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We have indications that quantum gravitational effects
need a theory with infinite many fields (Camanho-
Edelstein-Maldacena-Zhiboedov, 2014). See also
H.Steinacker, 2019

Are string theories the only ones that can satisfy all the
consistency requirements or are there others?
And, in case, how are they related to string theories?

Can they exhibit a critical dimension?

Or the good UV convergence properties of string theories?



This talk Is about an attempt to construct theories with
Infinite many massless local fields that comprise
matter and gravity

» Worldline guantization
 HS Yang-Mills-like theories
» Absence of ghosts

» Locality and non-locality

* No-go theorems: comments



How can we construct other
candidate theories?



For HS theories, see:

Fradlin, Vasiliev, Prokushkin, Metsaev, Ponomarey,
Skvortsov, Bekaert, Young, Mourad, Francia, lazeolla,
Sagnotti, Campoleoni, Fredenhagen, Fotopoulos,
Tsulaia, Taronna,...

Their ambition is to construct sensible HS theories
and, to a certain extent, they have succeeded (3d,

4d AdS...)



Our approach: worldline quantization

In simple words: quantize a particle worldline X™ with the Weyl
guantization method and interpret a field as a function of the
guantum X™ (in analogy with SFT where string fields are functions

of first quantized string)

Strassler, Segal, Bastianelli, Bonezzi, Boulanger, Corradini, Latini, Bekaert,
Joung, Mourad ...



Formulas in Weyl-Wigner quantization

| o

In the Weyl-Wigner quantization a quantum operator O can be represented with a symbol
O(x, p) through the Weyl map

5 d?k dip P S
. /ddxddy(%r)d (2m)¢ O(x,p) e'* (v X) =t (p=F)

where X (P) is the position (momentum) operator.
Product of operators corresponds to Moyal product of symbols:

0103 «+— O1(z,p) * O2(x, p)
The Moyal product is defined by
f[: — — — e
a‘(m)p) * b(ﬂ?,p) — a(ﬂ?,p) exp|:§ (8:{: ) 813 - 8:8 ) 8}9):| b(ﬂj,p),

it is associative and has the trace property

P ddp L D ddp _ y
/ dP x 2m) a(x,p) *x b(x, p) —/d x (27T)da(:c,p)b(a:,p) —[d x

d
(;Zﬁz;d b(x,p) * a(x, p)



Master fields

We imitate string field theory, where string fields are function of z*(e,7), and introduce master
fields, i.e. fields on the phase space that dipend both on 2* and the conjugate momentum u,

[z*,u,| = id"

so that we can fully exploit the Weyl-Wigner formalism.
In particular we introduce a gauge master field h,(z, u):

o0

1
— H1epim '
ho(z,u) = Z ;'-ha ()uy, ... u,,
n=0
and endow it with a HS gauge symmetry.
The dependence on u is a counting device. The dynamics is in the z spacetime alone.



Higher spin symmetry

‘ The HS transformation is
Scha(x,u) = OFe(x,u) —ilhag(x,u) ¥ e(x,u)] = DI e(x,u)
Let us expand
v 1 A
ho(x,u) = Aa(x) + xh (x)ur + EBO‘ U U + ...
and
1 124
e(x,u) = e(x) + &Hupy + 5/\‘“’ UpUy + ...

Then, in components

A, = Oa€ + £-OAq — Ope xh), + ...
5XZ — Oa&” + ﬁaxz — 8,0'51/){3 —+ 8pAaApV — 8)\'53@)\” + ...
§Ba"" = OaA"N +£-0BaY — 9,87 Ba?

‘ — O ENBaPY + Op XA 4+ o xaApY — XPO, AN + ...



Higher spin symmetry

Denoting with a tilde the standard fields and restricting to gauge and diff transformations, we
have

5A, = 6 (éﬁfi#) = ((55 _ ;Ef;):fl#)
= (60X + NE" ) A+ (0 — ) (Oue + €04, ) ~ Bue + £-0A, — e
and
St = §(8" — H) = €06 — D\EHEN = —£- O — D8 + DrEFY
so that

SX! = £-OX" + 0,6" — 06"

where flp, et represent the standard vector field and vielbein and we have retained only the terms
at most linear in the fields. From the above we see that we can make the identifictions

Aﬂ - jﬂ.!‘ Xf; - ;EE



HS YM eom’s. Remark

In the usual approach to gravity one assume the fluctuation is A, with g, =m0 + hpuo.
Here instead we have

e = 0L —Xa
b
e, = 0, +txh+Xxpx,t+---
gtv = " —2x"" + xgx*”
g,U.'fV — T],LLI/ + 2X[,1,?/ + SXfLXa,y _|_ . ..
so that
h;_u/ = 2X,u,r/ + SXfLXaV + ... (1)
3
xk = hH — Zh;hfjJr... (2)

What is at most quartic in x4 is any order in k. !

| -



HS YM

l7I_e’[ us introduce the ‘field strenght’ components j
Gap(x,u) = Oghp(x,u) — Oy ha(x,u) — ilha(z,u) T hy(z, w)]
Its transformation rule is
6eGap = —i[Gap 7 ho]
Now define
d%u

YM((h) = /ddeGa’b(m,u) * Gab(x,u) = (G % Gap))

It follows that

5 (G % Ggp)) =0

| o



HS YM eom’s

‘ Taking the variation of Y AM (k) we get the following eom’s

G —ilhy * G = DG =0

Let us expand G, in component fields: G, = Fap + X2, uy + %Bg"g’uuuu + ..., where
Fap, = 0OaAp— OpAa+ 05AaXy — OsApxT + . ..
ng — 8(1)(";’ — Op Xt + 05 Aq b — 05 Ap b " — x0 60*)(’; + x5 Ooxti + ...
Bap” = Babp"’ — Opba” + 205X by — 205X/ ba™7 + Oobat XT — DabbHV XS + - -

The explicit eom’s are

0 = OF® 4+9,A, XY _ Y9, F*° 4 .
0 = 08X +0,A, B — b5 0L F* + 0ux ) XY — x50, X0 4 ..
0 = OuBr 4 ...



HS YM eom’s. Examples

Case of a pure U(1) gauge field A alone. The eom is
O F*° =AY — 5,0-A =0

In the Landau gauge, 8- A = 0, this reduces to [JA? = 0.

® Only gravity is present. The eom becomes
O X “or = Ox} — 9p0-x" =0

‘ ’ _ - Mo
In the ‘Landau gauge’, 9-x* = 0, it reduces to [y, = 0.

® Keeping only the spin 3 field the eom becomes
Oq BAPHY = by — 9,0%bHY = 0

Again in the ‘Landau gauge’, 9¢b5” = 0, we get (b #* = 0.

Remark: The interaction is at most quartic!

[

(1)



Local Lorentz symmetry

The action is apparently not invariant under local Lorentz transformations (LLT’s).
Under A, — A, + ALLA, terms ((O.Ar¢) A. — (OpAo°) AL) F*° are generated in
Fo ' that do not vanish. This is because the formalism automatically fixes the
LL gauge. However LL invariance can be easily recovered.

Let us introduce a trivial frame e,/ (x) via

O, (x)es () = 5t

where O,"(x) is an LLT. A full gravitational (dynamical) frame is the sum of a
trivial frame and a nontrivial piece

Bl (x) = ea'(x) — Xt (x)
With a LLT we can take it to the form
EX(x) = 0" () — xh(x)
In a similar way we can define a trivial connection
A%, = (O Hx)0,0(x))" s

whose curvature vanishes.



Local Lorentz symmetry (cnt.)
Local Lorentz symmetry is recovered by interpreting any flat index as follows:
Ou(z) as e, (z)Ou(z),
and replacing the ordinary derivative with the inertial covariant derivative
1

Ou by Du=38,— A,

everywhere (even in the Moyal product). Then, for instance
INGap = Aachh -+ AhCGac
which implies the local Lorentz invariance of G4 32G®.

The separation between inertial and gravitational parts in frames and connec-
tions is characteristic of teleparallelism.



Matter fields

It is possible to introduce scalar master fields of the type

- 1
D(x,u) = E ﬁ(I’Hl‘Hz'"'””{:.’_.!’_.')"!_4",-“1'{_!,“2 Ce LUy,

re!l
=1}

which under gauge transformations behaves like

- D — 212 x D, 5. DT — —idT % £,

i, = D

The covariant derivative is DD = J,D

In the same way one can introduce spinor master fields

e

1
W(r, u) = E ‘l’f;l?:;"””(:i’.-’)":.r,.”l Cee Uy,

72!
rr=—=I)

Under HS gauge transformations it transforms according to

OV — = x Ir, EE@T — A\ £,

and let us define the covariant derivative: D WV — J, WV — ¢/, = V.



BRST quantization

One can introduce FP ghost ¢ and antighost ¢ master fields together with an
auxiliary master field B and write down the action

11
YM(ha, e, B) = = (—7Gap * G — h® x 9,B — id"c x Dje + gB + B))
g

which is invariant under the nilpotent BRS'T transformations

sha = D,c
, 7
sc = 1c*kc = E[(‘: e
s¢c = 1B
sB = 0

Integrating out B one gets the gauge fixed action

1,1 1 e s
YM(hg,c) = E«_EG‘“’ * G — 5 alt” Oph® — i0°C x Dic))



Higgs mechanism

Add a scalar master field ©® with action
1 t * p? t A t 2
S(P, h) = 5({(@2@) * D>P ?@ * P — E((Ih * D)7

and suppose that only ¢y takes on a nonvanishing vacuum expectation value, say v, so that

6
wolx) = v + do(x), V= =
) =) VA
Next it is convenient to use finite gauge transformations:
b — ' x D, DT 5 BT % e =, hg — i€ x Dre <
Then one can parametrize ® as e’ * ¢y, wherew = wi(x)u, + %wgy(a’;)u“’uv + .... Then the
potential becomes
4
H 2 (2 3 3 A 4
V(o) = KES — 125 — SV AB — S o)

and, defining the new gauge master fields

h! = e®™ % D*e W

s ) * Lk 1

the kinetic term for the scalars becomes
1 I F* .i'a
K(po, h') = 5‘(((1)3(250)1 * D *po + v° h'*h))

The scalars, except ¢q, have been eaten and the gauge fields have become massive.



Perturbative quantization

One has to get rid of the « integration. This is done extracting a mass scale from
(T u? = mu and by redefining AL "' — RSP = wt RS One must
also redefine the coordinates as follows: =" — uxr’, as well as the coupling as

g — 2. The integrand becomes u-independent and the measure becomes

{ f f { J '3'
/rfr';f'r!r' = m" /Hr{f.i"fﬂrdll —s m"” /ff’"ﬂ.r'dduuf' -

so one can factor out the uw integration.
For instance the cubic part of the action becomes

Sy = —g / ”ﬁ"r{";?”*‘“’if?m-'lﬁ.xi Dr AbX7) (L)

ﬁ(.ﬁ}”;l“ " A Oy Oy Oy Ay €51 727% + 305,00'720 5,00 X7*)

2
m- [ . _ ) _
e g b JAL . T e gD [T
| 24 (f) A"Ob,," Xy " A0, by, x4
P h - p_ a b - i - b~ - ab - )
209 A0 x b by, 20" A0, x4 b4, " + 0 A0, A,cp,M A" A0, Apcy, M7

ezl a . a iy b (o - .
O™, Os Auxy, b, O Apx, + 207X, {:f}qi-lu by A, Ay b,

FOxXEXT — OaXxiXT) + )]f



The propagator

The quadratic part of the action takes the form

ngfddx E h?“}(:ﬂ)f{ig”}{y}(m,m)hf’{u}(:r)

where

I oy — (0~

and
NieHYY ) =
/ 1
0
2
nn“lﬁﬂ t;_d
0
£
T e 2 3 g 4!ﬂgrrtl}qu
\ 0

0

{p}. v}

2
5 2 11
n d

0
TTH1 M2t

0

11.14

3ld(d+2)

This matrix is not invertible.

J1s - ooy M-

to exist.

o — 1
p 3;»“533) N{ﬂ}{v}(m) — ﬂfng{“}{”}(m)
v m2 " ” 4
" Sa 0 i LI P2ey ratara) 0\
T o) 0
UHLI—‘ZL’IVEM 0
0

iy

We must impose tracelessness on the indices

This is a further gauge condition one has to impose for a propagator



The propagator (cnt.)

If we define My, to be the inverse of Ny, y1}:

NHY (m) My (m) = 5%

then we find

(1 0 0 0 0 \
0 o5 0 0 0 .
Wiy | O 0 Atz 0 0
Mpy(w) = | 0 0 Abapizps 1 0
0 0 0 0 AH1Hzpsps 1

\ v1Va3gle mS " )
where
1
&“lmﬂnb’l---v - (51{?1 st 543«7; -+ perrn(,uh s :.l'u’ﬂ))
T n! 1 T
Finally the propagator is

ka kb
k4

P (o ) — (ﬂ b —1)

lo ) MUY ()

Recall: Physical modes are transverse and traceless (with respect to
f1, - o i)



Physical modes

The issue is to decompose
S 1 e
FAN e = — (5”1 .08 - perm(pe, - - -, ,L.-:n)) ,

which is the identity operator in the space of simmetric tensors, according to irreducible repre-
sentations of the Lorentz group. This can be done as follows Let us introduce the elementary

projectors

- k,:.nku \ - k;.r,ku
TT;J:L- - T},!.E,U _ kz 3 {""—"_f_u; — k‘z
with the properties: 7, @75 — 7T, Wper WY % = Wy, T W 2 = 0.
Then, for n — 2 we have
£ LD, VD H1 e 1 LU L2 2 B2 PIETE R 2 L1 A 20 2
where
1 1
(2) - = —
Pﬁlﬁg,ﬂll/‘z - 2 ("ﬂ'-#]y] ﬂ-.u-zv‘z —+ ?rﬁllfz?rpzvl} d — 1ﬂ-ﬂlf—52ﬂ-yl L
PH _ 1 ( + - + )
Hipzaarve T 5 Ty Wpoen Ty v sy Wieyen TWpoes W prg 1 T peneny
1 —(0
(0) - - (0) _
'F:'J-l Jiz b0 Ao _ d — 1’}1_;41“2?1””11,2, P}_t.];.l.z,b’]h'z — W pa Wi 1o
These are projectors
(2) (2)erg 20z, _ (2)
Pulﬂz,vluzp A1 A - PH1M21A1A2? ......

These projectors are orthogonal to one another, 7 is transverse and traceless, P! is traceless

. ——=0) . .
but not transverse. P(%) is transverse but not traceless, P is neither transverse nor traceless.



Physical modes

For n = 3
_ (3) (2)
&;;,1“2;;3,;;1:.»2;;3 T Pﬂ1ﬂzﬂ31:f1v'2v3 -+ Pu1ﬂ2#3,v1mvﬂ
(0) (Da) (0OBb) —-(0)
+Pﬂ1#2#33V1V2V3 -+ Pﬁlﬁzﬁaaylyzifa + P#l.t&z#s;!fl-'-’zb’z + P#lHQHS:V1V2L’3
where
3) _ 1
JL] L Lz By B by - E T MWpors MWz -+ Tpey e Wpors s -+ Ty T ppors TWpagen

T e o e Mg + T e Worn Mpsroe + Wy s T poro TWpigen )

1
_—S(d - 1} (’?r;'—ﬂlf—l'Z ﬂ-l.—']_lﬁ_gﬂp:il;:i —+ 'J‘T;_,;lﬂx’ﬂ'plpﬁ?l'ﬁzpz —+ Wﬁzﬂ:iﬂlﬁzlﬁiﬁrﬁlm

T ey pro oy b Mg ers + ey pro Meors Wpaey + Ty pas e ve T pors

Ty paz v s Moy + Mo ps Mo es W eve + T o pes e 1o Wy e )

and so on.
Only P is tranverse and traceless. Only transverse and traceless models are
phyvsical. Therefore

Replace /A in the propagator with the unique transverse and traceless projector.

)
A s g —> P

1-eeflgy 8] e iy

This guarantees that only physical modes propagate and no physical modes
are lost.



Physical modes

For instance, the two-point function for traceless transverse modes is

1 mﬂ+m

- - d%p
[T ¥ — LAY wu iy 2 b o
(ha (1) hy, (g2))o = g~ a1 g2 0(q1 + g=2) f (2m)a p2(p

x / driy f dng My, - - - My, M2, - - - N2p,,
Sd—l Sd—l

i 1 1 1 [ Y, S - T LeeafleTleaeTy
2. (ID2(r!)? P© : ‘i — q) PIPrr (»)

—q1)? nlm!

21 2
L,r=0 m mer
> (ﬂl+p_q1 ---(ﬂl—i—p_q-l (ﬂl—Fi) ---(ﬂ.l—l—i)
2m Ay 2m Y 2m/ p, 2m./ o,
(- 2) () (- ) (- )
2'['[1 -'}'-1 2m -':"-i Zm j'_'.ll-| 2“1- p,_..
> (ﬂg—l—p_qrl ”.(ﬂz_kp—ql (ﬂz—Fi) ...(ng—|—£)
2m o 2m o 2m/ 2mJ/

A, P .. P—@ (n—i) (n—i)
2 2m 2 2m o 27 om/, U 2m T

o]



But what are the physical modes?

Consider a free state ¢, ¢"**, where ¢ is symmetric. Projecting it with the symmetric transverse

traceless projector P(2) = P2 we obtain a symmetric transverse traceless polarization

-~ _ (2) i -~ 75 2
C}M#z Ppllp!.g CFJ L2 C}-ﬂl#zk o Cﬁlﬁbzk o 0

Setting ko = k, = k implies (oo = (o1 = C1o = ¢11 and (o; = (5. Thus

C mw
m,u:-

a_J—J

The state with such a polarization is physical. But in order to be physical and preserve Lorentz
covariance it must include also zero norm states.

For instance in 10 dimensions the symmetric representation of SO(1,9) is the sum of the
traceless representation 54 and the identity 1 (the trace). The corresponding little group is SO(8),
whose symmetric representation splits as a traceless 35 and 1. The strictly physical degrees of
freedom are 35. But in order to preserve Lorentz covariance we have to add a vector representation
& plus an identity one, 1. The sum of all these degrees of freedom 35+ 1+ 8+ 1 = 45 corresponds
to the dimension of the (traceless) adjoint representation of SO(1,9).



Physical modes (cont.)

In d dimensions the symmetric tensor n representation of the Lorentz group and the corresponding
irreducible traceless representation have dimension

(“*771)  ama @RS DEEno 2. @@, )

T !

The symmetric tensor n representation of the little group and the corresponding irreducible
traceless representation have dimension

?

) n!

To the last one we have to add zero norm representations of the little group in order to preserve
Lorentz covariance. These states form a (in general reducible) symmetric traceless representation
of the Lorentz group of dimension

d+n— 2
)

The total number of dofs to be eliminated (in order to preserve physicality and Lorentz covariance

) is
(diijz) (1)



Hidden symmetry

Returning to the master field h,(x,u), to compensate for the unphysical degrees of freedom we
need a gauge symmetry parametrized as follows

ShHa-Hn () = p @ AP2-Hn) () n > 2.

?

This symmetry is hidden, i.e. not manifest in the initial action.



Unfolding the hidden gauge symmetry

Replace everywhere in the action any component field A#'-#=( with n > 2) with its projection by

the appropriate P in configuration space, i.e. replacing T With

i (D) = 1y, — 22O
s JLELF ]
For instance
- 1 1
btz — Bt — (5 (T T2y Ty TEH2,,) — e TR, ) B

the transformation becomes
511*111:: — é}ﬁu

for any component field. For instance, the new b, field takes the form

W .
Eazb—gﬁb +5—335 ! (r;——)(b’——aﬁb)

]2 d— 1

Similarly the component field ¢f*#2¢3 js replaced by

o 2 3
Co — ca——r:}‘ (‘a+—dd(‘a——dd@c{1
1 o
_d+1( )( ——dc——ddc‘u—kﬁdddcﬂ)
and so on. In these formulas a dot, -, denotes index contraction, a prime " denotes a trace, free

J a gradient, and symmetrization of the free indices is understood.



Gauge symmetry and non-locality

After the above replacements the action

1
4g°

YM(h) = (G * Gap))

becomes non-local. It is however invariant under

Shi-kn () = p O AF2-Hn) (), n > 2.

(this follows from the fact that all P are transverse to the momentum and from the form of
the transformation where a derivative always factors out). And it is also invariant under the new
HS gauge transformation

Oeha(x,u) = Op&(x,u) — ilha(x, ) * &(x, u)]



A summary about (quantum) HS-YM theories

* They contain Maxwell (or non Abelian YM) and gravity

* There are precise recipes to compute any physical amplitude
* No ghosts

* They are gauge theories with two types of gauge symmetries
* They are non-local with a ‘controlled’ non-locality (non-locality
disappears when fixing the gauge symmetry)

* They are supersymmetrizable



In summary: we can construct a theory
for massless spin fields that are
covariant under HS gauge
transformation, which Is ghost-free, In
any dimension Minkowski spacetime!

This seems to contradict well-known no-
go theorems concerning HS: an
Interacting massless HS theory In
Minkowski spacetime cannot exist!



The no-go theorems:

* Some no-go theorems are S-matrix statements

» some concern theories with a finite number of fields

* most concern theories with minimal coupling to gravity
* HS gauge transformations are different

 others are based on the Fronsdal equations

* they assume (non-perturbative) locality

Weinberg, Coleman, Mandula, Witten, Benincasa, Cachazo, Porrati, Bekaert,
Boulanger, Leclercqg, Conde, Young, Mkrtchyan, Ponomarev, Skvortsov,
Metsaey,....



HS YM-like theories do not match some of these features
(in particular locality)!

It iIs however necessary to show that they are consistent
theories.

The first requirement is absence of ghosts: ok!

Other problems: - they are non-local
 have high IR singularities
 can they be made local (with
addition of auxiliary fields)?



In (temporary) conclusion:
There are serious problems to

be tackled with HS-YM
models....

....but they are worth studying



What could all this be related to?

String field theory may be the favorite
playground to answer this question.

The first analogy which comes to mind
IS tensionless strings.



Tensionless strings

-

In the tensionless limit (o’ — oc¢) of the free string spectrum becomes
massless. This limit is well defined. Recalling that o; = v2a'p* and

P — —i% and redefining the Virasoro generators as follows:
1 1
LU‘ — _,Lﬂu L.li: 4 LFE:I 'I": 7’4_ 0
(8 Dy’

one obtains the reduced generators
Lo — lp = p?, Li — lx = p- ag, k#0
which satisfy the reduced Virasoro algebra

[Eﬁ:: I-n.] =k ED 6&:4—11..!]

[ o

—pAf



Tensionless strings (cont.)

‘ Rescaling also the ghost oscillators ., B, as follows \
1
Cr — cp = V2a'C}, By — by =FBR:: k+#0
L]
Co —co=a’Co, By — by = —Bo
L

in the o’ — oo one finds a reduced BRST charge

= k
= g, — =bpec_
Q § (Ek k — boc kﬂk>

k=—omo

There is no central charge. @2 = 0 in any dimension and Qf = Q.
The SFT action reduces to the free action (BEonelli, 2003)

S = (2|Q|P)

It is invariant under the BRST transformation é|®) = Q|A).

| o

_—pir



Tensionless string (cont.)

‘ The states of this theory have been analyzed by Francia-Sagnotti-Tsulaia. The simplest \
states are the so-called triplets:

|®) = o) + colP1), |A) = |Ao) + colAa),
where
=1
|§'—5D} - Z ;':F';LL..;LE {:L’l‘;}ﬂill ... ":"531"31 |'I]}
s=0 """
S 1
+3_ i Durmaa @0y ol 2e 4 0)
s=0 )
and
= 1
I{ﬁrl} — Z mﬂﬂl g1 {T}.‘];ill . e EEE-E’]—I ID}
s=0 )
‘ where |k) = |0)etkT_ Satisfying the eom Q|®) = 0 implies \

—pir



Tensionless strings (cont.)

- o

[kp = 8C,
g-p—0D=C
(1D =8-C

Now take the gradient of the second and replace into the first. Then take the trace of the first,
and insert the result into the previous equation. The end result is (in unnormalized notation)

(ko — 88- + 5&;.::":3%::" (1)

This is the Fronsdal equation written in terms of a 'compensator « field

GF
o= —

L]

This is actually general for all the tensionless strings. This reduces tensionless string theory

‘ to a particular HS theory. \

—pir



* Tensionless strings are non-interacting
* They reproduce Fronsdal-type equations

* They do not seem to be related to HS YM-like theories



A suggestion

In open string theory let us rescale off — roft = &/, This induces the rescaling

L, — F,,,,L o Eﬂ, and an automorphism of the Virasoro algebra.
In a similar way we can rescale the ghosts oscillators ¢/ — E];l ct = ¢ and
bt — Eln bt = bfg. The BRST operator remains the same Q = Q.
Let us construct the states
|b) = (@) ay oo a™ e k)
| Ha) = ham.--pn(@ a’ya™ ... a" elk)
s 4 Ly
| Hap) — Pabpy ... () a2 9a” 5 a™ ... a™ el|k)

They scale like

@3;;,1...,{;“(33) — gn_l d)ﬁtlu-#n (:L‘)
h{lp!,lu.#n(:r) — gﬂ'_l_l hﬁﬂl-“ﬂn(m)
haby,l S J ¥ (21'3) — gﬂ—l—:} hﬁb,ﬂl weefliy (‘T)

------



A suggestion (cnt.)

Now construct the master fields

oo
D(a, u) = E e bl (F o & TSP T
ra—10
ot
fl’fl(:‘r:"-' ?‘L:: - flgjl-‘;ln (I)uﬁl "o uf-ﬂn:
re=—I0)
ot
Peap(, 1) — hop (@), - -y,
re=—I0)

If we rescale u,, as u, — %t.—.“, they scale like

D(a, w) — D (a2, w)
Frg(ax, w) — Che(x, w)
hoan(a, w) —3 3 Fap(x, )

In this way one slices the states of string theory according to the powers of £,
reorganizing them in terms master fields. The question one may pose is:

For which of these master fhields can we formulate a local held theorvy?”

The answer seems to be : only for © and 5h,.



THANKS



