the differential distribution, the mean

value of event shapes have also been extensively mea-
sured and studied. Since the calculation of the mean
value involves an integration over the full phase space, it
provides an important platform to complement the differ-
ential distribution that afflict the event shapes especially
in the two-jet region and to determinate the coupling
constant.
The mean value 〈τ〉 (τ = (1− T )) of thrust variable is

defined by

〈τ〉 =
∫ τ0

0

τ

σh

dσ

dτ
dτ, (8)

where τ0 is the kinematical upper limit for the thrust
variable.

The electron-positron colliders have collected large
numbers of experimental data for the thrust mean value
over a wide range of center-of-mass energy (14 GeV ≤

√
s

≤ 206 GeV) [2–5, 33]. However, the pQCD prediction-
s based on the conventional scale setting substantially
deviate from the experimental data. Currently, the most
common way is to split the mean value into the perturba-
tive and non-perturbative contributions, which has been
studied extensively in the literature. However, some ar-
tificial parameters and theoretical models are introduced
in order to match the theoretical predictions with the ex-
perimental data. It is noted that the analysis of Ref.[2]
obtains a large value of αs and suggests that a better de-
scription for the mean value can be in general obtained
by setting the renormalization scale µr &

√
s.

The pQCD calculations for the mean value variables
have been given in Refs. [34, 35]. After applying the
PMC scale setting to the thrust mean value 〈1− T 〉, we
obtain the optimal PMC scale,

µpmc
r |〈1−T 〉 = 0.0695

√
s, (9)

which monotonously increases with
√
s, and is 0.0695

times the conventional choice µr =
√
s and thus

µpmc
r |〈1−T 〉 &

√
s. We notice that by taking

√
s =

MZ = 91.1876 GeV, the PMC scale µpmc
r |〈1−T 〉 = 6.3

GeV. This is reasonable, since we have shown in Fig.(1)
that the PMC scales of thrust differential distribution are
also very small in wide region of (1 − T ). By excluding
some results in multi-jet regions, the average of the PM-
C scale 〈µpmc

r 〉 of thrust differential distribution is also
close to the µpmc

r |〈1−T 〉. This shows that the PMC scale
setting is self-consistent.

We present the thrust mean value 〈1 − T 〉 versus the
center-of-mass energy

√
s using the conventional and

PMC scale settings in Fig.(3). In the case of the con-
ventional scale setting, the perturbative series shows a
slow convergence and the estimation of the magnitude
of unknown higher-order QCD corrections by varying
µr ∈ [

√
s/2, 2

√
s] is unreliable. The predictions are

plagued by scale µr uncertainty, and substantial devi-
ated from the experimental data even up to NNLO [34].
These cases are similar to those of the thrust differential
distributions based on the conventional scale setting.

Since the optimal PMC scales are small, and the mag-
nitude of conformal coefficients are very different from
those of the conventional scale setting, the resulting pre-
dictions for thrust mean value increase especially in the
small center-of-mass energy region. Fig.(3) shows that
the scale-independent PMC prediction is in excellent a-
greement with the experimental data in the wide center-

S.-Q. Wang, L. Di Giustino, X.-G. Wu, sjb

T. Gehrmann, N. H äfliger, P. F. Monni

Conventional scale

PMC scale

Principle of Maximum Conformality (PMC)
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the thrust and C-parameter are close to the PMC scales
µpmc
r |h1�T i and µpmc

r |hCi, respectively. This shows that
PMC scale setting is self-consistent from the di↵erential
distributions to the mean values.
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FIG. 4. The mean values for the thrust (up) and C-parameter
(down) versus the center-of-mass energy

p
s using conven-

tional (Conv.) and PMC scale settings. The dot-dashed,
dashed and dotted lines are the conventional results at LO,
NLO and NNLO [34, 35], respectively, and the correspond-
ing error bands are obtained by varying µr 2 [MZ/2, 2MZ ].
The solid line is the PMC result and its error band is ob-
tained by the squared averages of the errors for ↵s(MZ) =
0.1181 ± 0.0011 [1] and the estimated unknown higher-order
contributions ±0.2 Cn. The data are from the JADE and
OPAL experiments, taken from [36, 37].

We present the mean values for the thrust and C-
parameter versus the center-of-mass energy

p
s in Fig.(4).

It shows that in the case of conventional scale setting,
the predictions are plagued by the renormalization scale
µr uncertainty, and substantially deviate from measure-
ments even up to NNLO. In contrast, after using PMC
scale setting, the mean values for the thrust and C-
parameter are increased especially in the small

p
s region.

The scale-independent PMC predictions are in excellent
agreement with experimental data in the wide center-of-
mass energy

p
s range. Thus, PMC scale setting provides

a rigorous explanation for precise measurements without
introducing any artificial parameters.

Since a high degree of consistency between the PMC
predictions and the measurements is obtained, we can
precisely extract ↵s(Q2); the results in the MS scheme are
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FIG. 5. The running coupling ↵s(Q
2) extracted from the

thrust and C-parameter mean values by comparing PMC pre-
dictions with the JADE and OPAL data [36, 37] in the MS
scheme. The error bars are the squared averages of the exper-
imental and theoretical errors. The three lines are the world
average evaluated from ↵s(M

2
Z) = 0.1181± 0.0011 [1].

presented in Fig.(5). The values obtained for ↵s(Q2) are
mutually compatible and are in excellent agreement with
the world average in the range 1 GeV < Q < 15 GeV.
The results are not plagued by the renormalization scale
µr uncertainty. In addition, unlike the ↵s extracted from
the di↵erential distributions, the ↵s extracted from the
mean values are not a✏icted with the large logarithms
as well as the non-perturbative e↵ects.
In order to obtain a reliable ↵s at the scale of the

Z0 mass, we determine ↵s(M2

Z) from the fit of the
PMC predictions to the measurements. We adopt the
method similar to [38] and the �2-fit is defined by �2 =P

i

�
(hyiexp.i � hyithe.i )/�i

�2
, where hyiexp.i is the value of

the experimental data, �i is the corresponding experi-
mental uncertainty, hyithe.i is the theoretical prediction.
The �2 value is minimized with respect to ↵s(M2

Z) for
the thrust and C-parameter separately. We obtain

↵s(M
2

Z) = 0.1185± 0.0011(Exp.)± 0.0005(Theo.)

= 0.1185± 0.0012, (4)

with �2/d.o.f.= 27.3/20 for the thrust mean value, and

↵s(M
2

Z) = 0.1193+0.0009
�0.0010(Exp.)

+0.0019
�0.0016(Theo.)

= 0.1193+0.0021
�0.0019, (5)

with �2/d.o.f.= 43.9/20 for the C-parameter mean value,
where the first (Exp.) and second (Theo.) errors are
the experimental and theoretical uncertainties, respec-
tively. Both values are consistent with the world average
of ↵s(M2

Z) = 0.1181 ± 0.0011 [1]. Since the dominant
scale µr uncertainty is eliminated and the convergence of
pQCD series is greatly improved after using the PMC, the
precision of the extracted ↵s values is greatly improved.
In particular, since a strikingly much faster pQCD con-
vergence is obtained for the thrust mean value [27], the
theoretical uncertainty is even smaller than the experi-
mental uncertainty.

αs(Q2) in MS schemee+e− → Z0 → qq̄g + ⋯

S.-Q. Wang, L. Di Giustino, X.-G. Wu, SJB

Determine QCD running coupling from  
measurement of the thrust T and 

C-distribution at one energy!

A new way to measure  αs(Q2)



Features of BLM/PMC

• Predictions are scheme-independent at every order

• Matches conformal series

• No n! Renormalon growth of pQCD series

• New scale appears at each order; nF determined at each order - matches virtuality of 
quark loops

• Multiple Physical Scales Incorporated (Hoang, Kuhn, Tuebner, sjb)

• Rigorous: Satisfies all Renormalization Group Principles

• Realistic Estimate of Higher-Order Terms

• Reduces to standard QED scale

• GUT: Must use the same scale setting procedure for QED, QCD

• Eliminates unnecessary theory error

• Maximal sensitivity to new physics

• Commensurate Scale Relations between observables: Generalized Crewther Relation   
(Kataev, Lu, Rathsman, sjb)

• PMC Reduces to BLM at NLO:  Example: BFKL intercept (Fadin, Kim, Lipatov, Pivovarov, sjb)

NC ! 0
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Fig. 4. Fraction r of events with a large rapidity gap, 

qmax < 1.5, as a function of Q2 A for two ranges of XDA. No 
acceptance corrections have been applied. 

small compared to WDA and is typically smaller than 

10 GeV. The events span the range of  WDA from 60 

to 270 GeV. For  WDA > 150 GeV these events are 

well separated from the rest of  the sample. In this 

region, acceptance corrections have little dependence 

on W and the contr ibut ion of  these events to the deep 

inelastic cross section is, within errors, constant with 

WDA, as expected for a diffractive type of  interaction 

(see fig. 3b). At smaller values of  WDA, the acceptance 

for these events decreases since the final state hadronic 

system is boosted in the forward direction. 

In fig. 3c we present the dis tr ibut ion of  Mx for 

events with r/max< 1.5 and WOA > 150 GeV. The dis- 

t r ibution is not corrected for detector or acceptance ef- 

fects. Although this acceptance could be model  depen- 

dent, the three models  we have checked [ 13,14,16 ] 

predict  a flat acceptance with Mx for Mx > 4 GeV. 

We observe a spectrum which, given our resolution, 

the uncertainty about the acceptance and the large sta- 

tistical errors, is compat ible  with a 1/MZx dependence,  

shown as the solid curve. 

The fraction of  events with a large rapidi ty gap, pre- 

sented as a function of  Q~A in fig. 4 for two selected 

bins of  XOA, is, within errors, independent  of  Q2. The 

Q2 dependence is little affected by acceptance correc- 

tions. In QCD terminology, leading twist contribu- 

tions to structure functions show little (at most loga- 

r i thmic)  dependence on Q2 at fixed x, whereas higher 

twist terms fall as a power of  Q2. Since the proton 

structure function determined for our DIS data  sam- 

ple shows a leading twist behavior  [29], the produc- 

t ion mechanism responsible for the large rapidity gap 

events is also likely to be a leading twist effect. The 

decrease with x is partly due to acceptance, since for 

larger values of x the final hadronic state is boosted 

in the direction of  the proton so that such events will 

not be identified as having a large rapidi ty  gap in our 

detector. 

8. Discussion and conclusions 

In a sample of  deep inelastic neutral current scatter- 

ing events, we have observed a class of  events with a 

large rapidi ty gap in the final hadronic state. The flat 

rapidi ty  distr ibution,  the lack of  W dependence and 

the shape of  the Mx distr ibution are suggestive of  a 

diffractive interaction between a highly virtual pho- 

ton and the proton, mediated by the exchange of  the 

pomeron [5 ]. The fact that the percentage of  events 

with a large rapidity gap shows only a weak depen- 

dence on Q2 points to a leading twist contribution to 

the proton structure function. 

For  the hypothesis that events with a large rapidi ty 

gap are produced by a diffractive mechanism, one 

expects such events to be accompanied by a quasi- 

elastically scattered proton. For  this type of  pro- 

cess the gap between the maximum rapidity of  the 

calorimeter  and the rapidi ty of  the scattered proton is 

about three units. The selection criteria, in part icular 

the requirement of  a rapidi ty gap in the detector of  

at least 2.8 units, l imit  the acceptance for diffractive- 

like events. Since we have made no corrections for 

acceptance, the 5.4% for DIS events with a large 

rapidity gap should be considered a lower l imit  for 

diffractively produced events. 
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Inclusive Diffraction at HERA

F.-P. Schillinga∗ (on behalf of the H1 and ZEUS collaborations) †

aDESY, Notkestr. 85, D-22603 Hamburg, Germany

New precision measurements of inclusive diffractive deep-inelastic ep scattering interactions, performed by the
H1 and ZEUS collaborations at the HERA collider, are discussed. A new set of diffractive parton distributions,
determined from recent high precision H1 data, is presented.

1. INTRODUCTION

One of the biggest challenges in our under-
standing of QCD is the nature of colour sin-
glet exchange or diffractive interactions. The
electron-proton collider HERA is an ideal place to
study hard diffractive processes in deep-inelastic
ep scattering (DIS). In such interactions, the
point-like virtual photon probes the structure of
colour singlet exchange, similarly to inclusive DIS
probing proton structure.

2

β

Figure 1: Illustration of
a diffractive DIS event.

At HERA,
around 10% of
low x events
are diffractive
[1]. Experimen-
tally, such events
are identified by
either tagging
the elastically
scattered pro-
ton in Roman
pot spectrometers
60− 100 m down-
stream from the
interaction point
or by asking for

a large rapidity gap without particle production
between the central hadronic system and the
proton beam direction.

A diagram of diffractive DIS is shown in Fig. 1.
A virtual photon coupling to the beam electron

∗e-mail address: fpschill@mail.desy.de
†Talk presented at 31st Intl. Conference on High Energy
Physics ICHEP 2002, Amsterdam

interacts diffractively with the proton through
the exchange of a colour singlet and produces a
hadronic system X with mass MX in the final
state. If the 4-momenta of the incoming (out-
going) electron and proton are labeled l (l′) and
p (p′) respectively, the following kinematic vari-
ables can be defined: Q2 = −q2 = −(l − l′)2, the
photon virtuality; β = Q2/q.(p − p′), the longi-
tudinal momentum fraction of the struck quark
relative to the diffractive exchange; xIP = q.(p −
p′)/q.p, the fractional proton momentum taken
by the diffractive exchange and t = (p− p′)2, the
4-momentum squared transferred at the proton
vertex. Bjorken-x is given by x = xIP β. For the
measurements presented here typical values of xIP

are < 0.05. y = Q2/sx denotes the inelasticity,
where s is the ep CMS energy.

A diffractive reduced cross section σD(4)
r can be

defined via

d4σep→eXp

dxIP dt dβ dQ2
=

4πα2

βQ4

(

1 − y +
y2

2

)

σD(4)
r (xIP , t, β, Q2) , (1)

which is related to the diffractive structure func-
tions FD

2 and the longitudinal FD
L by

σD
r = FD

2 −
y2

2(1 − y + y2

2 )
FD

L . (2)

Except at the highest y, σD
r = FD

2 to a very good
approximation. If the outgoing proton is not de-
tected, the measurements are integrated over t:

σD(3)
r =

∫

dt σD(4)
r .

10% to 15% 
of DIS 

events are 
diffractive !

Remarkable observation at HERA
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QCD Mechanism for Rapidity Gaps

Wilson Line: ψ(y)
Z y

0
dx eiA(x)·dx ψ(0)

P

Reproduces lab-frame color dipole approach 
DDIS: Input for leading twist nuclear shadowing



DDIS: 
Diffractive 

Deep Inelastic 
Scattering

90% of proton momentum carried off 
by final state p’ in 15% of events!

Gluon momentum fraction misidentified!
p0 is measured in DDIS but escapes detectation in DIS events
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p
p0u

 Five-quark Fock State + final-state interaction produces rapidity 
gap

X

g g

Simplified Description of DDIS from two-gluon Pomeron exchange in  
the LF framework

rapidity gap
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�⇤(q+ = 0, ~q?)

Low-Nussinov Two-Gluon Model of Pomeron



�⇤

Forward Virtual Compton scattering for a 
DIS  event

�⇤

p p

Jµ(x) J⌫(y)
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<latexit sha1_base64="6cScTRfsI0gVA07gxVuhzoWCLV0=">AAAB6XicbVC7SgNBFL0bXzG+opaKDAbRKuymUMugjWUi5gHJEmYns8mQmdllZlYIS0o7GwtFbP2JfIed3+BPOHkUGj1w4XDOvdx7TxBzpo3rfjqZpeWV1bXsem5jc2t7J7+7V9dRogitkYhHqhlgTTmTtGaY4bQZK4pFwGkjGFxP/MY9VZpF8s4MY+oL3JMsZAQbK91WTzv5glt0p0B/iTcnhfLhuPr1cDSudPIf7W5EEkGlIRxr3fLc2PgpVoYRTke5dqJpjMkA92jLUokF1X46vXSETqzSRWGkbEmDpurPiRQLrYcisJ0Cm75e9Cbif14rMeGlnzIZJ4ZKMlsUJhyZCE3eRl2mKDF8aAkmitlbEeljhYmx4eRsCN7iy39JvVT0zoulqk3jCmbIwgEcwxl4cAFluIEK1IBACI/wDC/OwHlyXp23WWvGmc/swy8479/6t5C0</latexit>

Q0
<latexit sha1_base64="W42pGPT4j3xjdVu7t2w/pCGvVpM=">AAAB6HicbVDJSgNBEK2JW4xb1KMijUHwFGZyUI9BLx4zYBZIhtDTqSRteha6e4Qw5OjJiwdFvPoV+Q5vfoM/YWc5aOKDgsd7VVTV82PBlbbtLyuzsrq2vpHdzG1t7+zu5fcPaipKJMMqi0QkGz5VKHiIVc21wEYskQa+wLo/uJn49QeUikfhnR7G6AW0F/IuZ1QbyXXb+YJdtKcgy8SZk0L5eOx+P56MK+38Z6sTsSTAUDNBlWo6dqy9lErNmcBRrpUojCkb0B42DQ1pgMpLp4eOyJlROqQbSVOhJlP190RKA6WGgW86A6r7atGbiP95zUR3r7yUh3GiMWSzRd1EEB2RydekwyUyLYaGUCa5uZWwPpWUaZNNzoTgLL68TGqlonNRLLkmjWuYIQtHcArn4MAllOEWKlAFBghP8AKv1r31bL1Z77PWjDWfOYQ/sD5+AJpmkIM=</latexit>

Q

u

u
<latexit sha1_base64="J7KB491zGCQoxca6/mHA8wrPCz8=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIXdFGojBm0sEzAXSJYwO3s2GTM7u8zMCiHkCWwsFLHVh7G3Ed/GyaXQ6A8DH/9/DnPOCVLOlHbdLyu3tLyyupZftzc2t7Z3Crt7DZVkkmKdJjyRrYAo5ExgXTPNsZVKJHHAsRkMriZ58w6lYom40cMU/Zj0BIsYJdpYtbBbKLoldyrnL3hzKF682+fp26dd7RY+OmFCsxiFppwo1fbcVPsjIjWjHMd2J1OYEjogPWwbFCRG5Y+mg46dI+OETpRI84R2pu7PjhGJlRrGgamMie6rxWxi/pe1Mx2d+SMm0kyjoLOPoow7OnEmWzshk0g1HxogVDIzq0P7RBKqzW1scwRvceW/0CiXvJNSueYWK5cwUx4O4BCOwYNTqMA1VKEOFBDu4RGerFvrwXq2XmalOWvesw+/ZL1+AynJkCw=</latexit>

d
u

u
<latexit sha1_base64="J7KB491zGCQoxca6/mHA8wrPCz8=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIXdFGojBm0sEzAXSJYwO3s2GTM7u8zMCiHkCWwsFLHVh7G3Ed/GyaXQ6A8DH/9/DnPOCVLOlHbdLyu3tLyyupZftzc2t7Z3Crt7DZVkkmKdJjyRrYAo5ExgXTPNsZVKJHHAsRkMriZ58w6lYom40cMU/Zj0BIsYJdpYtbBbKLoldyrnL3hzKF682+fp26dd7RY+OmFCsxiFppwo1fbcVPsjIjWjHMd2J1OYEjogPWwbFCRG5Y+mg46dI+OETpRI84R2pu7PjhGJlRrGgamMie6rxWxi/pe1Mx2d+SMm0kyjoLOPoow7OnEmWzshk0g1HxogVDIzq0P7RBKqzW1scwRvceW/0CiXvJNSueYWK5cwUx4O4BCOwYNTqMA1VKEOFBDu4RGerFvrwXq2XmalOWvesw+/ZL1+AynJkCw=</latexit>

d

<latexit sha1_base64="+DuEIa3VojTv0Kp0J4peZ5cpaMg=">AAAB6HicbVDJSgNBEK2JW4xb1KMijUHwFGZyUI9BLx4TMAskQ+jp1CRteha6e4Qw5OjJiwdFvPoV+Q5vfoM/YWc5aOKDgsd7VVTV82LBlbbtLyuzsrq2vpHdzG1t7+zu5fcP6ipKJMMai0Qkmx5VKHiINc21wGYskQaewIY3uJn4jQeUikfhnR7G6Aa0F3KfM6qNVO118gW7aE9BlokzJ4Xy8bj6/XgyrnTyn+1uxJIAQ80EVarl2LF2Uyo1ZwJHuXaiMKZsQHvYMjSkASo3nR46ImdG6RI/kqZCTabq74mUBkoNA890BlT31aI3Ef/zWon2r9yUh3GiMWSzRX4iiI7I5GvS5RKZFkNDKJPc3EpYn0rKtMkmZ0JwFl9eJvVS0bkolqomjWuYIQtHcArn4MAllOEWKlADBghP8AKv1r31bL1Z77PWjDWfOYQ/sD5+ALu+kJk=</latexit>g <latexit sha1_base64="+DuEIa3VojTv0Kp0J4peZ5cpaMg=">AAAB6HicbVDJSgNBEK2JW4xb1KMijUHwFGZyUI9BLx4TMAskQ+jp1CRteha6e4Qw5OjJiwdFvPoV+Q5vfoM/YWc5aOKDgsd7VVTV82LBlbbtLyuzsrq2vpHdzG1t7+zu5fcP6ipKJMMai0Qkmx5VKHiINc21wGYskQaewIY3uJn4jQeUikfhnR7G6Aa0F3KfM6qNVO118gW7aE9BlokzJ4Xy8bj6/XgyrnTyn+1uxJIAQ80EVarl2LF2Uyo1ZwJHuXaiMKZsQHvYMjSkASo3nR46ImdG6RI/kqZCTabq74mUBkoNA890BlT31aI3Ef/zWon2r9yUh3GiMWSzRX4iiI7I5GvS5RKZFkNDKJPc3EpYn0rKtMkmZ0JwFl9eJvVS0bkolqomjWuYIQtHcArn4MAllOEWKlADBghP8AKv1r31bL1Z77PWjDWfOYQ/sD5+ALu+kJk=</latexit>g <latexit sha1_base64="+DuEIa3VojTv0Kp0J4peZ5cpaMg=">AAAB6HicbVDJSgNBEK2JW4xb1KMijUHwFGZyUI9BLx4TMAskQ+jp1CRteha6e4Qw5OjJiwdFvPoV+Q5vfoM/YWc5aOKDgsd7VVTV82LBlbbtLyuzsrq2vpHdzG1t7+zu5fcP6ipKJMMai0Qkmx5VKHiINc21wGYskQaewIY3uJn4jQeUikfhnR7G6Aa0F3KfM6qNVO118gW7aE9BlokzJ4Xy8bj6/XgyrnTyn+1uxJIAQ80EVarl2LF2Uyo1ZwJHuXaiMKZsQHvYMjSkASo3nR46ImdG6RI/kqZCTabq74mUBkoNA890BlT31aI3Ef/zWon2r9yUh3GiMWSzRX4iiI7I5GvS5RKZFkNDKJPc3EpYn0rKtMkmZ0JwFl9eJvVS0bkolqomjWuYIQtHcArn4MAllOEWKlADBghP8AKv1r31bL1Z77PWjDWfOYQ/sD5+ALu+kJk=</latexit>g
<latexit sha1_base64="+DuEIa3VojTv0Kp0J4peZ5cpaMg=">AAAB6HicbVDJSgNBEK2JW4xb1KMijUHwFGZyUI9BLx4TMAskQ+jp1CRteha6e4Qw5OjJiwdFvPoV+Q5vfoM/YWc5aOKDgsd7VVTV82LBlbbtLyuzsrq2vpHdzG1t7+zu5fcP6ipKJMMai0Qkmx5VKHiINc21wGYskQaewIY3uJn4jQeUikfhnR7G6Aa0F3KfM6qNVO118gW7aE9BlokzJ4Xy8bj6/XgyrnTyn+1uxJIAQ80EVarl2LF2Uyo1ZwJHuXaiMKZsQHvYMjSkASo3nR46ImdG6RI/kqZCTabq74mUBkoNA890BlT31aI3Ef/zWon2r9yUh3GiMWSzRX4iiI7I5GvS5RKZFkNDKJPc3EpYn0rKtMkmZ0JwFl9eJvVS0bkolqomjWuYIQtHcArn4MAllOEWKlADBghP8AKv1r31bL1Z77PWjDWfOYQ/sD5+ALu+kJk=</latexit>g

<latexit sha1_base64="c0eQhfN5sNM5NugKucMZ4HRQ1Zc=">AAACM3icbVBBS1tBEN5nbavR1rQ9ehmNQk/hvRy0eJKKpZSCKZgoxDTM28xLFvftPnfnKSH4n7z0j/RQKB4s0mv/Qzcxh1b9YODj+2aYmS8ttPIcxz+juSfzT589X1isLC2/eLlSffW67W3pJLWk1dYdp+hJK0MtVqzpuHCEearpKD3dm/hH5+S8suaQRwV1cxwYlSmJHKRe9VMbjfJDZQbw+QOwyglS4gsiA7J0jgx7sBmcK8claiiGlq3xgAwa3YBg4+xrY2cDDpr7a71qLa7HU8BDksxITczQ7FW/n/StLPOwRGr0vpPEBXfH6FhJTZeVk9JTgfIUB9QJ1GBOvjue/nwJm0HpQ2ZdKMMwVf+dGGPu/ShPQ2eOPPT3vYn4mNcpOXvXHStTlExG3i3KSg1sYRIg9JUjyXoUCEqnwq0gh+hQcoi5EkJI7r/8kLQb9WSr3vjSqO2+n8WxIFbFungrErEtdsVH0RQtIcWV+CFuxK/oW3Qd3Ua/71rnotnMG/Efoj9/AYpnqYs=</latexit>

Vanishing LF time between currents of virtual photons at large q2 : OPE!

<latexit sha1_base64="yVRMHFkudtXcUSR9j9NZuqlYHas=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LC1CRSxJD+qx6MVjBfsBTSyb7aZdutnE3U0xlP4LwYsHRbz6Y7z137htPWjrg4HHezPMzPNjzpS27YmVWVldW9/Ibua2tnd29/L7Bw0VJZLQOol4JFs+VpQzQeuaaU5bsaQ49Dlt+oPrqd8cUqlYJO50GlMvxD3BAkawNpJXejxLT+4ryNURsjv5ol22Z0DLxPkhxWrBPX2aVNNaJ//ldiOShFRowrFSbceOtTfCUjPC6TjnJorGmAxwj7YNFTikyhvNjh6jY6N0URBJU0Kjmfp7YoRDpdLQN50h1n216E3F/7x2ooNLb8REnGgqyHxRkHBkXpwmgLpMUqJ5aggmkplbEeljiYk2OeVMCM7iy8ukUSk75+XKrUnjCubIwhEUoAQOXEAVbqAGdSDwAM/wCm/W0Hqx3q2PeWvG+pk5hD+wPr8BsxyTvA==</latexit>

(x� y)2 ! 0

<latexit sha1_base64="UXxGt/CN3QXjs++xzsWRwhSP5YU=">AAACDnicbVBLSwMxGMz6rPW16tFLsC2IQtntQT0WvXisYB/QXUs2zbahyW5IskJZ+gu8+Fe8eFDEq2dv/hvT7YLaOhAyzHwfyUwgGFXacb6speWV1bX1wkZxc2t7Z9fe22+pOJGYNHHMYtkJkCKMRqSpqWakIyRBPGCkHYyupn77nkhF4+hWjwXxORpENKQYaSP17ErZGyDO0d0JPIUCejqGHZhdP7oo9+ySU3UywEXi5qQEcjR69qfXj3HCSaQxQ0p1XUdoP0VSU8zIpOgligiER2hAuoZGiBPlp1mcCawYpQ/DWJoTaZipvzdSxJUa88BMcqSHat6biv953USHF35KI5FoEuHZQ2HCoEk77Qb2qSRYs7EhCEtq/grxEEmEtWmwaEpw5yMvklat6p5Vaze1Uv0yr6MADsEROAYuOAd1cA0aoAkweABP4AW8Wo/Ws/Vmvc9Gl6x85wD8gfXxDY0WmUQ=</latexit>

�⇤ + p ! X ! �⇤ + p



�⇤

Forward Virtual Compton scattering for a 
DDIS  event

�⇤

Nonzero LF propagation time between virtual photons:  No OPE!

p
p0

p

< p|Jµ(x)|N >< N |J⌫(y)|p >, (x� y)2 6= 0

Jµ(x) J⌫(y)

<latexit sha1_base64="W42pGPT4j3xjdVu7t2w/pCGvVpM=">AAAB6HicbVDJSgNBEK2JW4xb1KMijUHwFGZyUI9BLx4zYBZIhtDTqSRteha6e4Qw5OjJiwdFvPoV+Q5vfoM/YWc5aOKDgsd7VVTV82PBlbbtLyuzsrq2vpHdzG1t7+zu5fcPaipKJMMqi0QkGz5VKHiIVc21wEYskQa+wLo/uJn49QeUikfhnR7G6AW0F/IuZ1QbyXXb+YJdtKcgy8SZk0L5eOx+P56MK+38Z6sTsSTAUDNBlWo6dqy9lErNmcBRrpUojCkb0B42DQ1pgMpLp4eOyJlROqQbSVOhJlP190RKA6WGgW86A6r7atGbiP95zUR3r7yUh3GiMWSzRd1EEB2RydekwyUyLYaGUCa5uZWwPpWUaZNNzoTgLL68TGqlonNRLLkmjWuYIQtHcArn4MAllOEWKlAFBghP8AKv1r31bL1Z77PWjDWfOYQ/sD5+AJpmkIM=</latexit>

Q
<latexit sha1_base64="2Zv7yy+dlgdSRxk6lM56quVenqI=">AAAB7nicbVDLSgNBEOyNrxhfUY+KDAbRU9jNQT0GvXhMwDwgWcLsZDYZMjO7zMwKYcnRD/DiQRGvfkK+w5vf4E84eRw0saChqOqmuyuIOdPGdb+czMrq2vpGdjO3tb2zu5ffP6jrKFGE1kjEI9UMsKacSVozzHDajBXFIuC0EQxuJ37jgSrNInlvhjH1Be5JFjKCjZUa7QArVD3v5Atu0Z0CLRNvTgrl43H1+/FkXOnkP9vdiCSCSkM41rrlubHxU6wMI5yOcu1E0xiTAe7RlqUSC6r9dHruCJ1ZpYvCSNmSBk3V3xMpFloPRWA7BTZ9vehNxP+8VmLCaz9lMk4MlWS2KEw4MhGa/I66TFFi+NASTBSztyLSxwoTYxPK2RC8xZeXSb1U9C6LpapN4wZmyMIRnMIFeHAFZbiDCtSAwACe4AVendh5dt6c91lrxpnPHMIfOB8/SvWSlw==</latexit>

Q̄0

<latexit sha1_base64="6cScTRfsI0gVA07gxVuhzoWCLV0=">AAAB6XicbVC7SgNBFL0bXzG+opaKDAbRKuymUMugjWUi5gHJEmYns8mQmdllZlYIS0o7GwtFbP2JfIed3+BPOHkUGj1w4XDOvdx7TxBzpo3rfjqZpeWV1bXsem5jc2t7J7+7V9dRogitkYhHqhlgTTmTtGaY4bQZK4pFwGkjGFxP/MY9VZpF8s4MY+oL3JMsZAQbK91WTzv5glt0p0B/iTcnhfLhuPr1cDSudPIf7W5EEkGlIRxr3fLc2PgpVoYRTke5dqJpjMkA92jLUokF1X46vXSETqzSRWGkbEmDpurPiRQLrYcisJ0Cm75e9Cbif14rMeGlnzIZJ4ZKMlsUJhyZCE3eRl2mKDF8aAkmitlbEeljhYmx4eRsCN7iy39JvVT0zoulqk3jCmbIwgEcwxl4cAFluIEK1IBACI/wDC/OwHlyXp23WWvGmc/swy8479/6t5C0</latexit>

Q0

<latexit sha1_base64="34FwPOGyL2kBIihlnL1NSD7cnyQ=">AAACHnicbVDLSgMxFM3UV62vqks3wVYqFspMwcey6MZlC/YBnVrupGkbmswMSUYoQ7/Ejb/ixoUigiv9G9N2Ftp6IHA451xu7vFCzpS27W8rtbK6tr6R3sxsbe/s7mX3DxoqiCShdRLwQLY8UJQzn9Y105y2QklBeJw2vdHN1G8+UKlY4N/pcUg7AgY+6zMC2kjd7HneHYAQcH+GizjErg6wG9cK2PVA4lrBnUzlwlxPgsUw383m7JI9A14mTkJyKEG1m/10ewGJBPU14aBU27FD3YlBakY4nWTcSNEQyAgGtG2oD4KqTjw7b4JPjNLD/UCa52s8U39PxCCUGgvPJAXooVr0puJ/XjvS/atOzPww0tQn80X9iGNz7LQr3GOSEs3HhgCRzPwVkyFIINo0mjElOIsnL5NGueRclMq1cq5yndSRRkfoGJ0iB12iCrpFVVRHBD2iZ/SK3qwn68V6tz7m0ZSVzByiP7C+fgAUU56/</latexit>

�⇤ + p ! {Q0Q̄0}+ p0 ! �⇤ + p

<latexit sha1_base64="W42pGPT4j3xjdVu7t2w/pCGvVpM=">AAAB6HicbVDJSgNBEK2JW4xb1KMijUHwFGZyUI9BLx4zYBZIhtDTqSRteha6e4Qw5OjJiwdFvPoV+Q5vfoM/YWc5aOKDgsd7VVTV82PBlbbtLyuzsrq2vpHdzG1t7+zu5fcPaipKJMMqi0QkGz5VKHiIVc21wEYskQa+wLo/uJn49QeUikfhnR7G6AW0F/IuZ1QbyXXb+YJdtKcgy8SZk0L5eOx+P56MK+38Z6sTsSTAUDNBlWo6dqy9lErNmcBRrpUojCkb0B42DQ1pgMpLp4eOyJlROqQbSVOhJlP190RKA6WGgW86A6r7atGbiP95zUR3r7yUh3GiMWSzRd1EEB2RydekwyUyLYaGUCa5uZWwPpWUaZNNzoTgLL68TGqlonNRLLkmjWuYIQtHcArn4MAllOEWKlAFBghP8AKv1r31bL1Z77PWjDWfOYQ/sD5+AJpmkIM=</latexit>

Q

u

u
<latexit sha1_base64="J7KB491zGCQoxca6/mHA8wrPCz8=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIXdFGojBm0sEzAXSJYwO3s2GTM7u8zMCiHkCWwsFLHVh7G3Ed/GyaXQ6A8DH/9/DnPOCVLOlHbdLyu3tLyyupZftzc2t7Z3Crt7DZVkkmKdJjyRrYAo5ExgXTPNsZVKJHHAsRkMriZ58w6lYom40cMU/Zj0BIsYJdpYtbBbKLoldyrnL3hzKF682+fp26dd7RY+OmFCsxiFppwo1fbcVPsjIjWjHMd2J1OYEjogPWwbFCRG5Y+mg46dI+OETpRI84R2pu7PjhGJlRrGgamMie6rxWxi/pe1Mx2d+SMm0kyjoLOPoow7OnEmWzshk0g1HxogVDIzq0P7RBKqzW1scwRvceW/0CiXvJNSueYWK5cwUx4O4BCOwYNTqMA1VKEOFBDu4RGerFvrwXq2XmalOWvesw+/ZL1+AynJkCw=</latexit>

d
u

u
<latexit sha1_base64="J7KB491zGCQoxca6/mHA8wrPCz8=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIXdFGojBm0sEzAXSJYwO3s2GTM7u8zMCiHkCWwsFLHVh7G3Ed/GyaXQ6A8DH/9/DnPOCVLOlHbdLyu3tLyyupZftzc2t7Z3Crt7DZVkkmKdJjyRrYAo5ExgXTPNsZVKJHHAsRkMriZ58w6lYom40cMU/Zj0BIsYJdpYtbBbKLoldyrnL3hzKF682+fp26dd7RY+OmFCsxiFppwo1fbcVPsjIjWjHMd2J1OYEjogPWwbFCRG5Y+mg46dI+OETpRI84R2pu7PjhGJlRrGgamMie6rxWxi/pe1Mx2d+SMm0kyjoLOPoow7OnEmWzshk0g1HxogVDIzq0P7RBKqzW1scwRvceW/0CiXvJNSueYWK5cwUx4O4BCOwYNTqMA1VKEOFBDu4RGerFvrwXq2XmalOWvesw+/ZL1+AynJkCw=</latexit>

d

<latexit sha1_base64="+DuEIa3VojTv0Kp0J4peZ5cpaMg=">AAAB6HicbVDJSgNBEK2JW4xb1KMijUHwFGZyUI9BLx4TMAskQ+jp1CRteha6e4Qw5OjJiwdFvPoV+Q5vfoM/YWc5aOKDgsd7VVTV82LBlbbtLyuzsrq2vpHdzG1t7+zu5fcP6ipKJMMai0Qkmx5VKHiINc21wGYskQaewIY3uJn4jQeUikfhnR7G6Aa0F3KfM6qNVO118gW7aE9BlokzJ4Xy8bj6/XgyrnTyn+1uxJIAQ80EVarl2LF2Uyo1ZwJHuXaiMKZsQHvYMjSkASo3nR46ImdG6RI/kqZCTabq74mUBkoNA890BlT31aI3Ef/zWon2r9yUh3GiMWSzRX4iiI7I5GvS5RKZFkNDKJPc3EpYn0rKtMkmZ0JwFl9eJvVS0bkolqomjWuYIQtHcArn4MAllOEWKlADBghP8AKv1r31bL1Z77PWjDWfOYQ/sD5+ALu+kJk=</latexit>g <latexit sha1_base64="+DuEIa3VojTv0Kp0J4peZ5cpaMg=">AAAB6HicbVDJSgNBEK2JW4xb1KMijUHwFGZyUI9BLx4TMAskQ+jp1CRteha6e4Qw5OjJiwdFvPoV+Q5vfoM/YWc5aOKDgsd7VVTV82LBlbbtLyuzsrq2vpHdzG1t7+zu5fcP6ipKJMMai0Qkmx5VKHiINc21wGYskQaewIY3uJn4jQeUikfhnR7G6Aa0F3KfM6qNVO118gW7aE9BlokzJ4Xy8bj6/XgyrnTyn+1uxJIAQ80EVarl2LF2Uyo1ZwJHuXaiMKZsQHvYMjSkASo3nR46ImdG6RI/kqZCTabq74mUBkoNA890BlT31aI3Ef/zWon2r9yUh3GiMWSzRX4iiI7I5GvS5RKZFkNDKJPc3EpYn0rKtMkmZ0JwFl9eJvVS0bkolqomjWuYIQtHcArn4MAllOEWKlADBghP8AKv1r31bL1Z77PWjDWfOYQ/sD5+ALu+kJk=</latexit>g <latexit sha1_base64="+DuEIa3VojTv0Kp0J4peZ5cpaMg=">AAAB6HicbVDJSgNBEK2JW4xb1KMijUHwFGZyUI9BLx4TMAskQ+jp1CRteha6e4Qw5OjJiwdFvPoV+Q5vfoM/YWc5aOKDgsd7VVTV82LBlbbtLyuzsrq2vpHdzG1t7+zu5fcP6ipKJMMai0Qkmx5VKHiINc21wGYskQaewIY3uJn4jQeUikfhnR7G6Aa0F3KfM6qNVO118gW7aE9BlokzJ4Xy8bj6/XgyrnTyn+1uxJIAQ80EVarl2LF2Uyo1ZwJHuXaiMKZsQHvYMjSkASo3nR46ImdG6RI/kqZCTabq74mUBkoNA890BlT31aI3Ef/zWon2r9yUh3GiMWSzRX4iiI7I5GvS5RKZFkNDKJPc3EpYn0rKtMkmZ0JwFl9eJvVS0bkolqomjWuYIQtHcArn4MAllOEWKlADBghP8AKv1r31bL1Z77PWjDWfOYQ/sD5+ALu+kJk=</latexit>g
<latexit sha1_base64="+DuEIa3VojTv0Kp0J4peZ5cpaMg=">AAAB6HicbVDJSgNBEK2JW4xb1KMijUHwFGZyUI9BLx4TMAskQ+jp1CRteha6e4Qw5OjJiwdFvPoV+Q5vfoM/YWc5aOKDgsd7VVTV82LBlbbtLyuzsrq2vpHdzG1t7+zu5fcP6ipKJMMai0Qkmx5VKHiINc21wGYskQaewIY3uJn4jQeUikfhnR7G6Aa0F3KfM6qNVO118gW7aE9BlokzJ4Xy8bj6/XgyrnTyn+1uxJIAQ80EVarl2LF2Uyo1ZwJHuXaiMKZsQHvYMjSkASo3nR46ImdG6RI/kqZCTabq74mUBkoNA890BlT31aI3Ef/zWon2r9yUh3GiMWSzRX4iiI7I5GvS5RKZFkNDKJPc3EpYn0rKtMkmZ0JwFl9eJvVS0bkolqomjWuYIQtHcArn4MAllOEWKlADBghP8AKv1r31bL1Z77PWjDWfOYQ/sD5+ALu+kJk=</latexit>g

Cannot reduce to matrix element 
of local operator!  No Sum Rules!

Liuti, Lubovitski,
Schmidt, sjb



Exploring QCD, Cambridge, August 20-24, 2007 Page 9

c

c

c̄

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0
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Color Palette

The logo and word mark can be printed or published in one-color red, one-color black and one-color white. When used on
a white background, the one-color red version is preferred. An all-black or all-white version is available for use when the
preferred two-color version is not possible or appropriate. Do not create versions of the logo in other colors or
proportions.

The red used in the logo has the following color mix:

Pantone 201
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CMYK for externally printed pieces, RGB for documents printed in the o!ice, and HEX for web and digital colors. When you
embed an .eps version of a logo, make sure it’s the correct HEX color value BEFORE saving for web or digital.
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Color Confinement and Supersymmetric Features 
of Hadron Physics from Light-Front Holography

and Novel Features of QCD from Light-Front Holography II

Stan Brodsky  

Talk II   July 8, 2021

with Guy de Tèramond, Hans Günter Dosch, Alexandre Deur, Marina Nielsen, Ivan Schmidt,           
F. Navarra, Jennifer Rittenhouse West, G. Miller, Keh-Fei Liu, Tianbo LIu, Liping Zou, S. Groote,  

Joshua Erlich, S. Koshkarev, Xing-Gang Wu, Sheng-Quan Wang, Cedric Lorcè, R. S. Sufian,
R. Vogt, G. Lykasov, S. Gardner, S. Liuti,  V. Lyubovitskij, L. di Giustino

|p>=|u[ud]> quark-diquark cluster
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