Mass as a Dynamical Variable

XXIV Bled Workshop
What Comes Beyond the Standard Models?

Martin Land

Hadassah College Jerusalem
www.hac.ac.il/cs/staff/martin
July 2021

Fixed Particle Masses - Axiom or Convenience?

Origins: electron as first elementary particle
J. J. Thomson cathode ray experiments (1897)

Cathode rays $=$ beam of discrete particles with fixed e / m
R. Millikan and H. Fletcher oil-drop experiment (1909)

Minimum electron charge \longrightarrow fixed electron mass

Particle Data Group (2020)
Variation in measured mass: $\Delta m_{e} \simeq 10^{-8}$

Convention: treat one particle mass m as fixed by a priori constraint

$$
\begin{array}{r}
m \frac{d u^{\mu}}{d \tau}=e F^{\mu v} u_{v} \quad(i \not \partial-e \not A-m) \psi=0 \quad d^{4} p \delta(\underbrace{p^{\mu} p_{\mu}+m^{2}}_{\text {mass shell }})=\frac{d^{3} \mathbf{p}}{2 \sqrt{\mathbf{p}^{2}+m^{2}}} \\
\eta_{\mu v}=\operatorname{diag}(-1,1,1,1)
\end{array}
$$

Fixed Particle Masses - Axiom or Convenience?

Complications from the Standard Model
Higgs mechanism
Elementary particles \sim massless asymptotic states
Particle masses \longleftarrow interactions with Higgs field $\quad m=f\left\langle\mathrm{Higgs}_{0}\right.$
Fixed masses \in effective theories
Some one-particle masses sharper than others (PDG 2020)
$\Delta m \sim 10^{-10}$ for composite p, n
$\Delta m \sim 25 \%$ for constituent u, d quarks
Holding masses fixed \longleftrightarrow issues and quirks
Constrained mechanics
Problem of time
Flavor oscillations
Missing mass / energy

Stueckelberg-Feynman Antiparticle

Particle propagates backward in time

Feynman diagram in QED (1948)

Interaction vertex
Virtual $e^{-}(E>0) \longrightarrow e^{-}(E<0)+\gamma$
Appears in laboratory as $e^{-} \longrightarrow e^{+}+\gamma$
Future timelike trajectory \longrightarrow past timelike trajectory
Fock particle trajectory $x^{\mu}(\tau)(1937)$

$$
-\dot{x}^{2}=\left(c \frac{d t}{d \tau}, \frac{d \mathbf{x}}{d \tau}\right)^{2}=-\left(c \frac{d t}{d \tau}\right)^{2}\left(1, \frac{1}{c} \frac{d \mathbf{x}}{d t}\right)^{2}=c^{2} \dot{t}^{2}\left(1-\frac{\mathbf{v}^{2}}{c^{2}}\right)
$$

Mass shell constraint

Stueckelberg-Feynman Antiparticle

Particle evolves backward in time

Stueckelberg trajectory in relativistic classical mechanics (1941)
$x^{\mu}(\tau), \dot{x}^{\mu}(\tau)$ all independent
Pair processes
Continuous evolution

$$
\dot{t}>0 \longrightarrow \dot{t}<0
$$

Somewhere $\dot{t}=0$
\dot{x}^{μ} crosses spacelike lightcone
$\dot{x}^{2}(\tau)=\dot{x}^{\mu} \dot{x}_{\mu}$ dynamical
External $\tau \neq$ proper time \dot{x}^{2} changes sign $d s=\sqrt{-\dot{x}^{2}} d \tau$ not meaningful

Stueckelberg-Feynman Antiparticle

Covariant evolution

Stueckelberg's proposed classical Lorentz force

$$
D_{\tau}\left(M \dot{x}^{\mu}\right)=M\left(\ddot{x}^{\mu}+\Gamma_{\nu \rho}^{\mu} \dot{x}^{v} \dot{x}^{\rho}\right)=e F^{\mu v} g_{\nu \rho} \dot{x}^{\rho}+G^{\mu}
$$

Usual metric $g_{\mu v}(x) \underset{\text { flat }}{\longrightarrow} \operatorname{diag}(-1,1,1,1)$ and connection $\Gamma_{\nu \rho}^{\mu}$ for $\mu, v, \rho=0, \cdots, 3$
Classical off-shell propagation

$$
\begin{aligned}
& \frac{d}{d \tau}\left(\frac{1}{2} M \dot{x}^{2}\right)=M \dot{x}_{\mu} D_{\tau} \dot{x}^{\mu}=e \dot{x}_{\mu} F^{\mu v} \dot{x}_{v}+\dot{x}_{\mu} G^{\mu}=\dot{x}_{\mu} G^{\mu} \\
& G^{\mu}=0 \longrightarrow \frac{1}{2} M \dot{x}^{2}=\mathrm{constant}
\end{aligned}
$$

Mass shell constraint \longrightarrow conservation law (for standard electrodynamics)
What could be source for G^{μ} ?

Covariant Canonical Mechanics

Physical picture

Upgrade nonrelativistic classical and quantum mechanics

Inherit nonrelativistic methods and insights

$$
\frac{\partial H}{\partial t}=0 \Rightarrow \text { energy conserved } \quad \longrightarrow \frac{\partial K}{\partial \tau}=0 \Rightarrow \text { mass conserved }
$$

Free particle

$$
K=\frac{1}{2 M} p^{\mu} p_{\mu} \quad \longrightarrow \quad \dot{x}^{\mu}=\frac{p^{\mu}}{M}, \dot{p}^{\mu}=0 \quad \longrightarrow \quad \dot{x}^{2}=\text { constant }
$$

Covariant Canonical Mechanics

Geometry and evolution

Physical spacetime event $x^{\mu}(\tau)$
Irreversible occurrence at time τ
$\tau_{2}>\tau_{1} \Longrightarrow\left\{\begin{array}{l}x^{\mu}\left(\tau_{2}\right) \text { occurs after } x^{\mu}\left(\tau_{1}\right) \\ x^{\mu}\left(\tau_{2}\right) \text { cannot change } x^{\mu}\left(\tau_{1}\right) \\ \text { No grandfather paradox }\end{array}\right.$

Evolution

4D block universe $\mathcal{M}(\tau)$ occurs at τ Infinitesimally close 4D block universe $\mathcal{M}(\tau+d \tau)$ occurs at $\tau+d \tau$

$$
\left.\begin{array}{rl}
& \mathcal{M}(\tau) \\
\text { scalar } K \\
\text { external } \tau
\end{array}\right\} \Longrightarrow \text { Hamiltonian } K \text { generates evolution in } \tau \quad \mathcal{M}(\tau+d \tau)
$$

Overview of Talk

Classical electrodynamics
Five τ-dependent potentials $A_{\mu}(x) \longrightarrow a_{\alpha}(x, \tau) \quad \alpha=0,1,2,3,5$
Lorentz force permits mass exchange between particle and field
Total mass and momentum of particle and field conserved
Self-interaction restores on-shell mass
Maxwell electrodynamics $\sim \tau$-independent equilibrium
Quantum electrodynamics
First order unconstrained quantization
Retarded causality in $\tau \longrightarrow$ no matter loops
Super-renormalizable with suppression of mass exchange
General relativity
4D metric $g_{\mu v}(x)$ on $\mathcal{M} \longrightarrow g_{\alpha \beta}(x, \tau)$ on $\mathcal{M}(\tau)$
$4+1$ formalism generalizes Arnowitt-Deser-Misner (ADM)
Evolving metric \longrightarrow mass exchange across spacetime

Horwitz-Piron Covariant Mechanics

Covariant Lagrangian and Hamiltonian mechanics (1973)
Classical Lagrangian on 8D unconstrained phase space

$$
L=\frac{1}{2} M \dot{x}^{\mu} \dot{x}_{\mu}+e \dot{x}^{\mu} A_{\mu}(x)-V(x) \quad \frac{d}{d \tau} \frac{\partial L}{\partial \dot{x}_{\mu}}-\frac{\partial L}{\partial x_{\mu}}=0
$$

Generalized Lorentz force

$$
M\left(\ddot{x}^{\mu}+\Gamma_{\nu \rho}^{\mu} \dot{x}^{\nu} \dot{x}^{\rho}\right)=e F^{\mu v} \dot{x}_{v}-\partial^{\mu} V \quad \longrightarrow \quad G^{\mu}=-\partial^{\mu} V
$$

where

$$
F^{\mu v}=\partial^{\mu} A^{v}-\partial^{v} A^{\mu} \quad \quad p_{\mu}=\frac{\partial L}{\partial \dot{x}^{\mu}}=M \dot{x}_{\mu}+e A_{\mu}(x)
$$

Manifestly covariant Hamiltonian mechanics

$$
K=\dot{x}^{\mu} p_{\mu}-L=\frac{1}{2 M}\left(p^{\mu}-e A^{\mu}\right)\left(p_{\mu}-e A_{\mu}\right)+V
$$

Classical: $\quad \dot{x}^{\mu}=\frac{\partial K}{\partial p_{\mu}} \quad \dot{p}^{\mu}=-\frac{\partial K}{\partial x_{\mu}} \quad$ Quantum: $\quad i \partial_{\tau} \psi(x, \tau)=K \psi(x, \tau)$

Horwitz-Piron Covariant Mechanics

Application: relativistic quantum two-body problems

Hamiltonian

$$
K=\frac{p_{1 \mu} p_{1}^{\mu}}{2 M_{1}}+\frac{p_{2 \mu} p_{2}^{\mu}}{2 M_{2}}+V\left(x_{1}, x_{2}\right)=\frac{P^{\mu} P_{\mu}}{2 M}+\frac{p^{\mu} p_{\mu}}{2 m}+V(\rho)=\frac{P^{\mu} P_{\mu}}{2 M}+K_{r e l}
$$

Center of mass and relative motion

$$
P^{\mu}=p_{1}^{\mu}+p_{2}^{\mu} \quad p^{\mu}=\frac{M_{2} p_{1}^{\mu}-M_{1} p_{2}^{\mu}}{M} \quad M=M_{1}+M_{2} \quad m=\frac{M_{1} M_{2}}{M}
$$

Generalized central force

$$
V\left(x_{1}, x_{2}\right)=V(\rho) \quad \text { where } \quad \rho=\sqrt{\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{2}-\left(t_{1}-t_{2}\right)^{2}}
$$

Relativistic models with mass as dynamical variable
Bound states and scattering - Horwitz and Arshansky (1989)
Selection rules, radiative transitions, perturbation theory, Zeeman and Stark effects, bound state decay - Horwitz and Land (1993, 1995, 2001) Entanglement and interference in time - Horwitz (2018)

Classical Off-Shell Electrodynamics: Framework

Where does potential $V(x)$ come from?

Extend classical electrodynamics

Invariance under τ-dependent gauge transformations
Requires τ-dependent gauge potentials $A_{\mu}(x) \longrightarrow a_{\mu}(x, \tau)$
Requires fifth τ-dependent gauge potential $e a_{5}(x, \tau)=-V$
τ-dependent field equations
Lorentz force: 4 independent components
E and \mathbf{p} unconstrained
Particles and fields can exchange mass
Total mass of particles + fields conserved
Concatenation of events along worldline
Integration over $\tau \longrightarrow$ Maxwell equations
Extracts equilibrium theory from microscopic dynamics

Classical Off-Shell Electrodynamics: Framework
 5D gauge theory - Horwitz, Saad, and Arshansky (1989), Land (2020)

Classical gauge freedom

$$
S=\int d \tau L \longrightarrow \int d \tau\left[L+\frac{d}{d \tau} \Lambda(x, \tau)\right]=\int d \tau[L+\delta(\underbrace{\left.\dot{x}^{\mu} \partial_{\mu} \Lambda+\partial_{\tau} \Lambda\right)}_{\dot{x}^{\alpha} \partial_{\alpha} \Lambda}]
$$

Generalized interaction: 5 gauge potentials

$$
\begin{gathered}
{ }_{c}^{e} \dot{x}^{\mu} A_{\mu}(x)-V(x) \longrightarrow{ }_{c}^{e} \dot{x}^{\mu} a_{\mu}(x, \tau)+\frac{e}{c} \dot{x}^{5} a_{5}(x, \tau)=\frac{e}{c} \dot{x}^{\alpha} a_{\alpha}(x, \tau) \\
\lambda, \mu, v=0,1,2,3 \quad \text { and } \quad \alpha, \beta, \gamma=0,1,2,3,5 \\
x^{5}=c_{5} \tau \quad \text { for } \quad \dot{x}^{5}=\text { constant }=c_{5} \ll c
\end{gathered}
$$

Conserved 5-current and Maxwell current

$$
\begin{gathered}
j^{\alpha}(x, \tau)=c \dot{x}^{\alpha} \delta^{4}(x-X(\tau)) \quad \partial_{\alpha} j^{\alpha}=\partial_{\mu} j^{\mu}+\partial_{5} j^{5}=0 \\
J^{\mu}(x)=\int d \tau j^{\mu}(x, \tau) \quad \longrightarrow \quad \partial_{\mu} J^{\mu}=0
\end{gathered}
$$

Classical Off-Shell Electrodynamics: Framework

Lorentz force (Land 1991)
Lagrangian

$$
L=\frac{1}{2} M \dot{x}^{\mu} \dot{x}_{\mu}+\frac{e}{c} \dot{x}^{\alpha} a_{\alpha}(x, \tau) \quad \text { break 5D symmetry: } \dot{x}^{5} \text { not dynamical }
$$

Equations of motion

$$
\begin{aligned}
M \ddot{x}_{\mu} & =\frac{e}{c} \dot{x}^{\beta} f_{\mu \beta}=\frac{e}{c}\left(\dot{x}^{\nu} f_{\mu v}-c_{5} f_{5 \mu}\right) \\
\frac{d}{d \tau}\left(-\frac{1}{2} M \dot{x}^{\mu} \dot{x}_{\mu}\right) & =c_{5}{ }_{c}^{e} \dot{x}^{\mu} f_{5 \mu}
\end{aligned}
$$

5D field strength

$$
\begin{aligned}
& f_{\alpha \beta}=\partial_{\alpha} a_{\beta}-\partial_{\beta} a_{\alpha} \quad \alpha, \beta=0,1,2,3,5 \\
& f_{\mu v}(x, \tau) \longrightarrow F_{\mu v}(x) \text { at equilibrium (} \tau \text {-independence) } \\
& \varepsilon^{\mu}(x, \tau)=f^{5 \mu}(x, \tau)=\partial^{5} a^{\mu}-\partial^{\mu} a^{5} \quad \text { induces mass exchange }
\end{aligned}
$$

Classical Off-Shell Electrodynamics: Framework

Simple case: off-shell trajectory
In co-moving frame of one particle
For $\tau<0$

$$
\begin{array}{llll}
x(\tau)=(c \tau, \mathbf{0}) & \longrightarrow & \dot{x}(\tau)=(c, \mathbf{0}) & \longrightarrow \quad-M \dot{x}^{2}=M c^{2} \\
a_{\alpha}(x, \tau)=0 & \longrightarrow & f_{\alpha \beta}=0 \quad \longrightarrow \quad M \ddot{x}=0
\end{array}
$$

For $\tau>0$

$$
\begin{aligned}
& a^{\mu}(x, \tau)=0 \quad \longrightarrow \quad f^{\mu \nu}=0 \\
& a_{5}=-\varepsilon x_{0} \quad \longrightarrow \quad f_{5 k}=0 \quad f_{50}=-\partial^{0} a_{5}=\varepsilon \quad(\varepsilon=\text { constant })
\end{aligned}
$$

Acceleration in x^{0} coordinate \Rightarrow mass acceleration

$$
M \ddot{\mathbf{x}}_{\mu}=0 \quad M \ddot{x}^{0}=e \frac{c_{5}}{c} \varepsilon \quad \frac{d}{d \tau}\left(-\frac{1}{2} M \dot{x}^{\mu} \dot{x}_{\mu}\right)=e \frac{c_{5}}{c} \dot{x}^{0} \varepsilon
$$

Classical Off-Shell Electrodynamics: Framework

Electromagnetic Action (Horwitz, Saad, Arshansky 1989, Land 2001)

Expand interaction term

$$
\dot{X}^{\alpha} a_{\alpha} \longrightarrow \int d^{4} x \dot{X}^{\alpha}(\tau) \delta^{4}(x-X(\tau)) a_{\alpha}(x, \tau)=\frac{1}{c} \int d^{4} x j^{\alpha}(x, \tau) a_{\alpha}(x, \tau)
$$

Action

$$
S_{\mathrm{em}}=\int d^{4} x d \tau\left\{\frac{e}{c^{2}} j^{\alpha}(x, \tau) a_{\alpha}(x, \tau)-\int \frac{d s}{\lambda} \frac{1}{4 c}\left[f^{\alpha \beta}(x, \tau) \Phi(\tau-s) f_{\alpha \beta}(x, s)\right]\right\}
$$

Interaction kernel (non-local in time τ)

$$
\Phi(\tau)=\delta(\tau)-(\xi \lambda)^{2} \delta^{\prime \prime}(\tau) \quad \text { removes singularity in Coulomb law }
$$

$\lambda=$ constant with dimensions of time - a correlation time

$$
\xi=\frac{1}{2}\left[1+\left(\frac{c_{5}}{c}\right)^{2}\right]
$$

Classical Off-Shell Electrodynamics: Framework
 5D pseudo-metric

Terms $j^{\alpha} a_{\alpha}$ and $f^{\alpha \beta} f_{\alpha \beta}$ suggest 5D symmetry
Must break to $\mathrm{O}(3,1)$ in presence of matter $\longrightarrow \mathrm{O}(4,1)$ or $\mathrm{O}(3,2)$
Raising and lowering $5^{\text {th }}$ index

$$
g_{\alpha \beta} \underset{\text { flat }}{ } \eta_{\alpha \beta}=\operatorname{diag}(-1,1,1,1, \sigma) \quad \eta_{55}=\sigma= \pm 1
$$

$\delta^{\prime \prime}(\tau)$ term in action breaks higher symmetry

$$
\int d \tau d s f^{\alpha \beta}(x, \tau) \delta^{\prime \prime}(\tau-s) f_{\alpha \beta}(x, s)=-\int d \tau\left[\partial_{\tau} f^{\alpha \beta}(x, \tau)\right] \partial_{\tau} f_{\alpha \beta}(x, \tau)
$$

Expanding

$$
f^{\alpha \beta} f_{\alpha \beta}=f^{\mu \nu} f_{\mu \nu}+2 \eta^{55} f_{5}{ }^{\mu} f_{5 \mu}
$$

Interpret $\sigma=\eta^{55}$ as relative sign of vector-vector kinetic term

Classical Off-Shell Electrodynamics: Framework

 pre-Maxwell field equationsInverse interaction kernel

$$
\begin{aligned}
& \varphi(\tau)=\lambda \Phi^{-1}(\tau)=\lambda \int \frac{d \kappa}{2 \pi} \frac{e^{-i \kappa \tau}}{1+(\xi \lambda \kappa)^{2}}=\frac{1}{2 \xi} e^{-|\tau| / \xi \lambda} \\
& \int \frac{d s}{\lambda} \varphi(\tau-s) \Phi(s)=\delta(\tau) \quad \int \frac{d \tau}{\lambda} \varphi(\tau)=1
\end{aligned}
$$

Vary action with respect to $a_{\alpha}(x, \tau)$

$$
\begin{gathered}
\partial_{\beta} f^{\alpha \beta}(x, \tau)=\frac{e}{c} \int d s \varphi(\tau-s) j^{\alpha}(x, s)=\frac{e}{c} j_{\varphi}^{\alpha}(x, \tau) \\
\partial_{\alpha} f_{\beta \gamma}+\partial_{\gamma} f_{\alpha \beta}+\partial_{\beta} f_{\gamma \alpha}=0 \quad \text { (identically) } \\
\varphi=\frac{1}{2 \tilde{\xi}} e^{-|\tau| / \xi \lambda} \text { smooths sharp current } j^{\alpha}(x, \tau)=c \dot{X}^{\alpha} \delta^{4}(x-X(\tau))
\end{gathered}
$$

Classical Off-Shell Electrodynamics: Framework

Comparing pre-Maxwell and Maxwell equations
Maxwell equations in $3+1$ (space + time) components

$$
\begin{array}{ll}
\nabla \times \mathbf{B}-\frac{1}{c} \frac{\partial}{\partial t} \mathbf{E}=\frac{e}{c} \mathbf{J} & \nabla \cdot \mathbf{E}=\frac{e}{c} J^{0} \\
\nabla \cdot \mathbf{B}=0 & \nabla \times \mathbf{E}+\frac{1}{c} \frac{\partial}{\partial t} \mathbf{B}=0
\end{array}
$$

pre-Maxwell in $4+1$ (spacetime $+\tau$) components

$$
\begin{array}{ll}
\partial_{\nu} f^{\mu \nu}-\frac{1}{c_{5}} \frac{\partial}{\partial \tau} f^{5 \mu}=\frac{e}{c} j_{\varphi}^{\mu} & \partial_{\mu} f^{5 \mu}=\frac{e}{c} j_{\varphi}^{5} \\
\partial_{\mu} f_{v \rho}+\partial_{\nu} f_{\rho \mu}+\partial_{\rho} f_{\mu v}=0 & \partial_{\nu} f_{5 \mu}-\partial_{\mu} f_{5 v}+\frac{1}{c_{5}} \frac{\partial}{\partial \tau} f_{\mu v}=0
\end{array}
$$

Field decomposition

$$
\begin{aligned}
& f_{5 \mu} \sim \text { electric field sourced by } j^{5} \text { in Gauss law } \\
& f^{\mu \nu} \sim \text { magnetic field induced by "curl" and } \tau \text { variation of } f_{5 \mu}
\end{aligned}
$$

Classical Off-Shell Electrodynamics: Framework

Mass-Energy-Momentum Tensor
Electromagnetic action

$$
\begin{aligned}
& S_{\mathrm{em}}=\int d^{4} x d \tau\left\{\frac{e}{c^{2}} j^{\alpha}(x, \tau) a_{\alpha}(x, \tau)-\frac{1}{4 c}\left[f_{\Phi}^{\alpha \beta}(x, \tau) f_{\alpha \beta}(x, \tau)\right]\right\} \\
& f_{\Phi}^{\alpha \beta}(x, \tau)=\int \frac{d s}{\lambda} \Phi(\tau-s) f^{\alpha \beta}(x, s)
\end{aligned}
$$

Mass-energy-momentum tensor

$$
T_{\Phi}^{\alpha \beta}=\frac{1}{c}\left(f_{\Phi}^{\alpha \gamma} f_{\gamma}^{\beta}-\frac{1}{4} g^{\alpha \beta} f_{\Phi}^{\delta \gamma} f_{\delta \gamma}\right)
$$

Translation invariance \longrightarrow Noether symmetry

$$
\partial_{\alpha} T_{\Phi}^{\alpha \beta}=-\frac{e}{c^{2}} f^{\beta \alpha} j_{\alpha}
$$

Classical Off-Shell Electrodynamics: Framework

 Conservation of total mass - Horwitz and Land (1991)For particle current

$$
\partial_{\alpha} T_{\Phi}^{\alpha \beta}=-\frac{e}{c^{2}} f^{\beta \alpha} j_{\alpha}=-\frac{e}{c} f^{\beta \alpha} \dot{X}_{\alpha} \delta^{4}(x-X(\tau))
$$

Spacetime integral
LHS $\quad \int d^{4} x \partial_{\alpha} T^{\alpha \beta}=\int d^{4} x \partial_{\mu} T^{\mu \beta}+\int d^{4} x \partial_{5} T^{5 \beta}=\frac{1}{c_{5}} \frac{d}{d \tau} \int d^{4} x T^{5 \beta}$
RHS $\quad-\frac{e}{c} \int d^{4} x f^{\beta \alpha} \dot{X}_{\alpha} \delta^{4}(x-X(\tau))=-\frac{e}{c} f^{\beta \alpha}(X, \tau) \dot{X}_{\alpha}$
Lorentz force

$$
\frac{e}{c} f^{\mu \alpha} \dot{X}_{\alpha}=\frac{d}{d \tau}\left(M \dot{X}^{\mu}\right) \quad \frac{e}{c} f^{5 \mu} \dot{X}_{\mu}=\frac{1}{c_{5}} \frac{d}{d \tau}\left(-\sigma \frac{1}{2} M \dot{x}^{\mu} \dot{x}_{\mu}\right)
$$

Total mass-energy-momentum of particle + field conserved

$$
\frac{d}{d \tau}\left(\int d^{4} x T^{5 \mu}+M \dot{x}^{\mu}\right)=0 \quad \frac{d}{d \tau}\left(\int d^{4} x T^{55}-\sigma \frac{1}{2} M \dot{x}^{2}\right)=0
$$

Classical Off-Shell Electrodynamics: Framework

Recovering Maxwell theory: concatenation
Concatenation - sum contributions to $G(x)$ from events $g_{\alpha}(x, \tau)$
Integrate function $g_{\alpha}(x, \tau)$ along worldline: $G_{\alpha}(x)=\int_{-\infty}^{\infty} \frac{d \tau}{\lambda} g_{\alpha}(x, \tau)$
Boundary condition $g_{5}(x, \pm \infty)=0$
Divergenceless Maxwell current

$$
\partial_{\alpha} j_{\varphi}^{\alpha}=\partial_{\mu} j_{\varphi}^{\mu}+\partial_{5} j_{\varphi}^{5}=0 \quad \longrightarrow \quad \partial_{\mu} J^{\mu}(x)=\partial_{\mu} \int_{-\infty}^{\infty} \frac{d \tau}{\lambda} j_{\varphi}^{\mu}(x, \tau)=0
$$

Field equations

$$
\left.\begin{array}{c}
\partial_{\beta} f^{\alpha \beta}(x, \tau)=\frac{e}{c} j_{\varphi}^{\alpha}(x, \tau) \\
\partial_{[\alpha} f_{\beta \gamma]}=0
\end{array}\right\} \xrightarrow[\int \frac{d \tau}{\lambda}]{ }\left\{\begin{array}{c}
\partial_{v} F^{\mu v}(x)=\frac{e}{c} J^{\mu}(x) \\
\partial_{[\mu} F_{v \rho]}=0
\end{array}\right.
$$

Concatenation extracts on-shell Maxwell theory as equilibrium limit

Classical Off-Shell Electrodynamics: Field Solutions

 Coulomb and Liénard-Wiechert potentialspre-Maxwell equations lead to 5D wave equation
Green's function contains two parts
$G_{\text {Maxwell }}$ support on 4D lightcone at instantaneous τ separation
$G_{\text {Correlation }}$ support on timelike/spacelike separations ($\sigma= \pm 1$)
$G_{\text {Correlation }}$ falls off much faster than $G_{\text {Maxwell }}$

Coulomb problem

'Static' source moving uniformly on t-axis \longrightarrow Yukawa potential
Mass spectrum of photon \sim range of possible mass exchange
Provides limit on λ
Liénard-Wiechert potential $=\varphi\left(\tau-\tau_{R}\right) \times$ Maxwell result
Lorentz force \longrightarrow Maxwell result as $c_{5} \rightarrow 0$

Classical Off-Shell Electrodynamics: Field Solutions

Wave equation and Green's function (Land and Horwitz 1991
From pre-Maxwell equations in Lorenz gauge

$$
\partial_{\beta} \partial^{\beta} a^{\alpha}=\left(\partial_{\mu} \partial^{\mu}+\partial_{\tau} \partial^{\tau}\right) a^{\alpha}=\left(\partial_{\mu} \partial^{\mu}+\frac{g_{55}}{c_{5}^{2}} \partial_{\tau}^{2}\right) a^{\alpha}=-\frac{e}{c} j_{\varphi}^{\alpha}(x, \tau)
$$

Green's function

$$
\begin{aligned}
G_{P}(x, \tau) & =-\frac{1}{2 \pi} \delta\left(x^{2}\right) \delta(\tau)-\frac{c_{5}}{2 \pi^{2}} \frac{\partial}{\partial x^{2}} \theta\left(-g_{55} g_{\alpha \beta} x^{\alpha} x^{\beta}\right) \frac{1}{\sqrt{-g_{55} g_{\alpha \beta} x^{\alpha} x^{\beta}}} \\
& =G_{\text {Maxwell }}+G_{\text {Correlation }}
\end{aligned}
$$

$G_{\text {Correlation }}$
Smaller than $G_{\text {Maxwell }}$ by c_{5} / c and drops off as $1 /|\mathbf{x}|^{2}$
May be neglected at at low energy
Spacelike support for $\sigma=-1$
Timelike support for $\sigma=+1$

$$
\int d \tau G_{P}=-\frac{1}{2 \pi} \delta\left(x^{2}\right)
$$

Classical Off-Shell Electrodynamics: Field Solutions

'Static' Coulomb potential (Land 1995)

"Static" source event

$$
X(\tau)=(c \tau, 0,0,0) \text { evolves along } x^{0} \text {-axis }
$$

Induces current

$$
j_{\varphi}^{0}(x, \tau)=c^{2} \varphi(t-\tau) \delta^{3}(\mathbf{x}) \quad \mathbf{j}_{\varphi}(x, \tau)=0 \quad j_{\varphi}^{5}(x, \tau)=\frac{c_{5}}{c} j_{\varphi}^{0}(x, \tau)
$$

Potential using $G_{\text {Maxwell }}=-\frac{1}{2 \pi} \delta\left(x^{2}\right) \delta(\tau)$

$$
a^{0}(x, \tau)=\frac{e}{4 \pi|\mathbf{x}|} \varphi\left(\tau-\left(t-\frac{|\mathbf{x}|}{c}\right)\right) \quad \mathbf{a}=0 \quad a^{5}(x, \tau)=\frac{c_{5}}{c} a^{0}(x, \tau)
$$

Test event
Observer on parallel trajectory $x(\tau)=(c \tau, \mathbf{x})$
$\varphi(\tau) \longrightarrow$ Yukawa-type potential $\quad a^{0}(x, \tau)=\frac{e}{4 \pi|\mathbf{x}|} \frac{1}{2 \tilde{\xi}} e^{-|\mathbf{x}| / \xi \lambda c}$

Classical Off-Shell Electrodynamics: Field Solutions

Liénard-Wiechert potential (Land 2016)

Arbitrary source event $X^{\mu}(\tau) \longrightarrow$ current

$$
j_{\varphi}^{\alpha}(x, \tau)=-\frac{e}{c} \int d s \varphi(\tau-s) \dot{X}^{\alpha}(s) \delta^{4}(x-X(s))
$$

Potential using $G_{\text {Maxwell }}=-\frac{1}{2 \pi} \delta\left(x^{2}\right) \delta(\tau)$

$$
\begin{aligned}
a^{\alpha}(x, \tau) & =\frac{e}{2 \pi} \int d s \varphi(\tau-s) \dot{X}^{\alpha}(s) \delta\left((x-X(s))^{2}\right) \theta^{r e t} \\
& =\frac{e}{4 \pi} \varphi\left(\tau-\tau_{R}\right) \frac{u^{\alpha}}{\left|u \cdot z\left(\tau_{R}\right)\right|}
\end{aligned}
$$

where $u^{\mu}=\dot{X}^{\mu}(\tau) \quad z^{\mu}=x^{\mu}-X^{\mu}(\tau) \quad z^{2}\left(\tau_{R}\right)=0$
τ-dependence in $\varphi\left(\tau-\tau_{R}\right)$

$$
a^{\mu}(x, \tau)=\varphi\left(\tau-\tau_{R}\right) A_{\text {Liénard-Wiechert }}^{\mu}(x)
$$

Classical Off-Shell Electrodynamics: Field Solutions

Liénard-Wiechert fields (Land 2016)

From Liénard-Wiechert potential

$$
\begin{aligned}
M \ddot{x}^{\mu} & =\frac{e}{c}\left[f^{\mu}{ }_{v}(x, \tau) \dot{x}^{v}+f^{5 \mu}(x, \tau) \dot{x}^{5}\right] \\
& =\frac{e}{c} \frac{e}{4 \pi} \varphi\left(\tau-\tau_{R}\right)\left[\mathcal{F}_{v}^{\mu}(x, \tau) \dot{x}^{v}+c_{5}^{2} \mathcal{F}^{5 \mu}(x, \tau)\right]
\end{aligned}
$$

where $\mathcal{F}^{\mu \nu}$ and $\mathcal{F}^{5 \mu}$ do not contain c_{5}

$$
\begin{aligned}
& \mathcal{F}^{\mu v}=\frac{\left(z^{\mu} u^{v}-z^{v} u^{\mu}\right) u^{2}}{(u \cdot z)^{3}}+\left[\frac{\left(z^{\mu} \dot{u}^{v}-z^{v} \dot{u}^{\mu}\right)(u \cdot z)-\left(z^{\mu} u^{v}-z^{v} u^{\mu}\right)(\dot{u} \cdot z)}{(u \cdot z)^{3}}+\frac{\epsilon\left(\tau-\tau_{R}\right)}{\lambda} \frac{z^{\mu} u^{v}-z^{v} u^{\mu}}{(u \cdot z)^{2}}\right] \\
& \mathcal{F}^{5 \mu}=\frac{z^{\mu} u^{2}-u^{\mu}(u \cdot z)}{(u \cdot z)^{3}}-\frac{(\dot{u} \cdot z) z^{\mu}}{(u \cdot z)^{3}}+\frac{\epsilon\left(\tau-\tau_{R}\right)}{\lambda} \frac{z^{\mu}-u^{\mu}(u \cdot z)}{(u \cdot z)^{2}}
\end{aligned}
$$

Using $\varphi(\tau)=\frac{1}{2 \xi} e^{-|\tau| / \xi \lambda}$ and $\xi=\frac{1}{2}\left[1+\left(\frac{C_{5}}{c}\right)^{2}\right]$

$$
M \ddot{x}^{\mu}=\frac{e^{2}}{4 \pi c} e^{-\left|\tau-\tau_{R}\right| / \xi \lambda} \frac{\mathcal{F}_{v}^{\mu} \dot{x}^{v}+c_{5}^{2} \mathcal{F}^{5 \mu}}{1+\left(c_{5} / c\right)^{2}}
$$

Classical Off-Shell Electrodynamics: Field Solutions

Recovering Maxwell theory: limit $c_{5} \rightarrow 0$
Lorentz force from Liénard-Wiechert potential

$$
M \ddot{x}^{\mu}=\frac{e^{2}}{4 \pi c} e^{-\left|\tau-\tau_{R}\right| / \xi \lambda} \frac{\mathcal{F}_{v}^{\mu} \dot{x}^{\nu}+c_{5}^{2} \mathcal{F}^{5 \mu}}{1+\left(c_{5} / c\right)^{2}} \xrightarrow[c_{5} \rightarrow 0]{ } \frac{e^{2}}{4 \pi c} e^{-2\left|\tau-\tau_{R}\right| / \lambda} \mathcal{F}_{\nu}^{\mu} \dot{x}^{\nu}
$$

Homogeneous pre-Maxwell equations

$$
\begin{aligned}
& f^{\alpha \beta}=\partial^{\alpha} a^{\beta}-\partial^{\beta} a^{\alpha} \Rightarrow \partial_{\mu} f_{v \rho}+\partial_{v} f_{\rho \mu}+\partial_{\rho} f_{\mu \nu}=0 \text { satisfied identically } \\
& \partial_{\nu} f_{5 \mu}-\partial_{\mu} f_{5 v}+\frac{1}{c_{5}} \frac{\partial}{\partial \tau} f_{\mu v}=0 \Rightarrow \partial_{\tau} f_{\mu v}=0 \Rightarrow \partial_{\tau} \varphi \longrightarrow 0 \Rightarrow \lambda \rightarrow \infty
\end{aligned}
$$

Inhomogeneous pre-Maxwell equations decouple

$$
\begin{aligned}
& \lambda \rightarrow \infty \Rightarrow \varphi=1 \Rightarrow \frac{\partial}{\partial \tau} f^{5 \mu}=0, j_{\varphi}^{\mu}(x, \tau)=J^{\mu}(x) \Rightarrow \partial_{\nu} f^{\mu v}=\frac{e}{c} J^{\mu} \\
& \mathcal{F}^{\mu v}=\frac{\left(z^{\mu} u^{v}-z^{v} u^{\mu}\right) u^{2}}{(u \cdot z)^{3}}+\left[\frac{\left(z^{\mu} \dot{u}^{v}-z^{v} \dot{u}^{\mu}\right)(u \cdot z)-\left(z^{\mu} u^{v}-z^{v} u^{\mu}\right)(\dot{u} \cdot z)}{(u \cdot z)^{3}}\right]
\end{aligned}
$$

Classical Off-Shell Electrodynamics: Field Solutions

Experimental bounds

Photon mass in Coulomb potential
Yukawa-type potential $a^{0}(x, \tau)=\frac{e}{4 \pi|\mathbf{x}|} \frac{1}{2 \tilde{\xi}} e^{-|\mathbf{x}| / \xi \lambda c}$
Photon mass spectrum $m_{\gamma} c^{2} \sim \hbar / \xi \lambda$
Experimental error for photon mass $\sim 10^{-18} \mathrm{eV} \longrightarrow \lambda>10^{4}$ seconds
Field strengths from Yukawa potential

$$
f^{k 0}(x, \tau)=a^{0} \quad f^{k 5}(x, \tau)=\frac{c_{5}}{c} a^{0} \quad f^{i j}(x, \tau)=f^{50}(x, \tau)=0
$$

Lorentz force for $e^{-}+e^{+} \longrightarrow e^{-}+e^{+}$and $e^{-}+e^{-} \longrightarrow e^{-}+e^{-}$

$$
\begin{gathered}
M \ddot{\mathbf{x}}=\mp e^{2} \frac{1 \pm \eta_{55}\left(c_{5} / c\right)^{2}}{1+\left(c_{5} / c\right)^{2}} \nabla\left(\frac{e^{-|\mathbf{x}| / \xi \lambda c}}{4 \pi|\mathbf{x}|}\right) \\
\frac{\sigma\left(e^{-}+e^{+} \longrightarrow e^{-}+e^{+}\right)}{\sigma\left(e^{-}+e^{-} \longrightarrow e^{-}+e^{-}\right)}=1 \pm \text { experimental error } \simeq\left[\frac{1 \mp \eta_{55}\left(\frac{c_{5}}{c}\right)^{2}}{1+\left(\frac{c_{5}}{c}\right)^{2}}\right]^{2}
\end{gathered}
$$

Mass Shifts and Mass Restoration

Toy model for mass change from interaction
Particle experiences stochastic perturbative interaction
Small periodic amplitude at high frequency added to position
Large velocity perturbations
Possible macroscopic mass perturbation
Self-interaction \longrightarrow mass restoration
Particle x^{0} varies in co-moving frame \longrightarrow mass acceleration
For $\sigma=+1, G_{\text {Correlation }}$ has timelike support
Particle interacts in future with its own field
Interaction damps mass acceleration to zero
Self-interaction vanishes when mass remains on-shell

Mass Shift by Stochastic Perturbation

On-shell event enters dense region of charged particles
Uniformly propagating event

$$
x(\tau)=u \tau=\left(u^{0}, \mathbf{u}\right) \quad u^{2}=-c^{2}
$$

Dense region of charged particles
Small stochastic perturbation $X(\tau) \longrightarrow x(\tau)=u \tau+X(\tau)$
Typical distance d between force centers \longrightarrow roughly periodic perturbation
Characteristic period $=\frac{d}{|\mathbf{u}|}=\frac{\text { very short distance }}{\text { moderate velocity }}=$ very short time
fundamental frequency $=\omega_{0}=2 \pi \frac{|\mathbf{u}|}{d}=$ very high frequency
amplitude $=\left|X^{\mu}(\tau)\right| \sim \alpha d$
macroscopic factor $=\alpha<1$

Mass Shift by Stochastic Perturbation

Perturbed motion

Expand perturbation in Fourier series

$$
X(\tau)=\operatorname{Re} \sum_{n} a_{n} e^{i n \omega_{0} \tau}
$$

Write four-vector coefficients as

$$
a_{n}=\alpha d s_{n}=\alpha d\left(s_{n}^{0}, \mathbf{s}_{n}\right)=\alpha d\left(c s_{n}^{t}, \mathbf{s}_{n}\right)
$$

where s_{n} represent normalized Fourier series $\left(s_{0}^{\mu} \sim 1\right)$
Perturbed motion on microscopic scale d

$$
X(\tau)=\alpha d \operatorname{Re} \sum_{n} s_{n}^{\mu} e^{i n \omega_{0} \tau}
$$

Perturbed velocity on macroscopic scale $\alpha|\mathbf{u}|$

$$
\dot{x}^{\mu}(\tau)=u^{\mu}+\alpha|\mathbf{u}| \operatorname{Re} \sum_{n} 2 \pi n s_{n}^{\mu} i e^{i n \omega_{0} \tau}
$$

Mass Shift by Stochastic Perturbation

Perturbed mass

Unperturbed on-shell mass

$$
m=-\frac{M \dot{x}^{2}(\tau)}{c^{2}}=M
$$

Perturbed mass, neglecting α^{2}

$$
\begin{aligned}
m & =-\frac{M \dot{x}^{2}(\tau)}{c^{2}}=-\frac{M}{c^{2}}\left(u+\alpha|\mathbf{u}| \operatorname{Re} \sum_{n} 2 \pi n s_{n} i e^{i n \omega_{0} \tau}\right)^{2} \\
& \simeq M\left(1+4 \pi \alpha|\mathbf{u}| \operatorname{Re} \sum_{n} n s_{n}^{t} i e^{i n \omega_{0} \tau}\right) \\
m & \longrightarrow m\left(1+\frac{\Delta m}{m}\right) \quad \frac{\Delta m}{m}=4 \pi \alpha|\mathbf{u}| \operatorname{Re} \sum_{n} n s_{n}^{t} i e^{i n \omega_{0} \tau}
\end{aligned}
$$

Larger mass shifts if $\alpha>1 \Rightarrow \alpha^{2}$ becomes significant

Self-Interaction for Mass Stability

Framework

Arbitrarily moving event $X^{\mu}(\tau)$
In co-moving frame $\quad X(\tau)=(c t(\tau), \mathbf{0}) \quad \dot{X}(\tau)=(c \dot{t}(\tau), \mathbf{0})$
Produces current $j_{\varphi}^{\alpha}(x, \tau)$ and field $f^{\alpha \beta}(x, \tau)$
At time $\tau^{*}>\tau$
$G_{\text {Maxwell }}=0$ on timelike separation $X\left(\tau^{*}\right)-X(\tau)=c\left(t\left(\tau^{*}\right)-t(\tau), \mathbf{0}\right)$
$G_{\text {Correlation }}$ has timelike support for $\sigma=+1$
Particle interacts with its own induced potential

$$
\begin{aligned}
& a^{\alpha}\left(X\left(\tau^{*}\right), \tau^{*}\right)=\frac{e c_{5}}{2 \pi^{2} c^{3}} \int d s \dot{X}^{\alpha}(s)\left(\frac{1}{2} \frac{\theta(g(s))}{(g(s))^{3 / 2}}-\frac{\delta(g(s))}{(g(s))^{1 / 2}}\right) \theta\left(\tau^{*}-s\right) \\
& c^{2} g(s)=-\left((X(\tau)-X(s))^{2}+c_{5}^{2}(\tau-s)^{2}\right)=c^{2}\left(\left(t\left(\tau^{*}\right)-t(s)\right)^{2}-\frac{c_{5}^{2}}{c^{2}}\left(\tau^{*}-s\right)^{2}\right)
\end{aligned}
$$

Self-Interaction for Mass Stability

On-shell trajectory

Particle evolves uniformly in co-moving frame to $t\left(\tau^{*}\right)=\tau^{*}$

$$
g(s)=\left(1-c_{5}^{2} / c^{2}\right)\left(\tau^{*}-s\right)^{2}
$$

Potential

$$
\begin{aligned}
a\left(X\left(\tau^{*}\right), \tau^{*}\right)= & \frac{e c_{5}}{2 \pi^{2} c^{3}}\left(c, \mathbf{0}, c_{5}\right) \int_{-\infty}^{\tau^{*}}\left(\begin{array}{r}
\frac{\theta\left(\left(1-\frac{c_{5}^{2}}{c^{2}}\right)\left(\tau^{*}-s\right)^{2}\right)}{2\left(\left(1-\frac{c_{5}^{2}}{c^{2}}\right)\left(\tau^{*}-s\right)^{2}\right)^{3 / 2}} \\
\\
\left.-\frac{\delta\left(\left(1-\frac{c_{5}^{2}}{c^{2}}\right)\left(\tau^{*}-s\right)^{2}\right)}{\left(\left(1-\frac{c_{5}^{2}}{c^{2}}\right)\left(\tau^{*}-s\right)^{2}\right)^{1 / 2}}\right) \\
=
\end{array}\right. \\
= & \frac{e c_{5}}{2 \pi^{2} c^{3}}\left(c, \mathbf{0}, c_{5}\right) \lim _{s \rightarrow \tau^{*}}\left(\frac{1}{2\left(\tau^{*}-s\right)^{2}}-\frac{\frac{1}{2}}{\left(\tau^{*}-s\right)^{2}}\right)
\end{aligned}
$$

No self-interaction for $\dot{x}^{2}=$ constant

Self-Interaction for Mass Stability

Arbitrary trajectory in co-moving frame

Trajectory

$$
\dot{X}(\tau)=(c \dot{t}(\tau), \mathbf{0}) \longrightarrow a^{i}=\partial_{i} a^{0}=\partial_{i} a^{5}=f^{\mu v}=f^{5 i}=0
$$

Field strength

$$
\begin{aligned}
& f^{50}=\frac{1}{c_{5}} \partial_{\tau^{*}} a^{0}+\frac{1}{c} \partial_{t} a^{5}=f_{\theta}^{50}+f_{\delta}^{50}+f_{\delta^{\prime}}^{50} \\
& f_{\theta}^{50}=\frac{3 e}{4 \pi^{2}} \frac{c_{5}^{2}}{c^{4}} \int d s \frac{\theta(g(s))}{(g(s))^{5 / 2}} \theta^{\text {ret }} \Delta\left(\tau^{*}, s\right) \\
& f_{\delta}^{50}=-\frac{e}{\pi^{2}} \frac{c_{5}^{2}}{c^{4}} \int d s \frac{\delta(g(s))}{(g(s))^{3 / 2}} \theta^{\text {ret }} \Delta\left(\tau^{*}, s\right) \\
& f_{\delta^{\prime}}^{50}=-\frac{e}{\pi^{2}} \frac{c_{5}^{2}}{c^{4}} \int d s \frac{\delta^{\prime}(g(s))}{(g(s))^{1 / 2}} \theta^{\text {ret }} \Delta\left(\tau^{*}, s\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \Delta\left(\tau^{*}, s\right)=\dot{t}(s)\left(\tau^{*}-s\right)-\left(t\left(\tau^{*}\right)-t(s)\right) \\
& g(s)=\left(t\left(\tau^{*}\right)-t(s)\right)^{2}-\left(c_{5}^{2} / c^{2}\right)\left(\tau^{*}-s\right)^{2}
\end{aligned}
$$

Self-Interaction for Mass Stability

Function $\Delta\left(\tau^{*}, s\right)$
At constant velocity

$$
x^{0}(\tau)=u^{0} \tau \quad \Rightarrow \quad \Delta\left(\tau^{*}, s\right)=\frac{u^{0}}{c}\left(\tau^{*}-s\right)-\left(\frac{u^{0}}{c} \tau^{*}-\frac{u^{0}}{c} s\right)=0
$$

Expand $t(\tau)$ to order \ddot{t}

$$
\begin{aligned}
t\left(\tau^{*}\right)-t(s) & =t(s)+\dot{t}(s)\left(\tau^{*}-s\right)+\frac{1}{2} \ddot{t}(s)\left(\tau^{*}-s\right)^{2}+o\left(\left(\tau^{*}-s\right)^{3}\right)-t(s) \\
& =\dot{t}(s)\left(\tau^{*}-s\right)+\frac{1}{2} \ddot{t}(s)\left(\tau^{*}-s\right)^{2}+o\left(\left(\tau^{*}-s\right)^{3}\right)
\end{aligned}
$$

From which

$$
\Delta\left(\tau^{*}, s\right)=-\frac{1}{2} \ddot{t}(s)\left(\tau^{*}-s\right)^{2}+o\left(\left(\tau^{*}-s\right)^{3}\right)
$$

$\Delta\left(\tau^{*}, s\right) \neq 0 \Rightarrow x^{0}(\tau)$ accelerates in rest frame \Rightarrow mass shift

Self-Interaction for Mass Stability

Mass jump
Small, sudden jump in mass at $\tau=0$

$$
t(\tau)=\left\{\begin{array}{ll}
\tau & , \quad \tau<0 \\
(1+\beta) \tau, & \tau>0
\end{array} \quad \Rightarrow \quad \dot{t}(\tau)= \begin{cases}1 & \tau<0 \\
1+\beta, & \tau>0\end{cases}\right.
$$

For $\tau^{*}<0$

$$
\theta^{\text {ret }} \Rightarrow s<0 \quad \longrightarrow \quad \dot{t}\left(\tau^{*}\right)=t(s)=1 \quad \longrightarrow \quad \Delta\left(\tau^{*}, s\right)=0
$$

For $\tau^{*}>0$

$$
\begin{array}{ll}
s>0 & \longrightarrow \dot{t}\left(\tau^{*}\right)=t(s)=1+\beta \quad \longrightarrow \Delta\left(\tau^{*}, s\right)=0 \\
s<0 & \longrightarrow \Delta\left(\tau^{*}, s\right)=\dot{t}(s)\left(\tau^{*}-s\right)-\left((1+\beta)\left(\tau^{*}\right)-s\right)=-\beta \tau^{*}
\end{array}
$$

Solve $g\left(s^{*}\right)=0 \longrightarrow s^{*}=\left(1+\frac{\beta}{1-\frac{c_{5}}{c}}\right) \tau^{*}>\tau^{*}$

$$
g(s)>0 \text { on } s<0<\tau^{*} \Rightarrow f_{\delta}^{50}=f_{\delta^{\prime}}^{50}=0
$$

Self-Interaction for Mass Stability

Field strength from mass jump
Support of self-interaction

$$
\theta(g(s))=1 \text { for } s<\tau^{*} \text { and } \Delta\left(\tau^{*}, s\right)=\left\{\begin{array}{cc}
-\beta \tau^{*}, & \text { for } s<0 \\
0, & \text { for } s>0
\end{array}\right.
$$

Field strength

$$
\begin{aligned}
& f^{50}=f_{\theta}^{50}=\left(-\beta \tau^{*}\right) \frac{3 e}{4 \pi^{2}} \frac{c_{5}^{2}}{c^{4}} \int_{-\infty}^{0} d s \frac{1}{[g(s)]^{5 / 2}} \\
&=\left(-\beta \tau^{*}\right) \frac{3 e}{4 \pi^{2}} \frac{c_{5}^{2}}{c^{4}} \int_{-\infty}^{0} d s \frac{1}{\left[\left((1+\beta) \tau^{*}-s\right)^{2}-\frac{c_{5}^{2}}{c^{2}}\left(\tau^{*}-s\right)^{2}\right]^{5 / 2}} \\
&=\frac{e}{4 \pi^{2}} \frac{1}{c_{5}^{2}\left(\beta \tau^{*}\right)^{3}} Q\left(\beta, \frac{c_{5}^{2}}{c^{2}}\right) \\
& Q\left(\beta, \frac{c_{5}^{2}}{c^{2}}\right) \text { positive, dimensionless, finite for } c_{5}<c, Q\left(\beta, \frac{c_{5}^{2}}{c^{2}}\right) \underset{c_{5} \rightarrow 0}{\longrightarrow} 0
\end{aligned}
$$

Self-Interaction for Mass Stability

Factor Q

$$
\begin{aligned}
Q\left(\beta, \frac{c_{5}^{2}}{c^{2}}\right)= & {\left[2\left(1-\frac{c_{5}^{2}}{c^{2}}\right)^{3 / 2}\left(1-\frac{\left(1-\frac{c_{5}^{2}}{c^{2}}\right)^{1 / 2}\left(1+\frac{\beta}{\left(1-\frac{c_{5}^{2}}{c^{2}}\right)}\right)}{\left[1+\frac{2 \beta}{1-\frac{c_{5}^{2}}{c^{2}}}+\frac{\beta^{2}}{1-\frac{c_{5}^{2}}{c^{2}}}\right]^{1 / 2}}\right)\right.} \\
& \left.+\frac{\beta^{2} \frac{c_{5}^{2}}{c^{2}}\left(1+\frac{c_{5}^{2}}{c^{2}} \frac{\beta}{1-\frac{c_{5}^{2}}{c^{2}}}\right)}{\left(1-\frac{c_{5}^{2}}{c^{2}}\right)^{1 / 2}\left[1+\frac{2 \beta}{1-\frac{c_{5}^{2}}{c^{2}}}+\frac{\beta^{2}}{1-\frac{c_{5}^{2}}{c^{2}}}\right]^{3 / 2}}\right]
\end{aligned}
$$

Self-Interaction for Mass Stability

Lorentz force
Lorentz force

$$
f^{\mu \nu}=0 \longrightarrow M \ddot{x}^{\mu}=-e c_{5} f^{5 \mu}
$$

Self-interaction

$$
\begin{aligned}
M \ddot{x}^{0} & =-c_{5} e f^{50}=\left\{\begin{array}{c}
0 \\
-\frac{\lambda e^{2}}{4 \pi^{2}} \frac{1}{c_{5}\left(\beta \tau^{*}\right)^{3}} Q\left(\beta, \frac{c_{5}^{2}}{c^{2}}\right),
\end{array}, \tau^{*}<0\right. \\
M \ddot{x}^{i} & =-c_{5} e f^{5 j} \dot{x}_{i}=0
\end{aligned}
$$

Emergent picture

Self-interaction \longrightarrow force opposing mass exchange
Mass damps back to on-shell value
Force vanishes when $\dot{t}=1$

Off-Shell Quantum Electrodynamics

First order Lagrangian in particle and field
$\psi^{*} i \partial_{\tau} \psi$ kinetic term for particle
No \dot{a}_{5} term \longrightarrow Gauss law and eliminates longitudinal modes
Unconstrained Lagrangian
4 -Momentum + mass states $d^{k} d \kappa$
Natural cut-off
Mass shift undetermined (analogous to scattering angle)
Interaction kernel Φ puts $\frac{1}{1+\lambda^{2} \kappa^{2}}$ into photon propagator
λ restricts mass exchange as in classical Coulomb
Only one photon loop to renormalize
Particles propagate with τ-retarded causality - no matter loops Recovers standard Klein-Gordon if $\Delta m=0$ or $\sqrt{s} \gg M$

Off-Shell Quantum Electrodynamics

Covariant quantum mechanics

Stueckelberg-Schrodinger equation

$$
\left(i \hbar \partial_{\tau}+e \frac{c_{5}}{c} a_{5}\right) \psi(x, \tau)=\frac{1}{2 M}\left(p^{\mu}-\frac{e}{c} a^{\mu}\right)\left(p_{\mu}-\frac{e}{c} a_{\mu}\right) \psi(x, \tau)
$$

Local 5D gauge invariance
Wavefunction $\psi(x, \tau) \rightarrow \exp \left[\frac{i e}{\hbar c} \Lambda(x, \tau)\right] \psi(x, \tau)$
Potential $\quad a_{\alpha}(x, \tau) \rightarrow a_{\alpha}(x, \tau)+\partial_{\alpha} \Lambda(x, \tau)$

Global gauge invariance \longrightarrow conserved current $\quad \partial_{\alpha} j^{\alpha}=0$

$$
j^{\mu}=-\frac{i \hbar}{2 M}\left\{\psi^{*}\left(\partial^{\mu}-\frac{i e}{c} a^{\mu}\right) \psi-\psi\left(\partial^{\mu}+\frac{i e}{c} a^{\mu}\right) \psi^{*}\right\} \quad j^{5}=c_{5}|\psi(x, \tau)|^{2}
$$

Off-Shell Quantum Electrodynamics

5D Quantum Field Theory

Lagrangian

$$
\begin{gathered}
\mathcal{L}=\psi^{*}\left(i \partial_{\tau}+e a_{5}\right) \psi-\frac{1}{2 M} \psi^{*}\left(-i \partial_{\mu}-e a_{\mu}\right)\left(-i \partial^{\mu}-e a^{\mu}\right) \psi-\frac{\lambda}{4} f^{\alpha \beta} f_{\alpha \beta}^{\Phi} \\
f_{\alpha \beta}^{\Phi}(x, \tau)=\int d s \Phi(\tau-s) f_{\alpha \beta}(x, s)
\end{gathered}
$$

Jackiw first order constrained quantization - introduce $\epsilon^{\mu}=f^{5 \mu}$

$$
\begin{gathered}
\mathcal{L}=i \psi^{*} \dot{\psi}-\lambda \dot{a}^{\mu} \epsilon_{\mu}^{\Phi}-\frac{1}{2 M} \psi^{*}\left(-i \partial_{\mu}-e a_{\mu}\right)\left(-i \partial^{\mu}-e a^{\mu}\right) \psi-\frac{\lambda}{4} f^{\mu v} f_{\mu v}^{\Phi} \\
-\frac{\lambda}{2} \epsilon^{\mu} \epsilon_{\mu}^{\Phi}+a_{5}\left(e \psi^{*} \psi-\lambda \partial^{\mu} \epsilon_{\mu}^{\Phi}\right)
\end{gathered}
$$

Path integral

$$
\mathcal{Z}=\frac{1}{\mathcal{N}} \int \mathcal{D} \psi^{*} \mathcal{D} \psi \mathcal{D} a_{\mu} \mathcal{D} a_{5} \mathcal{D} \epsilon_{\mu} e^{i S}
$$

No \dot{a}^{5} term $\Rightarrow \int \mathcal{D} a_{5} \longrightarrow$ Gauss law constraint $\delta\left(\partial^{\mu} \epsilon_{\mu}^{\Phi}-e \psi^{*} \psi\right)$

Off-Shell Quantum Electrodynamics

Feynman rules

Solve constraint + gauge transformation

$$
\mathcal{L}=i \psi^{*} \dot{\psi}-\frac{1}{2 M} \psi^{*}\left(-i \partial_{\mu}-e a_{\perp \mu}\right)\left(-i \partial^{\mu}-e a_{\perp}^{\mu}\right) \psi+\frac{1}{2} a_{\perp \mu}\left(\square+\sigma \partial_{\tau}^{2}\right) a_{\perp}^{\Phi \mu}
$$

Feynman rules
Matter field propagator

$$
\frac{1}{(2 \pi)^{5}} \frac{-i}{\frac{1}{2 M} p^{2}-P-i \epsilon}
$$

Photon propagator

$$
\left[g^{\mu \nu}-\frac{k^{\mu} k^{\nu}}{k^{2}}\right] \frac{-i}{k^{2}+\kappa^{2}-i \epsilon} \frac{1}{1+\lambda^{2} \kappa^{2}}
$$

Three-particle interaction

$$
\frac{e}{2 M} i\left(p+p^{\prime}\right)^{v}(2 \pi)^{5} \delta^{4}\left(p-p^{\prime}-k\right) \delta\left(P-P^{\prime}-\kappa\right)
$$

Four-particle interaction

$$
\frac{-i e^{2}}{M}(2 \pi)^{5} g_{\mu \nu} \delta^{4}\left(k-k^{\prime}-p^{\prime}+p\right) \delta\left(-\kappa+\kappa^{\prime}+P^{\prime}-P\right)
$$

Off-Shell Quantum Electrodynamics

Super-renormalizable

Matter propagator

$$
G(x, \tau)=\int \frac{d^{4} k d \kappa}{(2 \pi)^{5}} \frac{e^{i(k \cdot x-\kappa \tau)}}{\frac{1}{2 M} k^{2}-\kappa-i \epsilon}=i \theta(\tau) \int \frac{d^{4} k}{(2 \pi)^{4}} e^{i\left(k \cdot x-\frac{1}{2 M} k^{2}+i \epsilon\right)}
$$

Retarded causality \longrightarrow no matter loops
Feynman: extract stationary eigenstate of mass operator $-i \hbar \partial_{\tau}$

$$
\int_{-\infty}^{\infty} d \tau e^{-i\left(m^{2} / 2 M\right) \tau} G(x, \tau)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{i k \cdot x}}{\frac{1}{2 M}\left(k^{2}+m^{2}\right)-i \epsilon}=2 M \Delta_{\mathrm{F}}(x)
$$

Photon propagator

Interaction kernel $\Phi(\tau) \longrightarrow$ cut-off $\left(1+\lambda^{2} K^{2}\right)^{-1}$
One divergent photon loop renormalized by shifting mass term $i \psi^{*} \partial_{\tau} \psi$

$$
G_{0}^{(2)}(p)\left((2 \pi)^{5} \frac{i e_{0}^{2}}{M}\right)^{2} \frac{1}{\lambda} \int d^{4} q d Q \frac{-i}{q^{2}+Q^{2}-i \epsilon} \frac{1}{1+\lambda^{2} Q^{2}} G_{0}^{(2)}(p)
$$

Off-Shell Quantum Electrodynamics

Elastic Scattering

Identical particles
$m_{1}^{\text {in }}=m_{2}^{\text {in }}=M$

Mass exchange

$\Delta m=m_{1}^{\text {out }}-m_{2}^{\text {out }}$
Shifts pole from 0°
Not fixed kinematically
Restricted by cutoff
$\Delta m<$ photon mass

$$
\lesssim \frac{\hbar}{c^{2}} \frac{1}{\lambda}
$$

Recover Klein-Gordon cross-section

$$
\Delta m=0 \text { or } \sqrt{s} \gg M
$$

General Relativity with τ-Evolution

How to find $g_{\mu v}(x) \longrightarrow g_{\mu v}(x, \tau)$ - Land 2018-2021

Evolving spacetime

Block universe $\mathcal{M}(\tau)$ evolves to block universe $\mathcal{M}(\tau+d \tau)$
Spacetime metric $g_{\mu v}(x, \tau)$ should evolve to $g_{\mu v}(x, \tau+d \tau)$
Hint from electrodynamics: could evolve as $g_{\alpha \beta}(x, \tau)$
Must break 5D symmetry - no geodesic equation for \dot{x}^{5}
Leads to $\frac{d K}{d \tau} \neq 0 \Rightarrow$ particle mass not conserved
Linearized system \longrightarrow post-Newtonian model with mass acceleration $4+1$ formalism (generalizes ADM formalism)

Find \mathcal{M} by foliation of $\mathcal{M}_{5}=\mathcal{M} \times \tau$-line
Parameterize $g_{\alpha \beta}(x, \tau)$ as $\gamma_{\mu v}(x, \tau)$, lapse, shift
Einstein equations \longrightarrow evolution equations for $\gamma_{\mu \nu}(x, \tau)$ and constraints
Components $g_{5 \beta}(x, \tau)$ must be small
Preserve 5D geometry of Ricci tensor - break matter symmetry to $4+1$

General Relativity with τ-Evolution

Geometry, evolution, and trajectory

Geometry

Neighboring events in spacetime \mathcal{M} (instantaneous displacement)
Interval $\delta x^{2}=\gamma_{\mu \nu} \delta x^{\mu} \delta x^{\nu}=\left(x_{2}-x_{1}\right)^{2}$
Invariance of interval: geometrical statement about \mathcal{M}
Evolution

$$
\mathcal{M}(\tau) \xrightarrow[\text { Hamiltonian } K \text { generates } \tau \text {-evolution }]{ } \mathcal{M}(\tau+d \tau)
$$

Symmetries: dynamical statements about K
Trajectory in δx and $\delta \tau$
Neighboring events $X_{1}=\left(x_{1}, c_{5} \tau_{1}\right) \quad X_{2}=\left(x_{2}, c_{5}\left(\tau_{1}+\delta \tau\right)\right)$
Distance $X_{2}-X_{1}=\left(\delta x+\frac{d x(\tau)}{d \tau} \delta \tau, c_{5} \delta \tau\right)$
Interval $d X^{2}=\left(\delta x+\frac{d x(\tau)}{d \tau} \delta \tau\right)^{2}+\sigma c_{5}^{2} \delta \tau^{2}=g_{\alpha \beta}(x, \tau) \delta x^{\alpha} \delta x^{\beta}$

General Relativity with τ-Evolution

Break 5D symmetry $\longrightarrow 4 \mathrm{D}+1$

Constrain non-dynamical scalar $x^{5} \equiv c_{5} \tau$

$$
L=\frac{1}{2} M g_{\alpha \beta}(x, \tau) \dot{x}^{\alpha} \dot{x}^{\beta}=\frac{1}{2} M g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}+M c_{5} g_{\mu 5} \dot{x}^{\mu}+\frac{1}{2} M c_{5}^{2} g_{55}
$$

Euler-Lagrange \longrightarrow geodesic equations

$$
0=\frac{D \dot{x}^{\alpha}}{D \tau}=\ddot{x}^{\alpha}+\Gamma_{\beta \gamma}^{\alpha} \dot{x}^{\beta} \dot{x}^{\gamma} \longrightarrow\left\{\begin{array}{l}
\ddot{x}^{\mu}+\Gamma_{\lambda \sigma}^{\mu} \dot{x}^{\lambda} \dot{x}^{\sigma}+2 c_{5} \Gamma_{5 \sigma}^{\mu} \dot{x}^{\sigma}+c_{5}^{2} \Gamma_{55}^{\mu}=0 \\
\ddot{x}^{5}=\dot{c}_{5} \equiv 0
\end{array}\right.
$$

Hamiltonian

$$
K=p_{\mu} \dot{x}^{\mu}-L=\frac{1}{2} M g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}-\frac{1}{2} M c_{5}^{2} g_{55}=L-M c_{5}^{2} g_{55}
$$

$\frac{d K}{d \tau}=-\frac{1}{2} M \dot{x}^{\mu} \dot{x}^{v} \frac{\partial g_{\mu v}}{\partial \tau}-\frac{1}{2} M c_{5}^{2} \frac{\partial g_{55}}{\partial \tau} \quad$ particle mass not generally conserved

General Relativity with τ-Evolution

Matter

Non-thermodynamic dust
Number of events per spacetime volume $=n(x, \tau)$
Particle mass density $=\rho(x, \tau)=M n(x, \tau)$
5-component event current $=j^{\alpha}(x, \tau)=\rho(x, \tau) \dot{x}^{\alpha}(\tau)=M n(x, \tau) \dot{x}^{\alpha}(\tau)$
Matter current is vector $j^{\mu}(x, \tau)$ and scalar $j^{5}(x, \tau)$
Continuity equation

$$
\nabla_{\alpha} j^{\alpha}=\nabla_{\mu} j^{\mu}+\frac{1}{c^{5}} \partial_{\tau} \rho c^{5}=\nabla_{\mu} j^{\mu}+\partial_{\tau} \rho
$$

Mass-energy-momentum tensor

$$
\nabla_{\beta} T^{\alpha \beta}=0 \quad T^{\alpha \beta}=\rho \dot{x}^{\alpha} \dot{x}^{\beta} \longrightarrow\left\{\begin{array}{l}
T^{\mu \nu}=\rho \dot{x}^{\mu} \dot{x}^{\nu} \\
T^{5 \beta}=c_{5} j^{\beta}
\end{array}\right.
$$

General Relativity with τ-Evolution

Weak Field Approximation

Einstein equations in 5D (unmodified)

$$
G_{\alpha \beta}=R_{\alpha \beta}-\frac{1}{2} R g_{\alpha \beta}=\frac{8 \pi G}{c^{4}} T_{\alpha \beta}
$$

Small perturbation to flat metric

$$
g_{\alpha \beta}=\eta_{\alpha \beta}+h_{\alpha \beta} \longrightarrow \partial_{\gamma} g_{\alpha \beta}=\partial_{\gamma} h_{\alpha \beta} \quad\left(h_{\alpha \beta}\right)^{2} \approx 0 \quad h \simeq \eta^{\alpha \beta} h_{\alpha \beta}
$$

Define $\bar{h}_{\alpha \beta}=h_{\alpha \beta}-\frac{1}{2} \eta_{\alpha \beta} h$ and impose gauge condition $\partial_{\lambda} \bar{h}^{\alpha \lambda}=0$

$$
\text { Einstein equations: } \frac{16 \pi G}{c^{4}} T_{\alpha \beta}=-\partial^{\gamma} \partial_{\gamma} \bar{h}_{\alpha \beta}=-\left(\partial^{\mu} \partial_{\mu}+\frac{\eta_{55}}{c_{5}^{2}} \partial_{\tau}^{2}\right) \bar{h}_{\alpha \beta}
$$

Solve using leading term in Green's function for 5D wave equation

$$
\bar{h}_{\alpha \beta}(x, \tau)=\frac{4 G}{c^{4}} \int d^{3} x^{\prime} \frac{T_{\alpha \beta}\left(t-\frac{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{c}, \mathbf{x}^{\prime}, \tau\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}
$$

General Relativity with τ-Evolution

Arbitrarily evolving particle

Evolving spacetime event
$X^{\alpha}(\tau)=\left(X^{\mu}(\tau), c_{5} \tau\right)$ with notation $\xi^{\alpha}(\tau)=\frac{1}{c} u^{\alpha}(\tau)=\frac{1}{c} \dot{X}^{\alpha}$
5D interval conserved

$$
\frac{d}{d \tau} u^{2}=2 u_{\alpha} \frac{D u^{\alpha}}{D \tau}=0
$$

Choose value in rest frame: $u=\left(c, 0,0,0, c_{5}\right)$

$$
u^{2}=c^{2} \xi^{2}=-c^{2}+\sigma c_{5}^{2} \longrightarrow \xi^{2}=-1+\sigma \xi_{5}^{2} \approx-1
$$

Spacetime particle density

$$
\rho(x, \tau)=\rho(x-X(\tau))
$$

Mass-energy-momentum tensor

$$
T^{\alpha \beta}=m \rho(x, \tau) \dot{X}^{\alpha} \dot{X}^{\beta}=m \rho(x, \tau) u^{\alpha} u^{\beta}=m c^{2} \rho(x, \tau) \xi^{\alpha} \xi^{\beta}
$$

General Relativity with τ-Evolution

First order solution in linearized gravity
Metric from leading term in Green's function

$$
\bar{h}_{\alpha \beta}(x, \tau)=\mathcal{G}\left[T_{\alpha \beta}\right]=\frac{4 G m}{c^{2}} \xi_{\alpha} \xi_{\beta} \int d^{3} x^{\prime} \frac{\rho\left(t-\frac{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{c}, \mathbf{x}^{\prime}, \tau\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}
$$

Full metric from trace

$$
\eta^{\alpha \beta} \bar{h}_{\alpha \beta}=\eta^{\alpha \beta}\left(h_{\alpha \beta}-\frac{1}{2} \eta_{\alpha \beta} h\right)=\frac{2-D}{2} h \longrightarrow h_{\alpha \beta}=\bar{h}_{\alpha \beta}-\frac{1}{D-2} \eta_{\alpha \beta} \bar{h}
$$

$$
\ln D=5 \text { for static source } \xi=\left(1,0, c_{5} / c\right)
$$

$$
\begin{array}{ll}
h_{00}=\frac{2}{3} \mathcal{G}\left[T_{00}\right] & h_{05}=\frac{2}{3} \sigma \xi_{5} \mathcal{G}\left[T_{00}\right] \\
h_{i j}=\frac{1}{3} \delta_{i j} \mathcal{G}\left[T_{00}\right] & h_{55}=\frac{1}{3} \sigma \mathcal{G}\left[T_{00}\right]
\end{array}
$$

Expect: $\quad h_{00} \sim h_{i i}$ and $h_{55} \ll h_{00}$ for consistency with standard GR

General Relativity with τ-Evolution

Modified field equation

Modified $\eta_{\alpha \beta}$ explicitly breaks 5D symmetry in presence of matter

$$
R_{\alpha \beta}-\frac{1}{2} \bar{\eta}_{\alpha \beta} R=\frac{8 \pi G}{c^{4}} T_{\alpha \beta} \quad \bar{\eta}_{\mu v}=\eta_{\mu v} \quad \bar{\eta}_{5 \alpha}=0
$$

Trace reversed linearized Einstein equation

$$
\begin{gathered}
R_{\mu \nu}=-\frac{1}{2} \partial^{\gamma} \partial_{\gamma} h_{\mu v}=\frac{8 \pi G}{c^{4}}\left(T_{\mu v}-\frac{1}{2} \bar{\eta}_{\mu \nu} \bar{T}\right) \\
R_{5 \alpha}=-\frac{1}{2} \partial^{\gamma} \partial_{\gamma} h_{5 \alpha}=\frac{8 \pi G}{c^{4}} T_{5 \alpha}
\end{gathered}
$$

Modified solution

$$
\begin{array}{ll}
h_{00}=\frac{1}{2} \mathcal{G}\left[T_{00}\right] & h_{05}=\sigma \xi_{5} \mathcal{G}\left[T_{00}\right] \\
h_{i j}=\frac{1}{2} \delta_{i j} \mathcal{G}\left[T_{00}\right] & h_{55}=\sigma \xi_{5}^{2} \mathcal{G}\left[T_{00}\right]
\end{array}
$$

General Relativity with τ-Evolution

Static source

For a source $X(\tau)=(c \tau, \mathbf{0})$ and taking $\rho(\mathbf{x})=\delta^{3}(\mathbf{x})$

$$
\begin{aligned}
g_{\mu \nu} & =\left(-1+\frac{2 G m}{c^{2} r},\left(1+\frac{2 G m}{c^{2} r}\right) \delta_{i j}\right) \\
& \approx\left(-\left(1-\frac{2 G m}{c^{2} r}\right),\left(1-\frac{2 G m}{c^{2} r}\right)^{-1} \delta_{i j}\right)
\end{aligned}
$$

Consistent with spherically symmetric Schwarzschild metric

$$
g_{55}=\sigma\left(1+\sigma \xi_{5}^{2}\left(\frac{2 G m}{c^{2} r}\right)\right)=\sigma+o\left(\frac{c_{5}^{2}}{c^{2}}\right)
$$

Approach distinguishes evolution from geometry
Preserves 5D symmetry of Ricci tensor $R_{\alpha \beta}$ (geometry)
Breaks 5D symmetry in relationship between $R_{\alpha \beta}$ and $T_{\alpha \beta}$ (physics)

General Relativity with τ-Evolution

Perturbation by varying source mass
Point source in co-moving frame: $\dot{T} \neq 1 \Rightarrow$ mass acceleration

$$
X=(c T(\tau), \mathbf{0}) \quad \dot{T}=1+\alpha(\tau) / 2 \quad \alpha^{2} \approx 0
$$

Mass distribution

$$
\begin{aligned}
& M(x, \tau)=m \delta^{3}(\mathbf{x}) \rho(t-T(\tau)) \\
& T^{00}=M(x, \tau) c^{2} \dot{T}^{2} \quad T^{\alpha i}=0 \quad T^{55}=\frac{c_{5}^{2}}{c^{2}} T^{00} \approx 0
\end{aligned}
$$

Metric and connection perturbations from Green's function

$$
\begin{gathered}
\bar{h}^{00}(x, \tau)=\frac{4 G M}{c^{2} R} \dot{T}^{2} \quad \bar{h}^{\alpha i}(x, \tau)=0 \quad \bar{h}^{55}(x, \tau)=\frac{c_{5}^{2}}{c^{2}} \bar{h}^{00} \approx 0 \\
\Gamma_{00}^{\mu}=-\frac{1}{2} \eta^{\mu v} \partial_{v} h_{00} \quad \Gamma_{50}^{\mu}=\frac{1}{2 c_{5}} \eta^{\mu 0} \partial_{\tau} h_{00}
\end{gathered}
$$

General Relativity with τ-Evolution

Test particle in spherical coordinates

Acceleration in time coordinate (neglecting velocity of test particle)

$$
\ddot{t}=\left(\partial_{\tau} h_{00}\right) \dot{t}+\dot{\mathbf{x}} \cdot\left(\nabla h_{00}\right) \dot{t}^{2} \approx \frac{2 G M}{c^{2} R}\left(1+\frac{\alpha(\tau)}{2}\right) \dot{\alpha}(\tau) \dot{t}
$$

Angular and radial equations
Put $\theta=\pi / 2$

$$
\ddot{\mathbf{x}}=\frac{c^{2}}{2}\left(\nabla h_{00}\right) \dot{t}^{2} \longrightarrow\left\{\begin{array}{l}
2 \dot{R} \dot{\phi}+R \ddot{\phi}=0 \longrightarrow \dot{\phi}=\frac{L}{M R^{2}} \\
\ddot{R}-\frac{L^{2}}{M^{2} R^{3}}=-\frac{G M}{R^{2}} \dot{t}^{2} \dot{T}^{2}
\end{array}\right.
$$

Angular momentum conserved
Post-Newtonian term on RHS of radial equation
$\alpha=0 \Rightarrow \dot{T}=1 \Rightarrow \dot{t}^{2} \dot{T}^{2}=1$ recovers Newtonian gravitation

General Relativity with τ-Evolution

Solution to equations of motion

Neglecting $\dot{R} / c \ll 1$ and $\partial_{\tau} \rho \approx 0$

$$
\dot{t}=\exp \left[\frac{2 G M}{c^{2} R}\left(\alpha+\frac{1}{4} \alpha^{2}\right)\right] \longrightarrow \dot{t}^{2} \dot{T}^{2} \simeq 1+\frac{1}{2}\left(1+\frac{2 G M}{c^{2} R}\right) \alpha
$$

Using solution to t equation in radial equation

$$
\frac{d}{d \tau}\left\{\frac{1}{2} \dot{R}^{2}+\frac{1}{2} \frac{L^{2}}{M^{2} R^{2}}-\frac{G M}{R}\left(1+\frac{1}{2} \alpha(\tau)\right)\right\}=-\frac{G M}{2 R} \frac{d}{d \tau} \alpha(\tau)
$$

LHS is $\frac{d}{d \tau}$ (particle Hamiltonian) $=\frac{d}{d \tau}$ (particle mass)
$\dot{T} \neq 1 \Rightarrow$ energy change without in source rest frame \Rightarrow mass change
Mass transfer across spacetime
Source transfers mass to perturbed metric field $h_{\alpha \beta}$
Test particle absorbs mass from $h_{\alpha \beta} \longrightarrow$ particle mass not conserved $\alpha=0$ recovers mass conservation

General Relativity with τ-Evolution

Cosmological term

Modified field equation

$$
R_{\alpha \beta}-\frac{1}{2} \bar{\eta}_{\alpha \beta} R=\frac{8 \pi G}{c^{4}} T_{\alpha \beta} \quad \longleftrightarrow \quad R_{\alpha \beta}=\frac{8 \pi G}{c^{4}}\left(T_{\alpha \beta}-\frac{1}{2} \bar{\eta}_{\alpha \beta} T\right)
$$

Trace using $\bar{\eta}^{\alpha \beta} \quad\left(\bar{\eta}_{\mu \nu}=\eta_{\mu v}, \quad \bar{\eta}_{5 \alpha}=0\right)$

$$
R-\frac{4}{2} R=\frac{8 \pi G}{c^{4}} \eta^{\mu v} T_{\mu \nu} \longrightarrow-R=\frac{8 \pi G}{c^{4}}\left(T-\sigma T_{55}\right)
$$

Write trace reversed Einstein equation

$$
R_{\alpha \beta}+\bar{\eta}_{\alpha \beta} \Lambda=\frac{8 \pi G}{c^{4}}\left(T_{\alpha \beta}-\frac{1}{2} \bar{\eta}_{\alpha \beta} T\right)
$$

Identifying the mass density Λ as a cosmological term

$$
\Lambda=-\frac{8 \pi G}{c^{4}} \sigma T_{55} \quad T_{55} \sim \frac{c_{5}^{2}}{c_{2}} T_{00} \ll T_{00}
$$

General Relativity with τ-Evolution

$4+1$ formalism for metric evolution

Extension of 3+1 / ADM formalism
Decompose \mathcal{M} into spacelike hypersurface + normal time direction
Einstein equations $\longrightarrow 6 t$-evolution equations for $\gamma_{i j}+4$ constraints
Construct $\mathcal{M}_{5}=\mathcal{M} \times R$ with coordinates $X=\left(x, c_{5} \tau\right)$
Admixture of 4D spacetime geometry and τ-evolution
In flat pseudo-spacetime $g_{\alpha \beta} \rightarrow \eta_{\alpha \beta}=\operatorname{diag}(-1,1,1,1, \sigma)$ where $\sigma= \pm 1$

External $\tau \longrightarrow$ natural foliation

Decompose \mathcal{M}_{5} into spacetime hypersurface $\Sigma_{\tau}+$ normal τ direction 5D metric $g_{\alpha \beta} \longrightarrow\left\{\gamma_{\mu v}(x, \tau)\right.$, lapse N, and (tangent) shift $\left.N^{\mu}\right\}$
Einstein equations $\longrightarrow 10 \tau$-evolution equations for $\gamma_{\mu \nu}+5$ constraints

General Relativity with τ-Evolution

Foliation

4D hypersurface

$$
\Sigma_{\tau_{0}}=\left\{X \in \mathcal{M}_{5} \mid S(X)=0\right\} \text { where } S(X)=X^{5} / c_{5}-\tau_{0}
$$

Rank 4 Jacobian

$$
E_{\mu}^{\alpha}=\left(\frac{\partial X^{\alpha}}{\partial x^{\mu}}\right)_{\tau_{0}} \longrightarrow E_{\mu}=\partial_{\mu}=\partial / \partial x^{\mu} \text { as basis for tangent space of } \sum_{\tau_{0}}
$$

Unit normal to $\sum_{\tau_{0}}$

$$
n_{\alpha}=\sigma\left|g^{55}\right|^{-1 / 2} \partial_{\alpha} S(X) \longrightarrow\left\{\begin{array}{l}
n \cdot E_{\mu}=n_{\alpha} E_{\mu}^{\alpha}=0 \\
n^{2}=g^{\alpha \beta} n_{\alpha} n_{\beta}=\sigma
\end{array}\right.
$$

Induced metric on $\sum_{\tau_{0}}$

$$
d s^{2}=g_{\alpha \beta} d X^{\alpha} d X^{\beta}=g_{\alpha \beta} \frac{\partial X^{\alpha}}{\partial x^{\mu}} \frac{\partial X^{\beta}}{\partial x^{v}} d x^{\mu} d x^{\nu}=g_{\alpha \beta} E_{\mu}^{\alpha} E_{v}^{\beta}=\gamma_{\mu v} d x^{\mu} d x^{\nu}
$$

General Relativity with τ-Evolution

Decomposition of the Metric
Parameterize time evolution

$$
\tau \longrightarrow \tau+\delta \tau \Rightarrow X^{\alpha} \longrightarrow X^{\alpha}+\left(\frac{\partial X^{\alpha}}{\partial \tau}\right)_{x_{0}} \delta \tau=X^{\alpha}+\left(N n^{\alpha}+N^{\mu} E_{\mu}^{\alpha}\right) \delta \tau
$$

Under spacetime displacement

$$
X^{\alpha} \longrightarrow X^{\alpha}+\left(\frac{\partial X^{\alpha}}{\partial x^{\mu}}\right)_{\tau_{0}} \delta x^{\mu}=X^{\alpha}+E_{\mu}^{\alpha} \delta x^{\mu}
$$

5D displacement and interval

$$
d X^{\alpha}=N n^{\alpha} c_{5} d \tau+E_{\mu}^{\alpha}\left(N^{\mu} c_{5} d \tau+d x^{\mu}\right) \quad d s^{2}=g_{\alpha \beta} d X^{\alpha} d X^{\beta}
$$

Decomposition of metric using $n^{2}=\sigma \quad n_{\alpha} E_{\mu}^{\alpha}=0 \quad \gamma_{\mu v}=g_{\alpha \beta} E_{\mu}^{\alpha} E_{v}^{\beta}$

$$
g_{\alpha \beta}=\left[\begin{array}{cc}
\gamma_{\mu \nu} & N_{\mu} \\
N_{\mu} & \sigma N^{2}+\gamma_{\mu v} N^{\mu} N^{v}
\end{array}\right] \quad g^{\alpha \beta}=\left[\begin{array}{cc}
\gamma^{\mu v}+\sigma \frac{1}{N^{2}} N^{\mu} N^{v} & -\sigma \frac{1}{N^{2}} N^{\mu} \\
-\sigma \frac{1}{N^{2}} N^{\mu} & \sigma \frac{1}{N^{2}}
\end{array}\right]
$$

General Relativity with τ-Evolution

Decomposition of the 5D curvature
Projector onto tangent 4D hypersurface $\sum_{\tau_{0}}$

$$
P_{\alpha \beta}=g_{\alpha \beta}-\sigma n_{\alpha} n_{\beta} \quad n_{\alpha}=\text { unit normal }
$$

Projected covariant derivative

$$
\text { For } V^{\beta} \in \mathcal{M}_{5} \quad D_{\alpha} V_{\beta}=P_{\alpha}^{\gamma} P_{\beta}^{\delta} \nabla_{\gamma} V_{\delta}
$$

Projected curvature

$$
\left[D_{\alpha}, D_{\beta}\right] V_{\perp}^{\gamma}=\bar{R}_{\delta \alpha \beta}^{\gamma} V_{\perp}^{\delta}
$$

Extrinsic curvature: evolution of the unit normal

$$
K_{\alpha \beta}=-P_{\alpha}^{\gamma} P_{\beta}^{\delta} \nabla_{\delta} n_{\gamma}
$$

Express 4D Ricci tensor in terms of $\bar{R}_{\mu \nu}$ and $K_{\mu v}$
Lie derivatives of $\gamma_{\mu v}$ and $K_{\mu v} \longrightarrow$ integrable first order PDEs

General Relativity with τ-Evolution

Differential Equations in $4+1$ Formalism

Evolution equation for spacetime metric

$$
\frac{1}{c_{5}} \mathcal{L}_{\tau} \gamma_{\mu v}-\mathcal{L}_{\mathbf{N}} \gamma_{\mu v}=-2 N K_{\mu v}
$$

Evolution equation for extrinsic curvature
\mathcal{L}_{τ} : Lie derivative in τ direction $K_{\mu \nu}$: Extrinsic curvature
$S_{\mu v}$: Spacetime projection of $T_{\alpha \beta}$
κ : Mass density T_{55}
$R_{\mu \nu}$: Projection of Ricci tensor

$$
\begin{aligned}
\left(\frac{1}{c_{5}} \mathcal{L}_{\tau}-\mathcal{L}_{\mathbf{N}}\right) & K_{\mu v}=-D_{\mu} D_{\nu} N \\
& +N\left\{-\sigma \bar{R}_{\mu v}+K K_{\mu v}-2 K_{\mu}^{\lambda} K_{v \lambda}+\sigma \frac{8 \pi G}{c^{4}}\left[S_{\mu v}-\frac{1}{2} \gamma_{\mu v}(S+\sigma \kappa)\right]\right\}
\end{aligned}
$$

Hamiltonian Constraint

$$
\bar{R}-\sigma\left(K^{2}-K^{\mu v} K_{\mu v}\right)=-\sigma \frac{16 \pi G}{c^{4}} \kappa
$$

Momentum Constraint

$$
D_{\mu} K_{v}^{\mu}-D_{v} K=\frac{8 \pi G}{c^{4}} p_{v}
$$

General Relativity with τ-Evolution

Decomposed metric for linearized theory

Linearized metric

$$
\begin{gathered}
\left\|g_{\alpha \beta}\right\|=\left[\begin{array}{cc}
\gamma_{\mu v} & N_{\mu} \\
N_{\mu} & \sigma N^{2}+\gamma_{\mu v} N^{\mu} N^{v}
\end{array}\right]=\left[\begin{array}{cc}
\eta_{\mu v}+h_{\mu v} & h_{\mu 5} \\
h_{\mu 5} & \eta_{55}+h_{55}
\end{array}\right] \\
\left\|g^{\alpha \beta}\right\|=\left[\begin{array}{cc}
\gamma^{\mu v}+\sigma \frac{1}{N^{2}} N^{\mu} N^{v} & -\sigma \frac{1}{N^{2}} N^{\mu} \\
-\sigma \frac{1}{N^{2}} N^{\mu} & \sigma \frac{1}{N^{2}}
\end{array}\right] \approx\left[\begin{array}{cc}
\eta^{\lambda v}-h^{\mu v} & -\sigma h_{5}^{\mu} \\
-\sigma h_{5}^{\mu} & \sigma\left(1-\sigma h_{55}\right)
\end{array}\right]
\end{gathered}
$$

Leads to

$$
\begin{aligned}
& N=\frac{1}{\sqrt{1-\sigma h_{55}}} \approx 1+\frac{1}{2} \sigma h_{55} \quad N_{\mu}=h_{5 \mu} \\
& n_{\alpha}=\sigma\left(1+\frac{1}{2} \sigma h_{55}\right) \delta_{\alpha}^{5} \quad n^{\alpha}=-h_{5}^{\mu} \delta_{\mu}^{\alpha}+\left(1-\frac{1}{2} \sigma h_{55}\right) \delta_{5}^{\alpha}
\end{aligned}
$$

General Relativity with τ-Evolution

Linearized evolution equation for $\gamma_{\mu v}$
By direct calculation

$$
K_{\alpha \beta}=-P_{\alpha}^{\gamma} P_{\beta}^{\delta} \nabla_{\delta}\left[\sigma\left(1+\frac{1}{2} \sigma h_{55}\right) \delta_{5}^{\delta}\right]=\sigma \Gamma_{\mu v}^{5}
$$

Evolution equation for metric in 4+1 decomposition

$$
-\frac{1}{2}\left(\frac{1}{c_{5}} \partial_{\tau}-\mathcal{L}_{\mathbf{N}}\right) \gamma_{\mu v}=N K_{\mu v}
$$

Discarding terms $\left(h_{\alpha \beta}\right)^{2} \approx 0$

$$
\mathcal{L}_{\mathbf{N}} \gamma_{\mu \nu}=D_{\mu} N_{v}+D_{\nu} N_{\mu} \approx \partial_{\mu} N_{v}+\partial_{\nu} N_{\mu}=\partial_{\mu} h_{5 v}+\partial_{\nu} h_{5 \mu}
$$

Evolution equation becomes

$$
-\frac{1}{2}\left(\partial_{5} \gamma_{\mu \nu}-\partial_{\mu} h_{5 v}-\partial_{\nu} h_{5 \mu}\right)=N K_{\mu v} \approx K_{\mu v}
$$

LHS $=\sigma \Gamma_{\mu \nu}^{5} \longrightarrow$ automatically satisfied

General Relativity with τ-Evolution

Linearized $4+1$ evolution equations
Bianchi identity for linearized theory

$$
\nabla_{\alpha} G^{\alpha \beta}=\nabla_{\alpha}\left(R^{\alpha \beta}-\frac{1}{2} \bar{\eta}^{\alpha \beta} R\right)=\partial_{\alpha}\left(R^{\alpha \beta}-\frac{1}{2} \bar{\eta}^{\alpha \beta} R\right)+o\left(h_{\alpha \beta}^{2}\right)=0
$$

Rearranged as $\frac{1}{c_{5}} \partial_{\tau} G^{5 \beta}=-\partial_{\mu} G^{\mu \beta}+o\left(h_{\alpha \beta}^{2}\right)$
RHS must contain terms in $g_{\alpha \beta}, \partial_{\tau} g_{\alpha \beta}$, and $\partial_{\tau}^{2} g_{\alpha \beta}$
$G^{5 \beta}$ contains no second order τ-derivatives of $g_{\alpha \beta}$

Constraints

Initial conditions for second order PDE are $g_{\alpha \beta}, \partial_{\tau} g_{\alpha \beta}, T_{\alpha \beta}$
$G^{5 \beta}$ field equation is relationship among initial conditions
Five constraint equations: propagate without evolving

$$
G_{5 \beta}=R_{5 \beta}-\frac{1}{2} \bar{\eta}_{5 \beta} R=\frac{8 \pi G}{c^{4}} T_{5 \beta}
$$

General Relativity with τ-Evolution

Decomposing linearized Ricci tensor
Separate components of 5D Ricci tensor

$$
\begin{aligned}
R_{\alpha \beta}^{(5)}=\frac{1}{2}(& \partial_{\alpha} \partial^{\lambda} h_{\lambda \beta}+\partial_{\beta} \partial^{\sigma} h_{\alpha \sigma}-\partial^{\lambda} \partial_{\lambda} h_{\alpha \beta}-\partial_{\alpha} \partial_{\beta} \bar{\eta}^{\lambda \sigma} h_{\lambda \sigma} \\
& \left.+\partial_{\alpha} \partial^{5} h_{5 \beta}+\partial_{\beta} \partial^{5} h_{\alpha 5}-\partial^{5} \partial_{5} h_{\alpha \beta}-\partial_{\alpha} \partial_{\beta} \bar{\eta}^{55} h_{55}\right)
\end{aligned}
$$

Spacetime components

$$
R_{\mu \nu}^{(5)}=R_{\mu \nu}^{(4)}+\sigma \partial_{5} \underbrace{\frac{1}{2}\left(\partial_{\mu} h_{5 v}+\partial_{\nu} h_{\mu 5}-\partial_{5} h_{\mu v}\right)}_{K_{\mu v}}-\frac{1}{2} \partial_{\mu} \partial_{\nu} \bar{\eta}^{55} h_{55}
$$

4D Ricci tensor $R_{\mu \nu}^{(4)}=\frac{1}{2}\left(\partial_{\mu} \partial^{\lambda} h_{\lambda \nu}+\partial_{\nu} \partial^{\sigma} h_{\mu \sigma}-\partial^{\lambda} \partial_{\lambda} h_{\mu \nu}-\partial_{\mu} \partial_{\nu} \eta^{\lambda \sigma} h_{\lambda \sigma}\right)$
5 components

$$
\begin{gathered}
R_{5 \beta}=\frac{1}{2}\left(\partial_{5} \partial^{\lambda} h_{\lambda \beta}+\partial_{\beta} \partial^{\sigma} h_{5 \sigma}-\partial^{\lambda} \partial_{\lambda} h_{5 \beta}-\partial_{5} \partial_{\beta} \bar{\eta}^{\lambda \sigma} h_{\lambda \sigma}\right. \\
\left.+\partial_{\beta} \partial^{5} h_{55}-\partial_{\alpha} \partial_{\beta} \bar{\eta}^{55} h_{55}\right)
\end{gathered}
$$

General Relativity with τ-Evolution

Linearized evolution equation for $K_{\mu v}$
Spacetime components of 5D Ricci tensor

$$
R_{\mu v}^{(5)}=R_{\mu v}^{(4)}+\sigma \partial_{5} K_{\mu v}-\frac{1}{2} \partial_{\mu} \partial_{v} \bar{\eta}^{55} h_{55}
$$

Spacetime part of modified field equation

$$
R_{\mu \nu}^{(5)}=\frac{8 \pi G}{c^{4}}\left(T_{\mu \nu}-\frac{1}{2} \bar{\eta}_{\mu \nu} \bar{T}\right)
$$

Rearranging terms

$$
\partial_{5} K_{\mu \nu}=\frac{1}{2} \partial_{\mu} \partial_{\nu} \bar{\eta}^{55} h_{55}-\sigma R_{\mu \nu}^{(4)}+\sigma \frac{8 \pi G}{c^{4}}\left(T_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} \bar{T}\right)
$$

Evolution equation for $K_{\mu \nu}$ in $4+1$ decomposition

$$
\text { Under }\left(h_{\alpha \beta}\right)^{2} \approx 0 \quad \eta^{55} \longrightarrow \bar{\eta}^{55}=0 \quad \bar{T}+\eta_{55} \kappa \longrightarrow \bar{T}
$$

General Relativity with τ-Evolution

Constraint terms

Applying Lorenz condition

$$
\partial^{\lambda} h_{\alpha \lambda}=\frac{1}{2} \partial_{\alpha} \bar{\eta}^{\lambda \sigma} h_{\lambda \sigma}+\frac{1}{2} \partial_{\alpha} \eta^{55} h_{55}-\partial^{5} h_{\alpha 5}
$$

and field equation

$$
R_{5 \alpha}=-\frac{1}{2} \partial^{\gamma} \partial_{\gamma} h_{5 \alpha}=\frac{8 \pi G}{c^{4}} T_{5 \alpha}
$$

confirms

$$
R_{5 \beta}=\frac{1}{2}\left(-\partial_{5} \partial^{5} h_{\beta 5}-\partial^{\lambda} \partial_{\lambda} h_{5 \beta}\right)=-\frac{1}{2} \partial^{\gamma} \partial_{\gamma} h_{5 \beta}=\frac{8 \pi G}{c^{4}} T_{5 \beta}
$$

providing expressions for the non-dynamical shift and lapse N^{μ} and N
Constraint: Gradient of extrinsic curvature

$$
\partial^{\mu} K_{\mu v}=\frac{1}{2}\left(\partial^{\mu} \partial_{\mu} h_{5 v}+\partial^{\mu} \partial_{\nu} h_{5 \mu}-\partial_{5} \partial^{\mu} h_{\mu v}\right)=\frac{1}{2} \partial^{\gamma} \partial_{\gamma} h_{5 v}=\frac{8 \pi G}{c^{4}} T_{5 v}
$$

Some References

Stueckelberg, E. La signification du temps propre en mécanique: Ondulatoire. Helv. Phys. Acta 1941, 14, 321-322. (In French)
Stueckelberg, E. Remarque a propos de la création de paires de particules en théorie de relativité. Helv. Phys. Acta 1941, 14, 588-594. (In French)

Horwitz, L.; Piron, C. Relativistic Dynamics. Helv. Phys. Acta 1973, 48, 316-326.
Horwitz, L.P. Relativistic Quantum Mechanics; Springer: Dordrecht, The Netherlands, 2015; doi:10.1007/978-94-017-7261-7.

Land, M.; Horwitz, L.P. Relativistic Classical Mechanics and Electrodynamics; Morgan and Claypool Publishers: 2020, doi:doi.org/10.2200/S00970ED1V01Y201912EST001.

Pitts, J.B.; Schieve, W.C. On Parametrized General Relativity. Found. Phys. 1998, 28, 1417-1424.
Pitts, J.B.; Schieve, W.C. Flat Spacetime Gravitation with a Preferred Foliation. Found. Phys. 2001, 31, 1083-1104, doi:10.1023/A:1017578424131.
Land, M. Local metric with parameterized evolution. Astron. Nachrichten 2019, 340, 983-988, [https://onlinelibrary.wiley.com/doi/pdf/10.1002/asna.201913719]. doi:10.1002/asna. 201913719.

Schwinger, J. On Gauge Invariance and Vacuum Polarization. Phys. Rev. 1951, 82, 664-679, doi:10.1103/PhysRev.82.664.

Feynman, R. Mathematical formulation of the quantum theory of electromagnetic interaction. Phys. Rev. 1950, 80, 440-457.

Thank You For Your Patience

