Mass as a Dynamical Variable

XXIV Bled Workshop What Comes Beyond the Standard Models?

Martin Land

Hadassah College Jerusalem www.hac.ac.il/cs/staff/martin

July 2021

Fixed Particle Masses — Axiom or Convenience?

Origins: electron as first elementary particle

J. J. Thomson cathode ray experiments (1897)

Cathode rays = beam of discrete particles with fixed e/m

R. Millikan and H. Fletcher oil-drop experiment (1909)

 ${\sf Minimum\ electron\ charge} \,\longrightarrow\, {\sf fixed\ electron\ mass}$

Particle Data Group (2020)

Variation in measured mass: $\Delta m_e \simeq 10^{-8}$

Convention: treat one particle mass m as fixed by $a\ priori$ constraint

$$m\frac{du^{\mu}}{d\tau} = eF^{\mu\nu}u_{\nu} \qquad (i\partial - eA - m)\psi = 0 \qquad d^4p\delta\left(\frac{p^{\mu}p_{\mu} + m^2}{p^{\mu}}\right) = \frac{d^3\mathbf{p}}{2\sqrt{\mathbf{p}^2 + m^2}}$$

$$\eta_{\mu\nu} = \operatorname{diag}(-1, 1, 1, 1)$$

Fixed Particle Masses — Axiom or Convenience?

Complications from the Standard Model

Higgs mechanism

Elementary particles
$$\sim$$
 massless asymptotic states $\bar{\psi} (i \partial - f Gauge) \psi$
Particle masses \longleftarrow interactions with Higgs field $m = f \langle \text{Higgs} \rangle_0$

Fixed masses \in effective theories

Some one-particle masses sharper than others (PDG 2020)

 $\Delta m \sim 10^{-10}$ for composite p, n

 $\Delta m \sim 25\%$ for constituent u, d quarks

Holding masses fixed \longleftrightarrow issues and quirks

Constrained mechanics

Problem of time

Flavor oscillations

Missing mass / energy

Stueckelberg-Feynman Antiparticle

Particle propagates backward in time

Feynman diagram in QED (1948)

Interaction vertex

Virtual
$$e^-(E>0) \ \longrightarrow \ e^-(E<0) + \gamma$$

Appears in laboratory as $e^- \ \longrightarrow \ e^+ + \gamma$

Future timelike trajectory \longrightarrow past timelike trajectory

Fock particle trajectory $x^{\mu}(\tau)$ (1937)

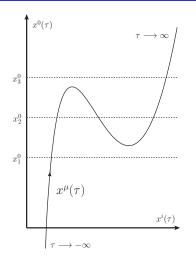
$$-\dot{x}^2 = \left(c\frac{dt}{d\tau}, \frac{d\mathbf{x}}{d\tau}\right)^2 = -\left(c\frac{dt}{d\tau}\right)^2 \left(1, \frac{1}{c}\frac{d\mathbf{x}}{dt}\right)^2 = c^2\dot{t}^2 \left(1 - \frac{\mathbf{v}^2}{c^2}\right)$$

Mass shell constraint

Fix timelike trajectory
$$-M\dot{x}^2=Mc^2 \longrightarrow \frac{dt}{d\tau}=\dot{t}=\pm\frac{1}{\sqrt{1-\frac{\mathbf{v}^2}{c^2}}}$$

Stueckelberg-Feynman Antiparticle

Particle evolves backward in time



Stueckelberg trajectory in relativistic classical mechanics (1941)

 $x^{\mu}(\tau)$, $\dot{x}^{\mu}(\tau)$ all independent

Pair processes

Continuous evolution

$$\dot{t} > 0 \longrightarrow \dot{t} < 0$$

Somewhere
$$\dot{t} = 0$$

 \dot{x}^{μ} crosses spacelike lightcone

$$\dot{x}^2(au) = \dot{x}^\mu \dot{x}_\mu$$
 dynamical

External $\tau \neq$ proper time

$$\dot{x}^2$$
 changes sign

$$ds = \sqrt{-\dot{x}^2}d au$$
 not meaningful

Stueckelberg-Feynman Antiparticle

Covariant evolution

Stueckelberg's proposed classical Lorentz force

$$D_{\tau}\left(M\dot{x}^{\mu}\right) = M\left(\ddot{x}^{\mu} + \Gamma^{\mu}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho}\right) = eF^{\mu\nu}g_{\nu\rho}\dot{x}^{\rho} + G^{\mu}$$

Usual metric $g_{\mu\nu}(x) \xrightarrow{\text{flat}} \text{diag}(-1,1,1,1)$ and connection $\Gamma^{\mu}_{\nu\rho}$ for $\mu,\nu,\rho=0,\cdots,3$

Classical off-shell propagation

$$\frac{d}{d\tau}\left(\frac{1}{2}M\dot{x}^2\right) = M\dot{x}_{\mu}D_{\tau}\dot{x}^{\mu} = e\,\dot{x}_{\mu}F^{\mu\nu}\dot{x}_{\nu} + \dot{x}_{\mu}G^{\mu} = \dot{x}_{\mu}G^{\mu}$$

$$G^{\mu} = 0 \longrightarrow \frac{1}{2}M\dot{x}^2 = \text{constant}$$

Mass shell constraint \longrightarrow conservation law (for standard electrodynamics)

What could be source for G^{μ} ?

Covariant Canonical Mechanics

Physical picture

Upgrade nonrelativistic classical and quantum mechanics

$$\begin{array}{c} \text{Newtonian time } t \\ + \\ \text{Unconstrained } \left\{ x^i, \frac{dx^j}{dt} \right\} \\ + \\ \text{Galilean symmetry} \\ + \\ \text{Scalar Hamiltonian } H \end{array} \right\} \quad \longrightarrow \quad \left\{ \begin{array}{c} \text{External time } \tau \\ + \\ \text{Unconstrained } \left\{ x^\mu, \frac{dx^\nu}{d\tau} \right\} \\ + \\ \text{Poincar\'e symmetry} \\ + \\ \text{Scalar Hamiltonian } K \end{array} \right.$$

Inherit nonrelativistic methods and insights

$$\frac{\partial H}{\partial t}=0 \Rightarrow {
m energy\ conserved} \quad \longrightarrow \quad \frac{\partial K}{\partial au}=0 \Rightarrow {
m mass\ conserved}$$

Free particle

$$K=rac{1}{2M}p^{\mu}p_{\mu} \longrightarrow \dot{x}^{\mu}=rac{p^{\mu}}{M} \ , \ \dot{p}^{\mu}=0 \longrightarrow \dot{x}^2={
m constant}$$

Covariant Canonical Mechanics

Geometry and evolution

Physical spacetime event $x^{\mu}(\tau)$

Irreversible occurrence at time au

$$\tau_2 > \tau_1 \implies \left\{ \begin{array}{l} x^\mu(\tau_2) \text{ occurs after } x^\mu(\tau_1) \\ \\ x^\mu(\tau_2) \text{ cannot change } x^\mu(\tau_1) \\ \\ \text{No grandfather paradox} \end{array} \right.$$

Evolution

4D block universe $\mathcal{M}(\tau)$ occurs at τ

Infinitesimally close 4D block universe $\mathcal{M}(au+d au)$ occurs at au+d au

$$\mathcal{M}(au) \xrightarrow{\qquad} \mathcal{M}(au + d au)$$

 $\left.\begin{array}{c} \mathsf{scalar}\;K\\ \mathsf{external}\;\tau\end{array}\right\} \implies \mathsf{No}\;\mathsf{conflict}\;\mathsf{with}\;\mathsf{general}\;\mathsf{diffeomorphism}\;\mathsf{invariance} \right.$

Overview of Talk

Classical electrodynamics

Five au-dependent potentials $A_{\mu}(x) \longrightarrow a_{\alpha}(x, au)$ lpha = 0,1,2,3,5

Lorentz force permits mass exchange between particle and field

Total mass and momentum of particle and field conserved

Self-interaction restores on-shell mass

Maxwell electrodynamics $\sim au$ -independent equilibrium

Quantum electrodynamics

First order unconstrained quantization

Retarded causality in au \longrightarrow no matter loops

Super-renormalizable with suppression of mass exchange

General relativity

4D metric $g_{\mu\nu}(x)$ on $\mathcal{M} \longrightarrow g_{\alpha\beta}(x,\tau)$ on $\mathcal{M}(\tau)$

4+1 formalism generalizes Arnowitt-Deser-Misner (ADM)

Evolving metric \longrightarrow mass exchange across spacetime

Horwitz-Piron Covariant Mechanics

Covariant Lagrangian and Hamiltonian mechanics (1973)

Classical Lagrangian on 8D unconstrained phase space

$$L = \frac{1}{2}M\dot{x}^{\mu}\dot{x}_{\mu} + e\dot{x}^{\mu}A_{\mu}(x) - V(x) \qquad \qquad \frac{d}{d\tau}\frac{\partial L}{\partial \dot{x}_{\mu}} - \frac{\partial L}{\partial x_{\mu}} = 0$$

Generalized Lorentz force

$$M\left(\ddot{x}^{\mu}+\Gamma^{\mu}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho}\right)=eF^{\mu\nu}\dot{x}_{\nu}-\partial^{\mu}V\quad\longrightarrow\quad G^{\mu}=-\partial^{\mu}V$$

where

$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} \qquad p_{\mu} = \frac{\partial L}{\partial \dot{x}^{\mu}} = M\dot{x}_{\mu} + eA_{\mu}(x)$$

Manifestly covariant Hamiltonian mechanics

$$K = \dot{x}^{\mu}p_{\mu} - L = \frac{1}{2M}(p^{\mu} - eA^{\mu})(p_{\mu} - eA_{\mu}) + V$$

Classical:
$$\dot{x}^{\mu}=\frac{\partial K}{\partial v_{\mu}}$$
 $\dot{p}^{\mu}=-\frac{\partial K}{\partial x_{\mu}}$ Quantum: $i\partial_{\tau}\psi(x,\tau)=K\psi(x,\tau)$

Horwitz-Piron Covariant Mechanics

Application: relativistic quantum two-body problems

Hamiltonian

$$K = \frac{p_{1\mu}p_1^{\mu}}{2M_1} + \frac{p_{2\mu}p_2^{\mu}}{2M_2} + V(x_1, x_2) = \frac{P^{\mu}P_{\mu}}{2M} + \frac{p^{\mu}p_{\mu}}{2m} + V(\rho) = \frac{P^{\mu}P_{\mu}}{2M} + K_{rel}$$

Center of mass and relative motion

$$P^{\mu} = p_1^{\mu} + p_2^{\mu}$$
 $p^{\mu} = \frac{M_2 p_1^{\mu} - M_1 p_2^{\mu}}{M}$ $M = M_1 + M_2$ $m = \frac{M_1 M_2}{M}$

Generalized central force

$$V(x_1, x_2) = V(\rho)$$
 where $\rho = \sqrt{(\mathbf{x}_1 - \mathbf{x}_2)^2 - (t_1 - t_2)^2}$

Relativistic models with mass as dynamical variable

Bound states and scattering — Horwitz and Arshansky (1989)

Selection rules, radiative transitions, perturbation theory, Zeeman and

Stark effects, bound state decay — Horwitz and Land (1993, 1995, 2001)

Entanglement and interference in time — Horwitz (2018)

Where does potential V(x) come from?

Extend classical electrodynamics

Invariance under au-dependent gauge transformations Requires au-dependent gauge potentials $A_{\mu}(x) \longrightarrow a_{\mu}(x, au)$

Requires fifth τ -dependent gauge potential $ea_5(x,\tau) = -V$

au-dependent field equations

Lorentz force: 4 independent components

E and \mathbf{p} unconstrained

Particles and fields can exchange mass

Total mass of particles + fields conserved

Concatenation of events along worldline

Integration over $au \longrightarrow Maxwell$ equations

Extracts equilibrium theory from microscopic dynamics

5D gauge theory — Horwitz, Saad, and Arshansky (1989), Land (2020)

Classical gauge freedom

$$S = \int d\tau L \longrightarrow \int d\tau \left[L + \frac{d}{d\tau} \Lambda (x, \tau) \right] = \int d\tau \left[L + \delta \left(\frac{\dot{x}^{\mu} \partial_{\mu} \Lambda + \partial_{\tau} \Lambda}{\dot{x}^{\alpha} \partial_{\alpha} \Lambda} \right) \right]$$

Generalized interaction: 5 gauge potentials

$$\frac{e}{c}\dot{x}^{\mu}A_{\mu}\left(x\right)-V(x) \longrightarrow \frac{e}{c}\dot{x}^{\mu}a_{\mu}\left(x,\tau\right)+\frac{e}{c}\dot{x}^{5}a_{5}\left(x,\tau\right)=\frac{e}{c}\dot{x}^{\alpha}a_{\alpha}\left(x,\tau\right)$$

$$\boxed{\lambda,\mu,\nu=0,1,2,3 \quad \text{and} \quad \alpha,\beta,\gamma=0,1,2,3,5}$$

$$\boxed{x^{5}=c_{5}\tau \quad \text{for} \quad \dot{x}^{5}=\text{constant}=c_{5}\ll c}$$

Conserved 5-current and Maxwell current

$$j^{\alpha}(x,\tau) = c\dot{x}^{\alpha}\delta^{4}(x - X(\tau)) \qquad \qquad \partial_{\alpha}j^{\alpha} = \partial_{\mu}j^{\mu} + \partial_{5}j^{5} = 0$$
$$J^{\mu}(x) = \int d\tau j^{\mu}(x,\tau) \qquad \longrightarrow \qquad \partial_{\mu}J^{\mu} = 0$$

Lorentz force (Land 1991)

Lagrangian

$$L = \frac{1}{2}M\dot{x}^{\mu}\dot{x}_{\mu} + \frac{e}{c}\dot{x}^{\alpha}a_{\alpha}(x,\tau)$$

break 5D symmetry: \dot{x}^5 not dynamical

Equations of motion

$$M\ddot{x}_{\mu} = \frac{e}{c}\dot{x}^{\beta}f_{\mu\beta} = \frac{e}{c}\left(\dot{x}^{\nu}f_{\mu\nu} - c_{5}f_{5\mu}\right)$$
$$\frac{d}{d\tau}\left(-\frac{1}{2}M\dot{x}^{\mu}\dot{x}_{\mu}\right) = c_{5}\frac{e}{c}\dot{x}^{\mu}f_{5\mu}$$

5D field strength

$$f_{\alpha\beta}=\partial_{\alpha}a_{\beta}-\partial_{\beta}a_{\alpha}$$
 $\qquad \qquad \alpha,\beta=0,1,2,3,5$ $f_{\mu\nu}\left(x, au
ight)\longrightarrow F_{\mu\nu}\left(x
ight)$ at equilibrium $\left(au
ight)$ -independence) $\varepsilon^{\mu}\left(x, au
ight)=f^{5\mu}\left(x, au
ight)=\partial^{5}a^{\mu}-\partial^{\mu}a^{5}$ induces mass exchange

Simple case: off-shell trajectory

In co-moving frame of one particle

For
$$\tau < 0$$

$$x(\tau) = (c\tau, \mathbf{0}) \longrightarrow \dot{x}(\tau) = (c, \mathbf{0}) \longrightarrow -M\dot{x}^2 = Mc^2$$

$$a_{\alpha}(x, \tau) = 0 \longrightarrow f_{\alpha\beta} = 0 \longrightarrow M\ddot{x} = 0$$

For
$$\tau > 0$$

$$a^{\mu}\left(x, au
ight)=0 \longrightarrow f^{\mu\nu}=0$$

$$a_{5}=-\varepsilon x_{0} \longrightarrow f_{5k}=0 \qquad f_{50}=-\partial^{0}a_{5}=\varepsilon \qquad (\varepsilon={\rm constant})$$

Acceleration in x^0 coordinate \Rightarrow mass acceleration

$$M\ddot{\mathbf{x}}_{\mu}=0 \qquad \qquad M\ddot{x}^{0}=e\frac{c_{5}}{c}\,\varepsilon \qquad \qquad \frac{d}{d\tau}\left(-\frac{1}{2}M\dot{x}^{\mu}\dot{x}_{\mu}\right)=e\frac{c_{5}}{c}\,\dot{x}^{0}\,\varepsilon$$

Electromagnetic Action (Horwitz, Saad, Arshansky 1989, Land 2001)

Expand interaction term

$$\dot{X}^{\alpha}a_{\alpha} \longrightarrow \int d^4x \ \dot{X}^{\alpha}(\tau)\delta^4\left(x - X(\tau)\right)a_{\alpha}(x,\tau) = \frac{1}{c} \int d^4x \ j^{\alpha}(x,\tau)a_{\alpha}(x,\tau)$$

Action

$$S_{\text{em}} = \int d^4x d\tau \left\{ \frac{e}{c^2} j^{\alpha}(x,\tau) a_{\alpha}(x,\tau) - \int \frac{ds}{\lambda} \frac{1}{4c} \left[f^{\alpha\beta}(x,\tau) \Phi(\tau - s) f_{\alpha\beta}(x,s) \right] \right\}$$

Interaction kernel (non-local in time τ)

$$\Phi(\tau) = \delta(\tau) - (\xi \lambda)^2 \delta''(\tau)$$

removes singularity in Coulomb law

 $\lambda = {\sf constant}$ with dimensions of time — a correlation time

$$\xi = \frac{1}{2} \left[1 + \left(\frac{c_5}{c} \right)^2 \right]$$

5D pseudo-metric

Terms $j^{\alpha}a_{\alpha}$ and $f^{\alpha\beta}f_{\alpha\beta}$ suggest 5D symmetry

Must break to O(3,1) in presence of matter $\;\longrightarrow\;$ O(4,1) or O(3,2)

Raising and lowering 5th index

$$g_{\alpha\beta} \xrightarrow{\text{flat}} \eta_{\alpha\beta} = \text{diag}(-1,1,1,1,\sigma) \qquad \qquad \eta_{55} = \sigma = \pm 1$$

 $\delta^{\prime\prime}\left(\tau\right)$ term in action breaks higher symmetry

$$\int d\tau ds \ f^{\alpha\beta}(x,\tau)\delta''(\tau-s)f_{\alpha\beta}(x,s) = -\int d\tau \left[\partial_{\tau}f^{\alpha\beta}(x,\tau)\right]\partial_{\tau}f_{\alpha\beta}(x,\tau)$$

Expanding

$$f^{\alpha\beta}f_{\alpha\beta} = f^{\mu\nu}f_{\mu\nu} + 2\eta^{55}f_5^{\ \mu}f_{5\mu}$$

Interpret $\sigma = \eta^{55}$ as relative sign of vector-vector kinetic term

pre-Maxwell field equations

Inverse interaction kernel

$$\varphi(\tau) = \lambda \Phi^{-1}(\tau) = \lambda \int \frac{d\kappa}{2\pi} \, \frac{e^{-i\kappa\tau}}{1 + (\xi \lambda \kappa)^2} = \frac{1}{2\xi} e^{-|\tau|/\xi \lambda}$$

$$\int \frac{ds}{\lambda} \varphi(\tau - s) \Phi(s) = \delta(\tau) \qquad \qquad \int \frac{d\tau}{\lambda} \varphi(\tau) = 1$$

Vary action with respect to $a_{\alpha}(x,\tau)$

$$\partial_{\beta} f^{\alpha\beta}(x,\tau) = \frac{e}{c} \int ds \ \varphi(\tau - s) j^{\alpha}(x,s) = \frac{e}{c} j^{\alpha}_{\varphi}(x,\tau)$$

$$\partial_{\alpha} f_{\beta\gamma} + \partial_{\gamma} f_{\alpha\beta} + \partial_{\beta} f_{\gamma\alpha} = 0 \qquad \text{(identically)}$$

(identically)

$$\varphi = \frac{1}{2\xi} e^{-|\tau|/\xi\lambda} \ \ \text{smooths sharp current} \ j^{\alpha}\left(x,\tau\right) = c\dot{X}^{\alpha}\delta^{4}\left(x-X\left(\tau\right)\right)$$

Comparing pre-Maxwell and Maxwell equations

Maxwell equations in 3+1 (space + time) components

$$\nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial}{\partial t} \mathbf{E} = \frac{e}{c} \mathbf{J}$$

$$\nabla \cdot \mathbf{E} = \frac{e}{c} J^{0}$$

$$\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial}{\partial t} \mathbf{B} = 0$$

pre-Maxwell in 4+1 (spacetime + au) components

$$\partial_{\nu} f^{\mu\nu} - \frac{1}{c_5} \frac{\partial}{\partial \tau} f^{5\mu} = \frac{e}{c} j^{\mu}_{\varphi} \qquad \qquad \partial_{\mu} f^{5\mu} = \frac{e}{c} j^{5}_{\varphi}$$

$$\partial_{\mu} f_{\nu\rho} + \partial_{\nu} f_{\rho\mu} + \partial_{\rho} f_{\mu\nu} = 0 \qquad \qquad \partial_{\nu} f_{5\mu} - \partial_{\mu} f_{5\nu} + \frac{1}{c_5} \frac{\partial}{\partial \tau} f_{\mu\nu} = 0$$

Field decomposition

 $f_{5\mu}\sim$ electric field sourced by j^5 in Gauss law $f^{\mu\nu}\sim$ magnetic field induced by "curl" and au variation of $f_{5\mu}$

Mass-Energy-Momentum Tensor

Electromagnetic action

$$\begin{split} S_{\text{em}} &= \int d^4x d\tau \left\{ \frac{e}{c^2} j^\alpha(x,\tau) a_\alpha(x,\tau) - \frac{1}{4c} \left[f_\Phi^{\alpha\beta}(x,\tau) f_{\alpha\beta}(x,\tau) \right] \right\} \\ f_\Phi^{\alpha\beta}(x,\tau) &= \int \frac{ds}{\lambda} \Phi(\tau-s) f^{\alpha\beta}(x,s) \end{split}$$

Mass-energy-momentum tensor

$$T_{\Phi}^{\alpha\beta} = \frac{1}{c} \left(f_{\Phi}^{\alpha\gamma} f_{\gamma}^{\beta} - \frac{1}{4} g^{\alpha\beta} f_{\Phi}^{\delta\gamma} f_{\delta\gamma} \right)$$

Translation invariance \longrightarrow Noether symmetry

$$\partial_{\alpha}T_{\Phi}^{\alpha\beta}=-\frac{e}{c^2}f^{\beta\alpha}j_{\alpha}$$

Conservation of total mass — Horwitz and Land (1991)

For particle current

$$\partial_{\alpha}T_{\Phi}^{\alpha\beta} = -\frac{e}{c^2}f^{\beta\alpha}j_{\alpha} = -\frac{e}{c}f^{\beta\alpha}\dot{X}_{\alpha}\delta^4(x - X(\tau))$$

Spacetime integral

LHS
$$\int d^4x \; \partial_{\alpha} T^{\alpha\beta} = \int d^4x \; \partial_{\mu} T^{\mu\beta} + \int d^4x \; \partial_5 T^{5\beta} = \frac{1}{c_5} \frac{d}{d\tau} \int d^4x \; T^{5\beta}$$
RHS
$$-\frac{e}{c} \int d^4x \; f^{\beta\alpha} \, \dot{X}_{\alpha} \delta^4 \left(x - X(\tau) \right) = -\frac{e}{c} f^{\beta\alpha} \left(X, \tau \right) \, \dot{X}_{\alpha}$$

Lorentz force

$$\frac{e}{c}f^{\mu\alpha}\dot{X}_{\alpha} = \frac{d}{d\tau}\left(M\dot{X}^{\mu}\right) \qquad \frac{e}{c}f^{5\mu}\dot{X}_{\mu} = \frac{1}{c_{5}}\frac{d}{d\tau}\left(-\sigma\frac{1}{2}M\dot{x}^{\mu}\dot{x}_{\mu}\right)$$

Total mass-energy-momentum of particle + field conserved

$$\frac{d}{d\tau}\left(\int d^4x\ T^{5\mu}+M\dot{x}^\mu\right)=0\qquad \frac{d}{d\tau}\left(\int d^4x\ T^{55}-\sigma\frac{1}{2}M\dot{x}^2\right)=0$$

Martin Land — Bled 2021

Recovering Maxwell theory: concatenation

Concatenation — sum contributions to G(x) from events $g_{\alpha}(x,\tau)$

Integrate function $g_{\alpha}(x,\tau)$ along worldline: $G_{\alpha}(x) = \int_{-\infty}^{\infty} \frac{d\tau}{\lambda} g_{\alpha}(x,\tau)$ Boundary condition $g_{5}(x,\pm\infty) = 0$

Divergenceless Maxwell current

$$\partial_{\alpha}j^{\alpha}_{\varphi} = \partial_{\mu}j^{\mu}_{\varphi} + \partial_{5}j^{5}_{\varphi} = 0 \longrightarrow \partial_{\mu}J^{\mu}(x) = \partial_{\mu}\int_{-\infty}^{\infty} \frac{d\tau}{\lambda} j^{\mu}_{\varphi}(x,\tau) = 0$$

Field equations

$$\frac{\partial_{\beta} f^{\alpha\beta}\left(x,\tau\right) = \frac{e}{c} j_{\varphi}^{\alpha}\left(x,\tau\right) }{\partial_{\left[\alpha} f_{\beta\gamma\right]} = 0 } \right\} \qquad \frac{-\int \frac{d\tau}{\lambda}}{\int \frac{d\tau}{\lambda}} \qquad \left\{ \begin{array}{c} \partial_{\nu} F^{\mu\nu}\left(x\right) = \frac{e}{c} J^{\mu}\left(x\right) \\ \partial_{\left[\mu} F_{\nu\rho\right]} = 0 \end{array} \right.$$

Concatenation extracts on-shell Maxwell theory as equilibrium limit

Coulomb and Liénard-Wiechert potentials

pre-Maxwell equations lead to 5D wave equation

Green's function contains two parts

 $G_{Maxwell}$ support on 4D lightcone at instantaneous au separation

 $G_{Correlation}$ support on timelike/spacelike separations ($\sigma=\pm1$)

 $G_{Correlation}$ falls off much faster than $G_{Maxwell}$

Coulomb problem

'Static' source moving uniformly on t-axis \longrightarrow Yukawa potential

Mass spectrum of photon \sim range of possible mass exchange

Provides limit on λ

Liénard-Wiechert potential= $\varphi\left(\tau - \tau_R\right) \times \text{Maxwell result}$

Lorentz force \longrightarrow Maxwell result as $c_5 \rightarrow 0$

Wave equation and Green's function (Land and Horwitz 1991

From pre-Maxwell equations in Lorenz gauge

$$\partial_{\beta}\partial^{\beta}a^{\alpha} = (\partial_{\mu}\partial^{\mu} + \partial_{\tau}\partial^{\tau})a^{\alpha} = (\partial_{\mu}\partial^{\mu} + \frac{g_{55}}{c_{5}^{2}} \partial_{\tau}^{2})a^{\alpha} = -\frac{e}{c} j_{\varphi}^{\alpha}(x,\tau)$$

Green's function

$$G_P(x,\tau) = -\frac{1}{2\pi}\delta(x^2)\delta(\tau) - \frac{c_5}{2\pi^2}\frac{\partial}{\partial x^2}\theta(-g_{55}g_{\alpha\beta}x^{\alpha}x^{\beta})\frac{1}{\sqrt{-g_{55}g_{\alpha\beta}x^{\alpha}x^{\beta}}}$$

$$= G_{Maxwell} + G_{Correlation}$$

$G_{Correlation}$

Smaller than $G_{Maxwell}$ by c_5/c and drops off as $1/|\mathbf{x}|^2$

May be neglected at at low energy

Spacelike support for $\sigma = -1$

Timelike support for $\sigma = +1$

$$\int d\tau G_P = -\frac{1}{2\pi} \delta(x^2)$$

'Static' Coulomb potential (Land 1995)

"Static" source event

$$X(\tau) = (c\tau, 0, 0, 0)$$
 evolves along x^0 -axis

Induces current

$$j_{\varphi}^{0}(x,\tau) = c^{2}\varphi(t-\tau)\,\delta^{3}(\mathbf{x})$$
 $\mathbf{j}_{\varphi}(x,\tau) = 0$ $j_{\varphi}^{5}(x,\tau) = \frac{c_{5}}{c}j_{\varphi}^{0}(x,\tau)$

Potential using $G_{Maxwell} = -\frac{1}{2\pi}\delta(x^2)\delta(\tau)$

$$a^{0}(x,\tau) = \frac{e}{4\pi |\mathbf{x}|} \varphi\left(\tau - \left(t - \frac{|\mathbf{x}|}{c}\right)\right)$$
 $\mathbf{a} = 0$ $a^{5}(x,\tau) = \frac{c_{5}}{c} a^{0}(x,\tau)$

Test event

Observer on parallel trajectory $x(\tau) = (c\tau, \mathbf{x})$

$$\varphi(\tau) \longrightarrow \text{Yukawa-type potential} \quad a^0(x,\tau) = \frac{e}{4\pi |\mathbf{x}|} \frac{1}{2\xi} e^{-|\mathbf{x}|/\xi \lambda c}$$

Liénard-Wiechert potential (Land 2016)

Arbitrary source event $X^{\mu}\left(au\right) \longrightarrow {\sf current}$

$$j_{\varphi}^{\alpha}\left(x,\tau\right)=-\frac{e}{c}\int ds\ \varphi\left(\tau-s\right)\dot{X}^{\alpha}\left(s\right)\delta^{4}\left(x-X\left(s\right)\right)$$

Potential using
$$G_{Maxwell} = -\frac{1}{2\pi}\delta(x^2)\delta(\tau)$$

$$a^{\alpha}(x,\tau) = \frac{e}{2\pi} \int ds \ \varphi(\tau - s) \dot{X}^{\alpha}(s) \delta\left((x - X(s))^{2}\right) \theta^{ret}$$
$$= \frac{e}{4\pi} \varphi(\tau - \tau_{R}) \frac{u^{\alpha}}{|u \cdot z(\tau_{R})|}$$

where
$$u^{\mu}=\dot{X}^{\mu}(au)$$
 $z^{\mu}=x^{\mu}-X^{\mu}(au)$ $z^{2}\left(au_{R}
ight)=0$

au-dependence in $arphi\left(au- au_{R}
ight)$

$$a^{\mu}(x,\tau) = \varphi(\tau - \tau_R) A^{\mu}_{\text{Liénard-Wiechert}}(x)$$

Martin Land — Bled 2021

Liénard-Wiechert fields (Land 2016)

From Liénard-Wiechert potential

$$M\ddot{x}^{\mu} = \frac{e}{c} \left[f^{\mu}_{\ \nu}(x,\tau) \dot{x}^{\nu} + f^{5\mu}(x,\tau) \dot{x}^{5} \right]$$
$$= \frac{e}{c} \frac{e}{4\pi} \varphi \left(\tau - \tau_{R} \right) \left[\mathcal{F}^{\mu}_{\ \nu}(x,\tau) \dot{x}^{\nu} + c_{5}^{2} \ \mathcal{F}^{5\mu}(x,\tau) \right]$$

where $\mathcal{F}^{\mu
u}$ and $\mathcal{F}^{5\mu}$ do not contain c_5

$$\begin{split} \mathcal{F}^{\mu\nu} &= \frac{\left(z^{\mu}u^{\nu} - z^{\nu}u^{\mu}\right)u^{2}}{\left(u \cdot z\right)^{3}} + \left[\frac{\left(z^{\mu}\dot{u}^{\nu} - z^{\nu}\dot{u}^{\mu}\right)\left(u \cdot z\right) - \left(z^{\mu}u^{\nu} - z^{\nu}u^{\mu}\right)\left(\dot{u} \cdot z\right)}{\left(u \cdot z\right)^{3}} + \frac{\epsilon\left(\tau - \tau_{R}\right)}{\lambda}\frac{z^{\mu}u^{\nu} - z^{\nu}u^{\mu}}{\left(u \cdot z\right)^{2}}\right] \\ \mathcal{F}^{5\mu} &= \frac{z^{\mu}u^{2} - u^{\mu}\left(u \cdot z\right)}{\left(u \cdot z\right)^{3}} - \frac{\left(\dot{u} \cdot z\right)z^{\mu}}{\left(u \cdot z\right)^{3}} + \frac{\epsilon\left(\tau - \tau_{R}\right)}{\lambda}\frac{z^{\mu} - u^{\mu}\left(u \cdot z\right)}{\left(u \cdot z\right)^{2}} \end{split}$$

Using
$$\varphi(\tau) = \frac{1}{2\xi} e^{-|\tau|/\xi\lambda}$$
 and $\xi = \frac{1}{2} \left[1 + \left(\frac{c_5}{c} \right)^2 \right]$

$$M\dot{x}^{\mu} = rac{e^2}{4\pi c} \; e^{-| au - au_R|/\xi \lambda} \; rac{{\cal F}^{\mu}_{\;\;
u}\dot{x}^{
u} + c_5^2 \; {\cal F}^{5\mu}}{1 + (c_5/c)^2}$$

Recovering Maxwell theory: limit $c_5 o 0$

Lorentz force from Liénard-Wiechert potential

$$M\ddot{x}^{\mu} = \frac{e^{2}}{4\pi c} e^{-|\tau - \tau_{R}|/\xi \lambda} \frac{\mathcal{F}^{\mu}_{\nu} \dot{x}^{\nu} + c_{5}^{2} \mathcal{F}^{5\mu}}{1 + (c_{5}/c)^{2}} \xrightarrow{c_{5} \to 0} \frac{e^{2}}{4\pi c} e^{-2|\tau - \tau_{R}|/\lambda} \mathcal{F}^{\mu}_{\nu} \dot{x}^{\nu}$$

Homogeneous pre-Maxwell equations

$$\begin{split} f^{\alpha\beta} &= \partial^{\alpha}a^{\beta} - \partial^{\beta}a^{\alpha} \ \Rightarrow \ \partial_{\mu}f_{\nu\rho} + \partial_{\nu}f_{\rho\mu} + \partial_{\rho}f_{\mu\nu} = 0 \ \text{ satisfied identically} \\ \partial_{\nu}f_{5\mu} - \partial_{\mu}f_{5\nu} + \frac{1}{c_{5}}\frac{\partial}{\partial\tau}f_{\mu\nu} = 0 \ \Rightarrow \ \partial_{\tau}f_{\mu\nu} = 0 \ \Rightarrow \ \partial_{\tau}\varphi \ \longrightarrow \ 0 \ \Rightarrow \ \lambda \to \infty \end{split}$$

Inhomogeneous pre-Maxwell equations decouple

$$\lambda \to \infty \ \Rightarrow \ \varphi = 1 \ \Rightarrow \ \frac{\partial}{\partial \tau} f^{5\mu} = 0 \ , \ j^{\mu}_{\varphi}(x,\tau) = J^{\mu}(x) \ \Rightarrow \ \partial_{\nu} f^{\mu\nu} = \frac{e}{c} J^{\mu}$$

$$\mathcal{F}^{\mu\nu} = \frac{\left(z^{\mu} u^{\nu} - z^{\nu} u^{\mu}\right) u^{2}}{\left(u \cdot z\right)^{3}} + \left[\frac{\left(z^{\mu} \dot{u}^{\nu} - z^{\nu} \dot{u}^{\mu}\right) \left(u \cdot z\right) - \left(z^{\mu} u^{\nu} - z^{\nu} u^{\mu}\right) \left(\dot{u} \cdot z\right)}{\left(u \cdot z\right)^{3}}\right]$$

Experimental bounds

Photon mass in Coulomb potential

Yukawa-type potential $a^0(x,\tau) = \frac{e}{4\pi |\mathbf{x}|} \frac{1}{2\xi} e^{-|\mathbf{x}|/\xi \lambda c}$

Photon mass spectrum $m_{\gamma}c^2 \sim \hbar/\xi\lambda$

Experimental error for photon mass $\sim 10^{-18} eV \ \longrightarrow \ \lambda > 10^4$ seconds

Field strengths from Yukawa potential

$$f^{k0}(x,\tau) = a^0$$
 $f^{k5}(x,\tau) = \frac{c_5}{c}a^0$ $f^{ij}(x,\tau) = f^{50}(x,\tau) = 0$

Lorentz force for $e^- + e^+ \longrightarrow e^- + e^+$ and $e^- + e^- \longrightarrow e^- + e^-$

$$M\ddot{\mathbf{x}} = \mp e^2 \frac{1 \pm \eta_{55} (c_5/c)^2}{1 + (c_5/c)^2} \nabla \left(\frac{e^{-|\mathbf{x}|/\xi \lambda c}}{4\pi |\mathbf{x}|} \right)$$

$$\frac{\sigma\left(e^{-}+e^{+}\longrightarrow e^{-}+e^{+}\right)}{\sigma\left(e^{-}+e^{-}\longrightarrow e^{-}+e^{-}\right)}=1\pm\text{experimental error}\simeq\left[\frac{1\mp\eta_{55}\left(\frac{c_{5}}{c}\right)^{2}}{1+\left(\frac{c_{5}}{c}\right)^{2}}\right]^{2}$$

Mass Shifts and Mass Restoration

Toy model for mass change from interaction

Particle experiences stochastic perturbative interaction

Small periodic amplitude at high frequency added to position

Large velocity perturbations

Possible macroscopic mass perturbation

Self-interaction \longrightarrow mass restoration

Particle x^0 varies in co-moving frame \longrightarrow mass acceleration

For $\sigma = +1$, $G_{Correlation}$ has timelike support

Particle interacts in future with its own field

Interaction damps mass acceleration to zero

Self-interaction vanishes when mass remains on-shell

Mass Shift by Stochastic Perturbation

On-shell event enters dense region of charged particles

Uniformly propagating event

$$x\left(\tau\right) = u\tau = \left(u^{0}, \mathbf{u}\right) \qquad \qquad u^{2} = -c^{2}$$

Dense region of charged particles

Small stochastic perturbation $X(\tau) \longrightarrow x(\tau) = u\tau + X(\tau)$

Typical distance d between force centers $\,\longrightarrow\,$ roughly periodic perturbation

Characteristic period =
$$\frac{d}{|\mathbf{u}|} = \frac{\text{very short distance}}{\text{moderate velocity}} = \text{very short time}$$

fundamental frequency
$$=\omega_0=2\pi \frac{|\mathbf{u}|}{d}=$$
 very high frequency

$$\mathsf{amplitude} = \left| X^{\mu} \left(\tau \right) \right| \sim \alpha d$$

macroscopic factor = α < 1

Mass Shift by Stochastic Perturbation

Perturbed motion

Expand perturbation in Fourier series

$$X(\tau) = \operatorname{Re} \sum_{n} a_n \ e^{in\omega_0 \tau}$$

Write four-vector coefficients as

$$a_n = \alpha ds_n = \alpha d\left(s_n^0, \mathbf{s}_n\right) = \alpha d\left(cs_n^t, \mathbf{s}_n\right)$$

where s_n represent normalized Fourier series $(s_0^\mu \sim 1)$

Perturbed motion on microscopic scale d

$$X(\tau) = \alpha d \operatorname{Re} \sum_{n} s_{n}^{\mu} e^{in\omega_{0}\tau}$$

Perturbed velocity on macroscopic scale $\alpha |\mathbf{u}|$

$$\dot{x}^{\mu}\left(au
ight)=u^{\mu}+lpha\left|\mathbf{u}\right|\ \mathrm{Re}\sum_{n}2\pi n\ s_{n}^{\mu}\ ie^{in\omega_{0} au}$$

Unperturbed on-shell mass

$$m = -\frac{M\dot{x}^2(\tau)}{c^2} = M$$

Perturbed mass, neglecting α^2

$$m = -\frac{M\dot{x}^{2}(\tau)}{c^{2}} = -\frac{M}{c^{2}} \left(u + \alpha |\mathbf{u}| \operatorname{Re} \sum_{n} 2\pi n \ s_{n} \ i e^{in\omega_{0}\tau} \right)^{2}$$

$$\simeq M \left(1 + 4\pi\alpha |\mathbf{u}| \operatorname{Re} \sum_{n} n \ s_{n}^{t} \ i e^{in\omega_{0}\tau} \right)$$

$$m \longrightarrow m \left(1 + \frac{\Delta m}{m} \right) \qquad \frac{\Delta m}{m} = 4\pi\alpha |\mathbf{u}| \operatorname{Re} \sum_{n} n \ s_{n}^{t} \ i e^{in\omega_{0}\tau}$$

Larger mass shifts if $\alpha > 1 \ \Rightarrow \ \alpha^2$ becomes significant

Self-Interaction for Mass Stability

Framework

Arbitrarily moving event $X^{\mu}(\tau)$

In co-moving frame
$$X\left(au
ight) = \left(ct\left(au
ight), \mathbf{0}
ight)$$
 $\dot{X}\left(au
ight) = \left(c\dot{t}\left(au
ight), \mathbf{0}
ight)$

Produces current $j_{\varphi}^{\alpha}(x,\tau)$ and field $f^{\alpha\beta}(x,\tau)$

At time $\tau^* > \tau$

$$G_{Maxwell} = 0$$
 on timelike separation $X(\tau^*) - X(\tau) = c(t(\tau^*) - t(\tau), \mathbf{0})$

 $G_{Correlation}$ has timelike support for $\sigma = +1$

Particle interacts with its own induced potential

$$a^{\alpha}(X(\tau^{*}),\tau^{*}) = \frac{ec_{5}}{2\pi^{2}c^{3}} \int ds \ \dot{X}^{\alpha}(s) \left(\frac{1}{2} \frac{\theta(g(s))}{(g(s))^{3/2}} - \frac{\delta(g(s))}{(g(s))^{1/2}}\right) \ \theta(\tau^{*} - s)$$

$$c^{2}g(s) = -\left(\left(X(\tau) - X(s)\right)^{2} + c_{5}^{2}(\tau - s)^{2}\right) = c^{2}\left(\left(t(\tau^{*}) - t(s)\right)^{2} - \frac{c_{5}^{2}}{c^{2}}(\tau^{*} - s)^{2}\right)$$

Self-Interaction for Mass Stability

On-shell trajectory

Particle evolves uniformly in co-moving frame to $\ t\left(au^{st}
ight) = au^{st}$

$$g(s) = (1 - c_5^2/c^2) (\tau^* - s)^2$$

Potential

$$a(X(\tau^*), \tau^*) = \frac{ec_5}{2\pi^2 c^3} (c, \mathbf{0}, c_5) \int_{-\infty}^{\tau^*} \left(\frac{\theta\left(\left(1 - \frac{c_5^2}{c^2}\right)(\tau^* - s)^2\right)}{2\left(\left(1 - \frac{c_5^2}{c^2}\right)(\tau^* - s)^2\right)^{3/2}} - \frac{\delta\left(\left(1 - \frac{c_5^2}{c^2}\right)(\tau^* - s)^2\right)}{\left(\left(1 - \frac{c_5^2}{c^2}\right)(\tau^* - s)^2\right)^{1/2}} \right)$$

$$= \frac{ec_5}{2\pi^2 c^3} (c, \mathbf{0}, c_5) \lim_{s \to \tau^*} \left(\frac{1}{2(\tau^* - s)^2} - \frac{\frac{1}{2}}{(\tau^* - s)^2} \right)$$

$$= 0$$

No self-interaction for $\dot{x}^2 = \text{constant}$

Self-Interaction for Mass Stability

Arbitrary trajectory in co-moving frame

Trajectory

$$\dot{X}\left(au
ight)=\left(c\dot{t}\left(au
ight),\mathbf{0}
ight)\ \longrightarrow\ a^{i}=\partial_{i}a^{0}=\partial_{i}a^{5}=f^{\mu\nu}=f^{5i}=0$$

Field strength

$$f^{50} = \frac{1}{c_5} \partial_{\tau^*} a^0 + \frac{1}{c} \partial_t a^5 = f_{\theta}^{50} + f_{\delta}^{50} + f_{\delta'}^{50}$$

$$f_{\theta}^{50} = \frac{3e}{4\pi^2} \frac{c_5^2}{c^4} \int ds \, \frac{\theta(g(s))}{(g(s))^{5/2}} \, \theta^{ret} \, \Delta(\tau^*, s)$$

$$f_{\delta}^{50} = -\frac{e}{\pi^2} \frac{c_5^2}{c^4} \int ds \, \frac{\delta(g(s))}{(g(s))^{3/2}} \, \theta^{ret} \, \Delta(\tau^*, s)$$

$$f_{\delta'}^{50} = -\frac{e}{\pi^2} \frac{c_5^2}{c^4} \int ds \ \frac{\delta'(g(s))}{(g(s))^{1/2}} \ \theta^{ret} \ \Delta(\tau^*, s)$$

where

$$\Delta(\tau^*, s) = \dot{t}(s)(\tau^* - s) - (t(\tau^*) - t(s))$$

$$g(s) = (t(\tau^*) - t(s))^2 - (c_5^2/c^2)(\tau^* - s)^2$$

Function $\Delta(\tau^*,s)$

At constant velocity

$$x^{0}(\tau) = u^{0}\tau \qquad \Rightarrow \qquad \Delta(\tau^{*}, s) = \frac{u^{0}}{c}(\tau^{*} - s) - \left(\frac{u^{0}}{c}\tau^{*} - \frac{u^{0}}{c}s\right) = 0$$

Expand $t(\tau)$ to order \ddot{t}

$$t(\tau^*) - t(s) = t(s) + \dot{t}(s)(\tau^* - s) + \frac{1}{2}\ddot{t}(s)(\tau^* - s)^2 + o\left((\tau^* - s)^3\right) - t(s)$$
$$= \dot{t}(s)(\tau^* - s) + \frac{1}{2}\ddot{t}(s)(\tau^* - s)^2 + o\left((\tau^* - s)^3\right)$$

From which

$$\Delta(\tau^*, s) = -\frac{1}{2}\ddot{t}(s)(\tau^* - s)^2 + o\left((\tau^* - s)^3\right)$$

 $\Delta\left(\tau^*,s\right) \neq 0 \ \Rightarrow \ x^0(\tau)$ accelerates in rest frame $\ \Rightarrow \$ mass shift

Mass jump

Small, sudden jump in mass at $\tau = 0$

$$t\left(\tau\right) = \left\{ \begin{array}{ll} \tau & , & \tau < 0 \\ \left(1 + \beta\right)\tau & , & \tau > 0 \end{array} \right. \Rightarrow \qquad \dot{t}\left(\tau\right) = \left\{ \begin{array}{ll} 1 & , & \tau < 0 \\ 1 + \beta & , & \tau > 0 \end{array} \right.$$

For $\tau^* < 0$

$$\theta^{ret} \; \Rightarrow \; s < 0 \quad \longrightarrow \quad \dot{t}(\tau^*) = t(s) = 1 \quad \longrightarrow \quad \Delta(\tau^*, s) = 0$$

For
$$\tau^* > 0$$

$$s > 0 \longrightarrow \dot{t}(\tau^*) = t(s) = 1 + \beta \longrightarrow \Delta(\tau^*, s) = 0$$

$$s < 0 \longrightarrow \Delta(\tau^*, s) = \dot{t}(s) (\tau^* - s) - ((1 + \beta) (\tau^*) - s) = -\beta \tau^*$$

Solve
$$g(s^*) = 0 \longrightarrow s^* = \left(1 + \frac{\beta}{1 - \frac{c_5}{c}}\right) \tau^* > \tau^*$$

$$g(s)>0$$
 on $s<0< au^*$ \Rightarrow $f^{50}_{\delta}=f^{50}_{\delta'}=0$

Field strength from mass jump

Support of self-interaction

$$\theta(g(s)) = 1 \ \text{ for } \ s < \tau^* \ \text{and} \ \ \Delta(\tau^*, s) = \left\{ \begin{array}{ccc} -\beta \tau^* & , & \text{ for } s < 0 \\ 0 & , & \text{ for } s > 0 \end{array} \right.$$

Field strength

$$\begin{split} f^{50} &= f_{\theta}^{50} = (-\beta \tau^*) \frac{3e}{4\pi^2} \frac{c_5^2}{c^4} \int_{-\infty}^0 ds \; \frac{1}{\left[g(s)\right]^{5/2}} \\ &= (-\beta \tau^*) \frac{3e}{4\pi^2} \frac{c_5^2}{c^4} \int_{-\infty}^0 ds \; \frac{1}{\left[((1+\beta)\,\tau^* - s)^2 - \frac{c_5^2}{c^2} (\tau^* - s)^2\right]^{5/2}} \\ &= \frac{e}{4\pi^2} \frac{1}{c_5^2 \left(\beta \tau^*\right)^3} \; Q\left(\beta, \frac{c_5^2}{c^2}\right) \end{split}$$

 $Q\left(\beta, \frac{c_5^2}{c^2}\right) \text{ positive, dimensionless, finite for } c_5 < c, \quad Q\left(\beta, \frac{c_5^2}{c^2}\right) \quad \xrightarrow[c_5 \to 0]{} \quad 0$

Factor Q

$$Q\left(\beta, \frac{c_5^2}{c^2}\right) = \left[2\left(1 - \frac{c_5^2}{c^2}\right)^{3/2} \left(1 - \frac{\left(1 - \frac{c_5^2}{c^2}\right)^{1/2} \left(1 + \frac{\beta}{\left(1 - \frac{c_5^2}{c^2}\right)}\right)}{\left[1 + \frac{2\beta}{1 - \frac{c_5^2}{c^2}} + \frac{\beta^2}{1 - \frac{c_5^2}{c^2}}\right]^{1/2}}\right)$$

$$+\frac{\beta^2 \frac{c_5^2}{c^2} \left(1 + \frac{c_5^2}{c^2} \frac{\beta}{1 - \frac{c_5^2}{c^2}}\right)}{\left(1 - \frac{c_5^2}{c^2}\right)^{1/2} \left[1 + \frac{2\beta}{1 - \frac{c_5^2}{c^2}} + \frac{\beta^2}{1 - \frac{c_5^2}{c^2}}\right]^{3/2}}\right]$$

Lorentz force

Lorentz force

$$f^{\mu\nu} = 0 \longrightarrow M\ddot{x}^{\mu} = -ec_5 f^{5\mu}$$

Self-interaction

$$\begin{split} M\ddot{x}^{0} &= -c_{5}ef^{50} = \left\{ \begin{array}{c} 0 & , \quad \tau^{*} < 0 \\ -\frac{\lambda e^{2}}{4\pi^{2}}\frac{1}{c_{5}\left(\beta\tau^{*}\right)^{3}} \; Q\left(\beta,\frac{c_{5}^{2}}{c^{2}}\right) & , \quad \tau^{*} > 0 \\ M\ddot{x}^{i} &= -c_{5}ef^{5i}\dot{x}_{i} = 0 \end{array} \right. \end{split}$$

$$M\ddot{x}^i = -c_5 e f^{5i} \dot{x}_i = 0$$

$$\frac{d}{d\tau} \left(-\frac{1}{2} M \dot{x}^2 \right) = e f^{5\mu} \dot{x}_{\mu} = -e c f^{50} \dot{t} = -\frac{\lambda e^2}{4\pi^2} \frac{c}{c_5^2 \left(\beta \tau^*\right)^3} Q \left(\beta, \frac{c_5^2}{c^2}\right) \dot{t}$$

Emergent picture

Self-interaction \longrightarrow force opposing mass exchange

Mass damps back to on-shell value

Force vanishes when $\dot{t} = 1$

First order Lagrangian in particle and field

 $\psi^* i \partial_{ au} \psi$ kinetic term for particle

No \dot{a}_5 term \longrightarrow Gauss law and eliminates longitudinal modes

Unconstrained Lagrangian

4-Momentum + mass states $d^k d\kappa$

Natural cut-off

Mass shift undetermined (analogous to scattering angle)

Interaction kernel Φ puts $\frac{1}{1+\lambda^2\kappa^2}$ into photon propagator

 λ restricts mass exchange as in classical Coulomb

Only one photon loop to renormalize

Particles propagate with au-retarded causality — no matter loops

Recovers standard Klein-Gordon if $\Delta m = 0$ or $\sqrt{s} \gg M$

Covariant quantum mechanics

Stueckelberg-Schrodinger equation

$$\left(i\hbar\partial_{\tau}+e\frac{c_{5}}{c}a_{5}\right)\ \psi\left(x,\tau\right)=\frac{1}{2M}\left(p^{\mu}-\frac{e}{c}a^{\mu}\right)\left(p_{\mu}-\frac{e}{c}a_{\mu}\right)\ \psi\left(x,\tau\right)$$

Local 5D gauge invariance

Wavefunction
$$\psi(x,\tau) \rightarrow \exp\left[\frac{ie}{\hbar c}\Lambda(x,\tau)\right]\psi(x,\tau)$$

Potential $a_{\alpha}(x,\tau) \rightarrow a_{\alpha}(x,\tau) + \partial_{\alpha}\Lambda(x,\tau)$

Global gauge invariance \longrightarrow conserved current $\partial_{lpha} j^{lpha} = 0$

$$j^{\mu} = -\frac{i\hbar}{2M} \left\{ \psi^* \left(\partial^{\mu} - \frac{ie}{c} a^{\mu} \right) \psi - \psi \left(\partial^{\mu} + \frac{ie}{c} a^{\mu} \right) \psi^* \right\} \qquad j^5 = c_5 \left| \psi(x, \tau) \right|^2$$

5D Quantum Field Theory

Lagrangian

$$\mathcal{L} = \psi^* (i\partial_{\tau} + ea_5)\psi - \frac{1}{2M}\psi^* (-i\partial_{\mu} - ea_{\mu})(-i\partial^{\mu} - ea^{\mu})\psi - \frac{\lambda}{4}f^{\alpha\beta}f^{\Phi}_{\alpha\beta}$$
$$f^{\Phi}_{\alpha\beta}(x,\tau) = \int ds \; \Phi(\tau - s) \; f_{\alpha\beta}(x,s)$$

Jackiw first order constrained quantization — introduce $\epsilon^\mu = f^{5\mu}$

$$\mathcal{L} = i\psi^*\dot{\psi} - \lambda\dot{a}^{\mu}\epsilon_{\mu}^{\Phi} - \frac{1}{2M}\psi^*(-i\partial_{\mu} - ea_{\mu})(-i\partial^{\mu} - ea^{\mu})\psi - \frac{\lambda}{4}f^{\mu\nu}f^{\Phi}_{\mu\nu}$$
$$-\frac{\lambda}{2}\epsilon^{\mu}\epsilon_{\mu}^{\Phi} + a_5\left(e\psi^*\psi - \lambda\partial^{\mu}\epsilon_{\mu}^{\Phi}\right)$$

Path integral

$$\mathcal{Z} = \frac{1}{\mathcal{N}} \int \mathcal{D}\psi^* \; \mathcal{D}\psi \; \mathcal{D}a_{\mu} \; \mathcal{D}a_5 \; \mathcal{D}\epsilon_{\mu}e^{iS}$$

No \dot{a}^5 term $\Rightarrow \int \mathcal{D}a_5 \longrightarrow \text{Gauss law constraint } \delta(\partial^{\mu}\epsilon^{\Phi}_{\mu} - e\psi^*\psi)$

Feynman rules

Solve constraint + gauge transformation

$$\mathcal{L} = i\psi^*\dot{\psi} - \frac{1}{2M}\psi^*(-i\partial_{\mu} - ea_{\perp\mu})(-i\partial^{\mu} - ea_{\perp}^{\mu})\psi + \frac{1}{2}a_{\perp\mu}\left(\Box + \sigma\partial_{\tau}^2\right)a_{\perp\mu}^{\Phi\mu}$$

Feynman rules

Matter field propagator

$$\frac{1}{(2\pi)^5} \frac{-i}{\frac{1}{2M}p^2 - P - i\epsilon}$$

 $Photon\ propagator$

$$\left[g^{\mu\nu} - \frac{k^{\mu}k^{\nu}}{k^2}\right] \frac{-i}{k^2 + \kappa^2 - i\epsilon} \quad \frac{1}{1 + \lambda^2\kappa^2}$$

Three-particle interaction

$$\frac{e}{2M}i(p+p')^{\nu} (2\pi)^{5}\delta^{4}(p-p'-k)\delta(P-P'-\kappa)$$

Four-particle interaction

$$\frac{-ie^2}{M}(2\pi)^5 g_{\mu\nu} \delta^4(k - k' - p' + p) \delta(-\kappa + \kappa' + P' - P)$$

Super-renormalizable

Matter propagator

$$G(x,\tau) = \int \frac{d^4k \, d\kappa}{(2\pi)^5} \frac{e^{i(k\cdot x - \kappa \tau)}}{\frac{1}{2M}k^2 - \kappa - i\epsilon} = i\theta(\tau) \int \frac{d^4k}{(2\pi)^4} e^{i(k\cdot x - \frac{1}{2M}k^2 + i\epsilon)}$$

Retarded causality \longrightarrow no matter loops

Feynman: extract stationary eigenstate of mass operator $-i\hbar\partial_{ au}$

$$\int_{-\infty}^{\infty} d\tau e^{-i(m^2/2M)\tau} G(x,\tau) = \int \frac{d^4k}{(2\pi)^4} \frac{e^{ik\cdot x}}{\frac{1}{2M}(k^2+m^2)-i\epsilon} = 2M \; \Delta_F(x)$$

Photon propagator

Interaction kernel $\Phi(\tau) \longrightarrow \operatorname{cut-off} \left(1 + \lambda^2 K^2\right)^{-1}$

One divergent photon loop renormalized by shifting mass term $i\psi^*\partial_{ au}\psi$

$$G_0^{(2)}(p) \ \left((2\pi)^5 \frac{ie_0^2}{M} \right)^2 \frac{1}{\lambda} \int d^4q dQ \frac{-i}{q^2 + Q^2 - i\epsilon} \ \frac{1}{1 + \lambda^2 Q^2} \ G_0^{(2)}(p)$$

Elastic Scattering

Identical particles

$$m_1^{\mathsf{in}} = m_2^{\mathsf{in}} = M$$

Mass exchange

$$\Delta m = m_1^{\text{out}} - m_2^{\text{out}}$$

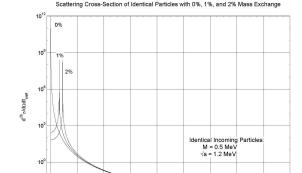
Shifts pole from 0°

Not fixed kinematically

Restricted by cutoff

 $\Delta m < {
m photon \ mass}$

$$\lesssim \frac{\hbar}{c^2} \frac{1}{\lambda}$$



Recover Klein-Gordon cross-section

$$\Delta m = 0 \text{ or } \sqrt{s} \gg M$$

20

30

50 60

0 (degrees)

70

How to find $g_{\mu\nu}(x) \longrightarrow g_{\mu\nu}(x,\tau)$ — Land 2018 - 2021

Evolving spacetime

Block universe $\mathcal{M}(au)$ evolves to block universe $\mathcal{M}(au+d au)$

Spacetime metric $g_{\mu\nu}(x,\tau)$ should evolve to $g_{\mu\nu}(x,\tau+d\tau)$

Hint from electrodynamics: could evolve as $g_{\alpha\beta}(x,\tau)$

Must break 5D symmetry — no geodesic equation for \dot{x}^5

Leads to $\frac{dK}{d au}
eq 0 \, \Rightarrow$ particle mass not conserved

Linearized system \longrightarrow post-Newtonian model with mass acceleration

4+1 formalism (generalizes ADM formalism)

Find ${\mathcal M}$ by foliation of ${\mathcal M}_5={\mathcal M} imes au$ -line

Parameterize $g_{\alpha\beta}(x,\tau)$ as $\gamma_{\mu\nu}(x,\tau)$, lapse, shift

Einstein equations \longrightarrow evolution equations for $\gamma_{\mu\nu}(x,\tau)$ and constraints

Components $g_{5\beta}(x,\tau)$ must be small

Preserve 5D geometry of Ricci tensor — break matter symmetry to 4+1

Geometry, evolution, and trajectory

Geometry

Neighboring events in spacetime ${\mathcal M}$ (instantaneous displacement)

Interval
$$\delta x^2 = \gamma_{\mu\nu} \delta x^{\mu} \delta x^{\nu} = (x_2 - x_1)^2$$

Invariance of interval: geometrical statement about ${\mathcal M}$

Evolution

$$\mathcal{M}(au)$$
 — Hamiltonian K generates au -evolution $\mathcal{M}(au+d au)$

Symmetries: dynamical statements about *K*

Trajectory in δx and $\delta \tau$

Neighboring events
$$X_1=(x_1,c_5\tau_1)$$
 $X_2=(x_2,c_5(\tau_1+\delta\tau))$ Distance $X_2-X_1=\left(\delta x+\frac{dx(\tau)}{d\tau}\delta\tau,c_5\delta\tau\right)$

Interval
$$dX^2 = \left(\delta x + \frac{dx(\tau)}{d\tau}\delta \tau\right)^2 + \sigma c_5^2 \delta \tau^2 = g_{\alpha\beta}(x,\tau) \,\delta x^{\alpha} \delta x^{\beta}$$

Break 5D symmetry \longrightarrow 4D+1

Constrain non-dynamical scalar $x^5 \equiv c_5 \tau$

$$L = \frac{1}{2} M g_{\alpha\beta}(x,\tau) \dot{x}^{\alpha} \dot{x}^{\beta} = \frac{1}{2} M g_{\mu\nu} \ \dot{x}^{\mu} \dot{x}^{\nu} + M c_5 \ g_{\mu5} \dot{x}^{\mu} + \frac{1}{2} M c_5^2 \ g_{55}$$

Euler-Lagrange \longrightarrow geodesic equations

$$0 = \frac{D\dot{x}^{\alpha}}{D\tau} = \ddot{x}^{\alpha} + \Gamma^{\alpha}_{\beta\gamma}\dot{x}^{\beta}\dot{x}^{\gamma} \longrightarrow \begin{cases} \ddot{x}^{\mu} + \Gamma^{\mu}_{\lambda\sigma}\dot{x}^{\lambda}\dot{x}^{\sigma} + 2c_{5}\Gamma^{\mu}_{5\sigma}\dot{x}^{\sigma} + c_{5}^{2}\Gamma^{\mu}_{55} = 0\\ \ddot{x}^{5} = \dot{c}_{5} \equiv 0 \end{cases}$$

Hamiltonian

$$K = p_{\mu}\dot{x}^{\mu} - L = \frac{1}{2}Mg_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu} - \frac{1}{2}Mc_5^2 g_{55} = L - Mc_5^2 g_{55}$$

$$\frac{dK}{d\tau} = -\frac{1}{2}M\dot{x}^{\mu}\dot{x}^{\nu}\frac{\partial g_{\mu\nu}}{\partial \tau} - \frac{1}{2}Mc_5^2\frac{\partial g_{55}}{\partial \tau}$$

particle mass not generally conserved

General Relativity with au-Evolution au-Matter

Non-thermodynamic dust

Number of events per spacetime volume = $n(x, \tau)$

Particle mass density $= \rho(x, \tau) = Mn(x, \tau)$

5-component event current $=j^{\alpha}\left(x,\tau\right)=\rho(x,\tau)\dot{x}^{\alpha}(\tau)=Mn(x,\tau)\dot{x}^{\alpha}(\tau)$

Matter current is vector $j^{\mu}\left(x,\tau\right)$ and scalar $j^{5}\left(x,\tau\right)$

Continuity equation

$$\nabla_{\alpha}j^{\alpha} = \nabla_{\mu}j^{\mu} + \frac{1}{c^5}\partial_{\tau}\rho c^5 = \nabla_{\mu}j^{\mu} + \partial_{\tau}\rho$$

Mass-energy-momentum tensor

$$\mathbf{\nabla}_{\beta}T^{\alpha\beta} = 0$$
 $T^{\alpha\beta} = \rho\dot{x}^{\alpha}\dot{x}^{\beta} \longrightarrow \left\{ egin{array}{l} T^{\mu\nu} = \rho\dot{x}^{\mu}\dot{x}^{\nu} \\ T^{5\beta} = c_{5}j^{\beta} \end{array} \right.$

Weak Field Approximation

Einstein equations in 5D (unmodified)

$$G_{\alpha\beta} = R_{\alpha\beta} - \frac{1}{2}Rg_{\alpha\beta} = \frac{8\pi G}{c^4}T_{\alpha\beta}$$

Small perturbation to flat metric

$$g_{\alpha\beta} = \eta_{\alpha\beta} + h_{\alpha\beta} \longrightarrow \partial_{\gamma}g_{\alpha\beta} = \partial_{\gamma}h_{\alpha\beta} \qquad (h_{\alpha\beta})^2 \approx 0 \qquad h \simeq \eta^{\alpha\beta}h_{\alpha\beta}$$

Define $ar{h}_{lphaeta}=h_{lphaeta}-rac{1}{2}\eta_{lphaeta}h$ and impose gauge condition $\partial_\lambdaar{h}^{lpha\lambda}=0$

Einstein equations:
$$\frac{16\pi G}{c^4}T_{\alpha\beta} = -\partial^{\gamma}\partial_{\gamma}\bar{h}_{\alpha\beta} = -\left(\partial^{\mu}\partial_{\mu} + \frac{\eta_{55}}{c_{5}^{2}}\partial_{\tau}^{2}\right)\bar{h}_{\alpha\beta}$$

Solve using leading term in Green's function for 5D wave equation

$$\bar{h}_{\alpha\beta}(x,\tau) = \frac{4G}{c^4} \int d^3x' \frac{T_{\alpha\beta}\left(t - \frac{|\mathbf{x} - \mathbf{x}'|}{c}, \mathbf{x}', \tau\right)}{|\mathbf{x} - \mathbf{x}'|}$$

Arbitrarily evolving particle

Evolving spacetime event

$$X^{\alpha}(\tau) = (X^{\mu}(\tau), c_5\tau)$$
 with notation $\xi^{\alpha}(\tau) = \frac{1}{c}u^{\alpha}(\tau) = \frac{1}{c}\dot{X}^{\alpha}$

5D interval conserved

$$\frac{d}{d\tau}u^2 = 2u_\alpha \frac{Du^\alpha}{D\tau} = 0$$

Choose value in rest frame: $u = (c, 0, 0, 0, c_5)$

$$u^2 = c^2 \xi^2 = -c^2 + \sigma c_5^2 \longrightarrow \xi^2 = -1 + \sigma \xi_5^2 \approx -1$$

Spacetime particle density

$$\rho\left(x,\tau\right) = \rho\left(x - X\left(\tau\right)\right)$$

Mass-energy-momentum tensor

$$T^{\alpha\beta} = m\rho(x,\tau) \dot{X}^{\alpha} \dot{X}^{\beta} = m\rho(x,\tau) u^{\alpha} u^{\beta} = mc^{2}\rho(x,\tau) \xi^{\alpha} \xi^{\beta}$$

First order solution in linearized gravity

Metric from leading term in Green's function

$$\bar{h}_{\alpha\beta}(x,\tau) = \mathcal{G}\left[T_{\alpha\beta}\right] = \frac{4Gm}{c^2} \xi_{\alpha} \xi_{\beta} \int d^3x' \frac{\rho\left(t - \frac{|\mathbf{x} - \mathbf{x}'|}{c}, \mathbf{x}', \tau\right)}{|\mathbf{x} - \mathbf{x}'|}$$

Full metric from trace

$$\eta^{\alpha\beta}\bar{h}_{\alpha\beta} = \eta^{\alpha\beta}\left(h_{\alpha\beta} - \frac{1}{2}\eta_{\alpha\beta}h\right) = \frac{2-D}{2}h \longrightarrow h_{\alpha\beta} = \bar{h}_{\alpha\beta} - \frac{1}{D-2}\eta_{\alpha\beta}\bar{h}$$

In D = 5 for static source $\xi = (1, \mathbf{0}, c_5/c)$

$$h_{00} = \frac{2}{3}\mathcal{G} [T_{00}]$$
 $h_{05} = \frac{2}{3}\sigma \xi_5 \mathcal{G} [T_{00}]$ $h_{ij} = \frac{1}{3}\delta_{ij}\mathcal{G} [T_{00}]$ $h_{55} = \frac{1}{3}\sigma \mathcal{G} [T_{00}]$

Expect: $h_{00} \sim h_{ii}$ and $h_{55} \ll h_{00}$ for consistency with standard GR

Modified field equation

Modified $\eta_{\alpha\beta}$ explicitly breaks 5D symmetry in presence of matter

$$R_{\alpha\beta} - \frac{1}{2}\bar{\eta}_{\alpha\beta}R = \frac{8\pi G}{c^4}T_{\alpha\beta} \qquad \qquad \bar{\eta}_{\mu\nu} = \eta_{\mu\nu} \qquad \qquad \bar{\eta}_{5\alpha} = 0$$

Trace reversed linearized Einstein equation

$$\begin{split} R_{\mu\nu} &= -\frac{1}{2} \partial^{\gamma} \partial_{\gamma} h_{\mu\nu} = \frac{8\pi G}{c^4} \left(T_{\mu\nu} - \frac{1}{2} \bar{\eta}_{\mu\nu} \bar{T} \right) \\ R_{5\alpha} &= -\frac{1}{2} \partial^{\gamma} \partial_{\gamma} h_{5\alpha} = \frac{8\pi G}{c^4} T_{5\alpha} \end{split}$$

Modified solution

$$h_{00} = \frac{1}{2} \mathcal{G} [T_{00}] \qquad h_{05} = \sigma \xi_5 \mathcal{G} [T_{00}]$$

$$h_{ij} = \frac{1}{2} \delta_{ij} \mathcal{G} [T_{00}] \qquad h_{55} = \sigma \xi_5^2 \mathcal{G} [T_{00}]$$

Static source

For a source
$$X(\tau) = (c\tau, \mathbf{0})$$
 and taking $\rho(\mathbf{x}) = \delta^3(\mathbf{x})$

$$g_{\mu\nu} = \left(-1 + \frac{2Gm}{c^2r}, \left(1 + \frac{2Gm}{c^2r}\right)\delta_{ij}\right)$$

$$\approx \left(-\left(1 - \frac{2Gm}{c^2r}\right), \left(1 - \frac{2Gm}{c^2r}\right)^{-1}\delta_{ij}\right)$$

Consistent with spherically symmetric Schwarzschild metric

$$g_{55} = \sigma \left(1 + \sigma \xi_5^2 \left(\frac{2Gm}{c^2 r} \right) \right) = \sigma + o \left(\frac{c_5^2}{c^2} \right)$$

Approach distinguishes evolution from geometry

Preserves 5D symmetry of Ricci tensor $R_{\alpha\beta}$ (geometry)

Breaks 5D symmetry in relationship between $R_{\alpha\beta}$ and $T_{\alpha\beta}$ (physics)

Perturbation by varying source mass

Point source in co-moving frame: $\dot{T} \neq 1 \ \Rightarrow \ \text{mass acceleration}$

$$X = (cT(\tau), \mathbf{0})$$
 $\dot{T} = 1 + \alpha(\tau)/2$ $\alpha^2 \approx 0$

Mass distribution

$$M(x,\tau) = m\delta^3(\mathbf{x}) \rho(t - T(\tau))$$

 $T^{00} = M(x,\tau)c^2\dot{T}^2$ $T^{\alpha i} = 0$ $T^{55} = \frac{c_5^2}{c^2}T^{00} \approx 0$

Metric and connection perturbations from Green's function

$$\bar{h}^{00}(x,\tau) = \frac{4GM}{c^2R}\dot{T}^2 \qquad \bar{h}^{\alpha i}(x,\tau) = 0 \qquad \bar{h}^{55}(x,\tau) = \frac{c_5^2}{c^2}\bar{h}^{00} \approx 0$$
$$\Gamma^{\mu}_{00} = -\frac{1}{2}\eta^{\mu\nu}\partial_{\nu}h_{00} \qquad \Gamma^{\mu}_{50} = \frac{1}{2c_5}\eta^{\mu0}\partial_{\tau}h_{00}$$

Test particle in spherical coordinates

Acceleration in time coordinate (neglecting velocity of test particle)

$$\ddot{t} = \left(\partial_{\tau} h_{00}\right) \dot{t} + \dot{\mathbf{x}} \cdot \left(\nabla h_{00}\right) \dot{t}^{2} \approx \frac{2GM}{c^{2}R} \left(1 + \frac{\alpha\left(\tau\right)}{2}\right) \dot{\alpha}\left(\tau\right) \dot{t}$$

Angular and radial equations

Put $\theta = \pi/2$

$$\ddot{\mathbf{x}} = \frac{c^2}{2} \left(\nabla h_{00} \right) \dot{t}^2 \longrightarrow \begin{cases} 2\dot{R}\dot{\phi} + R\ddot{\phi} = 0 & \longrightarrow \dot{\phi} = \frac{L}{MR^2} \\ \ddot{R} - \frac{L^2}{M^2R^3} = -\frac{GM}{R^2} \dot{t}^2 \dot{T}^2 \end{cases}$$

Angular momentum conserved

Post-Newtonian term on RHS of radial equation

$$\alpha=0 \ \Rightarrow \ \dot{T}=1 \ \Rightarrow \ \dot{t}^2\dot{T}^2=1$$
 recovers Newtonian gravitation

Solution to equations of motion

Neglecting $\dot{R}/c \ll 1$ and $\partial_{\tau} \rho \approx 0$

$$\dot{t} = \exp\left[\frac{2GM}{c^2R}\left(\alpha + \frac{1}{4}\alpha^2\right)\right] \ \longrightarrow \ \dot{t}^2\dot{T}^2 \simeq 1 + \frac{1}{2}\left(1 + \frac{2GM}{c^2R}\right)\alpha$$

Using solution to t equation in radial equation

$$\frac{d}{d\tau} \left\{ \frac{1}{2} \dot{R}^2 + \frac{1}{2} \frac{L^2}{M^2 R^2} - \frac{GM}{R} \left(1 + \frac{1}{2} \alpha \left(\tau \right) \right) \right\} = -\frac{GM}{2R} \frac{d}{d\tau} \alpha \left(\tau \right)$$

LHS is $\frac{d}{d\tau}\left(\text{particle Hamiltonian}\right) = \frac{d}{d\tau}\left(\text{particle mass}\right)$

 $\dot{T} \neq 1 \Rightarrow$ energy change without in source rest frame \Rightarrow mass change

Mass transfer across spacetime

Source transfers mass to perturbed metric field $h_{lphaeta}$

Test particle absorbs mass from $h_{\alpha\beta} \longrightarrow$ particle mass not conserved $\alpha=0$ recovers mass conservation

Cosmological term

Modified field equation

$$R_{\alpha\beta} - \frac{1}{2}\bar{\eta}_{\alpha\beta}R = \frac{8\pi G}{c^4}T_{\alpha\beta} \quad \longleftrightarrow \quad R_{\alpha\beta} = \frac{8\pi G}{c^4}\left(T_{\alpha\beta} - \frac{1}{2}\bar{\eta}_{\alpha\beta}T\right)$$

Trace using $\bar{\eta}^{\alpha\beta}$ $(\bar{\eta}_{\mu\nu}=\eta_{\mu\nu},\ \bar{\eta}_{5\alpha}=0)$

$$R - \frac{4}{2}R = \frac{8\pi G}{c^4}\eta^{\mu\nu}T_{\mu\nu} \longrightarrow -R = \frac{8\pi G}{c^4}(T - \sigma T_{55})$$

Write trace reversed Einstein equation

$$R_{\alpha\beta} + \bar{\eta}_{\alpha\beta}\Lambda = \frac{8\pi G}{c^4} \left(T_{\alpha\beta} - \frac{1}{2} \bar{\eta}_{\alpha\beta} T \right)$$

Identifying the mass density Λ as a cosmological term

$$\Lambda = -\frac{8\pi G}{c^4} \sigma T_{55} \qquad T_{55} \sim \frac{c_5^2}{c_2} T_{00} \ll T_{00}$$

4+1 formalism for metric evolution

Extension of 3+1 / ADM formalism

Decompose $\mathcal M$ into spacelike hypersurface + normal time direction Einstein equations \longrightarrow 6 t-evolution equations for γ_{ij} + 4 constraints

Construct $\mathcal{M}_5 = \mathcal{M} \times R$ with coordinates $X = (x, c_5 \tau)$

Admixture of 4D spacetime geometry and τ -evolution In flat pseudo-spacetime $g_{\alpha\beta} \to \eta_{\alpha\beta} = {\rm diag}\,(-1,1,1,1,\sigma)$ where $\sigma=\pm 1$

External $au \longrightarrow$ natural foliation

Decompose \mathcal{M}_5 into spacetime hypersurface Σ_{τ} + normal τ direction 5D metric $g_{\alpha\beta} \longrightarrow \left\{ \gamma_{\mu\nu}(x,\tau), \text{ lapse } N, \text{ and (tangent) shift } N^{\mu} \right\}$ Einstein equations \longrightarrow 10 τ -evolution equations for $\gamma_{\mu\nu}$ + 5 constraints

Foliation

4D hypersurface

$$\sum_{ au_0} = \left\{ X \in \mathcal{M}_5 \; \middle| \; S(X) = 0
ight\}$$
 where $S(X) = X^5/c_5 - au_0$

Rank 4 Jacobian

$$E^{\alpha}_{\mu}=\left(rac{\partial X^{lpha}}{\partial x^{\mu}}
ight)_{ au_0}\longrightarrow E_{\mu}=\partial_{\mu}=\partial/\partial x^{\mu}~~{
m as~basis~for~tangent~space~of~}\sum_{ au_0}$$

Unit normal to \sum_{τ_0}

$$n_{\alpha} = \sigma \left| g^{55} \right|^{-1/2} \, \partial_{\alpha} S \left(X \right) \longrightarrow \left\{ \begin{array}{l} n \cdot E_{\mu} = n_{\alpha} E_{\mu}^{\alpha} = 0 \\ n^{2} = g^{\alpha \beta} n_{\alpha} n_{\beta} = \sigma \end{array} \right.$$

Induced metric on $\sum_{ au_0}$

$$ds^{2} = g_{\alpha\beta}dX^{\alpha}dX^{\beta} = g_{\alpha\beta}\frac{\partial X^{\alpha}}{\partial x^{\mu}}\frac{\partial X^{\beta}}{\partial x^{\nu}}dx^{\mu}dx^{\nu} = g_{\alpha\beta}E^{\alpha}_{\mu}E^{\beta}_{\nu} = \gamma_{\mu\nu}dx^{\mu}dx^{\nu}$$

Decomposition of the Metric

Parameterize time evolution

$$au \longrightarrow au + \delta au \implies X^{\alpha} \longrightarrow X^{\alpha} + \left(\frac{\partial X^{\alpha}}{\partial au} \right)_{x_0} \delta au = X^{\alpha} + \left(N n^{\alpha} + N^{\mu} E^{\alpha}_{\mu} \right) \delta au$$

Under spacetime displacement

$$X^{\alpha} \longrightarrow X^{\alpha} + \left(\frac{\partial X^{\alpha}}{\partial x^{\mu}}\right)_{\tau_0} \delta x^{\mu} = X^{\alpha} + E^{\alpha}_{\mu} \delta x^{\mu}$$

N: lapse N^{μ} : shift

5D displacement and interval

$$dX^{\alpha} = Nn^{\alpha}c_{5}d\tau + E^{\alpha}_{\mu}\left(N^{\mu}c_{5}d\tau + dx^{\mu}\right) \qquad ds^{2} = g_{\alpha\beta}dX^{\alpha}dX^{\beta}$$

Decomposition of metric using $n^2=\sigma$ $n_{\alpha}E^{\alpha}_{\mu}=0$ $\gamma_{\mu\nu}=g_{\alpha\beta}E^{\alpha}_{\mu}E^{\beta}_{\nu}$

$$g_{\alpha\beta} = \begin{bmatrix} \gamma_{\mu\nu} & N_{\mu} \\ N_{\mu} & \sigma N^2 + \gamma_{\mu\nu} N^{\mu} N^{\nu} \end{bmatrix} \qquad g^{\alpha\beta} = \begin{bmatrix} \gamma^{\mu\nu} + \sigma \frac{1}{N^2} N^{\mu} N^{\nu} & -\sigma \frac{1}{N^2} N^{\mu} \\ -\sigma \frac{1}{N^2} N^{\mu} & \sigma \frac{1}{N^2} \end{bmatrix}$$

Decomposition of the 5D curvature

Projector onto tangent 4D hypersurface $\sum_{ au_0}$

$$P_{\alpha\beta} = g_{\alpha\beta} - \sigma n_{\alpha} n_{\beta}$$
 $n_{\alpha} = \text{unit normal}$

Projected covariant derivative

For
$$V^{\beta} \in \mathcal{M}_5$$
 $D_{\alpha}V_{\beta} = P_{\alpha}^{\gamma}P_{\beta}^{\delta}\nabla_{\gamma}V_{\delta}$

Projected curvature

$$\left[D_{\alpha},D_{\beta}\right]V_{\perp}^{\gamma}=\bar{R}_{\delta\alpha\beta}^{\gamma}V_{\perp}^{\delta}$$

Extrinsic curvature: evolution of the unit normal

$$K_{\alpha\beta} = -P_{\alpha}^{\gamma} P_{\beta}^{\delta} \nabla_{\delta} n_{\gamma}$$

Express 4D Ricci tensor in terms of $\bar{R}_{\mu\nu}$ and $K_{\mu\nu}$

Lie derivatives of $\gamma_{\mu\nu}$ and $K_{\mu\nu}$ \longrightarrow integrable first order PDEs

Differential Equations in 4+1 Formalism

Evolution equation for spacetime metric

$$\frac{1}{c_5}\mathcal{L}_\tau\,\gamma_{\mu\nu} - \mathcal{L}_{\mathbf{N}}\,\gamma_{\mu\nu} = -2NK_{\mu\nu}$$

 $\mathcal{L}_{ au}$: Lie derivative in au direction

 $K_{\mu\nu}$: Extrinsic curvature

 $S_{\mu\nu}$: Spacetime projection of $T_{\alpha\beta}$

 κ : Mass density T_{55}

 $R_{\mu\nu}$: Projection of Ricci tensor

Evolution equation for extrinsic curvature

$$\left(\frac{1}{c_5}\mathcal{L}_{\tau} - \mathcal{L}_{\mathbf{N}}\right) K_{\mu\nu} = -D_{\mu}D_{\nu}N
+ N \left\{ -\sigma \bar{R}_{\mu\nu} + KK_{\mu\nu} - 2K_{\mu}^{\lambda}K_{\nu\lambda} + \sigma \frac{8\pi G}{c^4} \left[S_{\mu\nu} - \frac{1}{2}\gamma_{\mu\nu} \left(S + \sigma \kappa \right) \right] \right\}$$

Hamiltonian Constraint

$$\bar{R} - \sigma \left(K^2 - K^{\mu\nu} K_{\mu\nu} \right) = -\sigma \frac{16\pi G}{c^4} \kappa$$

Momentum Constraint

$$D_{\mu}K^{\mu}_{\nu}-D_{\nu}K=\frac{8\pi G}{c^4}p_{\nu}$$

Decomposed metric for linearized theory

Linearized metric

$$\|g_{\alpha\beta}\| = \begin{bmatrix} \gamma_{\mu\nu} & N_{\mu} \\ N_{\mu} & \sigma N^{2} + \gamma_{\mu\nu} N^{\mu} N^{\nu} \end{bmatrix} = \begin{bmatrix} \eta_{\mu\nu} + h_{\mu\nu} & h_{\mu5} \\ h_{\mu5} & \eta_{55} + h_{55} \end{bmatrix}$$

$$\|g^{\alpha\beta}\| = \begin{bmatrix} \gamma^{\mu\nu} + \sigma \frac{1}{N^{2}} N^{\mu} N^{\nu} & -\sigma \frac{1}{N^{2}} N^{\mu} \\ -\sigma \frac{1}{N^{2}} N^{\mu} & \sigma \frac{1}{N^{2}} \end{bmatrix} \approx \begin{bmatrix} \eta^{\lambda\nu} - h^{\mu\nu} & -\sigma h_{5}^{\mu} \\ -\sigma h_{5}^{\mu} & \sigma (1 - \sigma h_{55}) \end{bmatrix}$$

Leads to

$$N = \frac{1}{\sqrt{1 - \sigma h_{55}}} \approx 1 + \frac{1}{2}\sigma h_{55} \qquad N_{\mu} = h_{5\mu}$$

$$n_{\alpha} = \sigma \left(1 + \frac{1}{2}\sigma h_{55}\right) \delta_{\alpha}^{5} \qquad n^{\alpha} = -h_{5}^{\mu} \delta_{\mu}^{\alpha} + \left(1 - \frac{1}{2}\sigma h_{55}\right) \delta_{5}^{\alpha}$$

Martin Land - Bled 2021

Linearized evolution equation for $\gamma_{\mu
u}$

By direct calculation

$$K_{lphaeta} = -P_{lpha}^{\gamma}P_{eta}^{\delta} \;
abla_{\delta} \left[\sigma \left(1 + rac{1}{2}\sigma h_{55}
ight) \delta_{5}^{\delta}
ight] = \sigma \Gamma_{\mu\nu}^{5}$$

Evolution equation for metric in 4+1 decomposition

$$-\frac{1}{2}\left(\frac{1}{c_5}\partial_{\tau}-\mathcal{L}_{\mathbf{N}}\right)\gamma_{\mu\nu}=NK_{\mu\nu}$$

Discarding terms $\left(h_{\alpha\beta}\right)^2 \approx 0$

$$\mathcal{L}_{\mathbf{N}}\gamma_{\mu\nu} = D_{\mu}N_{\nu} + D_{\nu}N_{\mu} \approx \partial_{\mu}N_{\nu} + \partial_{\nu}N_{\mu} = \partial_{\mu}h_{5\nu} + \partial_{\nu}h_{5\mu}$$

Evolution equation becomes

$$-\frac{1}{2}\left(\partial_{5}\gamma_{\mu\nu}-\partial_{\mu}h_{5\nu}-\partial_{\nu}h_{5\mu}\right)=NK_{\mu\nu}\approx K_{\mu\nu}$$

LHS = $\sigma\Gamma_{uv}^5$ \longrightarrow automatically satisfied

Martin Land - Bled 2021

Linearized 4+1 evolution equations

Bianchi identity for linearized theory

$$\nabla_{\alpha}G^{\alpha\beta} = \nabla_{\alpha}\left(R^{\alpha\beta} - \frac{1}{2}\bar{\eta}^{\alpha\beta}R\right) = \partial_{\alpha}\left(R^{\alpha\beta} - \frac{1}{2}\bar{\eta}^{\alpha\beta}R\right) + o\left(h_{\alpha\beta}^{2}\right) = 0$$

Rearranged as
$$\frac{1}{c_5}\partial_{ au}G^{5eta}=-\partial_{\mu}G^{\mueta}+o\left(h_{lphaeta}^2\right)$$

RHS must contain terms in $g_{\alpha\beta}$, $\partial_{\tau}g_{\alpha\beta}$, and $\partial_{\tau}^{2}g_{\alpha\beta}$

 G^{5eta} contains no second order au-derivatives of $g_{lphaeta}$

Constraints

Initial conditions for second order PDE are $g_{\alpha\beta}$, $\partial_{\tau}g_{\alpha\beta}$, $T_{\alpha\beta}$

 G^{5eta} field equation is relationship among initial conditions

Five constraint equations: propagate without evolving

$$G_{5\beta} = R_{5\beta} - \frac{1}{2}\bar{\eta}_{5\beta}R = \frac{8\pi G}{c^4}T_{5\beta}$$

Martin Land - Bled 2021

Decomposing linearized Ricci tensor

Separate components of 5D Ricci tensor

$$R_{\alpha\beta}^{(5)} = \frac{1}{2} \left(\partial_{\alpha} \partial^{\lambda} h_{\lambda\beta} + \partial_{\beta} \partial^{\sigma} h_{\alpha\sigma} - \partial^{\lambda} \partial_{\lambda} h_{\alpha\beta} - \partial_{\alpha} \partial_{\beta} \bar{\eta}^{\lambda\sigma} h_{\lambda\sigma} \right. \\ \left. + \partial_{\alpha} \partial^{5} h_{5\beta} + \partial_{\beta} \partial^{5} h_{\alpha5} - \partial^{5} \partial_{5} h_{\alpha\beta} - \partial_{\alpha} \partial_{\beta} \bar{\eta}^{55} h_{55} \right)$$

Spacetime components

$$R_{\mu\nu}^{(5)} = R_{\mu\nu}^{(4)} + \sigma \partial_5 \underbrace{\frac{1}{2} \left(\partial_\mu h_{5\nu} + \partial_\nu h_{\mu 5} - \partial_5 h_{\mu\nu} \right)}_{K_{\mu\nu}} - \frac{1}{2} \partial_\mu \partial_\nu \overline{\eta}^{55} h_{55}$$

4D Ricci tensor
$$R_{\mu\nu}^{(4)} = \frac{1}{2} \left(\partial_{\mu} \partial^{\lambda} h_{\lambda\nu} + \partial_{\nu} \partial^{\sigma} h_{\mu\sigma} - \partial^{\lambda} \partial_{\lambda} h_{\mu\nu} - \partial_{\mu} \partial_{\nu} \eta^{\lambda\sigma} h_{\lambda\sigma} \right)$$

5 components

$$\begin{split} R_{5\beta} &= \frac{1}{2} \left(\partial_5 \partial^\lambda h_{\lambda\beta} + \partial_\beta \partial^\sigma h_{5\sigma} - \partial^\lambda \partial_\lambda h_{5\beta} - \partial_5 \partial_\beta \bar{\eta}^{\lambda\sigma} h_{\lambda\sigma} \right. \\ &\left. + \partial_\beta \partial^5 h_{55} - \partial_\alpha \partial_\beta \bar{\eta}^{55} h_{55} \right) \end{split}$$

Linearized evolution equation for $K_{\mu\nu}$

Spacetime components of 5D Ricci tensor

$$R_{\mu\nu}^{(5)} = R_{\mu\nu}^{(4)} + \sigma \partial_5 K_{\mu\nu} - \frac{1}{2} \partial_{\mu} \partial_{\nu} \bar{\eta}^{55} h_{55}$$

Spacetime part of modified field equation

$$R_{\mu\nu}^{(5)} = \frac{8\pi G}{c^4} \left(T_{\mu\nu} - \frac{1}{2} \bar{\eta}_{\mu\nu} \bar{T} \right)$$

Rearranging terms

$$\partial_5 K_{\mu\nu} = \frac{1}{2} \partial_{\mu} \partial_{\nu} \bar{\eta}^{55} h_{55} - \sigma R_{\mu\nu}^{(4)} + \sigma \frac{8\pi G}{c^4} \left(T_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} \bar{T} \right)$$

Evolution equation for $K_{\mu\nu}$ in 4+1 decomposition

Under
$$(h_{\alpha\beta})^2 \approx 0$$
 $\eta^{55} \longrightarrow \bar{\eta}^{55} = 0$ $\bar{T} + \eta_{55}\kappa \longrightarrow \bar{T}$

Constraint terms

Applying Lorenz condition

$$\partial^{\lambda}h_{\alpha\lambda} = \frac{1}{2}\partial_{\alpha}\bar{\eta}^{\lambda\sigma}h_{\lambda\sigma} + \frac{1}{2}\partial_{\alpha}\eta^{55}h_{55} - \partial^{5}h_{\alpha5}$$

and field equation

$$R_{5\alpha} = -\frac{1}{2} \partial^{\gamma} \partial_{\gamma} h_{5\alpha} = \frac{8\pi G}{c^4} T_{5\alpha}$$

confirms

$$R_{5\beta} = \frac{1}{2} \left(-\partial_5 \partial^5 h_{\beta 5} - \partial^{\lambda} \partial_{\lambda} h_{5\beta} \right) = -\frac{1}{2} \partial^{\gamma} \partial_{\gamma} h_{5\beta} = \frac{8\pi G}{c^4} T_{5\beta}$$

providing expressions for the non-dynamical shift and lapse N^μ and N

Constraint: Gradient of extrinsic curvature

$$\partial^{\mu}K_{\mu\nu} = \frac{1}{2} \left(\partial^{\mu}\partial_{\mu}h_{5\nu} + \partial^{\mu}\partial_{\nu}h_{5\mu} - \partial_{5}\partial^{\mu}h_{\mu\nu} \right) = \frac{1}{2} \partial^{\gamma}\partial_{\gamma}h_{5\nu} = \frac{8\pi G}{c^{4}} T_{5\nu}$$

Some References

Stueckelberg, E. La signification du temps propre en mécanique: Ondulatoire. *Helv. Phys. Acta* **1941**, *14*, 321–322. (In French)

Stueckelberg, E. Remarque a propos de la création de paires de particules en théorie de relativité. *Helv. Phys. Acta* **1941**, *14*, 588–594. (In French)

Horwitz, L.; Piron, C. Relativistic Dynamics. Helv. Phys. Acta 1973, 48, 316-326.

Horwitz, L.P. Relativistic Quantum Mechanics; Springer: Dordrecht, The Netherlands, 2015; doi:10.1007/978-94-017-7261-7.

Land, M.; Horwitz, L.P. *Relativistic Classical Mechanics and Electrodynamics*; Morgan and Claypool Publishers: 2020, doi:doi.org/10.2200/S00970ED1V01Y201912EST001.

Pitts, J.B.; Schieve, W.C. On Parametrized General Relativity. Found. Phys. 1998, 28, 1417-1424.

Pitts, J.B.; Schieve, W.C. Flat Spacetime Gravitation with a Preferred Foliation. Found. Phys. 2001, 31, 1083–1104, doi:10.1023/A:1017578424131.

Land, M. Local metric with parameterized evolution. *Astron. Nachrichten* **2019**, *340*, 983–988, [https://onlinelibrary.wiley.com/doi/pdf/10.1002/asna.201913719]. doi:10.1002/asna.201913719.

Schwinger, J. On Gauge Invariance and Vacuum Polarization. *Phys. Rev.* **1951**, *82*, 664–679, doi:10.1103/PhysRev.82.664.

Feynman, R. Mathematical formulation of the quantum theory of electromagnetic interaction. *Phys. Rev.* **1950**, *80*, 440–457.

Thank You For Your Patience