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Introduction

• Quantum Systems can have in general many ground states (minima).

• Transitions to lower minima proceed via tunneling effects.

• As was understood by Coleman, this is mediated by instanton solutions

of the Euclidean theory.

• Euclidean instantons provide, eventually, boundary conditions for the sub-

sequent Lorentzian evolution.

• In the absence of gravity, instanton solutions start in the “false vacuum”

and end in the “true vacuum”.

• In the presence of gravity this process is richer.

• It was first studied by Coleman and De Luccia in 1980 (the corresponding

solution is the Coleman-De Luccia instanton).
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• In the presence of gravity, the absolute value of the ground state ener-

gies are important, as they determine the space-time geometry (de Sitter,

Minkowski or AdS).

• Decays to de Sitter or Minkowski turn out to be qualitatively similar to

that in the absence of gravity.

• Decays in the AdS case are different for two reasons:

♠ Not all decays are allowed: gravity stabilises some vacua.

♠ The end-point of the decay is not the true vacuum but an FRW universe

that undergoes (singular) collapse.
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• There are some “folk beliefs” in the fields concerning CdL decays since
the CdL Paper:

♠ The thin-wall approximation is applicable generically once the vacua are
near degenerate (compared to the Planck scale).

♠ The instanton solutions generically exist!

♠ Later a condition was derived in the thin wall approximation:
Harlow

We parametrize

Vfalse = −
12

ℓ2f
, Vtrue = −

12

ℓ2t

and consider an AdS inside the bubble, and AdS outside, separated by a
thin wall with tension σ.

Then σ must satisfy the inequality

σ

M2
P

≤ 4

(
1

ℓf
−

1

ℓt

)
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• It is not clear how to relate σ to the details of the scalar potential.

• AdS CDL decays has received attention in the recent past because:

♠ String theory is full of AdS vacua and therefore the tunneling issue is

relevant

♠ The AdS/CFT correspondence provides a dual view to such processes.
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The logistics of CDL transitions

• To compute the transition rate, we must first find the CdL instanton

solution in Euclidean signature: ḡab, ϕ̄i.

• This solution is a Euclidean bubble, with the false vacuum asymptotically

and the true vacuum inside.

• Then, the tunneling rate is given by

Γ = A e−SE(ḡab,ϕ̄i)

• The subsequent evolution, involves a real time evolution of the “bubble”

with initial conditions given by the Euclidean instanton solution.
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• The bubble expands with the speed of light until it covers the whole

space.

• Two hypotheses are made typically:

♠ The instanton solution has maximal symmetry : O(d+1) invariance in

Euclidean case:

ds2 = dξ2 + a2(ξ)dΩ2
d , ϕi(ξ) , ξ ∈ [0,+∞)

The solution must be regular at the center and must approach the false

vacuum at ξ → +∞.

♠ It describes a “bubble” of the true vacuum inside a space-time that

approaches the false vacuum at infinity.

♠ The second assumption is the thin-wall approximation: the solution is

approximated with the true vacuum inside, the false vacuum outside and

an infinitesimally thin wall separating the two.
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• It was shown by Coleman that in the absence of gravity, this approximation

is good if the difference in energy of the true and false vacuum is small

compared to the height of the barrier.

• In the presence of gravity in AdS it was not clear when this is applicable.

• I would be considering for simplicity a gravitational theory with a single

scalar.

Sgrav = Md−1
∫

dd+1x
√
g

[
R−

1

2
(∂ϕ)2 − V (ϕ)

]
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• The potential landscape in the gravity theory looks as follows.

• The O(d+1)-invariant instanton ansatz

ds2 = dξ2 + a2(ξ)dΩ2
d , ϕ(ξ) , ξ ∈ [0,+∞)

amounts to

ϕ(0) = ϕD , ϕ(∞) = ϕB

while the metric is near-AdS both near B and D for an AdS→AdS transition.
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Holography

• Holography interprets the same potential landscape of the gravitational

theory in terms of the dual QFT.

• ϕ is dual to a scalar operator in the dual QFT.

• At the extrema of the potential, V ′(ϕA) = 0, we have the solution:

ϕ=constant and the metric is AdS → CFT in d dimensions.
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• According to Wilson a QFT is an RG Flow between a UV CFT to an IR

CFT.

• The maxima are UV fixed points (CFTs). The minima are IR fixed

points∗ (modulo an exception).

• A (regular) solution where ϕ varies from A to B is dual to an RG flow

from the UV CFTA to the IR CFTB.
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• The metric varies from AdS (the boundary=UV in QFT) to AdS (the

center=IR in QFT).

• The solution ansatz is

ds2 = du2 + a(u)2ds2d , ds2d = gijdx
idxj , ϕ(u)

• The metric gij is also the metric at the AdS boundary (u → −∞)

• According to the duality, this solution is dual to the ground state of the

QFT defined on the metric gij.

• If gij is Minkowskid → QFT on a flat metric

• If gij is a Sd → QFT on a d-sphere.

The analytic continuation in this case gives a QFT on a dSd metric.

5-



• Therefore, the “vanilla” holographic RG flows look like in field theory

with UV and IR fixed points interspersed.
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Holographic interpretation of CdL

We may now interpret, the CdL instanton solution (and the associated

transition) in holography:

• The false vacuum is associated with a CFTB.

• The true vacuum is associated with a CFTD.

♠ This is why, it has been claimed that the existence of a CdL instanton

implies that the CFTB is non-perturbatively unstable to decay to the CFTD.
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• But the story is subtler!

• The CdL instanton solution, is a flow that starts from a minimum of the

potential.

• Such (regular) flows do NOT exist in general. They exist only if the

potential is special.
Ghosh+Kiritsis+Nitti+Witkowski

• The O(d+1)-invariant instanton ansatz

ds2 = du2 + a2(u)dΩ2
d , ϕ(u) , u ∈ (−∞,+∞)

amounts to a solution with

ϕ(−∞) = ϕB , ϕ(u0) = near ϕD

while the metric is near-AdS both near B and D for an AdS→AdS transition.
6-



• This solution is interpreted as follows in the CFTB associated to point D

(false vacuum):

♠ It is a ground state of this CFT, in which scale symmetry is broken

(because the scalar runs, and the metric is not exactly AdS).

♠ The operator dual to ϕ (which is an irrelevant operator here, as B is

a minimum) has a non-zero vev which breaks the scale symmetry sponta-

neously.

♠ This non-zero vev triggers an RG Flow towards the true vacuum (at

point D).

♠ The CFTB is defined on the sphere Sd.
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♠ All the above imply that the CFTB on Sd has two competing ground

states:

(a)A conformally-invariant ground state dual to the ϕ = ϕB solution with

exact AdS metric.

(b) A conformally non-invariant ground state dual to the flowing solutions

towards point D, where the O(d+1,1) conf. symmetry is broken to O(d+1).

• This second solution is the CdL instanton.

CONCLUSION: A necessary and sufficient condition for the existence of

a CdL instanton that drives tunneling from B → D is that CFTB on a

sphere has a symmetry breaking ground-state.
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The strategy

We have two, a priori distinct, problems:

PROBLEM A: a gravitational theory in d+1 dimensions, with several ground

states, and CdL instantons driving transitions between them.

PROBLEM B: a (holographic) QFTd in d dimensions, that is dual to a

gravitational theory in d+1 dimensions.

In problem B :

(a) Holography maps what happens in the QFT to what happens in the

gravitational theory and vice versa.

(b) The QFT fixes “ambiguities” in the gravitational theory (like boundary

conditions).
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• We shall “define” the gravitational theory via holography.

• We shall find under what conditions instanton solutions exist.

• We shall examine whether the thin-wall approximation is valid in the

string-theory/holographic regime.

• We shall show that CdL transitions have implications for CFTs on de

Sitter space only.

• We shall analyze the physical implications of the subsequent Lorentzian

evolution and discuss the observability of the bulk singularity from the

boundary.
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Thin vs thick walls

• We define the radius at the center of the wall r̄ as the radius at the locus
where φ has interpolated half way between its boundary values φf (false
vacuum) and φ0 (true vacuum), i.e.

r̄ ≡ αeA(ū) , with φ(ū) =
φf + φ0

2
.

• The wall itself denotes the region where the interpolation between φf

and φ0 effectively occurs.

• There is no universal definition for this and here we make a choice. We
define the wall as the interval [uin, uout] with

φ(uin) =
φf + φ0

2
− γ

φf − φ0

2
, φ(uout) =

φf + φ0

2
+ γ

φf − φ0

2
,

with a parameter γ < 1 that controls how close φ(uin) is to φ0 and φ(uout)
to φf .

• In all practical examples we choose

φ(uin) = φ0 +0.12 (φf − φ0) , φ(uout) = φf +0.12 (φ0 − φf).
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• We can then define

rout = αeA(uout) , rin = αeA(uin)

as the radii corresponding to the outer and inner edge of the wall.

• We define the ‘thin-ness’ parameter η as

η ≡
rout − rin

r̄
=

eA(uout) − eA(uin)

eA(ū)
.

• We refer to a wall as ‘thin’, if η ≪ 1 with η → 0 the limit of a vanishingly

thin wall.
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Instantons vs Skipping RG flows

• By studying the gravitational equations we can prove the following con-

nection.

If there is a regular O(d+1)-invariant instanton solution describing tun-

nelling from φf to φ0 (black arrow) then also exist:

(a) A holographic RG flow solutions from the UV fixed point at φuv1 to an

end point in the red region that skips past the other maximum at φuv2.
9



• This is a so-called skipping holographic flow (red arrow).
Kiritsis+Nitti+Silva-Pimenta

• This flow is non-perturbative from the point of view of QFT:
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• In addition, the potential will allow for flows leaving φuv2 to the left before

changing direction and flowing to an end point in the green region.

• This is a so-called bouncing flow.

• All such holographic RG flows are for a QFT defined on Sd.
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How to construct the relevant potentials

• We start from a potential V0 that admits flat-sliced skipping RG flows.

• Such potentials can be reversed engineered.

• Then we modify slightly the potential so that it has spherical domain wall

solutions

V (φ) = V0(φ) + v(φ)
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Left: Potential V0 that admits a flat domain-wall solution interpolating between the two minima at φf and

φt, indicated by the orange arrow. In the mechanical picture in the inverted potential −V0 this corresponds

to a trajectory for a particle that is released from rest at φt and coming to rest again at φf (red trajectory).

Right: Potential V that differs from V0 only by exhibiting a lower barrier separating the two minima at

φf and φt. In turn the inverted potential −V exhibits a shallower valley separating φf and φt than −V0. A

particle released from φt in −V will overshoot φf as the shallower valley leads to a lower velocity and hence

less friction. By reducing the initial potential energy and releasing the particle lower down the slope at some

φ0, a trajectory can be found so that the particle neither over- nor undershoots, but comes to rest exactly

at φf (red trajectory). In the Euclidean picture, this corresponds to an O(D)-instanton describing tunnelling

from φf to φ0 (orange arrow).
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A numerical study

• We parametrize V0 as

V0(φ) = −
6

ℓ2f
−

∆(3−∆)

2ℓ2f
φ2 +

∆(1−∆)

ℓ2fφt
φ3 +

∆2
(
16− 3φ2

t

)
32ℓ2fφ

2
t

φ4

+
∆2

8ℓ2fφt
φ5 −

∆2

24ℓ2fφ
2
t

φ6

This has two AdS minima at φf = 0 and φt separated by a barrier.

• The parameters are, φt, ∆, ℓf .

• ∆ > 3 is the dimension of the (irrelevant) scalar operator in the false

vacuum.

v(φ) = −
64 v0

ℓ2f

φ3(φt − φ)3

φ6
t

with an extra parameter v0.
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• The dimensions at φf and φt are not affected by v(φ).

• We choose d = 3.

• The dual CFT has two scales: one is the curvature of the sphere, Rs and

the other is the non-trivial vev ⟨O⟩ of the operator dual to ϕ.

• All physical quantities depend on a single dimensionless parameter, the

dimensionless curvature

R ≡
Ru

⟨O⟩
2
∆

• We derive numerically O(4)-instanton solutions for various potentials

(varying their parameters).

• For a given instanton solution, we then record the value of the end-point

φ0, extract the dimensionless curvature R, compute the thinness parameter

η and calculate the instanton action B

B ≡ −Sinstanton = −(Mℓf)
2V3 B , (Mℓf)

2 ∼ N2
c
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• Reminder: the flow can never end at the true minimum if the slices are

curved (as here). It ends at a point φ0 ̸= φt.

• By varying R, φ0 varies.

∆ = 30.1 , φt = 1 , ηflat = 0.211

v0 φ0 R η B/(Mℓf)
2

1 0.9999999999999996 0.36 0.216 123

2 0.99999999999995 0.73 0.222 73

5 0.99999999996 1.90 0.243 31

10 0.999999985 3.9 0.287 13

20 0.999965 8.3 0.466 3.5

• We observe that the closer φ0 to φt, the smaller R and η and the larger

B/(Mℓf)
2,

φ0 → φt : R ↓ , B/(Mℓf)
2 ↑ .
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• We can also prove that η ≥ ηflat.
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The thin-wall limit revisited

• To achieve η → 0 we must first achieve ηflat → 0.

• For our potential, we have an analytic expression of ηflat:

ηflat = 2 e−
ℓf/ℓt−1

4∆

[
γ2−2 log(1−γ2)

]
sinh

(
1+ ℓf/ℓt

∆
tanh−1 γ

)
,

which depends on ∆, ℓf/ℓt and (γ), where γ was defined by

φ(uin) =
φf + φ0

2
− γ

φf − φ0

2
, φ(uout) =

φf + φ0

2
+ γ

φf − φ0

2
,

• We obtain ηflat → 0 in the following limit

∆ → +∞ , ∆
ℓt

ℓf
→ +∞

• In this limit

(a) φf → φt

(b) The potential barrier goes to +∞.
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• We also have

∆(φf) = ∆ → ∞ , ∆(φt) = ∆

ℓt
ℓf

1− ℓt
ℓf

→ ∞ ,
ℓt

ℓf
< 1

• These arguments and conditions generalize qualitatively to more general

potentials

QFT on deSitter and CdL transitions, Elias Kiritsis
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The thin-wall limit vs holography

• We have seen that we need to have large dimensions for the irrelevant

operators near a false vacuum in order to be in the thin wall approximation.

• From the bootstrap program it seems that we obtain upper bounds on

the dimensions of the least irrelevant operators:

∆irr ≤ ∆0

where ∆0 is dimension-dependent only and is a number of order one.

• In the multiscalar case, instanton solutions extend mostly along scalars

with the lowest (irrelevant) dimensions.

• Therefore, the bound above excludes the existence of thin-walled instan-

tons.

QFT on deSitter and CdL transitions, Elias Kiritsis
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The Lorentzian continuation

• At the end of tunneling, the instanton provides initial conditions for the

subsequent Lorentzian evolution.

• We start with the instanton solution for the metric

ds2 = dξ2 + r2(ξ)
(
dθ2 + sin2(θ)dΩ2

d−1

)
,

• We need two analytic continuations of the above metric. One gives all

points that are spacelike separated from the center of the bubble (outside

the bubble).

θ =
π

2
+ iχ , ds2out = dξ2 + r2(ξ)

[
−dχ2 + cosh2(χ)dΩ2

d−1

]
• The metric multiplying r2(ξ) is that of unit radius dSd.

• For this analytic continuation, the Euclidean equations are unchanged.

• Therefore the instanton solution, can be trivially continued in this region.
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• This implies that ϕ(ξ) and r(ξ) from the instanton solution, give the
(Lorentzian) metric in this regime.

• To access the region ‘inside the bubble’ we instead continue as

ξ = iτ, θ = iη , a(τ) = −ir(iτ)

• The metric is now

ds2in = −dτ2 + a2(τ)
(
dη2 + sinh2 η dΩ2

d−1

)
,

• It describes a FRW universe with hyperbolic slicing with scale factor
a(τ).

• In Euclidean signature, the dilaton φ = φ(ξ) was just a function of ξ.

• In this Lorentzian continuation, we instead have φ = φ(τ).

• The equations of motion are the Euclidean ones but with the crucial
change V → −V .

• For a continuous space-time and solution for the scalar, the two metrics
and the scalar field have to be matched at the center of the bubble.
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• The relevant matching conditions are

φ(ξ = 0) = φ(τ = 0),
d

dξ
φ(ξ)|ξ=0 =

d

dτ
φ(τ)|τ=0,

r(ξ = 0) = a(τ = 0),
d

dξ
r(ξ)|ξ=0 =

d

dτ
a(τ)|τ=0 . (1)

• The conditions above imply that all the geometric quantities are contin-

uous across r(0) = 0.

• In the region ‘inside the bubble’ the equations of motion differ from those

in the Euclidean setting and hence the Euclidean solution itself cannot be

continued into this region.

• Instead, we have to solve afresh for a(τ) and φ(τ).

• However, the Euclidean instanton will provide the initial conditions for

this analysis via the matching conditions above.

14-



(a): Space-time diagram of the CdL geometry including the Lorentzian continuation. The purple region is

the Euclidean geometry. Green and orange are space-like and time-like regions from the origin respectively.

The boundary is denoted as the dashed black line whereas the blue dashed line denotes the horizon. Inside the

time-like region, there is a singularity which is denoted as the red dashed line. This singularity is hidden behind

the horizon. (b): Space-time diagram for a holographic RG flow for a QFT on dSd, shown for comparison

with the CdL case. The causal structure is identical to two copies of the Lorentzian continuation of the CdL

geometry, connected at the surface t = 0. The solution in the green regions has been previously studied in

[?]. The solution in the orange regions can be computed using the same method as in the CdL case. By

analogy, we once more expect singularities in the orange regions.

QFT on deSitter and CdL transitions, Elias Kiritsis
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The bulk singularity

• Coleman has argued the existence of a singularity based on the thin wall

approximation.

• Banks has given plausibility arguments about its existence in a more

general context.

• We can prove that generically a singularity exists.

• This is based on a proof that the scale factor a(τ) starts increasing in the

beginning, but always turns around and starts decreasing again as ä < 0.

• Therefore ȧ > 0 turns to ȧ < 0 and the friction in the equations becomes

negative friction, that send the system to ϕ = ∞.

• This is a geometric singularity.

15
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The meaning from the QFT Point of view

• We have argued that the solution near the boundary is that of the ”un-
stable” CFTd on dSd, perturbed by a vev of an irrelevant operator, that
drives the RG Flow

• We must therefore ask, how the interior of the bubble can be seen from
the boundary?

♠ The singularity and the horizon both reach the boundary only in the
asymptotic de Sitter future χ → +∞.

♠ No information from the orange region in the future light-cone of the
origin can reach the green region, nor the boundary.
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♠ This then also applies to the big crunch singularity (shown as the red

dotted line) as this is confined to the future light-cone of the origin.

• We conclude that the dual QFT is unaffected by the crunch.

• The boundary CFT (on dSd)is the false-vacuum CFT at all times, and

no “vacuum decay” occurs.

• This CFT has two ground states, |C1⟩ and |C2⟩.

|C1⟩ → φ = φfalse

and an AdS metric.

• This ground state preserves the full conformal symmetry of the CFT on

dSd O(d,2) and

⟨C1|O|C1⟩ = 0

• The other ground state |C2⟩ corresponds to the vev flow solution with

φ(ξ) non-trivial, and the metric not being AdS.
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• This ground state breaks the full conformal symmetry O(d,2) → O(d,1)

and

⟨C2|O|C2⟩ ̸= 0

• Both states give the same vev for the stress tensor.

QFT on deSitter and CdL transitions, Elias Kiritsis
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The Hartle-Hawking state

• The false vacuum CFT on dSd has a special state, known as the Hartle-

Hawking state, or the no-boundary state.
Hartle+Hawking, Hartle+Hawking+Hertog

• This is defined by doing the gravitational path integral with AdSd+1

boundary conditions.

• The wave function describing the HH state is given by the on-shell grav-

itational action that is a functional of the boundary data.

• As the theory has two semiclassical ground states, the HH state contain

some overlap with these states.

• For perturbative QFTs on de Sitter, the HH state is the one associated

to the Bunch-Davies vacuum.

17



No-boundary Euclidean solutions with two different spatial metric and dilaton at the fixed time-slice θ = π/2

(Lorentzian time χ = 0). The left figure represents the false-vacuum solution, in which the scalar field is

constant, φ = φf , and the metric is AdSD sliced by Sd. On the right, the solution corresponding to the CdL

instanton, a.k.a. holographic RG flow on Sd, in which the scalar field flows from φf (for ξ → +∞) to φ0 at

the center, and the metric deviates from AdS in the interior.
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⟨HH|C1⟩ = Ψ[γ1, ϕ1] ∼ e−SE(γ1,ϕ1) , ⟨HH|C2⟩ = Ψ[γ2, ϕ2] ∼ e−SE(γ2,ϕ2)

so that

|⟨HH|C2⟩|2

|⟨HH|C1⟩|2
= eS1−S2 = e−SInstanton

• Therefore the instanton probability is controlling how much |C2⟩ is in

|HH⟩.

• This indicates that the symmetry breaking vacuum is exponentially sup-

pressed.

• The true vacuum CFT is “hidden behind the horizon”.

QFT on deSitter and CdL transitions, Elias Kiritsis
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CFTs on R× Sd−1

• Can these CdL instantons tell us something about CFTs on the cylinder

R× Sd−1 or flat space, Rd?

• There are bulk diffeomorphisms that change the boundary conditions at

the boundary.

• Such diffeos provide new solutions, but with different boundary conditions

that correspond to different theories.

• Here we want to change the boundary metric from Sd to R× Sd−1.

• Such diffeos can be easily found in the AdS case, and can be extended

also in the asymptotically AdS case.

• They have the property that they map the infinite future of de Sitter to

a finite time in R× Sd−1 or Rd.

18



• As the singularity hits the boundary at that point, this seems to imply
that the boundary CFT on R× Sd−1 or Rd is hit by the singularity at finite
time.

• We shall argue the O(d+1)-symmetric instanton, upon coordinate trans-
formation to a different slicing, does not in fact describe a spontaneous
decay in a finite time of the dual field theory.

• Rather, it describes a driven decay, not unlike what one would obtain
by turning on, in the UV CFT, a time-dependent source which becomes
singular at a finite time.

• The reason is that the coordinate transformation generates a non-trivial
and singular source for the scalar field at the finite end of time in R× Sd−1

or Rd.

• This is a different theory, and it is a CFT that is perturbed by a large
time-dependent source.

• Therefore such solutions cannot tell anything about the sourceless CFT
case.

QFT on deSitter and CdL transitions, Elias Kiritsis
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Conclusions and Outlook

• We have considered Coleman-de Luccia transitions from AdS to AdS.

• We have used holography to constrain such transitions, and interpreted

them from the point of view of the dual CFT.

• We have found that generically, there are no instanton solutions.

• We have found that in order for instantons to exist, the dual quantum

field theory must have (non-perturbative) RG flows that skip fixed points.

• The dual CFT must be defined on the Euclidean sphere.

• We have given an algorithm to construct potentials that have instantons

starting from those that generate skipping RG Flows in the flat case.

• We have clarified the conditions for a thin-wall approximation to exist.
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• We have found that for gravitational theories dual to QFTs, there are no

thin-wall instantons.

• Equivalently, thin-walled instantons are in the swampland.

• We have considered the Lorentzian evolution, and shown generally that

there is always a singularity in the future.

• Such a singularity is protected by a horizon. It cannot affect the dual

QFT on de Sitter, except after infinite time.

• The dual CFT is living on de Sitter space.

• If there is an instanton, then it has two ground states, a symmetry

preserving one and a symmetry breaking one.

• We have interpreted the instanton amplitude as the probability to find

the symmetry breaking state in the Hartle-Hawking vacuum of the CFT on

de Sitter.
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• It is not known whether in the absence of O(d)-symmetric instantons,

there might be ones with less symmetry.

• The implications of this analysis for inflationary models remain to be

investigated.
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THANK YOU!
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