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1 Preface in English and Slovenian Language

The series of annual workshops on ”What Comes Beyond the Standard Models?”
started in 1998 with the idea of Norma and Holger for organizing a real workshop,
in which participants would spend most of the time in discussions, confronting
different approaches and ideas. All this time we have been looking for answers to
the question of what the laws of nature are. And we learned a lot. This year in July
the 24th workshop took place.
Workshops have always taken place in the picturesque town of Bled by the lake
of the same name, surrounded by beautiful mountains and offering pleasant
walks and mountaineering. Except for the last two years, 2020 and 2021, when
workshop has again taken place in July, but without personal conversations all day
and late at night, even between very relaxing walks and mountaineering due to
COVID-19 pandemic. We have, however, a very long tradition of videoconferences
(cosmovia), enabling discussions and explanations with laboratories all over the
world. This enabled us to have these two years a virtual workshop, resembling
Bled workshops as much as possible.
In our very open minded, friendly, cooperative, long, tough and demanding
discussions several physicists and even some mathematicians have contributed.
Most of topics that have been presented and discussed in our Bled workshops
deal withthe proposals for explaining physics beyond the so far accepted and
experimentally confirmed both standard models — in physics of fermion and
boson fields and cosmology — in order to understand the origin of assumptions of
both standard models and be consequently able to propose new theories, models
and to make predictions for future experiments.
Although in all these years most of participants were theoretical physicists, many
of them with their own suggestions how to make the next step beyond the accepted
models and theories, experts from experimental laboratories were and are very
appreciated, helping a lot to understand what do measurements really tell and
which kind of predictions can best be tested.
Also in the last two years we tried to keep our habit of (long) presentations
(with breaks and continuations over several days), followed by very detailed
discussions.
The authors of the articles worked hard and with enthusiasm already before the
presentations and as well when preparing the articles for this Proceedings in such
a short time.
However, as lectures and especially discussions over the Internet are more ex-
hausting than live, many issues remain open, unresolved, also undefined and
undiscussed. And we did not succeed to continue the discussions over the Internet
after the workshop, even though we tried, because of several reasons, one of them
was that the computer of one of the organizers broke down.

Here are some questions that we have not really discussed yet but have just started
discussing:

How efficient are models offering a small next step beyond both standard models,
suggesting experiments which could test such a model, to be able to explain all
the observations so far, or at least many of them? There are several contributions
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with such proposals presented in this Proceedings, most of them trying to explain
what does the dark matter consist of.
Would the confrontation of these models with string theories, for example, or with
the spin-charge-family theory, which offers the explanation for all the assumptions
of both standard models, offering as well the explanation for several phenomena
observed so far, with the dark matter and the matter/antimatter asymmetry included,
the theory is presented in this Proceedings, help to understand our universe better
and also to easier propose relevant experiments having correspondingly more
chance to be the right next step beyond both standard models?
Combining knowledge, ideas and hard work could increase our opportunities
to recognize the real next step beyond the two standard models and to suggest
trustable experiments. In particular if experimentalists would be involved in
discussions. Experiments are expensive.

Although the black holes are experimentally well confirmed objects, the quantum
mechanics of black holes is not really known. This knowledge is needed for heavy
black holes as well as if we accept the possibility that the space-time is larger
than (3 + 1), as it is in string theories, in Kaluza-Klein theories and in the spin-
charge-family theory (with fermions interacting with gravity only) with space-time
(13 + 1) or larger (appearing in two contributions in this paper), or might be
even infinite (since zero and infinite are easy to be accepted, all other possibilities
need the explanation). Do we understand what in this context the primordial
black holes, discussed in this and last year Proceedings, mean and do they appear
before or after the electroweak phase transition? Is in the time of the formation
of the primordial black holes space-time already (3+ 1)? What happens inside the
primordial black holes and what happens within the very massive experimentally
confirmed black holes? Can string theories within M-theory help to understand
the quantum gravity even in the context that the internal space of fermions and
bosons describe the Clifford algebra objects? If Nature does use the Clifford algebra
objects to describe internal space of fermions and bosons, what explains the second
quantization postulates for fermions and bosons, as explained in one contribution
in this proceedings, can the quantum mechanics of black holes be easier understood?
Would the novel string theory, discussed in this proceedings, where noninteracting
objects representing strings, are themselves bound states of strings and might
explain bound states of objects with the high symmetry, be helpful as well for
describing the heavy black hole objects? Even under the assumption that the internal
space of fermion and gravitational fields are described with the Clifford algebra
objects?
It does happen (after having a vision and after a hard work) that a new way
of treating quantum mechanics of bound systems, this time the superconformal
quantum mechanics and light-front holography used in hadron physics, presented
in this proceedings, opens a new understanding of dynamics and symmetries of
bound states.

To understand the start and the starting expansion of our universe the knowledge
of quantum gravity and the knowledge of the internal space of fermions and
bosons is needed.
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Some periods and some phenomena in the expansion of our universe can be
explained in the context of string theories, as it is the period of the inflation
described with one article in this proceedings. When has the inflation taken place
and how is it connected with the today non observed extra dimensions?
Do we have besides the ordinary matter also domains of antimatter in our uni-
verse? What are properties of the antimatter? Do domains of antimatter contain
mostly the dark matter? What is the interaction of matter with antimatter on the bor-
der of both domains? In the spin-charge-family theory the laws and the interactions
are the same — for fermions, antifermions and dark matter. In several talks these
problems were discussed, some of them presented only as a talk on the website
on http://bsm.fmf.uni-lj.si/bled2
and on Forum of Cosmovia as https://bit.ly/bled2021bsm .

Symmetries play the essential role on all levels of physics, on the level of elemen-
tary fermion and boson fields, of cosmology and also of matter of all kinds.
In the theories assuming more than (3 + 1) dimensions with fermions which
interact with gravity only, like there are the Kaluza-Klein theories, the spin-charge-
family theory is also of this kind, as well as string theories, the symmetry origins in
the Lorentz invariance of spacetime, manifesting also in the internal space of boson
and fermion fields. At observable (that is low) energies the Lorentz symmetry
of higher dimensions manifests in (3+ 1) spacetime (after breaking the starting
symmetry of spacetime) the symmetry of the internal space of fermion and boson
fields only, which usually is described by the group theoretical methods.
The symmetries of elementary fermion and boson fields are discussed in several
contributions talks of Bled 2021 workshop, manifesting that all these different
understanding of symmetries have a strong overlap.
Some talks about symmetries appear in these proceedings, the others can only be
found on the follow-up page of the official website of the Workshop:
http://bsm.fmf.uni-lj.si/bled2021bsm/presentations.html,
and on the Cosmovia Forum https://bit.ly/bled2021bsm .

There are several other topics, discussed in this proceedings, like
i. What is indeed the origin of masses of fermions and gauge fields?
ii. What modes of gravitational waves can be observed?
iii. How far can we interpret experiments correctly if we accept the standard model
only?
iv. The DAMA/LIBRA experiment, measuring the collisions of the dark matter
particles with the ordinary matter, reports on the newest results of the annual
modulation of data together with the measurements, collected in more than 10
years.
v. Choosing the action for the assumed laws of Nature to predict experiments one
must be able to calculate properties of systems accurately enough. One must be
able to evaluate the renormalizability, the anomalies, for any proposed theory. The
reader can find some answers to these questions in this proceedings.

This year neither the cosmological nor the particle physics experiments offered
much new, as also has not happened in the last three years, which would offer new
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insight into the elementary fermion and boson fields and also into cosmological
events, although a lot of work and effort have been put in.
However, there are more and more cosmological evidences, which require the new
step beyond both standard models, the one of the elementary fermion and boson
fields and of cosmology. The understanding the universe through the cosmological
theories and theories of the elementary fermion and boson fields have, namely,
so far never been so dependent on common knowledge and experiments in both
fields.
Although cosmovia served the discussions all the time (and we are very glad
that we did have in spite of pandemic also the 24th workshop), it was not like
previous workshops. Discussions were fiery and sharp, at least during some talks.
But this was not our Bled workshop. Effective discussions require the personal
presence of the debaters, as well as of the rest of participants, which interrupt the
presentations with questions all the time.
And let us add also this year that due to the on line presentations we have students
participants, who otherwise would not be able to attend the Bled conference, the
travel expenses are too high for them.
The organizers hope that the virus will be defeated at least up to next year, although
the data are not supporting our hope. Let our hope be valid for all over the world,
especially for the young generation, as well as for the Bled Workshop 2022, so that
we will in July next year meet at Bled.
Since, as every year, also this year there has been not enough time to mature the
discussions into the written contributions, only two months, authors can not really
polish their contributions. Organizers hope that this is well compensated with
fresh contents.
The reader can find all the talks and soon also the whole Proceedings on the official
website of the Workshop: http://bsm.fmf.uni-lj.si/bled2021bsm/presentations.html,
and on the Cosmovia Forum https://bit.ly/bled2021bsm .
The organizers are thanking Dragan Lukman for his excellent technical support
to more then twenty years of Bled workshops, entitled ”What comes beyond the
standard models”, in particular for his excellent work done on proceedings. In
July of this year we learned how small the step is between to be and not to be.
The member of editors Dragan Lukman, our friend and the man who recognized
clearly the essential problems of our planet, is not among us any longer. He left us
after this year workshop due to the hart attack. We are missing him very much,
also during the preparation of the proceedings, although we copied his way of
preparing the proceedings, using his styles. In memory of Dragan, we added a
short summary of his work and Astri’s song, which says a lot about Dragan.
The organizing committee thanks Astri Kleppe, who offered to take over Dragan’s
work on the proceedings when our hardship was greatest.
The organizing committee thanks also Ana Bračič and Anamarija Borštnik Bračič
who have done the translations of English abstracts to the Slovenian language.
Let us conclude this preface with a heartfelt and warm thank to all the participants,
present via videoconference, for their lectures and especially for the very prolific
discussions and, nevertheless, an excellent atmosphere. We are very sorry that
some of participants could not prepare their talks as contributions to the proceed-
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Norma Mankoč Borštnik, Holger Bech Nielsen, Dragan Lukman, Astri Kleppe
(the Editors)
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2 Predgovor (Preface in Slovenian Language)

Vsakoletne delavnice z naslovom ,,Kako preseči oba standardna modela, koz-
mološkega in elektrošibkega” (”What Comes Beyond the Standard Models?”) sta
postavila leta 1998 Norma in Holger z namenom, da bi udeleženci v izčrpnih
diskusijah kritično soočali različne ideje in teorije. V vsem tem času smo iskali
odgovore na vprasanje kakšni so zakoni narave. In se veliko naučili.
To leto je stekla 24. delavnica.
Delavnice domujejo v Plemljevi hiši na Bledu ob slikovitem jezeru, kjer prijetni
sprehodi in pohodi na čudovite gore, ki kipijo nad mestom, ponujajo priložnosti
in vzpodbudo za diskusije. Tako je bilo vse do zadnjih dveh let.
Tudi zadnji dve leti, v letu 2020 in 2021, sta bili delavnici v juliju, vendar nam
je tokrat covid-19 onemogočil srečanje v Plemljevi hiši. Tudi diskutirali nismo
med hojo okoli jezera ali med hribolazenjem. Vendar nam je dolgoletna iskušnja s
“cosmovio” — videopovezavami z laboratoriji po svetu — omogočila, da je tudi
letos stekla Blejska delavnica, tokrat prek interneta.
K našim zelo odprtim, prijateljskim, dolgim in zahtevnim diskusijam, polnim
iskrivega sodelovanja, je prispevalo veliko fizikov in celo nekaj matematikov. V
večini predavanj in razprav so udeleleženci poskusili razumeti in pojasniti pred-
postavke obeh standadnih modelov, elektrošibkega in barvnega v fiziki osnovnih
delcev in polj ter kozmološkega, predpostavke in napovedi obeh modelov pa vskla-
diti z meritvami in opazovanji, da bi poiskali model, ki preseže oba standardna
modela, kar bi omogočilo zanesljivejše napovedi za nove poskuse.
Čeprav je večina udeležencev teoretičnih fizikov, mnogi z lastnimi idejami kako
narediti naslednji korak onkraj sprejetih modelov in teorij, so še posebej dobrodošli
predstavniki eksperimentalnih laboratorijev, ki nam pomagajo v odprtih diskusijah
razjasniti resnično sporočilo meritev in nam pomagajo razumeti kakšne napovedi
so potrebne, da jih lahko s poskusi dovolj zanesljivo preverijo.
Tudi v zadnjih dveh letih smo poskušali ohraniti navado, da so bile predstavitve
dolge, ker so jih udeleženci prekinjali z vprašanji, da bi bili privzetki in pred-
postavke jasni. Predavanja so se zato po dveh urah prekinila in se nadaljevala
naslednje dni.
Avtorji prispevkov so trdo in z navdušenjem delali, da so pripravili predavanja, in
da so v tako kratkem času pripravili članke za ta zbornik.
Ker pa so predavanja preko interneta bolj naporna kot v predavanja v živo, so
mnoga vprašanja ostala odprta, nerazjasnena, tudi nedefinirana in nerešena.
Ni nam uspelo nadaljevati pogovorov preko interneta po končani delavnici, četudi
smo poskušali. Razlogi so bili različni, med njimi sesutje računalnika ene(ga) od
organizatorjev.

Med vprašanji, ki smo jih odprli, pa o njih nismo uspeli zares razpravljati, so:

Kako učinkoviti so lahko modeli, ki ponudijo majhen naslednji korak glede na oba
standardna modela, da bi nato predlagali izvedbo poskusov, ki naj povedo ali so
taki modeli v skladu z naravo, pri iskanju odgovorov na vsa odprta vprašanja, ali
vsaj na del odprtih vprašanj? Kar nekaj prispevkov v tem zborniku, ki poskušajo
pojasniti, iz česa utegne biti temna snov, je te vrste.
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Ali bi bilo smiselno in bi zmogli primerjati te predloge, denimo, s teorijami strun
ali s teorijo spinov, nabojev, družin, ki že odgovori na odprta vprašanja obeh stan-
dardnih modelov in ponudi tudi napovedi, ki jih je potrebno preveriti, za temno
snov in tudi za druga kozmološka opaženja.
Združevanje znanja, idej in vloženega dela bi lahko povečalo možnosti, da pre-
poznamo, kaj je pravi naslednji korak, ki prinaša odgovore na odprta vprašanja
v fiziki osnovnih fermionskih in bozonskih polj in kozmologiji ter bi pomagalo
predlagati zaupanja vredne poskuse, ki bodo domneve potrdili, posebej, če bi pri
diskusijah tvorno sodelovali tudi experimentalci. Experimenti so dragi.

Čeprav so črne luknje eksperimentalno potrjeni objekti, kvantna mehanika črnih
lukenj v resnici ni znana. Vendar je to znanje potrebno, če sprejmemo možnost, da
je prostor-čas več kot (3 + 1)-razsežen, kot to domnevajo teorije strun in Kaluza-
Kleinove teorije, da je njegova razsežnost morda celo (13+ 1) ali več, kot domneva
teorija spin-charge-family (s fermioni, ki interagirajo samo z gravitacijsko silo, z
dvema prispevkoma v tem zborniku), ali kot domneva tudi teorija strun, ali pa je
lahko neskončen, saj je nič in neskončno enostavno sprejeti, vse druge možnosti
potrebujejo pojasnila. Kako v tem kontekstu razumeti primordialne črne luknje?
Ali se pojavijo po elektrošibkem faznem prehodu? Ali nastanejo že prej? Ali
tedaj prostor-čas že učinkuje kot (3 + 1)-razsežen? In kaj se dogaja znotraj teh
primordialnih črnih lukenj? Kaj pa se dogaja znotraj zelo masivnih črnih lukenj? Ali
lahko teorije strun v kontekstu M-teorije pomagajo razumeti kvantno gravitacijo
tudi, če notranji prostor fermionov in bozonov določa Cliffordova algebra?
Ali bi teorija, imenovana nova teorja strun, poročilo je najti v tem zborniku, s
strunami iz inertnih objektov, ki so dejansko strune vezane v struno z veliko
stopnjo simetrije, bila sprejemljiva tudi, če bi notranje stopnje fermionov in bo-
zonov določali Cliffordovi objekti? Bi bile take strune koristne tudi za razumevanje
kvantne mehanike zelo masivnih črnih lukenj?
Zgodi se, da nov način obravnavanja kvantne mehanike vezanih sistemov, kakršen
jeuporaba superkonformne kvantne mehanike in holografije ”light-front” v hadron-
ski fiziki, omogoči nov pogled in novo razumevanje dinamike in simetrij vezanih
stanj. Poročilo o tem prinaša zbornik.

Za razumevanje nastanka in začetne širitve našega vesolja sta kvantna gravitacija
in poznavanje notranjega prostora fermionov in bozonov potrebno orodje. Vsaj
nekatera obdobja širitve, obdobje inflacije denimo, je mogoče razložiti v kontekstu
teorije strun, o čemer poriča en prispevek.
Ali imamo v našem vesolju poleg običajne snovi tudi domene antisnovi? Je anti-
snov pretežno iz temne snovi? Kakšne so interakcije snovi s temno snovjo? O tem
diskutirajo avtorji nekaterih prispevkov v tem zborniku. Teorija spina, nabojev in
družin gradi na predpostavki, da so zakoni gibanja enotni — za snov, za antisnov
in za temno snov.
Simetrije igrajo bistveno vlogo na vseh ravneh fizike: v kozmologiji, v fiziki os-
novnih fermionskih in bozonskih polj, tudi v fiziki vseh vrst snovi.
V teorijah, ki predpostavijo da ima prostor več kot (3 + 1) razsežnost, in da
interagirajo fermioni samo z gravitacijskimi bozoni — take so Kaluza-Kleinove
teorije, tudi teorija spina-nabojev-družin, pa tudi teorije strun — je izvor simetrije v



i
i

“U” — 2021/12/15 — 21:46 — page XIV — #14 i
i

i
i

i
i

XIV Contents

Lorentzovi invariantnosti prostor-časa, ki vključuje tudi notranji prostor fermionov
in bozonov. Pri opaženih (nizkih) energijah (po zlomitvi začetne simetrije) določa
lastnosti prostora z razsežnostimi d > (3 + 1) notranji prostor fermionskih in
bozonskih polj, kar opazimo v d = (3+ 1)-razsežnem prostor-času kot simetrije,
ki jih lahko opišemo tudi z metodami teorije grup.
Simetrije osnovnih fermionskih in bozonskih polj so obravnavane v nekaj prispevkih.
Koliko skupnega imajo različni pristopi pa bi bilo potrebno in koristno raziskati.

Naj omenimo še nekatere druge teme, k jih prispevki v zborniku obravnavajo:
i. Kaj je pravi vzrok, da imajo fermioni in nekatera bozonska polja maso?
ii. Kako dolgo še lahko pravilno interpretiramo rezultate poskusov z uporabo
samo standardnega modela?
iii. Experiment DAMA/LIBRA prinša poročilo o zadnjih rezultatih meritev letne
modulacije trkov delcev temne snovi z običajno snovjo v njihovih merilnih aparat-
urah, povzema pa tudi vse dolgoletne meritve.
iv. Ko izberemo model, moramo v modelu znati primerjati rezultate meritev dovolj
natančno. Moramo vedeti ali je teorija renormalizabilna, ali ima anomalije, in kako
se računov lotiti. Tudi na taka vprašanja poskuša odgovoriti eden od prispevkov.
Tako kot v preteklih treh letih tudi to leto niso eksperimenti v kozmologiji in fiziki
osnovih fermionskih in bozonskih polj ponudili rezultatov, ki bi omogočili nov
vpogled v fiziko osnovnih delcev in polj, čeprav je bilo vanje vloženega veliko
truda.
Vse več je tudi kozmoloških meritev, za katere se zdi, da jih standardni model os-
novnih fermionskih in bozonskih polj ne more pojasniti in vse bolj kozmološke
meritve in opažanja ter experimentalne meritve v fiziki osnovnih fermionskih in
bozonskih polj določajo iskanje teorije, ki lahko pojasni vse predpostavke stan-
dardnega modela, pa tudi vsa nova kozmološka opažanja in vse nove meritve ter
predlaga prave experimente.
Četudi je cosmovia poskrbela, da so diskusije tekle ves čas, tako kot je bilo na vseh
delavnicah doslej, blejskih diskusij v živo diskusije po internetu niso mogle nado-
mestiti. Diskusije so bile ognjevite in ostre, vsaj pri nekaterih predavanjih, vendar
potrebujejo učinkovite diskusije osebno prisotnost diskutantov in poslušalcev, ki
z vprašanji poskrbijo, da je debata razumljiva vsem. Tudi študentom internet ne
more nadomestiti dobrega učitelja.
Organizatorji upamo, da bo vsaj do naslednjega leta virus premagan, četudi ta
trenutek naše upanje ni podprto s statističnimi podatki. Naj naše upanje velja za
ves svet, za mlado generacijo pa še posebej, pa tudi za Blejsko delavnico 2022, da
bo stekla v živo na Bledu.
Ker je vsako leto le malo časa od delavnice do zaključka redakcije, manj kot
dva meseca, avtorji ne morejo dovolj skrbno pripravti svojih prispevkov, vendar
upamo, da to nadomesti svežina prispevkov.
Bralec najde zapise vseh predavanj in kmalu tudi letošnji zbornik na uradnem
naslovu Delavnice na medmrežju:
http://bsm.fmf.uni-lj.si/bled2021bsm/presentations.html,
in na Cosmovia Forum https://bit.ly/bled2021bsm .
Zahvaljujemo se Draganu Lukmanu za odlično tehnično podporo več kot dva-
jsetletnim blejskim delavnicam z naslovom ”Kako preseči oba standardna modela”,
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ter za tehnično pripravo zbornikov. Letos smo izvedeli, kako majhen je korak med
biti in ne biti. Član uredniškega odbora Dragan Lukman, naš prijatelj in človek,
ki je jasno prepoznaval probleme naše družbe, ni več med nami. Zapustil nas
je kmalu za tem, ko se je končala letošnja Blejska delavnica. Imel je srčni napad.
Pogrešamo ga, še posebej zdaj med pripravo zbornika, čeprav nam je zapustil
tehnično znanje priprave zbornika..
Draganu v spomin smo dodali kratek povzetek njegovega dela ter Astrino pesem,
ki veliko pove o Draganu.
Organizacijski odbor se zahvaljuje Astri Kleppe, ki se je ponudila, da prevzame
Draganovo delo na zborniku, ko je bila naǎa stiska največja.
Zahvaljujemo se tudi Ani Bračič in Anamariji Borštnik Bračič za prevode an-
gleškega teksta v slovenščino.
Naj zaključimo ta predgovor s prisrčno in toplo zahvalo vsem udeležencem,
prisotnim preko videokonference, za njihova predavanja in še posebno za zelo
plodne diskusije in kljub vsemu odlično vzdušje.
Zelo nam je žal, da nekateri udeleěnci niso utegnili pripraviti poleg predavamj
tudi zapis teh predavanj v obliki prispevkov.

Norma Mankoč Borštnik, Holger Bech Nielsen, Maxim Y. Khlopov,
(Organizacijski odbor)

Norma Mankoč Borštnik, Holger Bech Nielsen, Dragan Lukman, Astri Kleppe
(uredniki)

Ana Bračič, Anamarija Bračič Borštnik
(prevodi v slovenščino)

Ljubljana, grudna (decembra) 2021
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BLED WORKSHOPS
IN PHYSICS
VOL. 22, NO. 1

Proceedings to the 24th [Virtual]
Workshop

What Comes Beyond . . . (p. 1)
Bled, Slovenia, July 5–11, 2021

1 Virtual talks

A. Addazi, L. Bonora, S. Kabana, E. Kiritsis, R. Mohapatra, Q. Shafi

http://bsm.fmf.uni-lj.si/bled2021bsm/presentations.html
https://bit.ly/bled2021bsm

1.1 Virtual talks

Because of the pandemic, the Bled Workshop has now been virtual for the two last
years, 2020 and 2021.
Not all the talks come as articles in this year’s Proceedings, but all the talks can be
found
on the official website of the Workshop and on the Cosmovia forum:
http://bsm.fmf.uni-lj.si/bled2021bsm/presentations.html
https://bit.ly/bled2021bsm. Some of the talks are only available online, namely:

A. Addazi: The multicomponent dark matter structure and its possible observed
manifestations.

L. Bonora: HS Yang-Mills-like models:
I review the attempt to construct massless gauge field theories in Minkowski
spacetime that go under the name of HS-YM. I present their actions and their
symmetries. I motivate their gravitational interpretation. In particular I show how
to recover the local Lorentz invariance, which is absent in the original formulation
of the theories. Then I propose a perturbative quantization in the so-called frozen
mo[1]mentum frame. I discuss physical and unphysical modes and show how
to deal with them. Finally I uncover the gauge symmetry hidden under such
unphysical modes. This requires a nonlocal reformulation of the theory, which is,
however, characterized by an augmented degree of symmetry.

Povzetek: Avtor pregledno poroča o teorijah z imenom HS-YM, ki v prostoru
Minkovskega obravnavajo brezmasna umeritvena polja. Predstavi privzete akcije
in simetrije ter njihovo gravitacijsko interpretacijo. Pokaže, kako obnoviti lokalno
Lorentzovo invariantnost, ki je v prvotni formulaciji teorij ni. Predlaga kvanti-
zacijo v teoriji motenj v tako imenovanem okviru zamrznjene gibalne količine.
Predstavi fizikalne (opazljive) in nefizikalne dele polj in predlaga, kako z njimi
ravnati. Razkrije umeritveno simetrijo, skrito v nefizikalnih delih polj, ki pa jo je
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opaziti v okviru nelokalne reformulacije teorij z večjo stopnjo simetrije.

S. Kabana: Sexaquarks, the unexpected Dark Matter candidate: Sexaquarks are a
hypothetical low mass, small radius uuddss dibaryon which has been proposed
recently and especially as a candidate for Dark Matter. The low mass region below
2 GeV escapes upper limits set from experiments which have searched for the
uuddss dibaryon and did not find it. Depending on its mass, such state may be
absolutely stable or almost stable with decay rate of the order of the lifetime of the
Universe therefore making it a possible DarK Matter candidate. Even though not
everyone agrees its possible cosmological implications as DM candidate cannot
be excluded and it has been recently searched in the BaBar experiment. We use
a model which has very successfully described hadron and nuclei production in
nucleus-nucleus collisions at the LHC in order to estimate the thermal production
rate of Sexaquarks with characteristics such as discussed previously rendering
them DM candidates. We show results on a study of the variation of the Sexaquark
production rates with mass, radius and temperature and chemical potentials as-
sumed and their ratio to hadrons and nuclei and discuss the interdependences
and their consequences. These estimates are important for future experimental
searches and enrich theoretical estimates in the multiquark sector.

Povzetek: Šest-kvarki so hipotetični dibarioni uuddss z majhno maso, velikost-
nega reda 2GeV in majhnim polmerom. Zato jih je težko izmeriti. Ker je njihov
razpadni čas zelo dolg, vsaj tolikšen kot je starost našega vesolja, se zde primerni
kandidati za temno snov (DM). Četudi jih doslej še niso našli, iskali so jih tudi v
eksperimentu BaBar, ostajajo kandidati za temno snov, vsj izključiti jih ni mogoče.
Avtorji prispevka uporabijo model, ki uspešno opiše nastanek hadronov in jeder
pri trkih dveh jeder v velikem hadronskem trkalniku (LHC). Študirajo verjetnost
za tvorbo šest-kvarkov v odvisnosti od mase, radija, temperature nastanka in
izbire kemičnega potenciala in jo primerjajo z verjetnostjo za nastanek hadronov in
jeder. Rezultati ne le bogatijo teoretično vedenje o možnih vezanih stanjih večjega
števila kvarkov, ampak ponudijo možnosti za nove experimente.

E. Kiritsis: Coleman de Luccia transitions, and their implications for Quantum
Field Theories in De Sitter space.

R. Mohapatra: The Next Symmetry of Nature:
B-L as a gauge generator of electroweak interactions were proposed forty years
ago. The discovery of neutrino mass has made pursuing its phenomenological
and experimental implications more interesting. In this talk I focus on a minimal
model of gauged B-L symmetry and show how the Higgs field that breaks this
symmetry can provide a candidate for dark matter which very weakly coupled
to matter. I also present how such a version of B-L can be tested in ongoing LHC
experiments. I then discuss possible grand unification of the weakly coupled B-L
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in an SO(10) in five dimensions and its test in the proton decay experiment.
Reference: R. N. Mohapatra and N. Okada, Phys.Rev. D 101 11, 115022 (2020)

Povzetek: Simetrija B-L in ustrezno umeritveno polje sta bila predlagana kot
pojasnilo nastanka elektrošibkega polja že pred štiridesetimi leti. Po odkritju, da
imajo tudi nevtrini maso, se je zanimanje za to polje in za morebitne napovedi
v zvezi z njim znova obudilo. Avtor predstavi minimalni model simetrije B-L in
pokaže, kako lahko Higgsovo polje, ki poruši to simetrijo, zagotovi kandidata za
temno snov, ki je zelo šibko povezana z običajno snovjo. Predstavi, kako je mogoče
polje B-L opaziti pri poskusih na LHC. Predlaga tudi veliko poenotenje polja
B-L, ki je šibko povezano z SO (10) v petih dimenzijah in prispevek poenotenja v
poskusu, ki meri razpad protona.

Q. Shafi: Topological Structures in Unified Theories.
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2 Type IIB moduli stabilisation, inflation and
waterfall fields

I. Antoniadis1⋆⋆

email:antoniad@lpthe.jussieu.fr
O. Lacombe1,2

email:osmin@lpthe.jussieu.fr
G. K. Leontaris3

email: leonta@uoi.gr

1Laboratoire de Physique Théorique et Hautes Énergies, Sorbonne Université, CNRS, 4
place Jussieu, 75005 Paris, France
2 Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto
University, Kyoto 606-8502, Japan
3 Physics Department, University of Ioannina, Ioannina 45110, Greece

Abstract. We present a string realisation of the hybrid inflationary scenario within type
IIB effective string theory constructions and a geometric configuration of intersecting D7
branes. A metastable de Sitter minimum is ensured by perturbative logarithmic corrections
and D-term contributions from abelian factors associated with the D7 branes. The inflaton
is identified with the internal volume modulus whereas possible waterfall fields correspond
to excitations of open strings attached to the magnetised D7 branes. Incorporating contri-
butions of these fields in the scalar potential, inflation stops and the metastable vacuum
settles to a minimum with the observed tuneable value of the cosmological constant.

Povzetek: Avtorji predstsavijo hibridni model inflacije vesolja. Uporabijo efektivno teorijo
strun vrste IIB z branami D7. Poiščejo logaritmične popravke, ki hkrati s prispevki člena D
za “brane” D7 zagotovijo metastabilni de Sitterjev minimum. Notranji volumski modul
določa napihovanje vesolja, ”polja slapov” pa so določena z vzbujenimi stanji odprtih strun,
ki so pritrjena na magnetizirane brane D7. Inflacijo vesolja ustavijo, ko vgradijo ta polja v
skalarno polje, ki minimum poveže s kozmološko konstanto.

2.1 Introduction

At present, String Theory formulated in ten or eleven dimensions appears to
be the only promising candidate for a consistent quantum theory of the four
known fundamental forces and their interactions. Compactification of the higher
dimensional theory to four spacetime dimensions entails an immense number of
string vacua dubbed as the string landscape. Numerous Effective Quantum Field
Theories, on the other hand, have been built to describe the low energy physics
and make cosmological predictions. Amongst the most important features such a

⋆⋆ Presenter
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theory should possess, is a positive tiny cosmological constant Λ ≈ 10−120M4
Planck

in order to account for the dark energy suggested by cosmological observations.
The simplest way to realise the dark energy scenario is to introduce a scalar field ϕ
with a potential V(ϕ), which displays a minimum value equal to the cosmological
constant Vmin(ϕ0) = Λ, at some suitable point ϕ0. There is a significant ongoing
debate, however, on whether the string landscape contains any de Sitter vacua
which comply with the prediction of positiveΛ. Recent Swampland conjectures [1],
in particular, suggest that the first and second derivatives of V(ϕ) must satisfy
the inequalities |∇V |/V ≥ c or min(∇i∇jV) ≤ −c ′ (in Planck units) where c, c ′

are positive constants of order one. If these inequalities are true, some apparently
consistent (anomaly free) theories in four dimensions do not have an ultra-violet
completion and cannot be derived from string theory. In other words, they belong
to the Swampland 1. Putting it differently, starting from a successful Effective Field
Theory weakly coupled to gravity which describes adequately the known physics
phenomena, we cannot always embed it in the string theory landscape.
The above considerations have far reaching consequences both in cosmology and
particle physics [5]. Here, we mention a few implications on otherwise very success-
ful cosmological scenarios. For example, it is rather obvious that the Swampland
criteria summarised in the aforementioned inequalities contradict the assumption
that the cosmological constant can account for the dark energy of the universe.
Furthermore, slow roll inflation is inconsistent with these criteria. Instead, there
are suggestions [5] that quintessence models where the cosmological constant
varies over time satisfy current observational constraints. If this scenario prevails,
the present acceleration phase eventually will terminate whereas the expansion of
the universe will come to an end in the distant future.
The ensuing years since their formulation, Swampland conjectures have faced
increased scrutiny. Most of the criticism focused on the assumed heuristic argu-
ments, and the neglected role of string quantum corrections. Indeed, the latter
are anticipated to be essential for the final form of the effective scalar potential
in the resulting field theory model after compactification. This presentation will
focus on investigations of de Sitter vacua and the realisation of inflation in type
IIB superstring theory. These investigations will take place assuming a geometric
configuration of intersecting D-brane stacks with magnetic fluxes [6]. At the same
time, we will consider the effects of a new four-dimensional Einstein-Hilbert term
(localised in the internal space) which is generated from higher derivative terms
in the ten-dimensional string effective action [7, 8]. This set up induces logarith-
mic corrections to the scalar potential via loop effects [9]. Minimisation of the
whole scalar potential of the theory fixes the internal volume Kähler modulus, V ,
whereas the ratios of the worldvolumes along the three D7-brane stacks are fixed
by virtue of D-term contributions and their parameters depending on the quan-
tised magnetic fluxes. In addition, slow-roll inflation can be realised considering
the (canonically normalised) inflaton field to be proportional to the logarithm of
the internal volume V . Furthermore, the open string spectrum associated with the
D7 brane stacks plays a significant role. One can fix magnetic fluxes and brane sep-
arations so that charged open string states have positive squared-masses, except

1 For reviews and further references see [2–4]
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for one of them which becomes tachyonic when V becomes less than some critical
value. It turns out that this state can be identified with a waterfall field which can
be used to stop the inflationary phase and deepen the vacuum. A generalisation of
this scenario with several waterfall fields shows that the model can accommodate
the present dark energy.

2.2 Type IIB moduli stabilisation

We briefly introduce the basic geometric set up and the moduli field content. We
consider a six-dimensional compactification on a Calabi-Yau (CY) threefold within
a type IIB framework in the presence of quantised 3-form fluxes. Deformations
of the compactification correspond to massless scalars which do not acquire tree-
level potential and do not affect the four-dimensional action. Such scalars are
the dilaton field Φ, the Kähler moduli Ti, the complex structure (CS) ones za,
moduli corresponding to brane deformations and so on. We further introduce a
two index antisymmetric tensor denoted with Bµν (the Kalb-Ramond field) and
the p-form potentials Cp, p = 0, 2, 4. The C0 potential and the dilaton field, define
the usual axion-dilaton combination S = C0 + i e−Φ → C0 +

i
gs

where gs is the
string coupling. At the effective theory level, there are two basic ingredients: the
superpotential of the moduli fields and the Kähler potential.
To construct the superpotential one introduces p-form field strengths Fp = dCp−1,
H3 := dB2 and defines G3 := F3 − SH3. In terms of these, the fluxed induced
superpotential W0 is given, at the classical level, by the well-known formula [10]:

W0 =

∫
G3 ∧Ω(za) , (2.1)

whereΩ(za) is a holomorphic 3-form. It turns out that the perturbative superpo-
tential W0 is a holomorphic function which depends on the axion-dilaton modulus
S, and the CS moduli za. Imposing the supersymmetric conditions, the moduli
za, S can be stabilised. On the contrary, the Kähler moduli, do not participate in
the perturbative superpotential and thus remain completely undetermined at this
stage.
The second ingredient is the Kähler potential which depends logarithmically on
the various moduli fields through the expression:

K0 = −2 ln (V) − ln(−i
∫
Ω∧ Ω̄), (2.2)

where V is the volume of the 6d internal CY manifold X6, in string units. The
effective potential is computed from (2.2) using the standard supergravity formula

Veff = e
K
(∑

I,J

DIW0KIJ̄DJ̄W0 − 3|W0|
2

)
, (2.3)

where DI = ∂I + KI is the Kähler covariant derivative. At the classical level
this potential vanishes identically due to its no-scale structure, and appropriate
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supersymmetric (flatness) conditions for the dilaton and the CS moduli. It is
thus impossible to stabilise the Kähler moduli at this level. These moduli can be
stabilised when quantum corrections breaking the no-scale structure of the Kähler
potential are included.
Several ways to fix this problem have appeared over the last two decades. A first
approach [11, 12] was based on the inclusion of non-perturbative superpotential
terms of the form Wnp ∼

∑
iAie

−aiTi . The coefficients Ai may depend on the
complex structure moduli, and the exponential factors on the Kähler ones Ti. The
parameters ai may arise form gaugino condensation on D-brane stacks and for
the SU(N) case, they are of the form 2π

N
). The above ingredients can stabilise the

Kähler fields, however the potential acquires an anti-de Sitter (AdS) vacuum [11].
A possible solution to this problem [12] is to uplift the vacuum by taking into
account contributions fromD3 branes. There are two issues regarding this solution.
Firstly, in order to obtain an AdS minimum the coefficients W0, Ai and ai require
unnatural fine-tuning. Secondly, these contributions rely on non-perturbative
effects which cannot be controlled at the full string level. Some improvements of
the original models, however, have appeared using nilpotent chiral multiplets [13],
which lead to a new mechanism for uplifting the vacua in the string landscape [14].
A different way to stabilise the moduli is based on Large Volume Scenario (LVS)
[15]. This proposal takes advantage of the leading α ′ corrections to the Kähler
potential (together with the non-perturbative contributions) which ensure an AdS
solution in the Large Volume Limit but avoid tuning W0 in (2.1) at extremely small
values. Uplift to a de Sitter (dS) vacuum can be realised through D-terms.
Perturbative moduli-dependent corrections in weakly coupled string theory, on
the other hand, are fully controllable and therefore more reliable. However, not all
types of corrections are suitable for moduli stabilisation. Ordinary perturbative
expansions, either in α ′ or in powers of the weak string coupling gs, fail to
generating a (meta)stable dS minimum in a controllable way. This is the well-
known Dine-Seiberg problem which we now describe in brief. When perturbative
moduli-dependent quantum corrections are included in the Kähler potential they
induce contributions to the scalar potential, V(τi) where τi are the imaginary
parts of the Kähler moduli Ti and are associated with the internal volume. The
validity of perturbation theory implies that such corrections should vanish for
τi → ∞ implying also the vanishing of the scalar potential V(τi)τ→∞ → 0. If the
zero at infinity is reached from negative values, then, for non-contrived scalar
potentials V(τi), this implies an AdS minimum which is not acceptable. Thus,
the vanishing of the potential at infinity should be approached from positive
values. Again, for reasonable V(τi), this implies that there should be somewhere a
maximum before a dS minimum is formed. These three shapes are plotted in figure
2.1. The potential on the right-hand side exhibits local minimum and maximum
and its shape suggests that there should be two competing terms of different
functional dependence on τ. While previously considered perturbative corrections
do not share this property at large volumes, a possible exception known from
field theory are logarithmic corrections similar to those in the Coleman-Weinberg
mechanism [16].
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Fig. 2.1: Left figure: Vanishing of V(τ) from 0− happens for potentials with an AdS
minimum. Middle: Large τ behaviour of V(τ) with power law correction ∼ 1

τn
.

The potential on the right-hand side exhibits local minimum and maximum.

The above observation shows the way to overcome the difficulties in superstring
constructions. We recall that string theory has a reach structure including non-
perturbative objects such as D-branes which open up possibilities to construct
realistic cosmological models. Another ingredient, of particular interest in the
present study, comes from high order curvature terms in the ten dimensional
effective action. These elements are sufficient to generate loop corrections which
induce new contributions to the Kähler potential K, break its no scale invariance
and stabilise the moduli. We will describe in short how perturbative logarithmic
corrections are generated with the above constituents.
The low-energy expansion of the type IIB superstring action contains fourth order
terms in the Riemann curvature, R4, which do not receive any perturbative correc-
tions beyond one loop [7, 17, 18]. Upon compactification to our four dimensional
spacetime M4, these one-loop corrections induce a novel Einstein-Hilbert (EH)
term R(4). Its coefficient is proportional to the Euler characteristic χ, defined on
X6 by

χ =
3

4π3

∫
X6

R∧ R∧ R ·

Observing that χ contains three powers of R, we deduce that the effective EH
term R(4) (originating from R4) is only possible in four dimensions. Furthermore,
such an EH term can be viewed as a vertex localised at certain points in the
six-dimensional bulk where χ acquires non-zero values, emitting closed strings
(gravitons). We thus study the case of three-graviton scattering involving two
massless gravitons and a Kaluza-Klein (KK) excitation propagating towards a D7-
brane stack. The sum over the KK modes corresponds to a propagation that takes
place in a two-dimensional bulk space transverse to the D7 stack, see Figure 1.2.
Consequently, this process yields logarithmic contributions breaking the no-scale
invariance of the Kähler potential [6,9]. Taking these logarithmic contributions into
account the final effective action (obtained in the T6/ZN orbifold limit) contains [9]

S ∋ 1

(2π)3

∫
M4×X6

e−2ΦR(10)+
4ζ(2)χ

(2π)3

∫
M4

(
1−

∑
k=1,2,3

e2ΦTk log
Rk⊥
w

)
R(4). (2.4)

Here, Tk is the brane tension of the k-th stack, Rk⊥ the size of the two-dimensional
space transverse to the D7-stack and w an ‘effective’ localisation width of the
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graviton vertex, given by w = ℓs/
√
N with ls =

√
α ′ the fundamental string

length [8].
From the correction terms (2.4) in the 4d reduced action we can readily extract the
corresponding induced terms in the Kähler potential. For simplicity we assume
the same tension for all three brane stacks, so that Tk ≡ T = e−ΦT0, and for each
Kähler modulus Tk we denote τk = ImTk. ForD7-brane stacks with orthogonal co-
volumes, the internal volume is simply V =

√
τ1τ2τ3, and the the Kähler potential

takes the form

K = −2 ln (
√
τ1τ2τ3 + ξ+ γ ln (τ1τ2τ3)) ≡ −2 ln (V + ξ+ γ lnV) . (2.5)

Computations for the orbifold and smooth CY cases show that the parameters ξ
and γ are given by [8, 9]

γ ≡ −
1

2
gsT0ξ , with ξ = −

χ

4
×
{

π2

3
g2s for orbifolds

ζ(3) for smooth CY
, (2.6)

In (2.6) tree-level contributions for the orbifold case have not been included, since
the ζ(3)χ correction to the EH term vanishes [7, 8]. The identity ζ(2) = π2

8
has also

been used in the orbifold action (2.4).

k

kz

z

z

k k

k
k

1,0

1,0

1

2,0

2,02

3,n 3,n

3 X

X

X

X

D7

>

y=0 y=ya

A

worldsheet

Fig. 2.2: Non-zero contribution from 1-loop; 3-graviton scattering amplitude of 2 massless
gravitons and 1 KK mode corresponding to a closed string propagation in 2-dimensions
towards a D7 brane.

2.3 Inflationary phase

From (2.3) we can readily compute the F-part of the scalar potential VF. To this
end, we assume that all complex structure moduli are stabilised and the fluxed
induced superpotential W0 can be taken as a constant, while for convenience we
introduce the new parameter µ = e

ξ
2γ . The exact expression for VF can thus be

written as

VF =
3γW2

0

κ4
2(γ+ 2V) + (4γ− V) ln(µV)

(V + 2γ ln(µV))2 (6γ2 + V2 + 8γV + γ(4γ− V) ln(µV))
, (2.7)
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where κ =
√
8πGN is the reduced Planck length. In the large volume limit, VF

takes the simplified form

VF =
3W2

0

2κ4V3
(ξ+ 2γ(lnV − 4)) + · · · (2.8)

By virtue of the logarithmic term the potential (2.8) acquires a global minimum,
although this is an anti-de Sitter vacuum. Yet, a D-part contribution to the scalar
potential comes from the existence of universal U(1) factors associated with the
three D7-brane stacks. In the large world-volume limit this contribution takes the
form

VD =
d1

κ4τ31
+

d2

κ4τ32
+

d3

κ4τ33
+ · · · (2.9)

where the di for i = 1, 2, 3 are model-dependent constants related to U(1) Fayet-
Iliopoulos (FI) terms.
For the subsequent discussion it is useful to replace the dependence of the potential
on Kähler moduli with the canonically normalised fields. We identify them with a
logarithmic function of the volume and two perpendicular directions defined in
terms of τi ratios. We also recall that we consider a simple setup with “orthogonal”
D7-brane stacks, such that V =

√
τ1τ2τ3. The new basis then reads:

ϕ =

√
2

3
ln(V), (2.10)

u =
1

2
log
(
τ1

τ2

)
, (2.11)

v =

√
3

6
log
(
τ1

τ3

τ2

τ3

)
. (2.12)

In terms of these, the total scalar potential Veff = VF +VD in the large volume limit
is

Veff ≈
3W2

0

2κ4
e−3

√
3
2
ϕ
(
γ(
√
6ϕ− 4) + ξ

)

+
e−

√
6ϕ

κ4

(
d1e

−
√
3v−3u + d2e

−
√
3v+3u + d3e

2
√
3v
)
. (2.13)

In the inflationary scenario that we will discuss shortly, the field ϕ defined in
2.10 will play the role of the inflaton. In order to examine its evolution during the
inflation era, we need first to stabilise the three moduli u, v,V = e

√
2
3
ϕ and derive

the constraints in order to ensure a dS vacuum. We first minimise Veff with respect
to the two transverse fields u, v, and find their values at the minimum:

u0 =
1

6
ln
(
d1

d2

)
, v0 =

1

6
√
3

ln
(
d1d2

d23

)
. (2.14)

Substituting back into (2.13) we obtain the simple expression

V(ϕ) ≃ −
C

κ4
e−3

√
3
2
ϕ

(√
3

2
ϕ− 4+ q+

3

2
σe

√
3
2
ϕ

)
, (2.15)
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where we have defined

C ≡ −3W0
2γ > 0, d ≡ 3(d1d2d3)

1
3 , q ≡ ξ

2γ
, σ ≡ 2d

9W0
2γ
. (2.16)

A few comments are in order. First, in order to ensure a dS vacuum, the parameter
γmust be negative, hence the coefficient C is positive. Moreover, the parameter
d, related to the D-term part of the potential, is always positive. Furthermore,
increasing of the value of the parameter q shifts the local extrema towards larger
volumes. Finally, σ is the only free parameter of the model. It acquires negative
values, hence the total coefficient of the last term is positive and is expected to
uplift the minimum of the potential to positive values.
To study inflation and compute the slow-roll parameters we need to determine
the extrema of the potential with respect to the inflaton field ϕ [19]. Thus we take
the first and second derivatives of the potential with respect to ϕ and obtain

V ′(ϕ) = 3

√
3

2

C

κ4
e−3

√
3
2
ϕ

(√
3

2
ϕ+ q−

13

3
+ σe

√
3
2
ϕ

)
, (2.17)

V ′′(ϕ) = −
27

2

C

κ4
e−3

√
3
2
ϕ

(√
3

2
ϕ+ q−

14

3
+
2

3
σe

√
3
2
ϕ

)
. (2.18)

Requiring the vanishing of the first derivative, V ′(ϕ) = 0, we obtain two solutions
which are expressed in terms of the two branchesW0 andW−1 of the Lambert W
function (product logarithm):

ϕ− = −

√
2

3

(
q−

13

3
+W0

(
−e−x−1

))
, (2.19)

ϕ+ = −

√
2

3

(
q−

13

3
+W−1

(
−e−x−1

))
. (2.20)

The new parameter x introduced in the above solutions is defined by

x ≡ q−
16

3
− log(−σ) ↔ σ = −eq−

16
3

−x. (2.21)

while ϕ− is the local minimum and ϕ+ the local maximum. Large volumes can be
achieved at weak coupling for q < 0, implying a negative Euler number χ < 0, see
2.6 and 2.16.
Notably, most of the important quantities are expressed through simple analytical
forms in terms of x. For example, the slow-roll parameter η depends only on x
through the Lambert W function:

η(ϕ−/+) =
V ′′(ϕ−/+)

V(ϕ−/+)
= −9

1+W0/−1(−e
−x−1)

2
3
+W0/−1(−e−x−1)

. (2.22)

Similarly, the distance between the two extrema is

ϕ+ − ϕ− =

√
2

3

[
W0

(
−e−x−1

)
−W−1

(
−e−x−1

)]
> 0 . (2.23)
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The parameter x thus clearly plays a significant role. For the critical value xc ≃
0.072132 the potential at the minimum vanishes, V(ϕ−) = 0, which corresponds
to a Minkowski minimum. Below this critical value, in the region 0 < x < xc, the
potential acquires a dS vacuum whereas for x > xc it displays an AdS minimum.
For x < 0 the two branches of the Lambert function join and the potential loses its
local extrema. The potential for the three regimes described above is depicted in
2.3.
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = � 2
k2 ln

 
(t1t2t3)
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gk ln(tk)

!
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Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
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3
ln(V ), (14)

u =
1p
2
(t1 � t2), (15)

v =
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6
(t1 + t2 �2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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for which the VD potential becomes
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with d ⌘ 3(d1d2d3)
1
3 .

Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD
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In the large volume limit we obtain the simpler expres-
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]
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Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
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ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
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Taking
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for simplicity and defining µ = e
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2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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Contrary to the F-part VF , the D-part VD depends on the three
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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The Kähler potential of the model is [3]
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Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields
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Isolating the volume from the two other perpendicular direc-
tions we obtain the following base
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Taking
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for simplicity and defining µ = e
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2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads

V (f) ⇡� C
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = � 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1 � t2), (15)

v =
1p
6
(t1 + t2 �2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads

VF =� 3gW 2
0

k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))
.

(18)

The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read

u0 =
1
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✓
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◆
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for which the VD potential becomes
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with d ⌘ 3(d1d2d3)
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3 .

Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD
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In the large volume limit we obtain the simpler expres-
sion
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with

q ⌘ x
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, r ⌘ 2d
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< 0, C ⌘�3W0

2g > 0. (24)

The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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three magnetised D7 branes, we can define the normalised
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
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parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = � 2
k2 ln
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gk ln(tk)

!
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Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
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(t1 + t2 + t3) =
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ln(V ), (14)

u =
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2
(t1 � t2), (15)

v =
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(t1 + t2 �2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to
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In the large volume limit we obtain the simpler expres-
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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+
d

k4V 2 . (22)

In the large volume limit we obtain the simpler expres-
sion

V (V ) ⇡ 3W 2
0

2k4V 3 (2g(logV �4)+x )+
d

k4V 2

⌘ C
k4

✓
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V 3 � 3r
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, (23)

with

q ⌘ x
2g

, r ⌘ 2d
9W0

2g
< 0, C ⌘�3W0

2g > 0. (24)

The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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q
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2 f
 r
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f �4+q+
3
2

re
q

3
2 f
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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+ re
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3
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2 f
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(27)

Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = � 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1 � t2), (15)

v =
1p
6
(t1 + t2 �2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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.
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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p
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⌘
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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for which the VD potential becomes
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to
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In the large volume limit we obtain the simpler expres-
sion
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = � 2
k2 ln

 
(t1t2t3)
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gk ln(tk)
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Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
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(t1 + t2 + t3) =
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ln(V ), (14)

u =
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2
(t1 � t2), (15)

v =
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(t1 + t2 �2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = � 2
k2 ln

 
(t1t2t3)
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Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
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3
ln(V ), (14)

u =
1p
2
(t1 � t2), (15)

v =
1p
6
(t1 + t2 �2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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2(g+2V )+(4g�V ) ln(µV )
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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for which the VD potential becomes
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD
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In the large volume limit we obtain the simpler expres-
sion
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = � 2
k2 ln

 
(t1t2t3)
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Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
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v =
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Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
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2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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The D-part of the scalar potential coming from the D7
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
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Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]
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Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
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2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
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v =
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Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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The D-part of the scalar potential coming from the D7
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read

u0 =
1
6

ln
✓

d1

d2

◆
, v0 =

1
6
p

3
ln
✓

d1d2

d2
3

◆
, (20)

for which the VD potential becomes

VD(t,u0,v0) =
3(d1d2d3)

1
3

k4V 2 =
d

k4V 2 =
d

k4 e�
p

6t , (21)

with d ⌘ 3(d1d2d3)
1
3 .
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the total scalar potential reduces to
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get

V 0(f) = 3
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Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = � 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1 � t2), (15)

v =
1p
6
(t1 + t2 �2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads

VF =� 3gW 2
0

k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))
.

(18)

The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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1
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for which the VD potential becomes
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD
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In the large volume limit we obtain the simpler expres-
sion
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with
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
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t =
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in the model but is given by the amplitude spectrum oberva-
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In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = � 2
k2 ln
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gk ln(tk)
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Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
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ln(V ), (14)

u =
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2
(t1 � t2), (15)

v =
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(t1 + t2 �2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit

VD ⇡ d1

k4t3
1

+
d2

k4t3
2

+
d3

k4t3
3

=
e�

p
6t

k4

⇣
d1e�

p
3v�3u +d2e�

p
3v+3u +d3e2

p
3v
⌘

. (19)

Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to
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In the large volume limit we obtain the simpler expres-
sion
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = � 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1 � t2), (15)

v =
1p
6
(t1 + t2 �2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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for which the VD potential becomes

VD(t,u0,v0) =
3(d1d2d3)

1
3

k4V 2 =
d

k4V 2 =
d

k4 e�
p

6t , (21)

with d ⌘ 3(d1d2d3)
1
3 .

Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD
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In the large volume limit we obtain the simpler expres-
sion
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2g > 0. (24)

The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = � 2
k2 ln

 
(t1t2t3)

1
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gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base
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Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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for which the VD potential becomes
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
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t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = � 2
k2 ln

 
(t1t2t3)

1
2 +x +
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Â
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gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1 � t2), (15)

v =
1p
6
(t1 + t2 �2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads

VF =� 3gW 2
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k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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for which the VD potential becomes
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3 .

Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD
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In the large volume limit we obtain the simpler expres-
sion
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2g > 0. (24)

The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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 r
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = � 2
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Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
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Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
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2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
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the total scalar potential reduces to
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
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Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]
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Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
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2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
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v =
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Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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The D-part of the scalar potential coming from the D7
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get

V 0(f) = 3
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Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = � 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1 � t2), (15)

v =
1p
6
(t1 + t2 �2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads

VF =� 3gW 2
0

k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))
.

(18)

The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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1
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k4t3
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p
3v
⌘
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read

u0 =
1
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✓
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◆
, v0 =
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6
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for which the VD potential becomes
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1
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with d ⌘ 3(d1d2d3)
1
3 .

Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD

⇡� 3gW 2
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In the large volume limit we obtain the simpler expres-
sion
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with

q ⌘ x
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, r ⌘ 2d
9W0

2g
< 0, C ⌘�3W0

2g > 0. (24)

The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields
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Isolating the volume from the two other perpendicular direc-
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t =
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in the model but is given by the amplitude spectrum oberva-
tion.
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In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = � 2
k2 ln
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Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
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ln(V ), (14)

u =
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(t1 � t2), (15)

v =
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(t1 + t2 �2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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for which the VD potential becomes
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to
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In the large volume limit we obtain the simpler expres-
sion
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = � 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1 � t2), (15)

v =
1p
6
(t1 + t2 �2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to
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In the large volume limit we obtain the simpler expres-
sion

V (V ) ⇡ 3W 2
0

2k4V 3 (2g(logV �4)+x )+
d

k4V 2

⌘ C
k4

✓
� logV �4+q

V 3 � 3r
2V 2

◆
, (23)

with

q ⌘ x
2g

, r ⌘ 2d
9W0

2g
< 0, C ⌘�3W0

2g > 0. (24)

The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]
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Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
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ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base
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v =
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for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
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Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = � 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
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ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
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Fig. 2.3: Scalar potential V(ϕ) for different values of x giving an AdS, Minkowski
or dS vacuum.

Having determined the region of the parameter x which is consistent with dS
minima, we are now ready to study cosmological implications and in particular
inflationary observables. We first find that some well-known inflationary scenarios
such as slow-roll inflation hilltop, cannot be realised in our restricted model. We
can easily adjust the value of the slow-roll parameter η (which depends only on x)
by varying x ∈ (0, xc), so that inflation starts near the maximum, and the modes
exit horizon with the required value of the spectral index. It is found, however,
that the slow-roll parameters ϵ, η remain much less that unity all the way down
the slope, hence inflation does not stop, and as a result an unacceptably large
number of e-folds is generated.
As we describe below, in order to study more general inflationary scenarios, we
will scan the x parameter space. For each value of x, we can solve the evolution
equation for the Hubble parameter and derive the relevant parameters to study
the eventual inflationary stage. Before entering the details of such a procedure,
we thus recall a few basic equations regarding the evolution of the expansion
of the Universe and the inflationary epoch assuming a single scalar field ϕ in
the standard Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) background. The
Friedmann equations for an expanding Universe are

3H2 =
1

2
ϕ̇2 + κ2V(ϕ), (2.24)

2Ḣ = −ϕ̇2, (2.25)

where, as usual H(t) = ȧ
a
, represents the Hubble parameter. The equation of

motion for the scalar field reads

ϕ̈+ 3Hϕ̇+ κ2V ′(ϕ) = 0 . (2.26)
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Changing variable Ḣ = dH
dϕ
ϕ̇, equation (2.25) yields

dH

dϕ
= H ′(ϕ) = −

1

2
ϕ̇ . (2.27)

Using (2.24) and expressing ϕ̇ as a function of H and V , we obtain the Hubble
parameter evolution equation:

H ′(ϕ) = ∓ 1√
2

√
3H2(ϕ) − κ2V(ϕ) . (2.28)

The exact forms of the slow-roll parameters η, ϵ are [20]

η(ϕ) = 2
H ′′(ϕ)
H(ϕ)

, ϵ(ϕ) = −
Ḣ

H2
= 2

(
H ′(ϕ)
H(ϕ)

)2

, (2.29)

while in the slow-roll limit they acquire the usual forms η(ϕ) ≈ V ′′(ϕ)
V(ϕ) , and

ϵ(ϕ) ≈ 1
2

(
V ′(ϕ)
V(ϕ)

)2
. From the first expression of ϵ in (2.29), we obtain

ä

aH2
= 1− ϵ, (2.30)

so that ϵ < 1 is the natural criterium characterising inflation, a phase with ä > 0.
Finally, the number of e-folds N is given by

N =

∫tend
t

Hdt =
1√
2

∫ϕ
ϕend

dϕ√
ϵ
. (2.31)

As mentioned above, one can investigate inflationary possibilities through a scan
of the x parameter in the following way. The value of x determines the shape of
the inflaton scalar potential V(ϕ), which enters the evolution equation (2.28) for
the Hubble parameter. For a given value of x, solving this equation thus allows to
compute the slow-roll parameters and number of e-folds, through 2.29 and 2.31,
and study the inflationary phase.
The above scan gave rise to a novel scenario where most of the e-folds are obtained
near the minimum. In this scenario, the inflaton starts rolling down from a point
close to the maximum towards the minimum of its potential with zero initial
speed. If η(ϕ+) < −0.02, because at the inflection point the second derivative
V ′′(ϕ) changes sign, the inflaton will pass through the point where η(ϕ∗) = −0.02

before it crosses the inflection point. We can then choose the parameter x so that
60 e-folds are obtained from this point to minimum. Thus, in order to reproduce
the observational data, the initial position of the inflaton has to be higher than the
inflection point, where η is negative, so that η = −0.02 is taken at the horizon exit.
In order to realise this scenario, we have solved numerically the evolution equation
(2.28) for various values of x, starting near the maximum with vanishing initial
speed for the inflaton. The required number of e-folds, N∗ ≃ 60 are achieved
for x ≃ 3.3 10−4 while the two extrema of the potential are found at ϕ− = 4.334

and ϕ+ = 4.376. The e-folds are computed from the horizon exit ϕ∗ ≃ 4.354
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at which η(ϕ∗) = −0.02, down to the minimum ϕ−. Is it worth observing that
the corresponding inflaton field displacement ∆ϕ ≃ 0.02, is much less than one
in Planck units. Hence it corresponds to small field inflation, and as such is
compatible with the validity of the effective field theory. Finally, this model predicts
an inflation scale H∗ ≃ 5× 1012 GeV and a ratio of tensor to scalar perturbations
r ≃ 4× 10−4.

2.4 Waterfall fields and hybrid inflation

Up to this point, we have explained how in the simple geometric set up of three
D7-brane stacks we can ensure Kähler moduli stabilisation in a dS vacuum and
investigated the conditions to realise inflation. We found that logarithmic radiative
corrections and brane magnetisations generate a scalar potential with a very
shallow dS minimum, which can realise inflation with the required 60 e-folds
collected near the minimum (as opposed -for example- to the case of hilltop
scenario). However, the tight constraints imposed by the various requirements
entail a metastable minimum with a cosmological constant much larger than
the one observed today. A detailed consideration shows that this false vacuum
of the so-obtained scalar potential is suggestive for a solution through hybrid
inflation [21] where a waterfall field ends the inflation phase and settles to a lower
(true) vacuum with the anticipated value of the cosmological constant. Such a
waterfall field is realised by a scalar field with effective mass depending on the
value of the inflaton. If this field becomes tachyonic under a certain critical value
for the inflaton, it generates the waterfall direction of the scalar potential.
Within the present geometric configuration, potential waterfall field candidates are
the various states associated with the excitations of open strings with endpoints
attached to D7 brane stacks. The scalar components of these states may receive
supersymmetric positive square masses from brane separation or Wilson lines,
and non-supersymmetric contributions due to the presence of the worldvolume
magnetic fields generating the D-terms required for moduli stabilisation.
In the following, we briefly describe how these fields contribute to the materialisa-
tion of this scenario in the context of a Z2 × Z2 orbifold. We assume a factorised
6-torus into three 2-tori T6 = T2 × T2 × T2 spanning the internal dimensions
(45), (67) and (89) respectively. The model under consideration consists of three
D7 brane stacks, which we denote with D71,D72 and D73. Each of them spans
four internal dimensions and is localised in the remaining two. This setup can be
considered as dual to the configuration of the D9 and D5 branes as in the toroidal
orbifold model described in the literature [22, 23]. This is shown schematically in
the following table where we impose T-duality along (45) dimensions.

(45) (67) (89)
D71 · × ×
D72 × × ·
D73 × · ×

−→
(45) (67) (89)

D91 × × ×
D52 · × ·
D53 · · ×
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We use a cross × to represent the D7world-volume spanning the corresponding
torus, and a dot · to indicate the transverse directions where the D7 brane is
localised.
As motivated above, we can introduce magnetic fields H(i)

a , on the a-th stack
D7a and in the i-th torus T2i . They are subject to the Dirac quantization condition
m(i)

a

∫
H(i)

a = 2πn(i)
a , leading to the magnetic field quantisation 2πH(i)

a Ai = k
(i)
a ,

where 4π2Ai is the T2i area. Herem(i)
a , n(i)

a are the winding numbers and the flux
quanta and we defined the ratio k(i)

a = n(i)
a /m

(i)
a ∈ Q. The magnetic fields modify

the world-sheet action by introducing boundary terms [24,25] and shift the modes
of the charged oscillators by

ζ(i)

a =
1

π
Arctan(2πα ′qaH

(i)

a ). (2.32)

where qa = ±1, 0 are the U(1) charges of the open string endpoints.
The mass spectrum can be extracted, either from the field theory mass formula
or from vacuum amplitudes, and one sees that when magnetic fields are intro-
duced into the D7-brane configuration, tachyonic states may appear in the spec-
trum [25, 26]. In general, one can eliminate them by introducing appropriate brane
separations or Wilson lines.
To be concrete, we consider magnetic fields on each D7 stack, denoted by a circled
cross ⊗ as the following table.

(45) (67) (89)
D71 · ⊗ ×
D72 × · ⊗
D73 ⊗ × ·

Three different kinds of states appear. The first two describe strings with both
endpoints on the “same” stack D7i-D7i which are either neutral (attached to the
same brane, hence with opposite endpoints charges) or doubly charged (stretching
between the brane and its orientifold image). The last ones are mixed states D7i-
D7j, with i ̸= j. Due to the presence of magnetic fields, the massless states of the
original orbifold model are modified. The masses of the D7i-D7i doubly charged
states read α ′m2 = −2|ζ

(j)
i |2 whereas those of the D7i-D7j states are of the form

(|ζ
(3)
2 |− |ζ

(2)
1 |), (|ζ(2)1 |− |ζ

(1)
3 |) and (|ζ

(1)
3 |− |ζ

(3)
2 |).

Observing the above mass formulae, it can be deduced that tachyonic states indeed
appear in the spectrum [25, 26]. The only way to eliminate all three potential
tachyons along the D7-brane intersections (D7i–D7j mixed states) is to choose
|ζ(2)

1 | = |ζ(3)

2 | = |ζ(1)

3 |. On the other hand, in order to uplift the tachyons on the
D7i–D7i sectors, we can introduce distance separations between branes and their
images in the direction orthogonal to their worldvolume, or Wilson lines i.e.
constant background gauge fields on unmagnetised worldvolume tori. In the
Table below we present a configuration keeping only one potential tachyonic state
that can play the role of the waterfall field:2

2 The following definitions are introduced: the discrete Wilson lines in the dual lattice are
expressed as Ak = akxR∗x

k + akyR∗y
k , with akx, aky ∈ Q . The D7k brane position xk
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(45) (67) (89)
D71 · ⊗ ×
D72 × · ⊗
D73 ⊗ × ·

−→
(45) (67) (89)

D71 · ⊗ ×A1

D72 × · ±x2 ⊗
D73 ⊗ ×A3 ·

We introduce discrete Wilson lines along the third torus T23 for the D71 stack and
along the second torus T22 for the D73 stack, while we separate the D72 stack from
its orientifold image in its transverse directions. Next, we denote the Ai tori areas
(i = 1, 2, 3) as power fractions of the total volume Ai ≡ α ′riV1/3, with r1r2r3 = 1

and Ui the corresponding complex structure moduli. Then, the masses for the
doubly charged states in the three brane stacks are found to be [19]

α ′m2
11 ≈ −

2|k(2)

1 |

πr2V1/3
+

a21
r3V1/3

, (2.33)

α ′m2
22 ≈ −

2|k(3)

2 |

πr3V1/3
+ y2r2V1/3, (2.34)

α ′m2
33 ≈ −

2|k(1)

3 |

πr1V1/3
+

a23
r2V1/3

, (2.35)

where a1, a3 and y2 are functions of the complex structure moduli Ui defined
in 2. By choosing appropriately a1, a3 with respect to the values of the magnetic
fluxes |k(2)

1 | and |k(1)

3 |, one can eliminate the D71-D71 and D73-D73 tachyons.
For ai = 1/2, typical for Z2 orbifolds, this requires flux numbers smaller than
wrapping numbers. On the other hand, the D72-D72 state becomes tachyonic at
and below a critical value of the volume that can be chosen to be in the vicinity of
the minimum of the potential, as required for the waterfall field, denoted by φ−

in the following.
We turn now to the scalar potential. The magnetic fields contribute through a
D-term of the form

VD =
∑
a

g2U(1)a

2

(
ξa +

∑
n

qna |φ
n
a |

2

)2

+ · · ·

=
∑

a=1,3

g2U(1)a

2
ξ2a +

g2U(1)2

2

(
ξ2 + 2|φ+|

2 − 2|φ−|
2 + · · ·

)2
+ · · · , (2.36)

where in the second line contributions only from the tachyonic field and its charge
conjugate are taken into account.
We have also explained that the tachyonic scalar, coming from strings stretching be-
tween theD72 brane stack and its image, may receive a positive mass contribution
due to the brane position. In the effective field theory, this contribution is described
by a trilinear superpotential obtained by an appropriate N = 1 truncation of an
N = 4 supersymmetric theory. The physical mass for the canonically normalised
fields can be computed from the physical Yukawa couplings, derived from the

as xk ≡ xxk Rkx + xyk Rky with xxk, x
y
k ∈ Q, while Rik · R∗l

i = δlk. For later use, we also

define yk(U) =
4|xxk−iUx

y
k |
2

Re(U)
and ak(U) =

|aky+iUakx|
2

Re(U)
.
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supergravity action, and can be expressed as [27] Wtach = Yijkφiφjφk, where
Yijk are Yukawa coefficients expressed in terms of the Kähler metrics of related
matter fields. Their volume dependence can be worked out and the final form of
the coupling is

Wtach = g1/2s κ3
√

A2

α ′Vφ2φ+φ−, (2.37)

which induces a scalar potential F-part of the form VF ∋ m2
x2

(
|φ+|

2 + |φ−|
2
)

with m2
x2

= y2(g
2
s/κ

2V)A2/α
′. In addition to this mass-squared terms, the F-term

scalar potential also contains quartic terms. They can be worked out and the
leading term in the scalar potential for the tachyonic scalar is found to be of the
form VF ∋ κ2m2

x2
|φ−|

4.
The effective scalar potential includes the D-term and F-term contributions and
its final form is achieved after the minimisation procedure whose details can be
found in [19] . Neglecting, in particular, the massive φ+ field, the scalar potential
receives the simplified form

V(V, φ−) =
C

κ4

(
−

lnV − 4+ q

V3
−
3σ

2V2

)
+
1

2
m2

Y(V)|φ−|
2 +

λ(V)
4

|φ−|
4, (2.38)

where the explicit forms of the volume dependent mass m2
Y and quartic coupling

λ are given in terms of integers representing magnetic fluxes [19] and other string
parameters. The final dependence of V(V, φ−) on the two fields has been written
in the form of the hybrid scenario [21] scalar potential. In this form it is even
clearer that the role of the waterfall field is played by the scalar field φ− associated
with the state stretching between theD72 brane and its orientifold image. Its mass
squared m2

Y depends on the internal volume V , directly related to the inflaton,
and turns negative when the internal volume acquires a critical value. A waterfall
direction is thus generated, as in the hybrid scenario. This mechanism leads to
a new lower minimum. It has been found [19] that when only a single tachyon
is involved, the amount of reduction falls short to explain the observed value of
dark energy of our Universe. This situation can be remedied within our model by
introducing more tachyons, coming from the two other D7-brane stacks and from
a fourth magnetised stack, parallel to one of the initial stacks. These additional
tachyons contribute negatively to the scalar potential and are sufficient to achieve
the present value of the cosmological constant. Apart from (or instead of) these
contributions, one should of course expect new physics at low energies, leading to
other phase transitions that affect the scalar potential. Hence, the precise tuning of
the vacuum energy within our high energy model should be regarded as a proof
of principle.

2.5 Conclusions

In this presentation we have discussed aspects of perturbative corrections in
the weak string coupling regime and large volume compactifications within the
framework of type IIB string theory. We have considered a geometric configuration
of intersectingD7-brane stacks and investigated the role of logarithmic corrections
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which are present by virtue of local tadpoles induced by localised gravity kinetic
terms. Such terms are generated from the dimensional reduction of the R4 terms in
the effective ten dimensional action and arise only in four spacetime dimensions.
We have shown that in this string theory context, metastable de Sitter vacua can
be ensured together with Kähler moduli stabilisation.
Subsequently, we have examined the possibility of realising the mechanism of cos-
mological inflation. We have shown that the inflationary scenario can be naturally
implemented when the internal volume modulus is considered to be the inflaton
field. The effective scalar potential contains only a single free parameter, whose
value is fixed in order to meet the inflationary conditions and in particular the
requirement of 60 e-folds which, in our construction, are collected near the mini-
mum, while the horizon exit occurs near the infection point. These requirements,
however, lead to a very shallow potential with its minimum much larger than the
known value of the cosmological constant.
To resolve this discrepancy, we have suggested that a string version of the hybrid
inflationary scenario could be realised where possible waterfall fields could be
identified with some of the charged string states stretching between the branes and
their orientifold images. In the effective theory, the (volumed dependent) masses
squared of such excitations consist of positive contributions from brane separations
and possible negative ones when worldvolume magnetic fields are turned on. With
suitable conditions on various quantities such as magnetic fluxes and geometric
characteristics, tachyonic states may appear. For illustrative purposes, we have
presented a simple scenario where a tachyonic field arises, with its mass squared
turning negative as soon as the internal volume acquires a critical value. This is
exactly what is required for a waterfall field. More specifically, in the effective field
theory, states of the kind described above induce specific contributions to the F-
and D-terms of the effective potential. When these contributions are included in
the total scalar potential [19], the tachyonic field can indeed play the role of the
waterfall field, providing in this way an explicit string realisation of the hybrid
inflationary scenario. Finally, we have discussed the role of multiple tachyonic
fields in order to obtain the present value of the cosmological constant. Remarkably,
the present construction offers an explicit counter-example to de Sitter Swampland
conjecture.
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Abstract. Here the results obtained by analysing other two annual cycles of DAMA/LIBRA–
phase2 are presented and the long-standing model-independent annual modulation effect
measured by DAMA deep underground at the Gran Sasso National Laboratory (LNGS)
of the I.N.F.N. with different experimental configurations is summarized. In particular,
profiting from a second generation high quantum efficiency photomultipliers and new
electronics, the DAMA/LIBRA–phase2 apparatus (≃ 250 kg highly radio-pure NaI(Tl)) has
allowed the reaching of lower software energy threshold. Including the results of the two
new annual cycles, the total exposure of DAMA/LIBRA–phase2 over 8 annual cycles is 1.53
ton × yr. The evidence of a signal that meets all the requirements of the model independent
Dark Matter (DM) annual modulation signature is further confirmed: 11.8 σ C.L. in the
energy region (1–6) keV. In the energy region between 2 and 6 keV, where data are also
available from DAMA/NaI and DAMA/LIBRA–phase1, the achieved C.L. for the full
exposure (2.86 ton × yr) is 13.7 σ; the modulation amplitude of the single-hit scintillation
events is: (0.01014±0.00074) cpd/kg/keV, the measured phase is (142.4±4.2) days and the
measured period is (0.99834± 0.00067) yr, values all well in agreement with those expected
for DM particles. No systematics or side reaction able to mimic the exploited DM signature
(i.e. to account for the whole measured modulation amplitude and to simultaneously satisfy
all the requirements of the signature) has been found or suggested by anyone throughout
some decades thus far.

Povzetek: Avtorji predstavijo rezultate zadnjih in vseh dosedanjih meritev na experimentu
DAMA/LIBRA, ki meri letno modulacijo sipanja delcev, za katere zdaj že z veliko go-
tovostjo menijo, da so lahko samo delci temne snovi. Nacionalni laboratorij Gran Sasso
(LNGS) I.N.F.N. se nahaja globoko pod zemljo. V teh letih so uporabili različne konfig-
uracije in vsebnosti merilcev ter poskrbeli za njihovo čistost in učinkovitost. V poskusu

⋆⋆⋆ F. Montecchia also Dip. di Ing. Civile e Informatica, Universit‘a di Roma Tor Vergata,
Rome, Italy
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DAMA/LIBRA–phase2 (≃ 250 kg visoko radijsko čistega NaI(Tl)) uporabljajo drugo gen-
eracijov fotopomnoževalk z visoko kvantno učinkovitostjo in najsodobnejšo elektroniko,
kar jim je omogočilo, da so znižali energijski prag, do katerega so meritve še zanesljive.
Rezultati novih meritev letne modulacije trkov delcev temne snovi z delci v merilni aparaturi,
ki so neodvisne od modela, potrjujejo stare meritve temne snovi (1.53 ton × leto) z 11,8 σ
C.L.(stopnja zanesljivosti) v energijskem območju (1–6) KeV. V energijskem območju med
(2 - 6) KeV, kjer so podatki zbrani že s poskusoma DAMA/NaI in DAMA/LIBRA–phase1,
pa je C.L. (stopnja zanesljivosti) za polno izpostavljenost (2,86 ton × leto) enaka 13,7 σ. Am-
plituda modulacije scintilacijskih dogodkov single-hit je: (0, 01014± 0, 00074) cpd/kg/keV,
izmerjena faza je (142, 4 ± 4, 2) dni in izmerjeno obdobje je (0, 99834 ± 0, 00067) na leto.
Vse te meritve so v skladu s predpostavko, da so izmerjene dogotke povzročili delci temne
snovi. Noben drug dogodek, v zadnjih desetletjih so jih predlali kar nekaj, ni v skladu z
izmerjenimi rezultati.

3.1 Introduction

The DAMA/LIBRA [1–23] experiment, as well as the pioneer DAMA/NaI [24–
51], has the main aim to investigate the presence of DM particles in the galactic
halo by exploiting the DM annual modulation signature (originally suggested
in Ref. [52, 53]). In particular, the developed highly radio-pure NaI(Tl) target-
detectors [1,6,9,54] ensure sensitivity to a wide range of DM candidates, interaction
types and astrophysical scenarios (see e.g. Refs. [2, 14, 16–18, 25–32, 35–42], and in
literature).
The investigated process is the DM annual modulation signature and related
properties; as a consequence of the Earth’s revolution around the Sun, which is
moving in the Galaxy with respect to the Local Standard of Rest towards the star
Vega near the constellation of Hercules, the Earth should be crossed by a larger
flux of DM particles around ≃ 2 June and by a smaller one around ≃ 2 December
(in the first case the Earth orbital velocity is summed to that of the solar system
with respect to the Galaxy, while in the other one the two velocities are subtracted).
Thus, this DM annual modulation signature is due to the Earth motion with respect
to the DM particles constituting the Galactic Dark Halo.
The DM annual modulation signature is very distinctive since the effect induced by
DM particles must simultaneously satisfy all the following requirements: the rate
must contain a component modulated according to a cosine function (1) with one
year period (2) and a phase that peaks roughly ≃ 2 June (3); this modulation must
only be found in a well-defined low energy range, where DM particle induced
events can be present (4); it must apply only to those events in which just one
detector of many actually “fires” (single-hit events), since the DM particle multi-
interaction probability is negligible (5); the modulation amplitude in the region
of maximal sensitivity must be ≲ 7% of the constant part of the signal for usually
adopted halo distributions (6), but it can be larger in case of some proposed
scenarios such as e.g. those in Ref. [55–59] (even up to ≃ 30%). Thus this signature
has many peculiarities and, in addition, it allows to test a wide range of parameters
in many possible astrophysical, nuclear and particle physics scenarios. This DM
signature might be mimicked only by systematic effects or side reactions able
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to account for the whole observed modulation amplitude and to simultaneously
satisfy all the requirements given above.
The description of the DAMA/LIBRA set-up and the adopted procedures during
the phase1 and phase2 and other related arguments have been discussed in details
e.g. in Refs. [1–6, 19–21, 23]. The radio-purity and details are discussed e.g. in
Refs. [1–5, 54] and references therein. The adopted procedures provide sensitivity
to large and low mass DM candidates inducing nuclear recoils and/or electromag-
netic signals. The data of the former DAMA/NaI setup and, later, those of the
DAMA/LIBRA–phase1 have already given (with high confidence level) positive
evidence for the presence of a signal that satisfies all the requirements of the
exploited DM annual modulation signature [2–5,35,36]. In particular, at the end of
2010 all the photomultipliers (PMTs) were replaced by a second generation PMTs
Hamamatsu R6233MOD, with higher quantum efficiency (Q.E.) and with lower
background with respect to those used in phase1, allowing the achievement of the
software energy threshold at 1 keV as well as the improvement of some detector’s
features such as energy resolution and acceptance efficiency near software energy
threshold [6]. The adopted procedure for noise rejection near software energy
threshold and the acceptance windows are the same unchanged along all the
DAMA/LIBRA–phase2 data taking, throughout the months and the annual cycles.
The typical behaviour of the overall efficiency for single-hit events as a function
of the energy is also shown in Ref. [6]; the percentage variations of the efficiency
follow a gaussian distribution with σ = 0.3% and do not show any modulation
with period and phase as expected for the DM signal (for a partial data release
see Ref. [21]). At the end of 2012 new preamplifiers and special developed trigger
modules were installed and the apparatus was equipped with more compact
electronic modules [60]. In particular, the sensitive part of DAMA/LIBRA–phase2
set-up is made of 25 highly radio-pure NaI(Tl) crystal scintillators (5-rows by
5-columns matrix) having 9.70 kg mass each one; quantitative analyses of residual
contaminants are given in Ref. [1]. In each detector two 10 cm long UV light
guides (made of Suprasil B quartz) act also as optical windows on the two end
faces of the crystal, and are coupled to two low background PMTs working in
coincidence at single photoelectron level. The detectors are housed in a sealed
low-radioactive copper box installed in the center of a low-radioactive Cu/Pb/Cd-
foils/polyethylene/paraffin shield; moreover, about 1 m concrete (made from the
Gran Sasso rock material) almost fully surrounds (mostly outside the barrack) this
passive shield, acting as a further neutron moderator. The shield is decoupled
from the ground by a metallic structure mounted above a concrete basement; a
neoprene layer separates the concrete basement and the floor of the laboratory.
The space between this basement and the metallic structure is filled by paraffin
for several tens cm in height. A threefold-level sealing system prevents the de-
tectors from contact with the environmental air of the underground laboratory
and continuously maintains them in HP (high-purity) Nitrogen atmosphere. The
whole installation is under air conditioning to ensure a suitable and stable work-
ing temperature. The huge heat capacity of the multi-tons passive shield (≈ 106
cal/oC) guarantees further relevant stability of the detectors’ operating tempera-
ture. In particular, two independent systems of air conditioning are available for
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redundancy: one cooled by water refrigerated by a dedicated chiller and the other
operating with cooling gas. A hardware/software monitoring system provides
data on the operating conditions. In particular, several probes are read out and the
results are stored with the production data. Moreover, self-controlled computer
based processes automatically monitor several parameters, including those from
DAQ, and manage the alarms system. All these procedures, already experienced
during DAMA/LIBRA–phase1 [1–5], allow us to control and to maintain the run-
ning conditions stable at a level better than 1% also in DAMA/LIBRA–phase2 (see
e.g. Ref. [21, 23]).
During phase2 the light response of the detectors typically ranges from 6 to 10
photoelectrons/keV, depending on the detector. Energy calibration with X-rays/γ
sources are regularly carried out in the same running condition down to few keV
(for details see e.g. Ref. [1]); in particular, double coincidences due to internal
X-rays from 40K (which is at ppt levels in the crystals) provide (when summing
the data over long periods) a calibration point at 3.2 keV close to the software
energy threshold. The DAQ system records both single-hit events (where just one
of the detectors fires) and multiple-hit events (where more than one detector fires)
up to the MeV region despite the optimization is performed for the lowest energy.

3.2 Eight DAMA/LIBRA–phase2 annual cycles

Table 3.1 summarizes the details of the DAMA/LIBRA–phase2 annual cycles
including the last two released ones. The first cycle was dedicated to commis-
sioning and optimizations towards the achievement of the 1 keV software energy
threshold [6]. On the other hand that cycle having: i) no data before/near Dec.
2, 2010 (the expected minimum of the DM signal); ii) data sets with some set-up
modifications; iii) (α− β2) = 0.355 well different from 0.5 (i.e. the detectors were
not being operational evenly throughout the year), cannot be used for the annual
modulation studies; however, it has been used for other purposes [6,13]. Thus (see
Table 3.1) the considered annual cycles of DAMA/LIBRA–phase2 are eight for
an exposure of 1.53 ton×yr. The cumulative exposure, when considering also the
former DAMA/NaI and DAMA/LIBRA–phase1, is 2.86 ton×yr.

The total number of events collected for the energy calibrations during the eight
annual cycles of DAMA/LIBRA–phase2 is about 1.6× 108, while about 1.7× 105
events/keV have been collected for the evaluation of the acceptance window
efficiency for noise rejection near the software energy threshold [1, 6]. Finally, the
duty cycle of the experiment is high, ranging between 76% and 86%: the routine
calibrations and the data collection for the acceptance windows efficiency mainly
affect it.

3.2.1 The annual modulation of the residual rate

In Fig. 3.1 the time behaviours of the experimental residual rates of the single-
hit scintillation events in the (1–3), and (1–6) keV energy intervals are shown
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Table 3.1: Details about the annual cycles of DAMA/LIBRA–phase2. The mean
value of the squared cosine is α = ⟨cos2ω(t − t0)⟩ and the mean value of the
cosine is β = ⟨cosω(t− t0)⟩ (the averages are taken over the live time of the data
taking and t0 = 152.5 day, i.e. June 2nd); thus, the variance of the cosine, (α− β2),
is ≃ 0.5 for a detector being operational evenly throughout the year.

DAMA/LIBRA–phase2 Period Mass Exposure (α − β2)

annual cycle (kg) (kg×day)
1 Dec. 23, 2010 – Sept. 9, 2011 commissioning of phase2
2 Nov. 2, 2011 – Sept. 11, 2012 242.5 62917 0.519
3 Oct. 8, 2012 – Sept. 2, 2013 242.5 60586 0.534
4 Sept. 8, 2013 – Sept. 1, 2014 242.5 73792 0.479
5 Sept. 1, 2014 – Sept. 9, 2015 242.5 71180 0.486
6 Sept. 10, 2015 – Aug. 24, 2016 242.5 67527 0.522
7 Sept. 7, 2016 – Sept. 25, 2017 242.5 75135 0.480
8 Sept. 25, 2017 – Aug. 20, 2018 242.5 68759 0.557
9 Aug. 24, 2018 – Oct. 3, 2019 242.5 77213 0.446

DAMA/LIBRA–phase2 Nov. 2, 2011 – Oct. 3, 2019 557109 kg×day ≃ 1.53 ton×yr 0.501
DAMA/NaI + DAMA/LIBRA–phase1 + DAMA/LIBRA–phase2: 2.86 ton×yr

for DAMA/LIBRA–phase2. The residual rates are calculated from the measured
rate of the single-hit events after subtracting the constant part, as described in
Refs. [2–5, 35, 36]. The null modulation hypothesis is rejected at very high C.L. by
χ2 test: χ2 = 176 and 202, respectively, over 69 d.o.f. (P = 2.6 × 10−11, and P = 5.6
× 10−15, respectively). The residuals of the DAMA/NaI data (0.29 ton × yr) are
given in Ref. [2, 5, 35, 36], while those of DAMA/LIBRA–phase1 (1.04 ton × yr) in
Ref. [2–5].
The former DAMA/LIBRA–phase1 and the new DAMA/LIBRA–phase2 residual
rates of the single-hit scintillation events are reported in Fig. 3.2. The energy inter-
val is from 2 keV, the software energy threshold of DAMA/LIBRA –phase1, up
to 6 keV. The null modulation hypothesis is rejected at very high C.L. by χ2 test:
χ2/d.o.f. = 240/119, corresponding to P-value = 3.5 × 10−10.
The single-hit residual rates of the DAMA/LIBRA–phase2 (Fig. 3.1) have been fitted
with the function: A cosω(t− t0), considering a period T = 2π

ω
= 1 yr and a phase

t0 = 152.5 day (June 2nd) as expected by the DM annual modulation signature; this
can be repeated for the only case of (2-6) keV energy interval when including also
the former DAMA/NaI and DAMA/LIBRA–phase1 data. The goodness of the fits
is well supported by the χ2 test; for example, χ2/d.o.f. = 81.6/68, 66.2/68, 130/155
are obtained for the (1–3) keV and (1–6) keV cases of DAMA/LIBRA–phase2, and
for the (2–6) keV case of DAMA/NaI, DAMA/LIBRA–phase1 and DAMA/LIBRA–
phase2, respectively. The results of the best fits in the different cases are summa-
rized in Table 3.2. In Table 3.2 also the cases when the period and the phase are
kept free in the fitting procedure are shown. The period and the phase are well
compatible with expectations for a DM annual modulation signal. In particular,
the phase is consistent with about June 2nd and is fully consistent with the value
independently determined by Maximum Likelihood analysis (see later). For com-
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Fig. 3.1: Experimental residual rate of the single-hit scintillation events measured by
DAMA/LIBRA–phase2 over eight annual cycles in the (1–3), and (1–6) keV energy
intervals as a function of the time. The time scale is maintained the same of the
previous DAMA papers for consistency. The data points present the experimental
errors as vertical bars and the associated time bin width as horizontal bars. The
superimposed curves are the cosinusoidal functional forms A cosω(t− t0) with
a period T = 2π

ω
= 1 yr, a phase t0 = 152.5 day (June 2nd) and modulation

amplitudes, A, equal to the central values obtained by best fit on the data points
of the entire DAMA/LIBRA–phase2. The dashed vertical lines correspond to the
maximum expected for the DM signal (June 2nd), while the dotted vertical lines
correspond to the minimum.
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Fig. 3.2: Experimental residual rate of the single-hit scintillation events measured
by DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 in the (2–6) keV energy
intervals as a function of the time. The superimposed curve is the cosinusoidal
functional forms A cosω(t− t0) with a period T = 2π

ω
= 1 yr, a phase t0 = 152.5

day (June 2nd) and modulation amplitude, A, equal to the central value obtained
by best fit on the data points of DAMA/LIBRA–phase1 and DAMA/LIBRA–
phase2. For details see Fig. 3.1.

pleteness, we recall that a slight energy dependence of the phase could be expected
(see e.g. Refs. [38, 58, 59, 61–63]), providing intriguing information on the nature of
Dark Matter candidate and related aspects.
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Table 3.2: Modulation amplitude, A, obtained by fitting the single-hit residual rate
of DAMA/LIBRA–phase2, as reported in Fig. 3.1, and also including the residual
rates of the former DAMA/NaI and DAMA/LIBRA–phase1. It was obtained by
fitting the data with the formula:A cosω(t− t0). The period T = 2π

ω
and the phase

t0 are kept fixed at 1 yr and at 152.5 day (June 2nd), respectively, as expected by the
DM annual modulation signature, and alternatively kept free. The results are well
compatible with expectations for a signal in the DM annual modulation signature.

A (cpd/kg/keV) T = 2π
ω

(yr) t0 (days) C.L.
DAMA/LIBRA–phase2:

1-3 keV (0.0191±0.0020) 1.0 152.5 9.7 σ
1-6 keV (0.01048±0.00090) 1.0 152.5 11.6 σ
2-6 keV (0.00933±0.00094) 1.0 152.5 9.9 σ
1-3 keV (0.0191±0.0020) (0.99952±0.00080) 149.6±5.9 9.6 σ
1-6 keV (0.01058±0.00090) (0.99882±0.00065) 144.5±5.1 11.8 σ
2-6 keV (0.00954±0.00076) (0.99836±0.00075) 141.1±5.9 12.6 σ

DAMA/LIBRA–phase1 + phase2:
2-6 keV (0.00941±0.00076) 1.0 152.5 12.4 σ
2-6 keV (0.00959±0.00076) (0.99835±0.00069) 142.0±4.5 12.6 σ

DAMA/NaI + DAMA/LIBRA–phase1 + phase2:
2-6 keV (0.00996±0.00074) 1.0 152.5 13.4 σ
2-6 keV (0.01014±0.00074) (0.99834±0.00067) 142.4±4.2 13.7 σ

3.2.2 Absence of background modulation

Since the background in the lowest energy region is essentially due to “Compton”
electrons, X-rays and/or Auger electrons, muon induced events, etc., which are
strictly correlated with the events in the higher energy region of the spectrum,
if a modulation detected in the lowest energy region were due to a modulation
of the background (rather than to a signal), an equal or larger modulation in the
higher energy regions should be present. Thus, as done in previous data releases,
absence of any significant background modulation in the energy spectrum for
energy regions not of interest for DM. has also been verified in the present one. In
particular, the measured rate integrated above 90 keV, R90, as a function of the time
has been analysed. Fig. 3.3 shows the distribution of the percentage variations of
R90 with respect to the mean values for all the detectors in DAMA/LIBRA–phase2.
It shows a cumulative gaussian behaviour with σ ≃ 1%, well accounted for by
the statistical spread provided by the used sampling time. Moreover, fitting the
time behaviour of R90 including a term with phase and period as for DM particles,
a modulation amplitude AR90 compatible with zero has been found for all the
annual cycles (see Table 3.3). This also excludes the presence of any background
modulation in the whole energy spectrum at a level much lower than the effect
found in the lowest energy region for the single-hit scintillation events. In fact,
otherwise – considering the R90 mean values – a modulation amplitude of order
of tens cpd/kg would be present for each annual cycle, that is ≃ 100 σ far away
from the measured values.



i
i

“U” — 2021/12/15 — 21:46 — page 28 — #44 i
i

i
i

i
i

28 Authors Suppressed Due to Excessive Length

(R
90

 - <R
90

>)/<R
90

>

fr
eq

u
en

cy

0

500

1000

1500

2000

2500

3000

3500

-0.1 0 0.1

Fig. 3.3: Distribution of the percentage variations of R90 with respect to the mean
values for all the detectors in the DAMA/LIBRA–phase2 (histogram); the super-
imposed curve is a gaussian fit.

Table 3.3: Modulation amplitudes, AR90 , obtained by fitting the time behaviour
of R90 in DAMA/LIBRA–phase2, including a term with a cosine function having
phase and period as expected for a DM signal. The obtained amplitudes are
compatible with zero, and incompatible (≃ 100 σ) with modulation amplitudes
of tens cpd/kg. Modulation amplitudes, A(6−14), obtained by fitting the time
behaviour of the residual rates of the single-hit scintillation events in the (6–14)
keV energy interval. In the fit the phase and the period are at the values expected
for a DM signal. The obtained amplitudes are compatible with zero.

DAMA/LIBRA–phase2 annual cycle AR90 (cpd/kg) A(6−14) (cpd/kg/keV)
2 (0.12±0.14) (0.0032±0.0017)
3 -(0.08±0.14) (0.0016±0.0017)
4 (0.07±0.15) (0.0024±0.0015)
5 -(0.05±0.14) -(0.0004±0.0015)
6 (0.03±0.13) (0.0001±0.0015)
7 -(0.09±0.14) (0.0015±0.0014)
8 -(0.18±0.13) -(0.0005±0.0013)
9 (0.08±0.14) -(0.0003±0.0014)
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Similar results are obtained when comparing the single-hit residuals in the (1–6)
keV with those in other energy intervals; for example Fig. 3.4 shows the single-hit
residuals in the (1–6) keV and in the (10–20) keV energy regions, for the 8 annual
cycles of DAMA/LIBRA–phase2 as if they were collected in a single annual cycle
(i.e. binning in the variable time from the January 1st of each annual cycle).
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Fig. 3.4: Experimental single-hit residuals in the (1–6) keV and in the (10–20) keV
energy regions for DAMA/LIBRA–phase2 as if they were collected in a single
annual cycle (i.e. binning in the variable time from the January 1st of each annual
cycle). The data points present the experimental errors as vertical bars and the
associated time bin width as horizontal bars. The initial time of the figures is
taken at August 7th. A clear modulation satisfying all the peculiarities of the
DM annual modulation signature is present in the lowest energy interval with
A=(0.00956 ± 0.00090) cpd/kg/keV, while it is absent just above: A=(0.0007 ±
0.0005) cpd/kg/keV.

Moreover, Table 3.3 shows the modulation amplitudes obtained by fitting the time
behaviour of the residual rates of the single-hit scintillation events in the (6–14)
keV energy interval for the DAMA/LIBRA–phase2 annual cycles. In the fit the
phase and the period are at the values expected for a DM signal. The obtained
amplitudes are compatible with zero.
A further relevant investigation on DAMA/LIBRA–phase2 data has been per-
formed by applying the same hardware and software procedures, used to acquire
and to analyse the single-hit residual rate, to the multiple-hit one. Since the proba-
bility that a DM particle interacts in more than one detector is negligible, a DM
signal can be present just in the single-hit residual rate. Thus, the comparison of
the results of the single-hit events with those of the multiple-hit ones corresponds
to compare the cases of DM particles beam-on and beam-off. This procedure also
allows an additional test of the background behaviour in the same energy interval
where the positive effect is observed.
In particular, in Fig. 3.5 the residual rates of the single-hit scintillation events col-
lected during 8 annual cycles of DAMA/LIBRA–phase2 are reported, as collected
in a single cycle, together with the residual rates of the multiple-hit events, in
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the considered energy intervals. While, as already observed, a clear modulation,
satisfying all the peculiarities of the DM annual modulation signature, is present
in the single-hit events, the fitted modulation amplitude for the multiple-hit residual
rate is well compatible with zero: (0.00030±0.00032) cpd/kg/keV in the (1–6) keV
energy region. Thus, again evidence of annual modulation with proper features
as required by the DM annual modulation signature is present in the single-hit
residuals (events class to which the DM particle induced events belong), while it
is absent in the multiple-hit residual rate (event class to which only background
events belong). Similar results were also obtained for the two last annual cycles of
DAMA/NaI [36] and for DAMA/LIBRA–phase1 [2–5]. Since the same identical
hardware and the same identical software procedures have been used to analyse
the two classes of events, the obtained result offers an additional strong support
for the presence of a DM particle component in the galactic halo.
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Fig. 3.5: Experimental residual rates of DAMA/LIBRA–phase2 single-hit events
(filled red on-line circles), class of events to which DM events belong, and for
multiple-hit events (filled green on-line triangles), class of events to which DM
events do not belong. They have been obtained by considering for each class of
events the data as collected in a single annual cycle and by using in both cases
the same identical hardware and the same identical software procedures. The
initial time of the figure is taken on August 7th. The experimental points present
the errors as vertical bars and the associated time bin width as horizontal bars.
Analogous results were obtained for DAMA/NaI (two last annual cycles) and
DAMA/LIBRA–phase1 [2–5, 36].

In conclusion, no background process able to mimic the DM annual modulation
signature (that is, able to simultaneously satisfy all the peculiarities of the signa-
ture and to account for the measured modulation amplitude) has been found or
suggested by anyone throughout some decades thus far (see also discussions e.g.
in Ref. [1–5, 7, 8, 19–21, 23, 34–36]).

3.3 The analysis in frequency

In order to perform the Fourier analysis of the data of DAMA/LIBRA–phase1 and
of the present 8 annual cycles of phase2 in a wider region of considered frequency,
the single-hit events have been grouped in 1 day bins. Due to the low statistics in
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Fig. 3.6: Power spectra of the time sequence of the measured single-hit events for
DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 grouped in 1 day bins. From
top to bottom: spectra up to the Nyquist frequency for (2–6) keV and (6–14) keV
energy intervals and their zoom around the 1 y−1 peak, for (2–6) keV (solid line)
and (6–14) keV (dotted line) energy intervals. The main mode present at the lowest
energy interval corresponds to a frequency of 2.74×10−3 d−1 (vertical line, purple
on-line). It corresponds to a period of ≃ 1 year. A similar peak is not present in the
(6–14) keV energy interval. The shaded (green on-line) area in the bottom figure –
calculated by Monte Carlo procedure – represents the 90% C.L. region where all
the peaks are expected to fall for the (2–6) keV energy interval. In the frequency
range far from the signal for the (2–6) keV energy region and for the whole (6–14)
keV spectrum, the upper limit of the shaded region (90% C.L.) can be calculated to
be 10.8 (continuous lines, green on-line).
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each time bin, a procedure detailed in Ref. [64] has been applied. Fig. 3.6 shows the
whole power spectra up to the Nyquist frequency and the zoomed ones: a clear
peak corresponding to a period of 1 year is evident for the lowest energy interval,
while the same analysis in the (6–14) keV energy region shows only aliasing peaks,
instead. Neither other structure at different frequencies has been observed. To
derive the significance of the peaks present in the periodogram, one can remind
that the periodogram ordinate, z, at each frequency follows a simple exponential
distribution e−z in case of null hypothesis or white noise [65].
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Fig. 3.7: Power spectrum of the time sequence of the measured single-hit events
in the (1–6) keV energy interval for DAMA/LIBRA–phase2 grouped in 1 day bin.
The main mode present at the lowest energy interval corresponds to a frequency
of 2.77× 10−3 d−1 (vertical line, purple on-line). It corresponds to a period of ≃
1 year. The shaded (green on-line) area – calculated by Monte Carlo procedure –
represents the 90% C.L. region where all the peaks are expected to fall for the (1–6)
keV energy interval.

Thus, ifM independent frequencies are scanned, the probability to obtain values
larger than z is: P(> z) = 1− (1− e−z)

M. In generalM depends on the number of
sampled frequencies, the number of data points N, and their detailed spacing. It
turns out thatM ≃ N when the data points are approximately equally spaced and
when the sampled frequencies cover the frequency range from 0 to the Nyquist
one [66, 67]. In the present case, the number of data points used to obtain the
spectra in Fig. 3.6 is N = 5047 (days measured over the 5479 days of the 15
DAMA/LIBRA–phase1 and phase2 annual cycles) and the full frequencies region
up to Nyquist one has been scanned. Thus, assuming M = N, the significance
levels P = 0.10, 0.05 and 0.01, correspond to peaks with heights larger than z =
10.8, 11.5 and 13.1, respectively, in the spectra of Fig 3.6. In the case below 6 keV, a
signal is present; thus, to properly evaluate the C.L. the signal must be included.
This has been done by a dedicated Monte Carlo procedure where a large number
of similar experiments has been simulated. The 90% C.L. region (shaded, green
on-line) where all the peaks are expected to fall for the (2–6) keV energy interval is
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reported in Fig 3.6. Several peaks, satellite of the one year period frequency, are
present.
Moreover, for each annual cycle of DAMA/LIBRA–phase1 and phase2, the annual
baseline counting rates have been calculated for the (2–6) keV energy interval.
Their power spectrum in the frequency range 0.00013−0.0019 d−1 (corresponding
to a period range 1.4–21.1 year) has been calculated according to Ref. [5]. No
statistically-significant peak is present at frequencies lower than 1 y−1. This implies
that no evidence for a long term modulation in the counting rate is present.
Finally, the case of the (1–6) keV energy interval of the DAMA/LIBRA–phase2
data is reported in Fig. 3.7. As previously the only significant peak is the one
corresponding to one year period. No other peak is statistically significant being
below the shaded (green on-line) area obtained by Monte Carlo procedure.
In conclusion, apart from the peak corresponding to a 1 year period, no other peak
is statistically significant either in the low and high energy regions.

3.4 The modulation amplitudes by the maximum likelihood
approach

The annual modulation present at low energy can also be pointed out by depicting
the energy dependence of the modulation amplitude, Sm(E), obtained by maxi-
mum likelihood method considering fixed period and phase: T =1 yr and t0 =

152.5 day. For this purpose the likelihood function of the single-hit experimental

data in the k−th energy bin is defined as: Lk = Πije
−µijk

µ
Nijk
ijk

Nijk!
, where Nijk is the

number of events collected in the i-th time interval (hereafter 1 day), by the j-th
detector and in the k-th energy bin. Nijk follows a Poisson’s distribution with
expectation value µijk = [bjk + Si(Ek)]Mj∆ti∆Eϵjk. The bjk are the background
contributions, Mj is the mass of the j−th detector, ∆ti is the detector running
time during the i-th time interval, ∆E is the chosen energy bin, ϵjk is the overall
efficiency. The signal can be written as:

Si(E) = S0(E) + Sm(E) · cosω(ti − t0),

where S0(E) is the constant part of the signal and Sm(E) is the modulation ampli-
tude. The usual procedure is to minimize the function yk = −2ln(Lk) − const for
each energy bin; the free parameters of the fit are the (bjk + S0) contributions and
the Sm parameter.
The modulation amplitudes for the whole data sets: DAMA/NaI, DAMA /LIBRA–
phase1 and DAMA/LIBRA–phase2 (total exposure 2.86 ton×yr) are plotted in
Fig. 3.8; the data below 2 keV refer only to the DAMA/LIBRA–phase2 exposure
(1.53 ton×yr). It can be inferred that positive signal is present in the (1–6) keV
energy interval, while Sm values compatible with zero are present just above. All
this confirms the previous analyses. The test of the hypothesis that the Sm values
in the (6–14) keV energy interval have random fluctuations around zero yields
χ2/d.o.f. equal to 20.3/16 (P-value = 21%).
For the case of (6–20) keV energy interval χ2/d.o.f. = 42.2/28 (P-value = 4%). The
obtained χ2 value is rather large due mainly to two data points, whose centroids



i
i

“U” — 2021/12/15 — 21:46 — page 34 — #50 i
i

i
i

i
i

34 Authors Suppressed Due to Excessive Length

Energy (keV)

S
m

 (
cp

d
/k

g
/k

eV
)

-0.05

-0.025

0

0.025

0.05

0 2 4 6 8 10 12 14 16 18 20

Fig. 3.8: Modulation amplitudes, Sm, for the whole data sets: DAMA/NaI,
DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 (total exposure 2.86 ton×yr)
above 2 keV; below 2 keV only the DAMA/LIBRA–phase2 exposure (1.53 ton
× yr) is available and used. The energy bin ∆E is 0.5 keV. A clear modulation is
present in the lowest energy region, while Sm values compatible with zero are
present just above. In fact, the Sm values in the (6–20) keV energy interval have
random fluctuations around zero with χ2/d.o.f. equal to 42.2/28 (P-value is 4%).

are at 16.75 and 18.25 keV, far away from the (1–6) keV energy interval. The P-
values obtained by excluding only the first and either the points are 14% and
23%.
This method also allows the extraction of the Sm values for each detector. In par-
ticular, the modulation amplitudes Sm integrated in the range (2–6) keV for each
of the 25 detectors for the DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2
periods can be produced. They have random fluctuations around the weighted
averaged value confirmed by the χ2 analysis. Thus, the hypothesis that the signal
is well distributed over all the 25 detectors is accepted.
As previously done for the other data releases [2–5, 19–21, 23], the Sm values for
each detector for each annual cycle and for each energy bin have been obtained.
The Sm are expected to follow a normal distribution in absence of any systematic
effects. Therefore, the variable x = Sm−⟨Sm⟩

σ
has been considered to verify that the

Sm are statistically well distributed in the 16 energy bins (∆E = 0.25 keV) in the
(2–6) keV energy interval of the seven DAMA/LIBRA–phase1 annual cycles and
in the 20 energy bins in the (1–6) keV energy interval of the eight DAMA/LIBRA–
phase2 annual cycles and in each detector. Here, σ are the errors associated to
Sm and ⟨Sm⟩ are the mean values of the Sm averaged over the detectors and the
annual cycles for each considered energy bin.
Defining χ2 = Σx2, where the sum is extended over all the 272 (192 for the
16th detector [4]) x values, χ2/d.o.f. values ranging from 0.8 to 2.0 are obtained,
depending on the detector.
The mean value of the 25 χ2/d.o.f. is 1.092, slightly larger than 1. Although this can
be still ascribed to statistical fluctuations, let us ascribe it to a possible systematics.
In this case, one would derive an additional error to the modulation amplitude
measured below 6 keV: ≤ 2.4× 10−4 cpd/kg/keV, if combining quadratically the
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errors, or ≤ 3.6 × 10−5 cpd/kg/keV, if linearly combining them. This possible
additional error: ≤ 2.4% or ≤ 0.4%, respectively, on the DAMA/LIBRA–phase1
and DAMA /LIBRA–phase2 modulation amplitudes is an upper limit of possible
systematic effects coming from the detector to detector differences.
Among further additional tests, the analysis of the modulation amplitudes as a
function of the energy separately for the nine inner detectors and the remaining
external ones has been carried out for DAMA/LIBRA–phase1 and DAMA/LIBRA–
phase2, as already done for the other data sets [2–5,19–21,23]. The obtained values
are fully in agreement; in fact, the hypothesis that the two sets of modulation
amplitudes belong to same distribution has been verified by χ2 test, obtaining
e.g.: χ2/d.o.f. = 1.9/6 and 36.1/38 for the energy intervals (1–4) and (1–20) keV,
respectively (∆E = 0.5 keV). This shows that the effect is also well shared between
inner and outer detectors.
Moreover, to test the hypothesis that the amplitudes, singularly calculated for
each annual cycle of DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2, are
compatible and normally fluctuating around their mean values, the χ2 test has
been performed together with another independent statistical test: the run test
(see e.g. Ref. [69]), which verifies the hypothesis that the positive (above the mean
value) and negative (under the mean value) data points are randomly distributed.
Both tests accept at 95% C.L. the hypothesis that the modulation amplitudes are
normally fluctuating around the best fit values.

3.5 Investigation of the annual modulation phase

Finally, let us release the assumption of the phase value at t0 = 152.5 day in the
procedure to evaluate the modulation amplitudes, writing the signal as:

Si(E) = S0(E) + Sm(E) cosω(ti − t0) + Zm(E) sinω(ti − t0) (3.1)

= S0(E) + Ym(E) cosω(ti − t
∗).

For signals induced by DM particles one should expect: i) Zm ∼ 0 (because of
the orthogonality between the cosine and the sine functions); ii) Sm ≃ Ym; iii)
t∗ ≃ t0 = 152.5 day. In fact, these conditions hold for most of the dark halo
models; however, as mentioned above, slight differences can be expected in case
of possible contributions from non-thermalized DM components (see e.g. Refs.
[38, 58, 59, 61–63]).
Considering cumulatively the data of DAMA/NaI, DAMA/LIBRA–phase1 and
DAMA/LIBRA–phase2 the obtained 2σ contours in the plane (Sm, Zm) for the
(2–6) keV and (6–14) keV energy intervals are shown in Fig. 3.9–left while the
obtained 2σ contours in the plane (Ym, t

∗) are depicted in Fig. 3.9–right. Moreover,
Fig. 3.9 also shows only for DAMA/LIBRA–phase2 the 2σ contours in the (1–6)
keV energy interval.
The best fit values in the considered cases (1σ errors) for Sm versus Zm and Ym
versus t∗ are reported in Table 3.4.
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Fig. 3.9: 2σ contours in the plane (Sm, Zm) (left) and in the plane (Ym, t
∗) (right)

for: i) DAMA/NaI, DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 in the
(2–6) keV and (6–14) keV energy intervals (light areas, green on-line); ii) only
DAMA/LIBRA–phase2 in the (1–6) keV energy interval (dark areas, blue on-
line). The contours have been obtained by the maximum likelihood method. A
modulation amplitude is present in the lower energy intervals and the phase
agrees with that expected for DM induced signals.

Table 3.4: Best fit values (1σ errors) for Sm versus Zm and Ym versus t∗, considering:
i) DAMA/NaI, DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 in the (2–6)
keV and (6–14) keV energy intervals; ii) only DAMA/LIBRA–phase2 in the (1–6)
keV energy interval. See also Fig. 3.9.

E (keV) Sm Zm Ym t∗ (day)
(cpd/kg/keV) (cpd/kg/keV) (cpd/kg/keV)

DAMA/NaI+DAMA/LIBRA–phase1+DAMA/LIBRA–phase2:
2–6 (0.0097 ± 0.0007) -(0.0003 ± 0.0007) (0.0097 ± 0.0007) (150.5 ± 4.0)

6–14 (0.0003 ± 0.0005) -(0.0006 ± 0.0005) (0.0007 ± 0.0010) undefined
DAMA/LIBRA–phase2:

1–6 (0.0104 ± 0.0007) (0.0002 ± 0.0007) (0.0104 ± 0.0007) (153.5 ± 4.0)

Finally, theZm values as function of the energy have also been determined by using
the same procedure and setting Sm in eq. (3.1) to zero. The Zm values as a func-
tion of the energy for DAMA/NaI, DAMA/LIBRA–phase1, and DAMA/LIBRA–
phase2 data sets are expected to be zero. The χ2 test applied to the data supports
the hypothesis that the Zm values are simply fluctuating around zero; in fact, in
the (1–20) keV energy region the χ2/d.o.f. is equal to 40.6/38 corresponding to a
P-value = 36%.
The energy behaviors of Ym and of phase t∗ are also produced for the cumulative
exposure of DAMA/NaI, DAMA/LIBRA–phase1, and DAMA/LIBRA–phase2;
as in the previous analyses, an annual modulation effect is present in the lower
energy intervals and the phase agrees with that expected for DM induced signals.
No modulation is present above 6 keV and the phase is undetermined.
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3.6 Perspectives

To further increase the experimental sensitivity of DAMA/LIBRA and to disentan-
gle some of the many possible astrophysical, nuclear and particle physics scenarios
in the investigation on the DM candidate particle(s), an increase of the exposure
(M× trunning, i.e. trunning in our case at fixedM) in the lowest energy bin and a
further decreasing of the software energy threshold are needed. This is pursued by
running DAMA/LIBRA–phase2 and upgrading the experimental set-up to lower
the software energy threshold below 1 keV with high acceptance efficiency.
Firstly, particular efforts for lowering the software energy threshold have been
done in the already-acquired data of DAMA/LIBRA–phase2 by using the same
technique as before with dedicated studies on the efficiency. As consequence, a
new data point has been added in the modulation amplitude as function of energy
down to 0.75 keV, see Fig. 3.10. A modulation is also present below 1 keV, from 0.75
keV. This preliminary result confirms the necessity to lower the software energy
threshold by a hardware upgrade and an improved statistics in the first energy
bin.
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Fig. 3.10: As Fig. 3.8; the new data point below 1 keV, with software energy thresh-
old at 0.75 keV, shows that an annual modulation is also present below 1 keV. This
preliminary result confirms the necessity to lower the software energy threshold
by a hardware upgrade and to improve the experimental error on the first energy
bin.

This dedicated hardware upgrade of DAMA/LIBRA–phase2 is underway. It con-
sists in equipping all the PMTs with miniaturized low background new concept
preamplifiers and HV dividers mounted on the same socket, and related improve-
ments of the electronic chain, mainly the use of higher vertical resolution 14-bit
digitizers.

3.7 Conclusions

DAMA/LIBRA–phase2 confirms a peculiar annual modulation of the single-hit
scintillation events in the (1–6) keV energy region satisfying all the many require-
ments of the DM annual modulation signature; the cumulative exposure by the
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former DAMA/NaI, DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 is 2.86
ton × yr.
As required by the exploited DM annual modulation signature: 1) the single-hit
events show a clear cosine-like modulation as expected for the DM signal; 2) the
measured period is well compatible with the 1 yr period as expected for the DM
signal; 3) the measured phase is compatible with the roughly ≃ 152.5 days expected
for the DM signal; 4) the modulation is present only in the low energy (1–6) keV
interval and not in other higher energy regions, consistently with expectation for
the DM signal; 5) the modulation is present only in the single-hit events, while it
is absent in the multiple-hit ones as expected for the DM signal; 6) the measured
modulation amplitude in NaI(Tl) target of the single-hit scintillation events in the
(2–6) keV energy interval, for which data are also available by DAMA/NaI and
DAMA/LIBRA–phase1, is: (0.01014± 0.00074) cpd/kg/keV (13.7 σ C.L.).
No systematic or side processes able to mimic the signature, i.e. able to simulta-
neously satisfy all the many peculiarities of the signature and to account for the
whole measured modulation amplitude, has been found or suggested by anyone
throughout some decades thus far (for details see e.g. Ref. [1–5, 7, 8, 19–23, 35, 36]).
In particular, arguments related to any possible role of some natural periodical
phenomena have been discussed and quantitatively demonstrated to be unable
to mimic the signature (see references; e.g. Refs. [7, 8]). Thus, on the basis of
the exploited signature, the model independent DAMA results give evidence
at 13.7σ C.L. (over 22 independent annual cycles and in various experimental
configurations) for the presence of DM particles in the galactic halo.
The DAMA model independent evidence is compatible with a wide set of astro-
physical, nuclear and particle physics scenarios for high and low mass candidates
inducing nuclear recoil and/or electromagnetic radiation, as also shown in various
literature. Moreover, both the negative results and all the possible positive hints,
achieved so-far in the field, can be compatible with the DAMA model independent
DM annual modulation results in many scenarios considering also the existing
experimental and theoretical uncertainties; the same holds for indirect approaches.
For a discussion see e.g. Ref. [5] and references therein.
The present new data released determine the modulation parameters with increas-
ing precision and will allow us to disentangle with larger C.L. among different DM
candidates, DM models and astrophysical, nuclear and particle physics scenarios.
Finally, we stress that to efficiently disentangle among at least some of the many
possible candidates and scenarios an increase of exposure in the new lowest energy
bin and the decrease of the software energy threshold below the present 1 keV is
important. The experiment is collecting data and the hardware efforts towards
the lowering of the software energy threshold is in progress; a preliminary result
below 1 keV is given.
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Abstract. In the framework of hypercolor extension of the Standard Model having vector-
like hyperquarks and two stable dark matter candidates originated from different hyper-
currents, we consider some effects which result from reactions with participation of the
dark matter components. Namely, there are decays of charged hyperpions into leptons and
neutral component, annihilation and transitions of heavy dark matter candidates into the
light ones. In the last case, low energy photon radiation from intermediate charged states is
possible. This type of the dark matter luminescence is analyzed in more detail.

Povzetek: Avtorji uporabijo model, ki kvarkom in leptonom standardnega modela doda
nove vektorske ”hiper kvarke” in dva kandidata za temno snov. Študirajo razpade nabitih
hiperpionov na nabite leptone in nevtrine, anihilacijo in prehode masivnih kandidatov
temne snovi v manj masivne. Pri tem se lahko pojavi fotonsko sevanje nizkih energij, ki ga
podrobneje analizirajo

PACS: 12.60 - i, 96.50.S-,95.35.+d.

4.1 Introduction

Experimental evidence of symmetry breaking mechanism in the Standard Model
(SM) and the existence of Higgs bosons with the properties predicted have even
worsened, in some sense, the situation in high-energy physics. From this time
the SM has acquired the features of a complete and closed theory, without being
such. This obviously means that the SM is only a kind of limit of a more general
theory that should give solutions of open problems of the SM. Unfortunately, the
inspiring idea of supersymmetry (SuSy) does not manifest itself in experiments at
a scale of ∼ 1TeV, which reduces the potential of the theory, although it does not
completely close it. Then, the search for ideas to solve the SM problems leads to
analysis of the extension options for the SM. A lot of variants of the generalization
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and extension of the SM have been discussed in literature, in particular, those
that offer different ways of explaining the structure and properties of dark matter
(DM). At the moment, the DM existence is a firmly established fact, which is
confirmed by many astrophysical observations. About a quarter of the universe
mass is the DM and it plays a crucial role in the evolution of galaxies. Despite the
fact that the existence of this substance has been known for an almost a century,
and that it literally surrounds us, we still do not have the faintest idea what it
is. All that we have is a set of hypothetical essences for its explanation, they are
neutralinos from SuSy, axions, sterile neutrinos, inert Higgses, primordial black
holes, manifestations of modified dynamics and last but not list WIMPs. The most
popular option is considered to be the WIMPs and they will be discussed in this
work. It should be added that all efforts to catch the DM particles directly do not
successful up to now, and indirect methods to see some and measure any signals
of processes with the DM participation become much more important [1–7].
Multicomponent models of the DM have become the object of attention and study
mainly in recent decade [8, 9] because, on the one hand, various variants of the
SM extension were proposed suggesting some possible types of the DM carriers.
On the other hand, there are unexplained astrophysical phenomena that can be
better interpreted and explained within the framework of a multicomponent DM
scenario. These phenomena are, in particular, monochromatic photon signals of
unknown origin from Galaxy center with energies up to tens of GeV [10, 11] and
some features of spectra of cosmic leptons (positron excess, for instance) [13, 31].
In accordance with these two aspects, it is possible to divide the proposed DM
variants into some two classes. In the first one, a multicomponent DM is resulted
from a specific symmetry, which extends and generalizes the SM group of symme-
try and consequently introduces some additional degrees of freedom providing
stability for the part of them. What manifestations and specific effects can be in-
duced by these new particles - it depends on the properties of the model symmetry
and interactions. But the second type of scenarios introduces new Dark Matter
candidates aiming the explanation of the observed physical phenomena, for exam-
ple, the positron fraction excess in cosmic-ray spectra (leptophilic models [14, 15])
or to interpret photon signals (gamma emission from Galactic center region) as the
result of annihilation of DM particles. Certainly, to stabilize new objects the initial
SM symmetry should be also modified, for instance, using discrete symmetries.
Namely, imposing a ZN symmetry (it can result from spontaneously broken U(1))
provides simultaneously an existence of several stable scalar fields as the DM
candidates [16].
As another example, the renormalizable extension of the SM by a scalar, pseu-
doscalar and a singlet fermion fields is considered where the DM has a fermion
and a scalar components [17, 18]. It allows to explain photon signal with energy
in a keV region by the light scalar decay, and 130-GeV photons emerging, for
example, as a consequence of heavy fermions annihilation. Another approach to
introduce and use a two-component Dark Matter is to add a neutral Majorana
fermion and a neutral scalar singlet interacting with the SM fields through the
Higgs portal. Fermion, however, interacts at the tree level as Yukawa particle.
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And again, in various regions for the mass of the scalar, the photon signal can be
interpreted as result of the scalars annihilation [19].
As the most obvious case, some co-existence of axions with neutralino or wino [20,
21] allows to keep the SuSy scale near 1TeV (however, it is difficult to provide the
necessary value of the DM relic density). There also suggested also an interesting
way to use Exceptional Supersymmetric Standard Model (E6SSM) [22], where two
DM components arise from the set of Higgs superfields due to discrete symmetries
again.
The DM candidates can be built from any suitable ”matter” - additional scalars,
fermions, even strongly interacted objects, Higgses portal, dark atoms, the DM
can be presented by elementary particles or some compound states. In any case,
these DM candidates should be neutral and stable, and channels and steps of
their production in direct experiments at colliders together with their indirect
manifestations in astrophysics phenomena or observed by space telescopes and at
ground observatories (IceCube, LHAASO etc.) are analyzed carefully in a lot of
papers [23–27, 29–31] and also in [32, 33, 35–44]. Certainly, all possible scenarios
consider two aspects of the DM physics: theoretical validity and self-consistency of
the model, and (qualitative and quantitative) description of the observed specific
effects.
An existence of several DM components substantially increases the number of
reactions with the DM participation and allows to predict some interesting chan-
nels of its manifestations. The most important for such predictions is the structure
of the DM sector in the model and features of the dark matter interactions with
the SM particles and between the DM components. To clarify this possibility,
we consider hypercolor model with additional heavy fermions (hyperquarks) in
confinement, which can produce a set of composite states, hyperhadrons, in the
framework of σ−model at some high scale [45–48] in an analogy with low-energy
quark-meson theory. So, in the model a number of pseudo-Nambu-Goldstone
(pNG) particles emerges, they acquire masses after the chiral symmetry breaking.
There arise fifteen pNG states (and their chiral partners) which are connected
with corresponding H-quark currents. The model includes almost standard Higgs
boson which is (slightly) mixed with scalar σ− meson.
Specifically, the model contains several neutral stable particles they can be inter-
preted as the DM candidates. In more detail, these states and their main charac-
teristics will be presented in Section 2. Section 3 will be devoted to analysis of
some new effect induced by the complex structure of the DM sector - radiation of
photons in transitions of one of the DM component into another one. In Conclusion
we discuss some possible application of this effect.

4.2 Hyperquark scenario: features of the dark matter sector

The SM content and possibilities can be extended by introducing a new fermion
sector in confinement using, for example, an extra gauge symmetry SU(2)tc. Be-
sides, an additional SU(2)w symmetry should be to ensure electroweak interaction
of new fermions (H-quarks) with the SM fields. Then, the hypercolor model in
its minimal form contains only one doublet (with zero hypercharge) of heavy
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Dirac H-quarks doublet and keeps the standard Higgs boson. It, however, will mix
with scalar σ̃− meson generated by extra singlet scalar field, which is necessary
for a spontaneous symmetry breaking. As a result, the new fields can acquire
masses. Note, the mixing between scalars should be small to ensure the stability of
precisely measured SM parameters (in other words, oblique corrections of Peskin
Tackeuchi should be sufficiently small).
In an analogy with the low-energy hadron QCD-based theory, H-quarks should
form H-hadrons, which can be described in the H-σ− model with an effective
Lagrangian. So, there arises (due to global SO(4) symmetry breking) a set of
pseudo-Nambu-Goldstone (pNG) states: a triplet of pseudoscalar H-pions and
one neutral H-baryon along with its antiparticle. More exactly, H-baryon is a
diquark state having an additive conserved quantum number, H-pions possess a
multiplicative conserving quantum number [48,49]. Importantly, neutral states, π̃0

and B0, B̄0, are stable. Consequently, they can be interpreted as the DM candidates
with equal masses at the tree level.
Because we are mostly interested to analyze the stable candidates properties, we
do not consider heavier unstable H-hadrons and H-mesons (see, however, study
of their mass spectrum at lattice [50,51] in the same gauge Sp(4) theory). Then, we
need to know tree-level masses of lowest states (H-pions and H-baryon), mass of
H-sigma and its v.e.v.; all of them are supposed to be O(TeV). The angle of mixing,
θ, between H-sigma and the Higgs boson, as it dictates by Peskin - Tackeuchi
parameters for the model, should be such that sin θ ≲ 0.1.
There were calculated both the mass splitting between neutral and charged states
in H-pion triplet (induced by electroweak loops only) and between the lowest
states of different origin (H-pions and H-baryons). In the last case, the mass
splitting depends on some renormalization scale because of different H-quark
currents generating these H-states, so, the mass splitting can be as much as tens
of GeV. Electroweak mass splitting in H-pions triplet is well known and it is
≈ 160 GeV. So, in this minimal scenario there are three stable particles possibly
constituting dark matter: neutral stable H-baryon along with its antiparticle (we
will consider them as the one component) and the lightest neutral H-pion.
To estimate their masses, there was used known way of analysis of the dark matter
density evolution to its modern value. Namely, there were written down five
equations for each DM component taking into account charged H-pions that are
decayed eventually into neutral one, i.e. so-called, co-annihilation processes were
also considered for H-baryons and H-pions. Numerical solution of the system of
equations demonstrates that the correct value of the DM abundant corresponds
to some areas in the parameter plane-of H-pions and H-sigma mases. Despite
of the DM candidates masses estimation (approximately, they are in the region
0.8− 1.2 TeV), it was found that in all permitted areas of parameters B0− baryons
dominate in the DM density [52]. The reason of this asymmetry for the DM
components contributions into the total density follows from asymmetry of their
interactions with the SM matter: H-pions have EW channels, but H-baryons do
not participate in tree level EW interactions, they use (pseudo)scalar exchanges
through Higgs boson and/or σ̃−meson instead. It is an important consequence
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of different origin for these DM components providing slower burnout of B0

component in comparison with H-pion component.
Remind, both DM components were considered initially as having equal masses,
mass splitting in the H-pion triplet is defined only EW loops and it is small.
However, one-loop mass splitting between π̃0 and B0 can be as high as 10 − 15
GeV depending on σ̃− meson mass and value of renormalization parameter, µ.
Again, it is due to the different structures of H- quark currents with which these
components are associated. Corresponding mass splittings are demonstrated in
Fig.1a,b. Note, mass of σ̃− meson is near the value which is dictated by relation
m2

σ̃ ≈ 3 ·m2
π̃ resulted from zero H− σ̃mixing.

 

a)
 

b)

Fig. 4.1: Mass splitting between DM components in dependence on renormaliza-
tion scale: a) B0 is heavier; b) π̃0 is heavier.

For nonzero mass splitting between the components, there occur an interesting
process of the heavier DM component transformations into the lighter one. It can
result to some effects, which are specific for suitable scenarios of multicomponent
DM. Here, we will consider the case when B0 is heavier than π̃0, it is that the
scenario when the tree level process of annihilation of heavy B0B0 pair into H-
pions can be accompanied with some final state radiation (FSR).

4.3 Transitions between DM components and an effect of
luminescence

To discuss possible γ−radiation in the transitions between dark matter compo-
nents, we firstly analyzed the ratio of cross section of B0B0 pair annihilation into
H-pions (see diagrams in Fig.2a) to the total cross section of B0B0 pair annihilation
into all possible SM final states.
Denoting this ratio as α, we consider its values in the π̃ − σ̃ plane for various
sets of model parameters: scale of renormalization (it also determines the mass
splitting between B0 and π̃ states), mixing angle, and the vacuum shift for a heavy
scalar field. Some regions of α values are shown in Fig.3; in all cases it is possible
to find an areas where α parameter is sufficiently large, α ≥ 10. Fortunately, in
these regions H-pions and B0-H-baryons masses are ∼ 1 TeV, as it also follows
from kinetics of the DM burn out. Thus, it is possible to fix a suitable interval of the
DM components and the sigma meson masses, at which the BB−pair transition
into charged unstable H-pions dominates.
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a)

 

b)

Fig. 4.2: Diagrams for B0 annihilation into H-pions: a) without FSR, b) with FSR.

Effect of FCR occurs just in the reaction B0B0 → π̃+π̃− + γ (see diagrams in Fig.
2b) with subsequent decays of charged H-pions, π̃+ → π̃0 + lνl. These charged
states decay through strong and EW channels producing neutral stable π̃0 and
pair of lepton plus (anti)neutrino; corresponding widths [48] are:

Γ(π̃± → π̃0π±) = 6 · 10−17 GeV, τπ = 1.1 · 10−8 s, cτπ ≈ 330 cm;

Γ(π̃± → π̃0l±νl) = 3 · 10−15 GeV, τl = 2.2 · 10−10 s, cτl ≈ 6.6 cm. (4.1)

Now, for the differential cross section we get the following expression:

dσv(B0B0 → π̃+π̃−γ)

dEγ
=
4αeσv(B

0B0 → π̃+π̃−)

πMBEγ

√
M2

B −m2
π̃

· (4.2)

(
−2
√
MB(MB − Eγ)

√
MB(MB − Eγ) −m2

π̃+

(2MB(Eγ −MB) +m
2
π̃) log[

2
√
MB(MB − Eγ)

√
MB(MB − Eγ) +

√
MB(MB − Eγ) −m2

π̃

− 1]
)
.

So, possibility of radiation from (unstable) charged components (of H-pion triplet)
is a specifics of the SM extensions with a complex structure resulting to the
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                   α > 10                           10 > α > 1 

Fig. 4.3: Ratio of the B0B0 annihilation cross sections, notations of important
regions for parameter α are depicted.

multi-component DM. If there are suitable channels of interaction, heavier DM
component can transform into the light one, but for the FSR (or virtual internal
bremsstrahlung) an occurrence of this transition should have an intermediate
stage with some charged states. Here is exactly the same case.
Cross sections for different values of the DM component masses, mixing angle,
mass of σ̃−meson and scale of H-symmetry breaking are presented in Fig.5 and
6. Here are shown also total cross sections demonstrating an obvious s-channel
resonance nearMσ̃ in Fig. 7. .
With an integration of the differential cross section from energies ∼ (0.1− 0.2)GeV
up to 2 · ∆m, we have found the total cross section, its values are shown in Fig.5
in dependence on Mσ̃ for various mass splittings and masses of B0. Obviously,
there are some features of the effect considered. First, the resonance structure is
manifested atMσ̃ due to s-channel contributions, and the total cross section is prac-
tically independent on σ̃− meson mass when its value is ≥ (2.0−2.5)TeV. We also
estimate total flux of photons using σtot values between 10−28 and 10−26 cm3/s

and the Navarro-Frank-White profile for the dark matter density, ρNFW(l, θ, ϕ).
We used also known astrophysical J-factor for the Galaxy center, namely, we take
the angular resolution ∼ 1◦ and the value of J ≈ 10−21.
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Fig. 4.4: Differential cross sections for B0B0 → π̃+π̃−γ process for various model
parameters.
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Fig. 4.5: Total cross section for the process if transition between the DM components
with FSR, values of parameters are depicted in figures.

Then, the values of total gamma-flux of low-energy photons produced by transi-
tions between the dark matter components near Galaxy center are the following:

Φ(Eγ) ≈ (0.9− 1.5) · (10−14 − 10−12) cm−2s−1. (4.3)

However, J-factor for the Galaxy center can increase up to an order or two if the
parameter γ in NFW profile changes from 1 to 1.4 to simulate the DM spike in the
DM distribution near the GC. Then, the flux also increases up to two orders.
In this minimal scenario the mass splitting is much lower than the DM masses,
so, there arises diffuse photons with energies in a narrow limited area. Certainly,
these photons are only an admixture for (monochromatic) radiation from the DM
annihilation into photon pairs. This luminescence of the DM is, however, too small
to explain the whole excess of GeV photons from GC.
Note also that scenarios with a complex DM sector structure should be analyzed
carefully in the case of ∆m ∼ MDM: the DM candidates can be freezed out at
different temperatures, so, they can be produced at different stages and contribute
separately to features of evolution processes.
Of course, the possible effect of small photonic flux from regions with the increased
DM density is specific because it does not lead to the resorption of dense DM
clumps. Total mass and the particle number density does not change practically
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in this process. Indeed, there takes places also an ”ordinary” annihilation of
DM components into two photons or into pairs of SM particles with subsequent
photon emission from final or intermediate bosons, leptons and quarks. However,
monochromatic photons with energies of the order of the DM masses are separated
by an energy gap in the full spectrum of emitted photons.
Unfortunately, a large background is produced by diffuse FSR from the SM parti-
cles; the total gamma flux can be noticeably larger than the indicated effect. So,
analysis of the photons spectrum at GeV energies is a difficult task.
Indeed, detection and selection of a (nearly constant) photonic component with
energies of the order of (1− 10)GeV can indicate the presence of some structure
in the DM mass spectrum, or the possibility of transitions between exited levels in
the spectrum of states, as it can occur in the hadronic DM scenario [53].
This specific radiation also should be collimated with a some (small) angular
aperture if it comes from some “point sources” – GC, dwarf galaxies, subhaloes
or other types of DM regions with high density. If the DM clump not very far
(∼ 0.1pc) from our space telescopes, the low-energy limited flux of photons can be
seen and recognized.
Note, an inverse case when the neutral H-pions are heavier also should be con-
sidered, however, annihilation into the (lighter) B0-components with radiation of
photons is difficult to ensure in this case - diffuse photons production takes place
mostly due to VIB from H-pions and/or H-quarks loops and corresponding cross
section should be smaller.

4.4 Conclusion

As some additional considerations, it should be noted that stable DM candidates
can be produced from H-quark-gluon plasma at early stages at large temperatures.
Besides, due to high scale of H-vacuum condensates, H-hadronization should
occur before the QCD hadronization, so the photons from transitions between
various H-states can contribute significantly to total density of radiation. This
process can maintain the plasma temperature as a kind of delay mechanism that
prevents cooling during expansion, in accordance with the Le Chatelier principle.
This type of annihilation induced by transition between the DM components, is
interesting also from the point of view of the DM accumulation inside massive
objects – red giants, white dwarfs and the possible dark stars at early stage. In
this case, photons, leptons, and neutrinos generated during the transition between
components will heat up the interior of the gravitationally coupled system more
slowly than the annihilation of DM into SM particles would do (this reaction, of
course, also takes place, but with a noticeably smaller cross section for some model
parameter values). In the case, the dark star life time in the relatively “cold” state
should icrease.
Moreover, if such reactions dominate, the gravitating mass of the object also
will changes slowly. Energies of the photons emitted from such objects will be
distributed over significantly different regions separated by a gap of the order of
the DM mass. Such an analysis would be reasonable for (early) dark stars with
long lifetimes. Their thermonuclear heating is actually replaced by an energy
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release during the annihilation of DM particles. The discussed effect shows that
the presence of a specific complex structure of DM states can be important for the
dark stars study. Namely, the luminosity of dark stars can be provided also by
low-energy component which is induced by transitions between the DM objects
within the stars.
Thus, it was considered the scenario in which one DM component can be ef-
fectively transform into another through intermediate stage of charged H-pions
production and decay. Certainly, it is possible an annihilation of B0B0 pair into
standard quarks and gauge bosons (via scalar exchanges or loops), but it turned
out that there is a region of parameters where the cross section for annihilation
into hyperpions dominates. Note, the lifetime of charged H-pions is larger than the
lifetime of gauge bosons. So, the emission of photons from intermediate charged
states, in principle, could be observed. The (small) flux of photons is proportional
to the squared DM density, so the most interesting should be to study intensity of
such radiation from the GC (from where an increased flux of low-energy photons
is observed) or from probable DM clumps. Note also, the DM number density in
these processes does not change, intermediate charged H-pions produce neutral
stable H-pions together with the low-energy secondaries such as leptons and
neutrinos. Apart from the low-energy characteristic radiation with small flux, the
effect obviously leads to the burn out of heavier DM component transforming it to
another one. This process, however, is very slow, since the DM concentration is
low. Both DM components are practically in equilibrium, so that a small change in
their concentrations is hardly noticeable.
It would be interesting to analyze another scenarios of the SM extensions with
a complex structure of DM sector and rich phenomenology to study possible
observed manifestations of multicomponent dark matter using multi-messenger
approach for the analysis of possible signals.
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3 Université de Paris, CNRS, Astroparticule et Cosmologie, France; F-75013 Paris, France

Abstract. The puzzles of direct dark matter searches can be solved in the scenario of dark
atoms, which bind hypothetical, stable, lepton-like particles with charge −2n, where n is
any natural number, with n nuclei of primordial helium. Avoid experimental discovery
because they form with primary helium neutral atom-like states OHe (X – helium), called
”dark” atoms. The proposed solution to this problem involves rigorous proof of the ex-
istence of a low-energy bound state in the dark atom interaction with nuclei. It implies
self-consistent account for nuclear attraction and Coulomb repulsion in such an interaction.
We approach the solution of this problem by numerical modeling to reveal the essence of
the processes of dark atom interaction with nuclei. We start with the classical three-body
problem, to which the effects of quantum physics are added. The numerical model of the
dark atom interaction was developed for O−− having a charge of -2, bound with He in
Bohr-like OHe dark atom and for −2n charged X bound with n α-particle nucleus in the
Thomson-like atom XHe. The development of our approach should lead to the solution of
the puzzles of direct dark matter searches in the framework of dark atom hypothesis.

Povzetek: Rezulate neposrednih meritev temne snovi je mogoče razložiti s temnimi atomi,
ki povežejo hipotetične, stabilne, leptonu podobne delce z nabojem −2n, n je poljubno nar-
avno število, z n jedri helija v nevtralne atome, ki jih avtorji imenujejo ”temni atomi” OHe.
Z numeričnim modeliranjem skupka treh teles in z upoštevanjem kvantnih popravkov
iščejo dokaz, da so vezana stanja takih ” temnih atomov” mogoča in so stabilna. Začeli so
s študijem ” temnega atoma” O−−, z nabojem -2, ki se poveže s helijevim jedrom v OHe,
zdaj študirajo tudi kompleksnejše ”temne atome”.

PACS: 02.60.-x; 02.70.-c; 12.60.-i; 36.10.-k; 98.80.-k

5.1 ”Dark” atoms XHe

If dark matter consists of particles, then they are predicted beyond the Standard
Model. In particular, it is assumed that stable, electrically charged particles can
exist [1–3]. Stable negatively charged particles can only have a charge of −2 – we
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will denote them byO−− (in the general case −2n, where n is any natural number,
we will denote them by X) [4]. In this paper, we investigate a composite dark
matter scenario [5–7].
Hypothetical stable O−−(X) particles avoid experimental discovery because they
form neutral atom-like states OHe (X –helium) with primordial helium called
”dark” atoms [8]. Since all these models also predict the corresponding +2n

charged antiparticles, the cosmological scenario should provide a mechanism for
their suppression, which, naturally, can take place in the charge-asymmetric case,
corresponding to an excess of −2n charged particles [1]. The electric charge of the
excess of these particles is compensated by the corresponding excess of positively
charged baryons. So the electroneutrality of the Universe is preserved. Hence,
positively charged antiparticles can effectively annihilate in the early universe.
There are various models predicting such stable −2n charged particles [9–11].
A ”dark” atom is a system consisting of −2n charged particles (in the case n = 1,
this is O−−), bound by the Coulomb force with n 4He nuclei. The structure of
bound state depends on the value of a ≈ ZαZoαAmpRnHe parameter, where α
is fine structure constant, Zo and Zα– are the charge numbers of particle X and
n nuclei of He, respectively, mp – is the proton mass, A is the mass number of
n –nucleus He, and RnHe is the radius of the corresponding nucleus.
For 0 < a < 2, the bound state looks like a Bohr atom with a negatively charged
particle in the core and a nucleus moving in a Bohr orbit. For 2 < a < ∞, the
bound states look like Thomson’s atoms, in which the body of the nucleus vibrates
around a heavy negatively charged particle.
In model of X– helium, X behaves like a lepton or as a specific cluster of heavy
quarks of new families with suppressed hadron interaction [12]. And the exper-
imental lower limit on the mass of multiple charged stable particles is about
1TeV [13].
The main problem with XHe atoms is their strong interaction with matter. This
is because X– helium has an unshielded nuclear attraction to the nuclei of matter.
This, in turn, can lead to the destruction of a bound system of dark matter atoms
and the formation of anomalous isotopes. To avoid the problem of overproduction
of anomalous isotopes, it is necessary that the effective potential between XHe and
the nucleus of matter has a barrier preventing the fusion of He and/or X with the
nucleus. In this paper, we construct a numerical model of such an interaction, to
carry out calculations and calculate the interaction potential.

5.2 Improvement of description of the interaction of a ”dark”
atom in Bohr’s model with the nucleus of matter by adding
the Stark effect.

For 0 < a < 2, the bound state of a dark atom looks like a Bohr atom. That is, dark
atoms are OHe atoms with Zα = 2 and Zo = −2. The process of constructing a
numerical model of the interaction of OHe with the nucleus and the results of
this interaction are given in article [14]. In this section, we have improved this
numerical model by adding the Stark effect to it.
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We fix the He rotation orbit in the OHe atom, which excludes the possibility of its
polarization and we observe the Coulomb repulsion. On the other hand, the Stark
effect should take place in the external electric field of a target nucleus, which
leads to polarization of OHe. In our semiclassical numerical model, this can be
taking into account by including the interaction dipole moment δ caused by the
Stark effect. Thus, by manually including δ, we calculated the Stark force, which
is obtained from the potential and is specified using the same dipole moment. δ
appears due to the action of the nuclear force and the Coulomb force on the He
nucleus and also the Coulomb force on O−−, from here you can get the expression
for δ:

δ(⃗r) =
ZαE(⃗r)

Zoρ
+

|F⃗i
N

α |

eρZo
, (5.1)

where E is the strength of the external electric field, ρ =
Zαe

R3b
is the charge density

of theHe nucleus, where Rb is the Bohr radius ofHe rotation in “dark”OHe atoms
and |F⃗i

N

α | is nuclear interaction of the Saxon-Woods type, between the He nucleus
and the target nucleus [14].
The Stark potential is calculated as follows: USt = eZαEδ. And the Stark force,
respectively: F⃗St = −gradUSt.
Bearing in mind the problem of interpreting the results of theDAMA/NaI experi-
ment on the direct search for dark matter atoms, we concentrate our calculations
on the case when the target nucleus isNa [7]. Therefore, in all subsequent pictures,
the target nucleus should be understood as the nucleus Na.
Based on the data obtained, the program builds the trajectories of the α –particle
and the O−− particle (see Figures 1 and 2). In Figures 1 and 2, showing the result
of the program, the black circle shows the location of the target nucleus, the blue
dots and the red dotted line show the trajectories of α – particles andO−− particles
in the XY plane, respectively.
For the corresponding trajectories of the α –particle, it is possible to construct the
total interaction potential between He and the target nucleus depending on the
distance between He and the target nucleus (see Figures 3 and 4).
In Figure 1, a dark atom OHe was scattered by a target nucleus of matter. This
also follows from Figure 3, where you can see the Coulomb barrier preventing the
particles of a dark atom from entering the nucleus.
In Figure 2, approximately at coordinates (0, 1; −2, 5), the trajectories of the parti-
cles are interrupted, because the dark atom is destroyed and falls into the target
nucleus. This is confirmed in Figure 4, where one can see the predominance of
the nuclear potential over the Coulomb potential at distances close to the target
nucleus.
The results of the interaction can be quite varied, which requires a detailed study
by collecting statistics of trajectories with varying the initial values of the system
and the parameters of the target nucleus.
The approach of the Bohr atom model has some drawbacks, for example, in our
numerical model, the Coulomb force between helium and O−− is not explicitly
specified, but the He rotation orbit in the OHe atom is manually fixed, which
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Fig. 5.1: Trajectories of α –particle and O−− particle

Fig. 5.2: Trajectories of α –particle and O−− particle

excludes the possibility of its polarization. And when considering Thomson’s
model of the atom, this problem can be solved, since with this approach helium
is not a point charge stochastically moving in a fixed Bohr orbit, but is a charged
ball inside which the particle O−− can oscillate. Moreover, the case of −2 charged
particles is only a special case, since the particles we are considering can have
a charge −2n and form with n nuclei 4He ”dark” atoms X –helium, which by
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Fig. 5.3: Total potential of interaction between He and target nucleus

Fig. 5.4: Total potential of interaction between He and target nucleus

themselves, starting from n = 2, are Thomson atoms. With all this, the Stark effect,
when considering the Thomson atom, should arise by itself automatically.
It should be clarified that in the following sections we simulated a dark XHe
atom and its interaction with a target nucleus, and in all the figures the case of
a Thomson atom at n = 1was considered. That is, we considered the OHe atom
in the Thomson approximation. But since OHe is a special case of XHe, and our
model successfully describes the general case, we left the designation XHe in all
the following sections.
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5.3 Numerical simulation of the interaction of Thomson’s ”dark”
atom with the nucleus.

5.3.1 Modeling X – helium

The ”dark” atom of X – helium is the bound state of an n –α-particle (n – helium)
nucleus and the particle X with charge −2n. We place the spherical coordinate
system at the center of the n –helium nucleus, which is a charged ball. Inside
which, in the center, there is a point particle X. When external forces begin to act,
the distance between the center of n –helium and X becomes nonzero and the
particle X begins to oscillate inside the nHe nucleus (in reality, nHe is much lighter
than X, therefore it is a nuclear a drop that fluctuates around X).
The force of the Coulomb interaction between n –helium and X is given by the
following formula:

F⃗XHe(RXHe) =


−
4e2n2

R3XHe

R⃗XHe for RXHe > RHe,

−
4e2n2

R3He

R⃗XHe for RXHe < RHe,

(5.2)

where |R⃗XHe| is the distance between X and the center of the nHe nucleus, and
RHe is the radius of the n –helium nucleus.
The scheme of numerical simulation of the dynamical system XHe:
1) Initial coordinates X R⃗0X = 0 and its initial speed, which we set equal to the

thermal speed in the medium, V0X =

(
3kT

Mnuc

)1/2

, where Mnuc is the mass of

the target nucleus, T is the temperature (we take 25 degrees Celsius), and k is the
Boltzmann constant.
2) Consider state of the system at next moment of time, taken on the time interval
dt. The i-th value of increment of components of radius vector X is determined,
dri:

dri = ViXdt. (5.3)

3) The i + 1 value of the components of the radius vector X is calculated, ri+1:

ri+1 = ri + dri. (5.4)

4) In each iteration, the program calculates the force acting on X, F⃗iXHe. Using
which the increment of the momentum dP⃗i of the particle X is determined:

dP⃗i = F⃗iXHedt. (5.5)

5) Using the increment of the momentum dP⃗i, the increment of the particle velocity
X, dV⃗iX , is calculated, for the subsequent finding of the new velocity used in the
next iteration:

dV⃗iX =
dP⃗i

mX
. (5.6)
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Using the obtained data, it is possible to plot the dependence of modulus of the
radius vector of particle X on time (see Figure 5). In Figure 5 one can observe the
oscillation of the particle X inside the nucleus nHewith a period approximately
equal to 2 · 10−20 second. They appear because the Coulomb force between the
nucleus nHe and X tends to return X to the center of the nucleus and to neutralize
the external disturbance given to the particle X. RXHe < 1 fm, which indicates the
stability of the X – helium system.

Fig. 5.5: Dependence of modulus of radius vector of particle X on time t

5.3.2 Interaction in the XHe –nucleus system

The coordinate system XHe – is the core, in which the interaction of XHe with the
target nucleus will be simulated, similar to the coordinate system OHe – the core
described in the 3.2 paragraph of article [14]. The difference is that the distance
between X and nHe is no longer strictly fixed and is not equal to the Bohr radius.
Thus, the radius vector nHe, rHe, and X, r, are determined independently, and the
distance between X and nHe, rXHe, is determined as follows:

r⃗XHe = r⃗α − r⃗ (5.7)

In our Thomson approximation, helium is a charged droplet, but when considering
the coulomb force and the nuclear force between He and the target nucleus, non-
point of helium has not yet been taken into account and this will have to be done
in the future.
Therefore, the Coulomb and nuclear forces acting between the particles of a dark
atom and the target nucleus in the XHe –nucleus system are similar to the forces
described in paragraphs 3.3 and 3.4 of article [14]. To these forces are added two
additional forces, equal in magnitude, but opposite in sign. This is the Coulomb
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force between X and nHe (see formula 2). The force acting on nHe is denoted by

F⃗i
XHe

α . And the force acting on X is denoted by F⃗i
XHe

X = −F⃗i
XHe

α .

The total force acting on the particle X, F⃗i
X

Sum, is calculated as follows:

F⃗i
X

Sum = F⃗i
e

ZO + F⃗i
XHe

X . (5.8)

The total force acting on nHe, F⃗iα, is:

F⃗iα = F⃗i
e

α + F⃗i
N

α + F⃗i
XHe

α . (5.9)

Let us construct a numerical scheme for calculating these forces depending on the
distance between objects.
1) We use the following initial conditions: initial coordinates X and nHe, r⃗0 = r⃗0α,
and their initial velocities, which we set equal to the thermal speed in the medium,

VX0 = Vα0 =

(
3kT

Mnuc

)1/2

.

2) Consider the state of the system at the next moment in time, taken on the time
interval dt. The i-th value of the impulse increment nHe, dP⃗iα, and X, dP⃗i, is
determined:

dP⃗iα = F⃗iαdt, (5.10)

dP⃗i = F⃗i
X

Sumdt. (5.11)

3) Using the increment dP⃗iα and dP⃗i, i + 1 values of the velocities of the nucleus
nHe and X, V⃗αi+1 and V⃗Xi+1 :

V⃗αi+1 = V⃗αi +
dP⃗iα

mHe
, (5.12)

V⃗Xi+1 = V⃗Xi +
dP⃗i

mX
. (5.13)

4) Calculate the i + 1 value of the radius vector X and nHe:

r⃗i+1 = r⃗i + V⃗αi+1dt, (5.14)

r⃗αi+1 = r⃗αi + V⃗Xi+1dt, (5.15)

5) In each cycle, program calculates total force acting on X particle, F⃗i
X

Sum, and the
total force acting on nHe, F⃗iα.
The dependence of the radius of the particle vector X on the radius of the vector of
the n –helium nucleus see Figure 6 and the total potential of nHe interaction with
the target nucleus depending on rα see Figure 7.
It can be seen from the figures that the XHe system moves towards the target
nucleus as a bound system. The radius vector of the X particle is always less than
the radius of the He vector at the same time, that is, the X particle is slightly closer
to the target nucleus than helium (see Figure 6). Therefore, we see the polarization
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Fig. 5.6: Dependence of r on rα

Fig. 5.7: Dependence of the total potential of nHe interaction with the target
nucleus on rα

of the ”dark” atom. But at a sufficiently close distance from the target nucleus, the
nuclear force becomes strong enough to overcome the Coulomb repulsion of nHe
by the target nucleus and n –helium, pushing forward, penetrates the nucleus,
which is clearly seen in Figure 7.
After that, we supplemented the Coulomb force acting between nHe and the
nucleus, and the Coulomb force acting between X and the nucleus, similarly to
formula 2, i.e. added a condition so that its form would change upon penetration
of nHe and X particles into the target nucleus.
The main task of our modeling is to reconstruct the total potential of interaction
between nHe and the target nucleus.
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From the analysis of trajectories, two characteristic cases can be distinguished.
With a zero impact parameter, the XHe atom flies through the target nucleus, then
comes back and flies in the opposite direction (see Figures 8).

Fig. 5.8: Dependence of the total potential of nHe interaction with the target
nucleus on rα

It is assumed that the interaction of slow X –helium atoms with nuclei can lead to
their low-energy binding. Thus, the low-energy bound state of the XHe –nucleus
must be an oscillating three-body system. And we see that with a nonzero impact
parameter, the XHe atom hits the target nucleus, and a certain oscillatory system
of three bodies is formed (this can be seen in Figures 9 and 10).

Fig. 5.9: Trajectories of nHe and particle X
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In Figure 9, the black circle shows the target nucleus, the yellow asterisk and the
green rhombus are the initial locations of nHe and the X particle, respectively, the
blue dots and the red dotted line show the trajectories of nHe and the X particle,
respectively.

Fig. 5.10: Dependence of the total potential of nHe interaction with the target
nucleus on rα

When analyzing the trajectories, it turned out that the variation in the mass of
X does not affect the result in any way. There is a dependence on the aiming
parameter and the initial speed of the system. But for any of their values, the cloud
of particle coordinates is inside the target nucleus. This is probably reasonable,
since the zero balance of forces for helium can only be achieved in the region
where the nuclear and Coulomb forces from the nucleus are balanced. But the
nuclear force is small outside of it. Thus, the Coulomb polarization of XHe occurs
up to the nuclear boundary, and nuclear polarization becomes possible only inside
it.

5.4 Conclusions

The paper investigates the hypothesis of composite dark matter, in which hypo-
thetical stable particles with a charge of −2n form neutral atom-like states XHe
with primary helium nuclei. X –helium will interact with the nuclei of ordinary
matter. The nuclear interaction of dark atoms with matter is a key problem in the
composite dark matter scenario. Solving this problem and correctly describing this
interaction will reveal the role of dark atoms in primary nucleosynthesis, stellar
processes, and will also explain the conflicting results of experiments on the direct
search for dark matter due to the peculiarities of the interaction of “dark” atoms
with the substance of underground detectors [15].
The XHe hypothesis cannot work unless a repulsive interaction occurs at some
distance between XHe and the nucleus, and the solution of this problem is vital for
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the further existence of the XHe atomic model of dark matter [16]. Therefore, we
were faced with the task of constructing a numerical model of the interaction of
XHe with a target nucleus. Such a numerical model is constructed in this work in
the form of a Thomson model of the atom, as an attempt to avoid the disadvantages
found in Bohr’s model. Our model describes a system of three charged particles
interacting with each other by means of Coulomb and nuclear forces.
When simulating in the Thomson atom approximation, the following effects were
observed: with a zero impact parameter, the XHe atom flies through the target
nucleus, then returns and flies in the opposite direction; with a nonzero impact
parameter, the XHe atom hits the target nucleus, and a kind of vibrational system
of three bodies, this is what is expected to be seen in the formation of a low-energy
bound state in the interaction of slow X –helium atoms with the nuclei of matter.
However, the disadvantage of this is that particle oscillations occur inside the
target nucleus. Thus, in the current version of the numerical model, nHe can easily
penetrate into the target nucleus and the elastic collisions of nuclei do not arise. In
the approach of the Bohr atom, the opposite was true [14]. Therefore, in the future
it should be taken into account that nuclear matter is incompressible and opaque.
In other words, we need to figure out how to take into account the real properties
of nuclear matter.
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Abstract. I survey recent developments in hadron physics which follow from the appli-
cation of superconformal quantum mechanics and light-front holography. This includes
new insights into the physics of color confinement, chiral symmetry, the spectroscopy and
dynamics of hadrons, as well as surprising supersymmetric relations between the masses
of mesons, baryons, and tetraquarks. I also will discuss some novel features of QCD – such
as color transparency, hidden color, and asymmetric intrinsic heavy-quark phenomena. The
elimination of renormalization scale ambiguities and the modification of QCD sum rules
due to diffractive phenomena are also briefly reviewed.

Povzetek: Avtor študira uporabnost superkonformne kvantne mehanike in holografije
na svetlobnem stožcu na primeru novih spoznanj v hadronski fiziki. Poroča o novem,
drugačnem razumevanju kvantne barvne kromodinamike, ročnosti (kiralnosti), spek-
troskopskih lastnostih in dinamike hadronov. Nov pristop mu pokaže presenetljive su-
persimetrične relacije med masami mezonov, barionov in tetrakvarkov, razkrije mu nove
lastnosti kvantne kromodinamike, kot so transparentnost barv, skrita barva in asimetrične
lastnosti težkih kvarkov. Na kratko poroča o nedorečenosti renormalizacijske sheme v
barvni kromodinamiki ter o spremembi vsotnih pravil zaradi difrakcijskih pojavov.

QCD, Light-Front, Holography, Intrinsic Charm, Color Transparency, Supersym-
metry, Principle of Maximum Conformality

6.1 Color Confinement and Light-Front Holography

A key problem in hadron physics is to obtain a first approximation to QCD
which can accurately predict not only the spectroscopy of hadrons, but also the
light-front wave functions which underly their properties and dynamics. Guy
de Téramond, Guenter Dosch, and I [1] have shown that a mass gap and a fun-
damental color confinement scale can be derived from light-front holography
– the duality between five-dimensional anti-de Sitter (AdS) space physical 3+1
spacetime using light-front time. The combination of superconformal quantum
mechanics [2, 3], light-front quantization [4] and the holographic embedding on a
higher dimensional gravity theory [5] (gauge/gravity correspondence) has led to
new analytic insights into the structure of hadrons and their dynamics [1, 6–10].
This new approach to nonperturbative QCD dynamics, holographic light-front QCD,
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has led to effective semi-classical relativistic bound-state equations for arbitrary
spin [11], and it incorporates fundamental properties which are not apparent from
the QCD Lagrangian, such as the emergence of a universal hadron mass scale, the
prediction of a massless pion in the chiral limit, and remarkable connections be-
tween the spectroscopy of mesons, baryons and tetraquarks across the full hadron
spectrum [12–15]. See Fig. 6.5.
The light-front equation for mesons of arbitrary spin J can be derived [11] from the
holographic mapping of the “soft-wall’ modification [35] of AdS5 space with the
specific dilaton profile e+κ2z2 , where one identifies the fifth dimension coordinate
z with the light-front coordinate ζ, where ζ2 = b2⊥x(1 − x). As emphasized by
Maldacena [5], a key feature of five-dimensional AdS5 space is that it provides a
geometrical representation of the conformal group. Moreover AdS5 is holographi-
cally dual to 3+1 spacetime where the time coordinate is light-front time τ = t+z/c.
The resulting light-front potential has the unique form of a harmonic oscillator
κ4ζ2 in the light-front invariant variable ζ. The result is a frame-independent
relativistic equation of motion for qq̄ bound states – a “Light-Front Schrödinger
Equation” [6], analogous to the nonrelativistic radial Schrödinger equation in
quantum mechanics. This bound state equation incorporates color confinement
and other essential spectroscopic and dynamical features of hadron physics, in-
cluding a massless pion for zero quark mass and linear Regge trajectories with the
same slope in both the radial quantum number n and the internal orbital angular
momentum L. The derivation of the confining Light-Front Schrödinger Equation
is outlined in Fig. 6.1.

The predictions for hadron spectroscopy and dynamics [7, 8, 12] include effective
QCD light-front equations for both mesons and baryons based on the generalized
supercharges of superconformal algebra [3]. The supercharges connect the baryon
and meson spectra and their Regge trajectories to each other in a remarkable
manner: each meson has internal angular momentum one unit higher than its su-
perpartner baryon: LM = LB + 1. See Fig. 6.7. Only one mass parameter κ appears;
it sets the confinement and the hadron mass scale in the chiral limit, as well as the
length scale which underlies hadron structure. Light-Front Holography in fact not
only predicts meson and baryon spectroscopy successfully, but also hadron dy-
namics: light-front wave functions, vector meson electroproduction, distribution
amplitudes, form factors, and valence structure functions. The holographic duality
connecting LF physics in 3+1 physical space-time with AdS space in 5 dimensions
is illustrated in Fig. 6.6. The dilaton eκz

2

modification of the metric of AdS space
leads to a color-confining potential in the LF Schrödinger equation.
The combination of light-front dynamics, its holographic mapping to AdS5 space,
and the de Alfaro-Fubini-Furlan (dAFF) procedure [2] provides new insight into
the physics underlying color confinement, the nonperturbative QCD coupling,
and the QCD mass scale. A comprehensive review is given in Ref. [9]. The qq̄
mesons and their valence LF wave functions are the eigensolutions of a frame-
independent bound state equation, the Light-Front Schrödinger Equation. The
mesonic qq̄ bound-state eigenvalues for massless quarks have the simple Regge
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Fig. 6.1: Derivation of the Effective Light-Front Schrödinger Equation from QCD.
As in QED, one reduces the LF Heisenberg equation HLF|Ψ⟩ =M2|Ψ⟩ to an effec-
tive two-body eigenvalue equation for qq̄mesons by systematically eliminating
higher Fock states. One utilizes the LF radial variable ζ, where ζ2 = x(1− x)b2⊥ is

conjugate to the qq̄ LF kinetic energy k2⊥
x(1−x) formq = 0. This allows the reduction

of the dynamics to a single-variable bound-state equation acting on the valence
qq̄ Fock state. The confining potential U(ζ), including its spin-J dependence, is
derived from the soft-wall AdS/QCD model with the dilaton e+κ2z2 ,where z is
the fifth coordinate of AdS5 holographically dual to ζ. See Ref. [1]. The result-
ing light-front harmonic oscillator confinement potential κ4ζ2 for light quarks is
equivalent to a linear confining potential for heavy quarks in the instant form [16].

formM2(n, L, S) = 4κ2(n+L+S/2). The equation predicts that the pion eigenstate
n = L = S = 0 is massless at zero quark mass.

6.2 Light-Front Holography QCD and Supersymmetric Features
of Hadron Physics

One of the most remarkable feature of hadron spectroscopy is that, to a very
good approximation, mesons and baryons are observed to lie on almost iden-
tical Regge trajectories: M2

M = 2κ2(n + LM) for mesons with light quarks and
M2

B = 2κ2(n+LB+1) for baryons with light quarks. The slopes λ = κ2 inM2
H(n, L)

are identical for both mesons and baryons in both the principal number n and
orbital angular momentum L. (The index n can be interpreted as the number of
nodes in the resulting two-body wave function. ) The universality of the slopes of
Regge trajectories across the hadronic spectrum is shown in Fig. 6.3. An example
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Prediction from AdS/QCD: Meson LFWF
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Fig. 6.2: The LF wave function of the pion predicted by LF holography. The results
are consistent with analyses based on the Dyson-Schwinger equation.

comparing the pion and proton trajectories is shown in Fig. 6.4. This degener-
acy between the Regge slopes of the two-body mesons and three-body baryons
provides compelling evidence that two of the three quarks in the baryon valence
Fock state pair up as diquark clusters. Then LM represents the orbital and angular
momentum between the 3C quark and 3̄C antiquark for mesons, and LB represents
the orbital angular momentum between the 3C quark and a 3̄C spin-0 [qq] or
spin-1 (qq) diquark in baryons. The identical 3C − 3̄C color-confining interaction
appears for mesons and baryon. The index n can be interpreted as the number of
nodes in the resulting two-body wave function.
The unified spectroscopy of hadronic bosons and fermions point to an underlying
supersymmetry between mesons and baryons in QCD. In fact, the supersymmet-
ric Light Front Holographic approach to QCD not only provides a unified spec-
troscopy of mesons and baryons, but it also predicts the existence and spectroscopy
of tetraquarks: the mass degeneracy of mesons and baryons with their tetraquark
partners, bound states of 3C diquarks and 3̄C anti-diquarks. The meson-baryon-
tetraquark 4-plet predicted by the LF supersymmetric approach is illustrated
in Fig. 5. The baryon has two entries in the 4-plet, analogous to the upper and
lower spinor components of a Dirac spinor. For example, the proton |[ud]u⟩ with
Jz = +1/2 has equal probability to be a bound state of a scalar [ud] diquark and
a u quark with Sz = +1/2, Lz = 0 or the u quark with nonzero orbital angular
momentum Sz = −1/2, Lz = +1. The spin-flip matrix element of the electromag-
netic current between these two states gives the proton’s Pauli form factor in the
light-front formalism [17].
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Fit to the slope of Regge trajectories, 
including radial excitations

Same Regge Slope for Meson, Baryons:  
Supersymmetric feature of hadron physics

mu = md = 46 MeV, ms = 357 MeV

From ↵g1(Q
2)

Deur

� = 2 de Tèramond, Dosch, Lorce’, sjb

κ = λ = 0.523 ± 0.024

Universal Mass Scale

Fig. 6.3: The slopes of the measured meson and baryon Regge trajectories.

The holographic theory incorporates the dependence on the total quark spin, S = 0

for the π Regge trajectory, and S = 1 for the ρ trajectory, as given by the additional
term 2κ2S, where S = 0, 1, in the LF Hamiltonian. This leads, for example to the
correct prediction for the π−ρmass gap:M2

ρ −M
2
π = 2κ2. In order to describe the

quark spin-spin interaction, which distinguishes for example the nucleons from
∆ particles, one includes an identical term, 2κ2S, with S = 0, 1 in the LF baryon
Hamiltonian which maintains hadronic supersymmetry. The prediction for the
mass spectrum of mesons, baryons and tetraquarks is given by [18]

M2
M⊥ = 4κ2(n+ LM) + 2κ2S, (6.1)

M2
B⊥ = 4κ2(n+ LB + 1) + 2κ2S, (6.2)

M2
T⊥ = 4κ2(n+ LT + 1) + 2κ2S, (6.3)

with the same slope λ = κ2 in L and n, the radial quantum number. The Regge
spectra of the pseudoscalar S = 0 and vector S = 1 mesons are then predicted
correctly, with equal slope in the principal quantum number n and the internal
orbital angular momentum. The nonperturbative pion distribution amplitude
ϕπ(x) ∝ fπ

√
x(1− x) predicted by LF holography is consistent with the Belle data

for the photon-to-pion transition form factor [19]. The prediction for the LF wave
function ψρ(x, k⊥) of the ρ meson gives excellent predictions for the observed
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Fig. 6.4: Examples of supersymmetric meson and baryon Regge trajectories. Com-
parison of the pion and proton trajectories and the comparison of the ρ/ωmeson
Regge trajectory with the J = 3/2 ∆ baryon trajectory. The degeneracy of the meson
and baryon trajectories if one identifies a meson with internal orbital angular mo-
mentum LM with its superpartner baryon with LM = LB+1 using superconformal
algebra. See Refs. [7, 8].

features of diffractive ρ electroproduction γ∗p→ ρp′ [20]. The prediction for the
valence LF wave function of the pion is shown in Fig. 6.2.
These predictions for the meson, baryon and tetraquark spectroscopy are specific to
zero mass quarks. In a recent paper [21], we have shown that the breaking of chiral
symmetry in holographic light-front QCD from nonzero quark masses is encoded
in the longitudinal dynamics, independent of ζ. The results forM2 =M2

⊥ +M2
L,

whereM2
L is the longitudinal contribution from the nonzero quark mass, retains

the zero-mass chiral property of the pion predicted by the superconformal al-
gebraic structure which governs its transverse dynamics. The mass scale in the
longitudinal light-front Hamiltonian determines the confinement strength in this
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direction; It is also responsible for most of the light meson ground state mass,
consistent with the standard Gell-Mann-Oakes-Renner constraint. Longitudinal
confinement and the breaking of chiral symmetry are found to be different mani-
festations of the same underlying dynamics that appears in the ’t Hooft large-NC

QCD(1 + 1) model. One also obtains spherical symmetry of the 3-dimensional con-
finement potential in the nonrelativistic limit. For related work, see Refs. [22–25].

Superconformal Algebra
2X2 Hadronic Multiplets

&%
'$ue &%

'$e ee
�M , LB + 1  B+, LB

-R†
�

&%
'$e ee
 B�, LB + 1

&%
'$e eu u
�T , LB

-R†
�

Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2 ⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, JP = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m2 =
Pn

i=1
m2

i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e�
1
2�

�m2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.

12

Meson Baryon

Baryon

Bosons, Fermions with Equal Mass!

Proton: |u[ud]> Quark + Scalar Diquark
Equal Weight: L=0, L=1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! [qq]

3̄C ! 3̄C

Tetraquark: 
diquark + antidiquark

Fig. 6.5: The supersymmetric meson-baryon-tetraquark 4-plet. The operator R†λ
transforms an antiquark 3̄C into a diquark 3̄C.

Phenomenological extensions of the holographic QCD approach have also led
to nontrivial connections between the dynamics of form factors and polarized
and unpolarized quark distributions with pre-QCD nonperturbative approaches
such as Regge theory and the Veneziano model [26–28]. As discussed in the next
section, it also predicts the analytic behavior of the QCD coupling αs(Q

2) in the
nonperturbative domain [29, 30].
The LF Schrödinger Equations for baryons and mesons derived from superconfor-
mal algebra are shown in Fig. 6.7. The comparison between the meson and baryon
masses of the ρ/ω Regge trajectory with the spin-3/2 ∆ trajectory is shown in Fig.
6.7. Superconformal algebra predicts the meson and baryon masses are identical if
one identifies a meson with internal orbital angular momentum LM with its super-
partner baryon with LB = LM − 1. Notice that the twist τ = 2 + LM = 3 + LB of
the interpolating operators for the meson and baryon superpartners are the same.
Superconformal algebra also predicts that the LFWFs of the superpartners are
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Fig. 6.6: The holographic duality connecting LF physics in 3+1 physical space-time
with AdS space in 5 dimensions. The coordinate z in the fifth dimension of AdS
space is holographically dual to the LF radial variable ζwhere ζ2 = b2⊥x(1− x).

identical, and thus they have identical dynamics, such their elastic and transition
form factors. These features can be tested for spacelike form factors at JLab12.
The extension of light-front QCD to superconformal algebra has leads to a specific
mass degeneracy between mesons, baryons and tetraquarks [7, 8, 18] underlying
the SU(3)C representation properties, since a diquark cluster has the same color-
triplet representation as an antiquark, namely 3̄ ∈ 3× 3. The meson wave function
ϕM, the upper and lower components of the baryon wave function, ϕB±, and
the tetraquark wave function, ϕT , can be arranged as a supersymmetric 4-plet
matrix [18, 32]

|Φ⟩ =
(
ϕ

(L+1)
M ϕ

(L+1)
B−

ϕ
(L)
B+ ϕ

(L)
T

)
, (6.4)

with HLF|Φ⟩ =M2|Φ⟩ and LM = LB + 1, LT = LB. The constraints from supercon-
formal structure uniquely determine the form of the effective transverse confining
potential for mesons, nucleons and tetraquarks [7,8,18], and lead to the remarkable
relations LM = LB + 1, LT = LB. The superconformal algebra also predicts the
universality of Regge slopes with a unique scale λ = κ2 for all hadron families.
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Fig. 6.7: The LF Schrödinger equations for baryons and mesons for zero quark
mass derived from the Pauli 2×2matrix representation of superconformal algebra.
The ψ± are the baryon quark-diquark LFWFs where the quark spin Szq = ±1/2
is parallel or antiparallel to the baryon spin Jz = ±1/2. The meson and baryon
equations are identical if one identifies a meson with internal orbital angular
momentum LM with its superpartner baryon with LB = LM− 1. See Refs. [7,8,12].

6.3 The QCD Coupling at all Scales

The QCD running coupling can be defined [33] at all momentum scales from
any perturbatively calculable observable, such as the coupling αs

g1
(Q2) which is

defined from measurements of the Bjorken sum rule. At high momentum trans-
fer, such “effective charges” satisfy asymptotic freedom, obey the usual pQCD
renormalization group equations, and can be related to each other without scale
ambiguity by commensurate scale relations [34]. The dilaton e+κ2z2 soft-wall
modification [35] of the AdS5 metric, together with LF holography, predicts the
functional behavior in the smallQ2 domain [29]: αs

g1
(Q2) = πe−Q2/4κ2 .Measure-

ments of αs
g1
(Q2) are remarkably consistent with this predicted Gaussian form.

We have also shown how the parameter κ, which determines the mass scale of
hadrons in the chiral limit, can be connected to the mass scale Λs controlling
the evolution of the perturbative QCD coupling [29–31]. This connection can be
done for any choice of renormalization scheme, including the MS scheme, as
seen in Fig. 6.8. The relation between scales is obtained by matching at a scale
Q2

0 the nonperturbative behavior of the effective QCD coupling, as determined
from light-front holography, to the perturbative QCD coupling with asymptotic
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freedom. The result of this perturbative/nonperturbative matching is an effective
QCD coupling which is defined at all momenta.
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Holographic QCD

(asymptotic freedom)

Q0

Non−perturbative
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)/π
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All-Scale QCD Coupling
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42

Deur, de Tèramond, sjbm⇢ =
p

2

mp = 2

� ⌘ 2

⇤MS = 0.341 ± 0.024 GeV
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Expt:

Running Coupling from Light-Front Holography and AdS/QCD
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s (Q)/⇥ = e�Q2/4�2

�s(Q)

⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point
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� s(Q
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Fig. 6.8: (A). Prediction from LF Holography for the QCD running Coupling
αs
g1
(Q2). The magnitude and derivative of the perturbative and nonperturbative

coupling are matched at the scale Q0. This matching connects the perturbative
scale ΛMS to the nonperturbative scale κwhich underlies the hadron mass scale.
(B). Comparison of the predicted nonperturbative coupling with measurements of
the effective charge αs

g1
(Q2) defined from the Bjorken sum rule. See Ref. [31].
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6.4 Light-Front Wave Functions and QCD

Measurements of hadron structure – such as the structure functions determined by
deep inelastic lepton-proton scattering (DIS) – are analogous to a flash photograph:
one observes the hadron at fixed τ = t + z/c along a light-front, not at a given
instant of time t. The underlying physics follows from the the light-front wave func-

tions (LFWFs) ψn(xi, k⃗⊥i, λi) with xi =
k+
i

P+ =
k0i+kzi
P0+Pz

,
∑n

i x1 = 1,
∑n

i k⃗⊥i = 0⃗⊥
and spin projections λi. The LFWFs are the Fock state projections of the eigenstates
of the QCD LF invariant Hamiltonian HLF|Ψ⟩ =M2|Ψ⟩ [36], where the LF Hamil-
tonian is the light-front time evolution operator defined directly from the QCD
Lagrangian. One can avoid ghosts and longitudinal gluonic degrees of freedom by
choosing to work in the light-cone gauge A+ = 0. The LFWFs are boost invariant;
i.e., they are independent of the hadron’s momentum P+ = P0 + Pz, P⃗⊥. This
contrasts with the wave functions defined at a fixed time t – the Lorentz boost of
an instant-form wave function is much more complicated than a Melosh trans-
form [37] – even the number of Fock constituents changes under a boost. Current
matrix elements such as form factors are simple overlaps of the initial-state and
final-state LFWFs, as given by the Drell-Yan-West formula [17, 38, 39]. There is no
analogous formula for the instant form, since one must take into account the cou-
pling of the external current to connected vacuum-induced currents. Observables
such as structure functions, transverse momentum distributions, and distribution
amplitudes are defined from the hadronic LFWFs. The distribution amplitudes
ϕH(xi, Q) are given by the valence LFWF integrated over transverse momentum
k2⊥ < Q

2.
Since they are frame-independent, the structure functions measured in DIS are the
same whether they are measured in an electron-proton collider or in a fixed-target
experiment where the proton is at rest. There is no concept of length contraction
of the hadron or nucleus at a collider – no collisions of “pancakes” – since the
observations of the collisions of the composite hadrons are made at fixed τ, not
at fixed time. The dynamics of a hadron in the LF formalism is not dependent
on the observer’s Lorentz frame. Hadron form factors are matrix elements of
the noninteracting electromagnetic current jµ of the hadron, as in the interaction
picture of quantum mechanics. One chooses the frame where the virtual photon
4-momentum qµ has q+ = 0, q⃗2⊥ = Q2 = −q2 and q−P+ = q · p. One can
also choose to evaluate matrix elements of j+ = j0 + jz which eliminates matrix
elements between Fock states with and extra qq̄ pair.
The frame-independent LF Heisenberg equation HQCD

LF |ψH⟩ = M2
HψH⟩ can be

solved numerically by matrix diagonalization of the LF Hamiltonian in LF Fock
space using “Discretized Light-Cone Quantization” (DLCQ) [40], where anti-
periodic boundary conditions in x− render the k+ momenta discrete as well as
limiting the size of the Fock basis. In fact, one can easily solve 1+1 quantum field
theories such as QCD(1 + 1) [41] for any number of colors, flavors, and quark
masses. Unlike lattice gauge theory, the nonperturbative DLCQ analysis is in
Minkowski space, it is frame-independent, and it is free of fermion-doubling
problems. A new method for solving nonperturbative QCD “Basis Light-Front
Quantization” (BLFQ) [42, 43], uses the eigensolutions of a color-confining approx-
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imation to QCD (such as LF holography ) as the basis functions, rather than the
plane-wave basis used in DLCQ. The LFWFs can also be determined from covari-
ant Bethe-Salpeter wave function by integrating over k− [44]. In fact, advanced
quantum computers are now being used to obtain the DLCQ and BLFQ solutions.
Factorization theorems as well as the DGLAP and ERBL evolution equations for
structure functions and distribution amplitudes, respectively, can be derived using
the light-front Hamiltonian formalism [45]. In the case of an electron-ion collider,
one can represent the cross section for e − p collisions as a convolution of the
hadron and virtual photon structure functions times the subprocess cross-section
in analogy to hadron-hadron collisions. This description of γ∗p → X reactions
gives new insights into electroproduction physics such as the dynamics of heavy
quark-pair production, where intrinsic heavy quarks play an important role [46].
In the case of ep → e′X, one can consider the collisions of the confining QCD
flux tube appearing between the q and q̄ of the virtual photon with the flux tube
between the quark and diquark of the proton. Since the qq̄ plane is aligned with the
scattered electron’s plane, the resulting “ridge” of hadronic multiplicity produced
from the γ∗p collision will also be aligned with the scattering plane of the scattered
electron. The virtual photon’s flux tube will also depend on the photon virtuality
Q2, as well as the flavor of the produced pair arising from γ∗ → qq̄. The resulting
dynamics [47] is a natural extension of the flux-tube collision description of the
ridge produced in p− p collisions [48].

6.5 Other Features of Light-Front QCD

There are a number of advantages if one uses LF Hamiltonian methods for per-
turbative QCD calculations. The LF formalism is frame-independent and causa.
If one chooses LF gauge A+ = 0 the gluons have only transverse polarization
and no ghosts. If one chooses the frame q+ = 0 the current does not create pairs.
Unlike instant form, where one must sum over n! frame-dependent amplitudes,
only the τ-ordered diagrams where every line has positive k+ = k0 + kz can
contribute [49]. The number of nonzero amplitudes is also greatly reduced by
noting that the total angular momentum projection Jz =

∑n−1
i Lzi +

∑n
i S

z
i and the

total P+ are conserved at each vertex. In addition, in a renormalizable theory the
change in orbital angular momentum is limited to ∆Lz = 0,±1 at each vertex. The
calculation of a subgraph of any order in pQCD only needs to be done once; the
result can be stored in a “history” file, since in light-front perturbation theory, the
numerator algebra is independent of the process; the denominator changes, but
only by a simple shift of the initial P−. Loop integrations are three-dimensional:∫
d2k⃗⊥

∫1
0
dx. Renormalization can be done using the “alternate denominator”

method which defines the required subtraction counter-terms [50].
The LF vacuum in LF Hamiltonian theory is defined as the eigenstate of HLF with
lowest invariant mass. Since propagation of particles with negative k+ does not
appear, there are no loop amplitudes appearing in the LF vacuum – it is is thus
trivial up to possible k+ = 0 “zero” modes. The usual quark and gluon QCD
vacuum condensates of the instant form =are replaced by physical effects, such as
the running quark mass and the physics contained within the hadronic LFWFs in
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the hadronic domain. This is referred to as “in-hadron” condensates [51–53]. In the
case of the Higgs theory, the traditional Higgs vacuum expectation value (VEV) is
replaced by a zero mode, analogous to a classical Stark or Zeeman field. [54] This
approach contrasts with the traditional view of the vacuum based on the instant
form.
The instant-form vacuum, the lowest energy eigenstate of the instant-form Hamil-
tonian, is defined at one instant of time over all space; it is thus acausal and
frame-dependent. It is usually argued that the QCD contribution to the cosmologi-
cal constant – dark energy – is 1045 times larger that observed, and in the case of
the Higgs theory, the Higgs VEV is argued to be 1054 larger than observed [55],
estimates based on the loop diagrams of the acausal frame-dependent instant-form
vacuum. However, the universe is observed within the causal horizon, not at a sin-
gle instant of time. In contrast, the light-front vacuum provides a viable description
of the visible universe [53]. Thus, in agreement with Einstein’s theory of general
relativity, quantum effects do not contribute to the cosmological constant. In the
case of the Higgs theory, the Higgs zero mode has no energy density, so again it
gives no contribution to the cosmological constant. However, it is possible that if
one solves the Higgs theory in a curved universe, the zero mode will be replaced
with a field of nonzero curvature which could give a nonzero contribution.

6.6 Gluon matter distribution in the proton and pion from
extended holographic light-front QCD

The holographic light-front QCD framework provides a unified nonperturbative
description of the hadron mass spectrum, form factors and quark distributions.
In a recent article [56] we have extended our previous description of quark dis-
tributions [27, 28] in LF holographic QCD to predict the gluonic distributions of
both the proton and pion from the coupling of the metric fluctuations induced by
the spin-two Pomeron with the energy momentum tensor in anti-de Sitter space,
together with constraints imposed by the Veneziano model without additional free
parameters. The gluonic and quark distributions are shown to have significantly
different effective QCD mass scales. The comparison of our predictions with the
gluon gravitational form factor computed from Euclidean lattice gauge theory and
the gluon distribution in the proton and pion from global analyses also give very
good results.

6.7 Intrinsic Heavy Quarks

Quantum Chromodynamics (QCD), the underlying theory of strong interactions,
with quarks and gluons as the fundamental degrees of freedom, predicts that
the heavy quarks in the nucleon-sea to have both perturbative “extrinsic” and
nonperturbative “intrinsic” origins. The extrinsic sea arises from gluon splitting
which is triggered by a probe in the reaction. It can be calculated order-by-order in
perturbation theory. In contrast, the intrinsic sea is encoded in the nonperturbative
wave functions of the nucleon eigenstate.
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The existence of nonperturbative intrinsic charm (IC) was originally proposed
in the BHPS model [57] and developed further in subsequent papers [58–60].
The intrinsic contribution to the heavy quark distributions of hadrons at high
x corresponds to Fock states such as |uudQQ̄⟩ where the heavy quark pair is
multiply connected to two or more valence quarks of the proton, in distinction
to the higher order corrections to DGLAP evolution. The LF wave function is
maximal at minimal off-shellness; i.e., when the constituents all have the same

rapidity yi, and thus xi ∝
√
(m2

i + k⃗
2
⊥i). Here x = k+

P+ = k0+k3

P0+P3
is the frame-

independent light-front momentum fraction carried by the heavy quark in a
hadron with momentum Pµ. In the case of deep inelastic lepton-proton scattering,
the LF momentum fraction variable x in the proton structure functions can be
identified with the Bjorken variable x = Q2

2p·q . These heavy quark contributions
to the nucleon’s PDF thus peak at large xbj and thus have important implication
for LHC and EIC collider phenomenology, including Higgs and heavy hadron
production at high xF [61]. It also opens up new opportunities to study heavy
quark phenomena in fixed target experiments such as the proposed AFTER [62]
fixed target facility at CERN. Other applications are presented in Refs. [63–65].
The existence of intrinsic heavy quarks also illuminates fundamental aspects of
nonperturbative QCD.
In Light-Front Hamiltonian theory, the intrinsic heavy quarks of the proton are as-
sociated with non-valence Fock states. such as |uudQQ̄⟩ in the hadronic eigenstate
of the LF Hamiltonian; this implies that the heavy quarks are multi-connected to
the valence quarks. The probability for the heavy-quark Fock states scales as 1/m2

Q

in non-Abelian QCD. Since the LF wave function is maximal at minimum off-shell
invariant mass; i.e., at equal rapidity, the intrinsic heavy quarks carry large momen-
tum fraction xQ. A key characteristic is different momentum and spin distributions
for the intrinsic Q and Q̄ in the nucleon; for example the charm-anticharm asym-
metry, since the comoving quarks are sensitive to the global quantum numbers of
the nucleon [62]. Furthermore, since all of the intrinsic quarks in the |uudQQ̄⟩ Fock
state have similar rapidities as the valence quarks, they can re-interact, leading
to significant Q vs Q̄ asymmetries. The concept of intrinsic heavy quarks was
also proposed in the context of meson-baryon fluctuation models [66, 67], where
intrinsic charm was identified with two-body state D̄0(uc̄)Λ+

c (udc) in the proton.
This identification predicts large asymmetries in the charm versus anti-charm mo-
mentum and spin distributions, Since these heavy quark distributions depend on
the correlations determined by the valence quark distributions, they are referred
to as intrinsic contributions to the hadron’s fundamental structure. A specific
analysis of the intrinsic charm content of the deuteron is given in Ref. [68]. In
contrast, the contribution to the heavy quark PDFs arising from gluon splitting
are symmetric in Q vs Q̄. The contributions generated by DGLAP evolution at
low x can be considered as extrinsic contributions since they only depend on the
gluon distribution. The gluon splitting contribution to the heavy-quark degrees of
freedom is perturbatively calculable using DGLAP evolution. To first approxima-
tion, the perturbative extrinsic heavy quark distribution falls as (1− x) times the
gluon distribution and is limited to low xbj. Thus, unlike the conventional logm2

Q

dependence of the low x extrinsic gluon-splitting contributions, the probabilities



i
i

“U” — 2021/12/15 — 21:46 — page 81 — #97 i
i

i
i

i
i

Title Suppressed Due to Excessive Length 81

for the intrinsic heavy quark Fock states at high x scale as 1
m2
Q

in non-Abelian QCD,

and the relative probability of intrinsic bottom to charm is of order m2c
m2
b

∼ 1
10
. In

contrast, the probability for a higher Fock state containing heavy leptons in a QED
atom scales as 1

m4
ℓ

, corresponding to the twist-8 Euler-Heisenberg light-by-light
self-energy insertion. Detailed derivations based on the OPE have been given in
Ref. [58, 60].
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c̄(
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LFHQCD

Fig. 6.9: The difference of charm and anticharm structure functions x[c(x) − c̄(x)]
obtained from the LFHQCD formalism using the lattice QCD input of charm
electromagnetic form factorsGc

E,M(Q2). The outer cyan band indicates an estimate
of systematic uncertainty in the x[c(x)−c̄(x)] distribution obtained from a variation
of the hadron scale κc by 5%. From Ref. [69].

In an important recent development [69], the difference of the charm and an-
ticharm quark distributions in the proton, ∆c(x) = c(x)− c̄(x), has been computed
from first principles in QCD using lattice gauge theory. A key theoretical tool
is the computation of the charm and anticharm quark contribution to the elec-
tromagnetic form factor of the proton which would vanish if c(x) = c̄(x). The
exclusive-inclusive connection, together with the LFHQCD formalism, predicts
the asymmetry of structure functions c(x) − c̄(x) which is also odd under charm-
anticharm interchange. The predicted c(x) − c̄(x) distribution is large and nonzero
at large at x ∼ 0.4, consistent with the expectations of intrinsic charm. See Fig. 6.9.
The c(x) vs. c̄(x) asymmetry can also be understood physically by identifying the
|uudcc̄⟩ Fock state with the |ΛudcDuc̄⟩ off-shell excitation of the proton.
A related application of lattice gauge theory to the nonperturbative strange-quark
sea from lattice QCD is given in Ref. [70].
There have been many phenomenological calculations involving the existence of
a non-zero IC component which can explain anomalies in the experimental data
and to predict its novel signatures of IC in upcoming experiments [62]. A recent
measurement by LHCb is shown in Fig. 10. The observed spectrum exhibits a
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Fig. 6.10: The charm distribution in the proton determined from LHCb measure-
ments of Z bosons produced in association with charm at forward rapidity [71].

sizable enhancement at forward Z rapidities, consistent with the effect expected if
the proton contains the |uudc̄c⟩ Fock state predicted by LFQCD. [71]
Thus QCD predicts two separate and distinct contributions to the heavy quark
distributions q(x,Q2) of the nucleons at low and high x. Here x = k+

P+ = k0+k3

P0+P3

is the frame-independent light-front momentum fraction carried by the heavy
quark in a hadron with momentum Pµ. In the case of deep inelastic lepton-proton
scattering, the LF momentum fraction variable x in the proton structure functions
can be identified with the Bjorken variable x = Q2

2p·q .At small x, heavy-quark pairs
are dominantly produced via the standard gluon-splitting subprocess g→ QQ̄.

6.8 Color Transparency [72]

One of the most striking properties of QCD phenomenology is “color trans-
parency” [73], the reduced absorption of a hadron as it propagates through nuclear
matter, if it is produced at high transverse momentum in a hard exclusive process,
such as elastic lepton-proton scattering. The nuclear absorption reflects the size of
the color dipole moment of the propagating hadron; i.e., the separation between
its colored constituents.
The key quantity which measures the transverse size of a scattered hadron in a
given Fock state is [72] a⊥ =

∑n−1
i=1 xib⊥i. The LF QCD formula for form factors
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can then be written compactly in impact space as

F(Q2) =

∫1
0

dxd2a⊥e
iq⃗⊥·a⊥q(x, a⊥), (6.5)

and thus ⟨a2⊥(Q2)⟩ = −4
d

dQ2
F(Q2)

F(Q2)
measures the slope of the hadron factor. We can

use LF holography to show that ⟨a2⊥(Q2)⟩τ = 4τ−1
Q2

for a Fock state of twist τ at
largeQ2; thus, as expected, the hadronic size decreases with increasing momentum
transfer Q2, and that the size of the hadron increases with its twist τ.

3

down or absorbed with greater probability as compared
with a pion projectile with a smaller transverse impact
area for the same Q2. The particle with a larger num-
ber of constituents will thus require a larger Q2 to have
the same transparency: the onset of color transparency
will be higher when compared with the fewer components
projectile.

To illustrate this point consider for example an experi-
ment that measures CT for the deuteron in eA ! De0X,
where the deuteron is produced isolated with large trans-
verse momentum q opposite to the electron. As a result
of the LF cluster decomposition, the deuteron wave func-
tion factorizes into two distinct nucleon wave functions
convoluted with a two-body reduced form factor fR [29],
FD

�
Q2
�

= fR

�
Q2
�
Fp

�
1
4Q2

�
Fn

�
1
4Q2

�
, where fR(Q2)

is computed from the overlap of the reduced two-body
light-front wave functions (LFWFs): Q2fR(Q2) ' const
at large Q2. The nucleon form factors FN are evalu-
ated at Q2/4, since both nucleons share the momentum
transferred to the bound state by the incoming probe.
Therefore CT for eA ! De0X should occur at a Q2 scale
four times higher than CT in eA ! pe0X.

We expect a similar e↵ect in comparing the relative CT
of nucleons with pions where the detailed dependence on
the individual constituents in the LFWF is essential. The
integrand of (A5) is in fact a function of q?·xjb?j where
the transverse coordinate b?j in impact space is the vari-
able conjugate to the LF relative transverse momentum
of particle j and xj represents its longitudinal momentum
fraction. The index j is summed over the n � 1 specta-
tors: It corresponds to a change of transverse momentum
xjq? for each spectator particle and this dependence is
crucial to study the relative CT of di↵erent hadrons.

The spatial transverse-size dependence of the impact-
parameter on the momentum transfer t = �Q2 is com-
puted from the expectation value of the profile function
f(x) = ha2

?(x)i/4

ha2
?(t)i⌧ =

R
dx 4f(x)⇢⌧ (x, t)R

dx⇢⌧ (x, t)

= 4F⌧ (t)
�1 d

dt
F⌧ (t)

=
1

�
[ (⌧ � ↵(t)) �  (1 � ↵(t)] , (8)

where the distribution ⇢⌧ (x, t) = q⌧ (x) exp [tf(x)].
The result (10) follows directly from the expression
of the form factor (5) since B(u, v)�1@vB(u, v) =
( (v) �  (u + v)), with  (z) the digamma function
 (z) = �(z)�1 d

dz�(z).
For integer twist ⌧ = N we can use the recurrence

relation for the digamma function  (z + 1) �  (z) = 1
z

to obtain

ha2
?(t)i⌧ =

1

�

⌧�1X

j=1

1

j � ↵(t)
, (9)

an expression reminiscent of the classical Regge pole

structure of the scattering amplitude. For large values
of the momentum transfer t = �Q2 it leads to

ha2
?(Q2)i⌧ ! 4(⌧ � 1)

Q2
. (10)

In contrast with the dependence of the transverse impact
area as a function of x (4), the behavior in Q2 depends on
twist and the Regge intercept ↵(0) of the vector meson
coupling with the quark current in the hadron.
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FIG. 2. The transverse impact area as a function of Q2 and
the number of constituents ⌧ implies a significant delay in the
onset of color transparency at intermediate energies for ⌧ > 2.

IV. DISCUSSION OF RESULTS

As we show in Fig. 2 the gap in the transverse impact
area for di↵erent twist is more significative at intermedi-
ate energies and for low twist values, particularly between
twist two and three. For example, the e↵ective transverse
impact surface for twist two at 8 GeV2 is similar to that
of twist 3 at 20 GeV2; or the impact surface at 4 GeV2

for twist 2 is similar to that of twist 4 also at 20 GeV2,
thus implying an important delay in the CT onset at in-
termediate energies in terms of the quark constituents.
For the proton this is particularly relevant since it con-
tains twist-3 but also twist-4 in its LFWF to generate
its anomalous magnetic moment, thus requiring a larger
onset in CT as measured in [6].

. . .

V. CONCLUSIONS AND OUTLOOK

. . .

3

down or absorbed with greater probability as compared
with a pion projectile with a smaller transverse impact
area for the same Q2. The particle with a larger num-
ber of constituents will thus require a larger Q2 to have
the same transparency: the onset of color transparency
will be higher when compared with the fewer components
projectile.

To illustrate this point consider for example an experi-
ment that measures CT for the deuteron in eA ! De0X,
where the deuteron is produced isolated with large trans-
verse momentum q opposite to the electron. As a result
of the LF cluster decomposition, the deuteron wave func-
tion factorizes into two distinct nucleon wave functions
convoluted with a two-body reduced form factor fR [29],
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4Q2
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, where fR(Q2)

is computed from the overlap of the reduced two-body
light-front wave functions (LFWFs): Q2fR(Q2) ' const
at large Q2. The nucleon form factors FN are evalu-
ated at Q2/4, since both nucleons share the momentum
transferred to the bound state by the incoming probe.
Therefore CT for eA ! De0X should occur at a Q2 scale
four times higher than CT in eA ! pe0X.

We expect a similar e↵ect in comparing the relative CT
of nucleons with pions where the detailed dependence on
the individual constituents in the LFWF is essential. The
integrand of (A5) is in fact a function of q?·xjb?j where
the transverse coordinate b?j in impact space is the vari-
able conjugate to the LF relative transverse momentum
of particle j and xj represents its longitudinal momentum
fraction. The index j is summed over the n � 1 specta-
tors: It corresponds to a change of transverse momentum
xjq? for each spectator particle and this dependence is
crucial to study the relative CT of di↵erent hadrons.

The spatial transverse-size dependence of the impact-
parameter on the momentum transfer t = �Q2 is com-
puted from the expectation value of the profile function
f(x) = ha2

?(x)i/4

ha2
?(t)i⌧ =

R
dx 4f(x)⇢⌧ (x, t)R

dx⇢⌧ (x, t)

= 4F⌧ (t)
�1 d

dt
F⌧ (t)

=
1

�
[ (⌧ � ↵(t)) �  (1 � ↵(t)] , (8)

where the distribution ⇢⌧ (x, t) = q⌧ (x) exp [tf(x)].
The result (10) follows directly from the expression
of the form factor (5) since B(u, v)�1@vB(u, v) =
( (v) �  (u + v)), with  (z) the digamma function
 (z) = �(z)�1 d

dz�(z).
For integer twist ⌧ = N we can use the recurrence

relation for the digamma function  (z + 1) �  (z) = 1
z

to obtain

ha2
?(t)i⌧ =

1

�

⌧�1X

j=1

1

j � ↵(t)
, (9)

an expression reminiscent of the classical Regge pole

structure of the scattering amplitude. For large values
of the momentum transfer t = �Q2 it leads to

ha2
?(Q2)i⌧ ! 4(⌧ � 1)

Q2
. (10)

In contrast with the dependence of the transverse impact
area as a function of x (4), the behavior in Q2 depends on
twist and the Regge intercept ↵(0) of the vector meson
coupling with the quark current in the hadron.

FIG. 2. The transverse impact area as a function of Q2 and
the number of constituents ⌧ implies a significant delay in the
onset of color transparency at intermediate energies for ⌧ > 2.

IV. DISCUSSION OF RESULTS

As we show in Fig. 2 the gap in the transverse impact
area for di↵erent twist is more significative at intermedi-
ate energies and for low twist values, particularly between
twist two and three. For example, the e↵ective transverse
impact surface for twist two at 8 GeV2 is similar to that
of twist 3 at 20 GeV2; or the impact surface at 4 GeV2

for twist 2 is similar to that of twist 4 also at 20 GeV2,
thus implying an important delay in the CT onset at in-
termediate energies in terms of the quark constituents.
For the proton this is particularly relevant since it con-
tains twist-3 but also twist-4 in its LFWF to generate
its anomalous magnetic moment, thus requiring a larger
onset in CT as measured in [6].

. . .

V. CONCLUSIONS AND OUTLOOK

. . .

Light-Front HolographyTransparency scale Q 
increases with twist

pion

⌧ = 2

1

deuteron

⌧ = 6

1

q⌧ (x) / (1 � x)2ns�1 = (1 � x)2⌧�3

where
Transverse size a? grows with the number of spectators, the twist ⌧ � 1

Proton has equal probability for ⌧ = 3 and ⌧ = 4

1

⌧ = 3 (L = 0)

1

⌧ = 4 (L = 1)

1

proton
L=0, 1 average

Transparency controlled by transverse size

Preliminary 

Fig. 6.11: Predictions from LF holography for the effective transverse size of
hadrons.

A key prediction is that the size of a⊥ is smaller for mesons (τ = 2 than for
baryons with τ = 3, 4, corresponding to the quark-diquark Fock states with L = 0

and L = 1 respectively. In fact, the proton is predicted to have “two-stage” color
transparency Q2 > 14 GeV2 for the |[ud]u⟩ twist-3 Fock state with orbital angular
momentum L = 0 and Q2 > 16 GeV2 for the later onset of CT for its L = 1 twist-4
component. See fig. 6.11 Note that LF holography predicts equal quark probability
for the L = 0 and L = 1 Fock states. Color transparency is thus predicted to
occur at a significantly higher Q2 for baryons (Q2 > 14 GeV2), than for mesons
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(Q2 > 4 GeV2). This is consistent with a recent test of color transparency at JLab
which has confirmed color transparency for the the π and ρ [74]; however, the
measurements in this experiment are limited to values below the range of Q2

where proton color transparency is predicted to occur.

Color transparency fundamental prediction of QCD

5

CT onset
1.0

TA

Q0
2 Q2➝

Complete transparency

Glauber

• Not predicted by strongly interacting 
hadronic picture → arises in picture of 
quark-gluon interactions

• QCD: color field of singlet objects vanishes 
as size is reduced

• Signature is a rise in nuclear transparency, 
TA, as a function of the momentum 
transfer, Q2

!" =
$"
% $& (free nucleon 

cross section)

(nuclear cross section)

e

e'

p p'

JLab Seminar 2019

e + A ! e0 + p + X

1

Q2 !

1

14 GeV 2 < Q2 < 20 GeV 2

Q2 > 20 GeV 2

1

Two-Stage Color Transparency for the Proton

Dirac Domain

Fig. 6.12: Two-stage color transparency and transmission probability of the proton
in a nuclear medium from LF Holography.

Remarkably, color transparency for the production of an intact deuteron nucleus in
eA→ d+ X(A−2) quasi-exclusive reactions should be observed at Q2 > 50 GeV2.
This can be tested in ed→ ed elastic scattering in a nuclear background.
It has been speculated [75] that the “Feynman mechanism”, where the behavior
of the struck quark at x ∼ 1 in the proton LFWF plays a key role for hard exclu-
sive hadronic processes does not predict color transparency. However, LF wave

functions are functions of the invariant mass
∑

i
k⃗2⊥i+m2i

xi
so that their behavior at

large k⊥ and large x are correlated. Thus color transparency occurs for scattering
amplitudes involving both the large transverse momentum and large x domains.
The three-dimensional LF spatial symmetry of LFWFs also leads to the exclusive-
inclusive connection, relating the counting rules for the behavior of form factors at
large Q2 and structure functions at xbj → 1.



i
i

“U” — 2021/12/15 — 21:46 — page 85 — #101 i
i

i
i

i
i

Title Suppressed Due to Excessive Length 85

6.9 Removing Renormalization Scale Ambiguities

It has become conventional to simply guess the renormalization scale and choose
an arbitrary range of uncertainty when making perturbative QCD (pQCD) pre-
dictions. However, this ad hoc assignment of the renormalization scale and the
estimate of the size of the resulting uncertainty leads to anomalous renormalization
scheme-and-scale dependences. In fact, relations between physical observables
must be independent of the theorist’s choice of the renormalization scheme, and
the renormalization scale in any given scheme at any given order of pQCD is not
ambiguous. The Principle of Maximum Conformality (PMC) [76], which generalizes
the conventional Gell-Mann-Low method for scale-setting in perturbative QED
to non-Abelian QCD, provides a rigorous method for achieving unambiguous
scheme-independent, fixed-order predictions for observables consistent with the
principles of the renormalization group. The renormalization scale of the running
coupling depends dynamically on the virtuality of the underlying quark and
gluon subprocess and thus the specific kinematics of each event.
The key problem in making precise perturbative QCD predictions is the uncer-
tainty in determining the renormalization scale µ of the running coupling αs(µ

2).

The purpose of the running coupling in any gauge theory is to sum all terms
involving the β function; in fact, when the renormalization scale is set properly,
all non-conformal β ̸= 0 terms in a perturbative expansion arising from renor-
malization are summed into the running coupling. The remaining terms in the
perturbative series are then identical to that of a conformal theory; i.e., the corre-
sponding theory with β = 0.
The renormalization scale in the PMC is fixed such that all β nonconformal terms
are eliminated from the perturbative series and are resummed into the running
coupling; this procedure results in a convergent, scheme-independent conformal
series without factorial renormalon divergences. The resulting scale-fixed predic-
tions for physical observables using the PMC are also independent of the choice of
renormalization scheme – a key requirement of renormalization group invariance.
The PMC predictions are also independent of the choice of the initial renormaliza-
tion scale µ0. The PMC thus sums all of the non-conformal terms associated with
the QCD β function, thus providing a rigorous method for eliminating renormal-
ization scale ambiguities in quantum field theory. Other important properties of
the PMC are that the resulting series are free of renormalon resummation problems,
and the predictions agree with QED scale-setting in the Abelian limit. The PMC is
also the theoretical principle underlying the BLM procedure, commensurate scale
relations between observables, and the scale-setting method used in lattice gauge
theory. The number of active flavors nf in the QCD β function is also correctly
determined. We have also showed that a single global PMC scale, valid at leading
order, can be derived from basic properties of the perturbative QCD cross section.
We have given a detailed comparison of these PMC approaches by comparing their
predictions for three important quantities Re+e, Rτ and ΓH→bb̄ up to four-loop
pQCD corrections [76]. The numerical results show that the single-scale PMCs
method, which involves a somewhat simpler analysis, can serve as a reliable sub-
stitute for the full multi-scale PMCm method, and that it leads to more precise
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pQCD predictions with less residual scale dependence. The PMC thus greatly
improves the reliability and precision of QCD predictions at the LHC and other
colliders [76]. As we have demonstrated, the PMC also has the potential to greatly
increase the sensitivity of experiments at the LHC to new physics beyond the
Standard Model.
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FIG. 2. The thrust differential distributions using the con-
ventional (Conv.) and PMC scale settings. The dotdashed,
dashed and dotted lines are the conventional results at LO,
NLO and NNLO, respectively. The solid line is the PMC re-
sult. The bands for the theoretical predictions are obtained
by varying µr ∈ [MZ/2, 2MZ ]. The PMC prediction elim-
inates the scale µr uncertainty. The experimental data are
taken from the ALEPH [2], DELPH [3], OPAL [4], L3 [5] and
SLD [31] experiments.

• By fitting the conventional predictions to the ex-
perimental data, the extracted coupling constants
are deviated from the world average, and are also
plagued by significant µr uncertainty [32].

Due to the kinematical constraints, the domain of the
thrust distribution at LO and of the PMC scale is re-
stricted to the range of 0 ≤ (1 − T ) ≤ 1/3. After ap-
plying the PMC, in addition to the small values and the
monotonically increasing behavior of the PMC scale, the
magnitude of the conformal coefficients are small and its
behavior is very different from that of the conventional
scale setting. The resulting PMC predictions are in a-
greement with the experimental data with high precision
over the (1 − T ) region, while they show a slight de-
viation near the two-jet and multi-jet regions. Based on
the conventional scale setting, Ref.[8] has also found that
outside of the region of 0.04 ≤ (1−T ) ≤ 0.33, the pQCD
predictions are unreliable. Thus, in order to improve the
predictions near the two-jet and multi-jet regions, the
higher pQCD calculations may be needed for the PM-
C analysis. In addition, as we have already mentioned
above, the non-perturbative effects should be taken into
account in the two-jet region.

In addition to the differential distribution, the mean
value of event shapes have also been extensively mea-
sured and studied. Since the calculation of the mean
value involves an integration over the full phase space, it
provides an important platform to complement the differ-
ential distribution that afflict the event shapes especially
in the two-jet region and to determinate the coupling
constant.

The mean value 〈τ〉 (τ = (1 − T )) of thrust variable is

defined by

〈τ〉 =

∫ τ0

0

τ

σh

dσ

dτ
dτ, (8)

where τ0 is the kinematical upper limit for the thrust
variable.

The electron-positron colliders have collected large
numbers of experimental data for the thrust mean value
over a wide range of center-of-mass energy (14 GeV ≤ √

s
≤ 206 GeV) [2–5, 33]. However, the pQCD prediction-
s based on the conventional scale setting substantially
deviate from the experimental data. Currently, the most
common way is to split the mean value into the perturba-
tive and non-perturbative contributions, which has been
studied extensively in the literature. However, some ar-
tificial parameters and theoretical models are introduced
in order to match the theoretical predictions with the ex-
perimental data. It is noted that the analysis of Ref.[2]
obtains a large value of αs and suggests that a better de-
scription for the mean value can be in general obtained
by setting the renormalization scale µr & √

s.
The pQCD calculations for the mean value variables

have been given in Refs. [34, 35]. After applying the
PMC scale setting to the thrust mean value 〈1 − T 〉, we
obtain the optimal PMC scale,

µpmc
r |〈1−T 〉 = 0.0695

√
s, (9)

which monotonously increases with
√

s, and is 0.0695
times the conventional choice µr =

√
s and thus

µpmc
r |〈1−T 〉 & √

s. We notice that by taking
√

s =
MZ = 91.1876 GeV, the PMC scale µpmc

r |〈1−T 〉 = 6.3
GeV. This is reasonable, since we have shown in Fig.(1)
that the PMC scales of thrust differential distribution are
also very small in wide region of (1 − T ). By excluding
some results in multi-jet regions, the average of the PM-
C scale 〈µpmc

r 〉 of thrust differential distribution is also
close to the µpmc

r |〈1−T 〉. This shows that the PMC scale
setting is self-consistent.

We present the thrust mean value 〈1 − T 〉 versus the
center-of-mass energy

√
s using the conventional and

PMC scale settings in Fig.(3). In the case of the con-
ventional scale setting, the perturbative series shows a
slow convergence and the estimation of the magnitude
of unknown higher-order QCD corrections by varying
µr ∈ [

√
s/2, 2

√
s] is unreliable. The predictions are

plagued by scale µr uncertainty, and substantial devi-
ated from the experimental data even up to NNLO [34].
These cases are similar to those of the thrust differential
distributions based on the conventional scale setting.

Since the optimal PMC scales are small, and the mag-
nitude of conformal coefficients are very different from
those of the conventional scale setting, the resulting pre-
dictions for thrust mean value increase especially in the
small center-of-mass energy region. Fig.(3) shows that
the scale-independent PMC prediction is in excellent a-
greement with the experimental data in the wide center-

Conventional scale

PMC scale

Principle of Maximum Conformality (PMC)

Fig. 6.13: Comparison of predictions for the thrust distribution for jet production
in e+e− annihilation, using the PMC to set the pQCD renormalization scale vs.
conventional methods.

An essential property of renormalizable SU(N)]/U(1) gauge theories, is “Intrinsic
Conformality,” [77]. It underlies the scale invariance of physical observables and
can be used to resolve the conventional renormalization scale ambiguity at every
order in pQCD. This reflects the underlying conformal properties displayed by
pQCD at NNLO, eliminates the scheme dependence of pQCD predictions and
is consistent with the general properties of the PMC. We have also introduced
a new method [77] to identify the conformal and β terms which can be applied
either to numerical or to theoretical calculations and in some cases allows infi-
nite resummation of the pQCD series, The implementation of the PMC∞ can
significantly improve the precision of pQCD predictions; its implementation in
multi-loop analysis also simplifies the calculation of higher orders corrections in a
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general renormalizable gauge theory. This method has also been used to improve
the NLO pQCD prediction for tt̄ pair production and other processes at the LHC,
where subtle aspects of the renormalization scale of the three-gluon vertex and
multi gluon amplitudes, as well as large radiative corrections to heavy quarks at
threshold play a crucial role. The large discrepancy of pQCD predictions with the
forward-backward asymmetry measured at the Tevatron is significantly reduced
from 3 σ to approximately 1 σ. The PMC has also been used to precisely determine
the QCD running coupling constant αs(Q

2) over a wide range of Q2 from event
shapes for electron-positron annihilation measured at a single energy

√
s [78]. The

PMC method has also been applied to a spectrum of LHC processes including
Higgs production, jet shape variables, and final states containing a high pT photon
plus heavy quark jets, all of which, sharpen the precision of the Standard Model
predictions.

6.10 Is the Momentum Sum Rule Valid for Nuclear Structure
Functions?

Sum rules for deep inelastic lepton-hadron scattering processes are analyzed
using the operator product expansion of the forward virtual Compton amplitude,
assuming it depends in the limit Q2 → ∞ on matrix elements of local operators
such as the energy-momentum tensor. The moments of the structure function
and other distributions can then be evaluated as overlaps of the target hadron’s
light-front wave function, as in the Drell-Yan-West formulae for hadronic form
factors [17,79–81]. The real phase of the resulting DIS amplitude and its OPE matrix
elements reflects the real phase of the stable target hadron’s wave function. The
“handbag” approximation to deeply virtual Compton scattering also defines the
“static” contribution [82, 83] to the measured parton distribution functions (PDF),
transverse momentum distributions, etc. The resulting momentum, spin and other
sum rules reflect the properties of the hadron’s light-front wave function. However,
final-state interactions which occur after the lepton scatters on the quark, can give
non-trivial contributions to deep inelastic scattering processes at leading twist
and thus survive at high Q2 and highW2 = (q+ p)2. For example, the pseudo-T -
odd Sivers effect [84] is directly sensitive to the rescattering of the struck quark.
Similarly, diffractive deep inelastic scattering involves the exchange of a gluon
after the quark has been struck by the lepton [85]. In each case the corresponding
DVCS amplitude is not given by the handbag diagram since interactions between
the two currents are essential. These “lensing” corrections survive when bothW2

and Q2 are large since the vector gluon couplings grow with energy. Part of the
phase can be associated with a Wilson line as an augmented LFWF [86] which do
not affect the moments.
The cross section for deep inelastic lepton-proton scattering ℓp→ ℓ ′p ′X includes a
diffractive deep inelastic (DDIS) contribution in which the proton remains intact
with a large longitudinal momentum fraction xF > 0.9 greater than 0.9 and small
transverse momentum. The DDIS events, which can be identified with Pomeron
exchange in the t-channel, account for approximately 10% of all of the DIS events.
Diffractive DIS contributes at leading-twist (Bjorken scaling) and is the essential
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component of the two-step amplitude which causes shadowing and antishadow-
ing of the nuclear PDF [87–90]. It is important to analyze whether the momentum
and other sum rules derived from the OPE expansion in terms of local operators
remain valid when these dynamical rescattering corrections to the nuclear PDF are
included. The OPE is derived assuming that the LF time separation between the
virtual photons in the forward virtual Compton amplitude γ∗A→ γ∗A scales as
1/Q2. However, the propagation of the vector system V produced by the diffrac-
tive DIS interaction on the front face and its inelastic interaction with the nucleons
in the nuclear interior V +Nb → X are characterized by a longer LF time which
scales as 1/W2. Thus the leading-twist multi-nucleon processes that produce shad-
owing and antishadowing in a nucleus are evidently not present in the Q2 → ∞
OPE analysis.
Thus, when one measures DIS, one automatically includes the leading-twist
Bjorken-scaling DDIS events as a contribution to the DIS cross section, whether
or not the final-state proton is explicitly detected. In such events, the missing
momentum fraction in the DDIS events could be misidentified with the light-front
momentum fraction carried by sea quarks or gluons in the proton’s Fock structure.
The underlying QCD Pomeron-exchange amplitude which produces the DDIS
events thus does not obey the operator product expansion nor satisfy momentum
sum rules – the quark and gluon distributions measured in DIS experiments will be
misidentified, unless the measurements explicitly exclude the DDIS events [88, 91]
The Glauber propagation of the vector system V produced by the diffractive
DIS interaction on the nuclear front face and its subsequent inelastic interaction
with the nucleons in the nuclear interior V + Nb → X occurs after the lepton
interacts with the struck quark. Because of the rescattering dynamics, the DDIS
amplitude acquires a complex phase from Pomeron and Regge exchange; thus
final-state rescattering corrections lead to nontrivial “dynamical” contributions to
the measured PDFs; i.e., they involve the physics aspects of the scattering process
itself [92]. The I = 1 Reggeon contribution to diffractive DIS on the front-face
nucleon leads to flavor-dependent antishadowing [89, 93]. This could explain why
the NuTeV charged current measurement µA→ νX scattering does not appear to
show antishadowing in contrast to deep inelastic electron nucleus scattering [90].
Again, the corresponding DVCS amplitude is not given by the handbag diagram
since interactions between the two currents are essential to explain the physical
phenomena.
It should be emphasized that shadowing in deep inelastic lepton scattering on a
nucleus involves nucleons at or near the front surface; i.e, the nucleons facing the
incoming lepton beam. This geometrical orientation is not built into the frame-
independent nuclear LFWFs used to evaluate the matrix elements of local currents.
Thus the dynamical phenomena of leading-twist shadowing and antishadowing
appear to invalidate the sum rules for nuclear PDFs. The same complications occur
in the leading-twist analysis of deeply virtual Compton scattering γ∗A→ γ∗A on
a nuclear target.
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6.11 Summary

Light-Front Hamiltonian theory provides a causal, frame-independent, ghost-free
nonperturbative formalism for analyzing gauge theories such as QCD. Remarkably,
LF theory in 3+1 physical space-time is holographically dual to five-dimensional
AdS space, if one identifies the LF radial variable ζ with the fifth coordinate
z of AdS5. If the metric of the conformal AdS5 theory is modified by a dila-
ton of the form e+κ2z2 , one obtains an analytically-solvable Lorentz-invariant
color-confining LF Schrödinger equations for hadron physics. The parameter κ of
the dilaton becomes the fundamental mass scale of QCD, underlying the color-
confining potential of the LF Hamiltonian and the running coupling αs(Q

2) in the
nonperturbative domain. When one introduces super-conformal algebra, the result
is “Holographic LF QCD” which not only predicts a unified Regge-spectroscopy
of mesons, baryons, and tetraquarks, arranged as supersymmetric 4-plets, but
also the hadronic LF wavefunctions which underly form factors, structure func-
tions, and other dynamical phenomena. In each case, the quarks and antiquarks
cluster in hadrons as 3C diquarks, so that mesons, baryons and tetraquarks all
obey a two-body 3C − 3̄C LF bound-state equation. Thus tetraquarks are compact
hadrons, as fundamental as mesons and baryons. “Holographic LF QCD” also
leads to novel phenomena such as the color transparency of hadrons produced in
hard-exclusive reactions traversing a nuclear medium and asymmetric intrinsic
heavy-quark distributions Q(x) ̸= Q̄(x), appearing at high x in the non-valence
higher Fock states of hadrons.
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8. H. G. Dosch, G. F. de Téramond and S. J. Brodsky, “Superconformal baryon-meson
symmetry and light-front holographic QCD,” Phys. Rev. D 91, 085016 (2015) [
arXiv:1501.00959 [hep-th]].
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16. A. P. Trawiński, S. D. Głazek, S. J. Brodsky, G. F. de Téramond and H. G. Dosch,
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Abstract. Effects of electroweak phase transition (EWPT) in balance between baryon excess
and the excess of stable quarks of new generation is studied. With the conservation of SU(2)
symmetry and other quantum numbers, it makes possible sphaleron transitions between
baryons, leptons and new of leptons and quarks. A definite relationship between the excess
relative to baryon asymmetry is established. In passing by we also show the small, yet
negligible dilution in the pre-existing dark matter density due the sphaleron transition.

Povzetek: Avtorji privzamejo model, ki dopušča poleg doslej izmerjenih kvarkov in lep-
tonov tudi novo družino kvarkov in leptonov. V tem modelu študirajo v elektrošibkem
prehodu ravnovesje med presežkom barionov pretežno prve družine kvarkov in leptonov
in med barioni privzete družine kvarkov. V območju, ko se še ohranjajo vsa kvantna števila
sistema, študirajo učinke prehoda sfalerona med kvarki in leptoni standardnega modela
in kvarki in leptoni privzete družine ter vpliv prehoda na gostoto temne snovi. Opazijo
majno, skoraj zanemarljivo, razredčitev njene gostote.

7.1 Introduction

The matter-antimatter asymmetry, otherwise known as the baryon asymmetry
of the universe (BAU) has been the focus of physicists for many a decade [1–3].
Various models have been developed to answer the question, ranging from the
grand unified theory (GUT) to electroweak phase transition (EWPT). Irrespective
of the mechanisms, the preexisting asymmetry is diluted by the baryon number
violating mechanisms in the electroweak theory. This is due to the violation of
the baryon and lepton number and the non-trivial topological structure of the
Yang–Mills theory.
The possibility to convert baryons into anti-leptons and the reverse exists in
electroweak theory. The difference between the baryon and lepton numbers (B−L)
is conserved, even though individually, the quantum numbers are violated. Hence,
it is important to know about the transition rates of such processes.
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Sphalerons are generally associated with saddle points [4], and is interpreted as
the peak energy configuration, thus the transitions between vacua are associated
with a violation of Baryon (and lepton) number. EWPT can be of first order, second
order or a smooth crossover. Within the framework of the SM, it is a smooth
crossover. However, BSM physics can lead to any of the three. The order of the
phase transition can affect the outcome of the process. Entropy production and, in
return, the dilution of preexisting frozen out species and baryon asymmetry can
be some of them. Although baryon excess can be created at the time of electroweak
symmetry breaking, it is preserved during the first order phase transition. In the
second order, sphalerons can wipe out the total asymmetry created, but in first
order, only the asymmetry created in the unbroken phase is wiped out.
A recent overview of physics beyond the standard model and its cosmological
signatures can be found in [20], where it was shown that from the lack of supersym-
metric particles at the LHC and from the positive results of the directly searched
Weakly Interacting Massive Particles (WIMPs), the list of dark matter candidates
can be strongly extended. The model of dark atoms of dark matter deserves special
attention in this list, in light of its possibility to propose a nontrivial solution for
the puzzles of direct dark matter searches, explaining the positive results of the
DAMA/LIBRA experiment by the annual modulation of the low energy binding
of dark atoms with sodium nuclei, which can be elusive in other experiments for
direct WIMP searches.
In this approach, dark atoms represent a specific form of asymmetric, strongly
interacting dark matter, being an atom-like state of stable −2 (or −2n) charged
particles of a new origin bounded by a Coulomb interaction with (correspondingly,
n) nuclei of primordial helium (see [17] for recent review and references). This
explanation implies the development of a correct quantum mechanical description
of the dark atom interaction with nuclei, which is now under way [19].
Even though there are several models predicting ±2 (±2n)-charged stable species,
[8–11, 11–15, 15–18], in this work we restrict our self to the 4th generation family
as an extension to the standard model (SM) and proceed to study the electroweak
phase transition (EWPT). The simplest charge-neutral model is considered here;
also, we consider that EWPT is of the second order. In passing by, we show the
dilution of pre-existing frozen out dark matter density in the presence of the 4th
generation.
The paper is organized as follows: In the next section, we talk about the 4th
generation family, defining a definite relationship between the value and sign
of the 4th generation family excess, relative to the baryon asymmetry, which is
due to the electroweak phase transition and possible sphaleron production being
established. This is followed by the calculation of the dilution factor of pre-existing
dark matter density, followed by a general conclusion.

7.2 A brief review of 4th generation

The fourth generation is of theoretical interest in the context of sphaleron transition,
electroweak symmetry breaking and large CP violating processes in the 4×4 CKM
matrix, which may play a crucial role in understanding the baryon asymmetry in
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the universe. Thus, there are significant ongoing efforts to search for the fourth
generation. In this work, we consider the stable 4th generation, which is basically
constrained by contributions of virtual 4th generation particles in the Higgs boson
decay rates, in the precision tests of standard model parameters, as well as by the
LHC searches for R-hadrons, which mimic stable 4th generation stable hadrons.
These constraints can still leave some room for the existence of such a family and
an explanation of the puzzles of direct dark matter searches by dark atoms formed
with primordial helium by (ŪŪŪ) antiquark clusters.
Due to the excess of Ū, only −2 charge or neutral 4th generation species are present
in the universe. Indeed, stable antiquarks can form a (ŪŪŪ) cluster and a small
fraction of neutral Ūu with ordinary u-quark. In principle, (ŪŪū) baryon should
also be stable, but in a baryon asymmetrical universe, its interaction with ordinary
baryons leads to its destruction in two Ūu mesons. 4He, formed during the Big
Bang nucleosynthesis, completely screens Q−− charged hadrons in composite
[4HeQ−−] “atoms”. If this 4th family follows from string phenomenology, we have
new charge (F) associated with 4th family fermions. Principally, F should be the
only conserved quantity but to keep matters simple, an analogy with WTC model
is made and we assume two numbers: FB (for 4th quark) and L ′ (for 4th neutrino).
Detailed calculations of WTC were made in [8, 14] and most of the terminology
were kept the same as the above mentioned papers.
As the universe expanded and the temperature decreased and the quantum num-
ber violating processes ceased to exist, the relation among the particles emerging
from the process (SM + 4th generation) followed the following expression:

3(µuL + µdL) + µ+ µUL + µDL + µL ′ = 0. (7.1)

here, µ is the chemical potential of all the SM particles, µL ′ is the chemical potential
of the new species leptons and µUL and µDL are that of the 4th generation quarks;
see [14]. The number densities follow, respectively, for bosons and fermions:

n = g∗T
3µ

T
f(
m

T
), (7.2)

and
n = g∗T

3µ

T
g(
m

T
), (7.3)

where f and g are hyperbolic mathematical functions and g∗ is the effective degrees
of freedom, which are given by the following:

f(z) =
1

4π2

∫∞
0

x2cosh−2

(
1

2

√
z2 + x2

)
dx, (7.4)

and

g(z) =
1

4π2

∫∞
0

x2sinh−2

(
1

2

√
z2 + x2

)
dx. (7.5)

The number density of baryons follows the following expression:

B =
nB − nB̄

gT2/6
. (7.6)
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As the main point of interest is the ratio of baryon excess to the excess of the stable
4th generation, the normalization cancels out, without loss of generality.
Let us define a parameter σ, which, respectively, for fermions and bosons are given
by the following:

σ = 6f
m

Tc
, (7.7)

and
σ = 6g

m

Tc
. (7.8)

Tc is the transition temperature and is given by the following:

Tc =
2MW(Tc)

αW ln(Mpl/Tc)
B(

λ

αW
). (7.9)

In the above equation,MW is the mass of W-boson,Mpl is the Planck mass and
λ is the self-coupling. The function B is derived from experiment and takes the
value from 1.5 to 2.7.
The new generation charge is calculated to be the following:

FB =
2

3
(σULµUL + σULµDL + σDLµDL), (7.10)

where FB corresponds to the anti-U (Ū) excess. For detailed calculations, please
see [14].
The SM baryonic and leptonic quantum numbers are expressed as the following:

B = [(2+ σt)(µuL + µuR) + 3(µdL + µdR)] (7.11)

and
L = 4µ+ 6µW (7.12)

where in Equation (7.11), the factor 3 of down-type quarks is the number of
families. For the 4th generation lepton family, the quantum number is given by
the following:

L ′ = 2(σν ′ + σUL)µν ′L + 2σULµW + (σν ′ − σUL)µ0 (7.13)

where ν ′ is the new family of neutrinos originating from the extension of SM, and
µ0 is the chemical potential from the Higgs sector in SM.
Due to the presence of a single Higgs particle, the phase transition is of the second
order. The ratio of the number densities of the 4th generation to the baryons is
determined by the following:

ΩFB

ΩB
=
3

2

FB

B

mFB

mp
. (7.14)

The electrical neutrality and negligibly small chemical potential of the Higgs sector
is the result of the second order phase transition. The ratio of the number density
of the 4th generation to the baryon number density can be expressed as a function
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of the ratio of the original and new quantum numbers. In the limiting case of the
second order EWPT, we obtain the following:

−
FB

B
=

σUL
3(18+ σν ′)

[
(17+ σν ′) +

(21+ σν ′)

3

L

B
+
2

3

9+ 5σν ′

σν ′

L ′

B

]
. (7.15)

In the following Figure 7.1, the predicted relationship between the frozen out
excess of Ū-antiquarks and baryon asymmetry is shown as a function of U-quark
massm. The minimal massm can be determined from the R-hadrons search at the
LHC as 1 TeV. The predicted contribution of dark atoms, in which (ŪŪŪ) are bound
with primordial helium nuclei, can explain the observed dark matter density at
m ∼ 3.5 TeV, which is compatible with the above mentioned experimental lower
limit.

2 4 6 8 10
m(TeV)

2

4

6

8

10

ΩFB

ΩB

Fig. 7.1: The ratio of dark matter and baryon densities as a function of the U-quark
mass (m). This ratio is frozen out at the critical temperature of the assumed second
order EWPT T = Tc = 179 GeV. At the U-quark massm ≈ 3.5 TeV, the predicted
density of dark atoms, formed by (ŪŪŪ) bound with primordial helium nuclei,
can explain the observed dark matter density.

Hence, we establish a relationship between the baryon excess and the excess of Ū
for the second order EWPT.

7.3 Dilution of Pre-Existing Dark Matter Density

The thermodynamic quantity, entropy density, is a conserved quantity in the
initial stage of universe expansion, especially when the primeval plasma is in
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thermal equilibrium with a negligible chemical potential. As soon as the universe
enters into the state of thermal non-equilibrium, i.e., when Γ > H, where Γ is the
reaction rate and H is the Hubble parameter, the conservation law breaks down,
and entropy starts pouring into the plasma; this can dilute the pre-existing baryon
asymmetry and dark matter density.
There are many instances of entropy production, such as primordial black hole
evaporation [21], electroweak phase transition within the standard model and
the two Higgs doublet model [3, 6, 11]. Apart from these, the freeze out of dark
matter density might lead to entropy production, which in turn, can dilute the
pre-existing dark matter density.
The Lagrangian theory consists of the Langrangian of the standard model (SM)
and the interaction terms of the 4th generation fermionic family. It is given by the
following:

L = LSM + L4th , (7.16)

where LSM is given by the following:

LSM =
1

2
gµν∂µϕ∂νϕ−Uϕ(ϕ) +

∑
j

i
[
gµν∂µχ

†
j∂νχj −Uj(χj)

]
. (7.17)

The CP violating potential of the theory is as follows:

Uϕ(ϕ) =
λ

4

(
ϕ2 − η2

)2
+
T2ϕ2

2

∑
j

hj

(
mj(T)

T

)
. (7.18)

here, λ = 0.13 is the quartic coupling constant and η is the vacuum expectation
values, which is ∼246 GeV in the SM. T is the plasma temperature and mj(T) is
the mass of the χj-particle at temperature T; see [25].
To calculate the dilution factor, it is necessary to compute the energy and the
pressure density of the plasma, using the energy–momentum tensor. Following
the detailed calculation in [6] and assuming that the universe was flat in the early
epoch with the metric gµν = (+,−,−,−), we have the following:

ρ+ P = ϕ̇2 +
4

3

π2g∗
30

T4. (7.19)

In order to proceed with the calculation of the dilution factor, the EWPT transition
temperature needs to be calculated first. The transition temperature is derived
using the following expression:

V(ϕ = 0, T = Tc) = V(ϕ = η, T = Tc). (7.20)

here, η is the vacuum expectation value and Tc is the transition temperature. In
Equation (7.20), substituting the values of the standard model particles and the
minimal allowed masses of the 4th generation particle, which can be estimated
from the R-hadrons search at the LHC as 1 TeV, Tc is found to be ∼179 GeV. With
a range of allowed values, one can obtain a range of Tcs and study the nature of
the EWPT and other related properties, but that is beyond the scope of the current
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paper. With proper data and tools, this analysis will certainly be made in the near
future.
The last term in Equation (7.19) arises from the Yukawa interaction between
fermions. The Higgs field starts to oscillate around the minimum, which appears
during the phase transition. Particle production from this oscillating field causes
damping. The characteristic time of decay is equal to the decay width of the Higgs
bosons. If it is large in comparison to the expansion, and thus the universe cooling
rate, then we may assume that the Higgs bosons essentially live in the minimum
of the potential. This was clearly discussed in [11].
To calculate the entropy production, it is necessary to solve the evolution equation
for energy density conservation as follows:

ρ̇ = −3H(ρ+ P). (7.21)

In Figure 8.1, both the dilution of the pre-existing dark matter (blue line) and the
entropy production in the presence of 4th generation lepton family (black line)
are shown. It is clear that since the sphaleron transition is of the second order, the
net dilution and entropy production (∼18%) are somewhat low compared to the
scenarios of the first order. Again, the presence of a single Higgs field makes the
phase transition of the second order.

0.2 0.4 0.6 0.8 1.0
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Tc

0.06

0.08

0.10

0.12

0.14

0.16

0.18

δs

s

Fig. 7.2: Entropy production (black line) and the dilution of pre-existing dark
matter (blue line) in the presence of 4th generation fermions are presented.



i
i

“U” — 2021/12/15 — 21:46 — page 102 — #118 i
i

i
i

i
i

102 A. Chaudhuri, M. Yu. Khlopov

7.4 Conclusions

In the present paper, we have deduced a definite relationship between the value
and sign of the 4th generation family excess and baryon asymmetry due to the
sphaleron effects frozen out at the electroweak phase transition, as is clear from
Equation (7.15) and Figure 7.1.
At the transition temperature, Tc = 179 GeV and the mass of the stable U-quark of
the new familym ≈ 3.5 TeV, the predicted density of the dark atoms can explain
the observed cosmological dark matter density. This value and experimental
constraints on the contribution of new electroweakly interacting fermions appeal
to the involvement of additional Higgs bosons, whose existence can influence the
value of Tc and, correspondingly, the determination of the mass of the U-quark,
for which dark atoms explain the dark matter density. Being beyond the scope of
the present work, such a self-consistent analysis of the models with new stable
quarks, accompanied by an extended Higgs sector, can open up a new specific
direction of studies of BSM physics.
The search for new physics and dark matter has been an ongoing area of research
for decades. Even though there are many multi-Higgs models, there are few multi-
charged models present. The theory of the 4th generation can serve to leap toward
new physics in the framework of heterotic string phenomenology. As seen from
the work, just like the standard model, we can link the stable quarks of the new
generation particles with the baryon asymmetry theoretically. The existence of new
stable quarks with the SM electroweak charges can follow from other unifying
schemes (in the approach [11, 15] in particular); the important conclusion of our
work is that balancing baryon asymmetry with sphaleron transitions can provide
an excess of Ū antiquarks, forming a (ŪŪŪ) ‘core’ of dark atoms in which it is
bound by a Coulomb force with primordial helium. The possibility of dark atoms
extends the list of possible dark matter candidates, predicted in such models. To
make new quarks with electroweak charges compatible with the data on the Higgs
boson decay rates, their coupling to the SM Higgs boson should be suppressed,
and they should acquire their mass from coupling to other Higgs bosons [26]. It
would imply the accomplishment of models with new stable generations with SM
electroweak charges by multi-Higgs models, opening up a probe of studying the
Higgs and electroweak symmetry breaking sectors in a rigorous manner.
Dark matter candidates in the form of bounded dark atom can emerge from this
model, due to the excess of Ūwithin the primordial He nuclei. We have considered
only the lightest and most stable particles and also took into account only the
second order phase transition. The dilution of pre-existing dark matter density
was calculated; in the present scenarios, the dark matter density was reduced by
∼18%.
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Abstract. Electroweak phase transition in the simplest extension of the standard model
namely two Higgs doublet model and entropy production within this framework is studied.
We have considered several benchmark points which were called using BSMPT, a C++ pack-
age, within the limit of vev/TC > 0.2 are studied, and corresponding entropy productions
are shown in this paper.

Povzetek: Povzetek: Avtorji obravnavajo povečanje entropije pri elektrošibkem faznem
prehodu v modelu, ki razširi standardni model z dvema Higgsovima skalarjema. Prispevek
prinaša rezultate teh računov za več referenčnih točk, ki so jih poiskali z uporabo BSMPT,
paketa C++, znotraj meje vev/TC > 0.2.

8.1 Introduction

For a successful explanation about the origin of excess baryons over antibaryons
in the universe through electroweak baryogenesis (EWBG), a strong first-order
electroweak phase transition (EWPT) in the early universe is necessary. Cosmic
EWPT happened when the hot universe cooled down enough in the primeval time
so that the potential of the Higgs field got and settled at a non-zero minimum and
in consequence, the symmetry of the theory SU(2)L ×U(1)Y broke to U(1)em. At
the time of first-order EWPT, bubbles of the broken phase originate and baryon-
antibaryon asymmetry generates outside the wall of the bubbles of the broken
phase. However, after the discovery of the standard model (SM) Higgs boson,
it is widely known that EWPT in SM with a single Higgs field is just a smooth
cross-over. Therefore, for a successful EWBG, a theory of EWPT in beyond SM
(BSM) is needed [1].
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On the other side, ∼ 26.5% of the total energy density of the universe is contributed
by the dark matter (DM) whose mysterious nature has not been unveiled till
now. Although, primordial black holes and MACHOs which are considered as
one of the viable baryonic DM candidates, it is now clear that they are unable to
contribute completely to the DM energy density of the universe. There are theories
about multicharged extension of the standard model like dark atoms which can be
viable dark matter candidates, [2]. But there are no experimental evidences as of
now.
Not only about the baryogenesis, but there is also no irrefutable theory in SM about
nonbaryonic DM particle which can successfully explain all the observations.
Similar to the above mentioned facts, there are many limitations of the SM. Thus
scientists are desperately searching for experimental evidence of BSM. For them
the recent result from Fermilab about gµ − 2 for muon may be a ray of hope.
gµ is the gyromagnetic ratio of muon which is defined as the ratio of magnetic
moment to the angular moment of muon and whose value is 2 from tree-level
calculation. If we define aµ = (gµ − 2)/2, then higher order loop corrections
from SM gives aµ = 116, 591, 810(43) × 10−11 where the value measured from
Fermilab is 16, 592, 061(41) × 10−11 which differs from SM at 3.3σ level [3]. This
contradiction is actually buttressed the previously claimed result from the E821
experiment at Brookhaven National Lab (BNL). There are numerous explanation
for this anomalous result including the existence of BSM.
Among all the BSM theories, the two Higgs doublet model (2HDM) is one of
the most popular theories which not only exhibits strong first-order EWPT for
the proper choice of parameter space but also provides the minimal phenomeno-
logical description of some effects of the supersymmetric model predicting two
Higgs boson doublet. In addition to that, this model can produce dark matter
particles [4] and gives a satisfactory explanation for the gµ anomaly of muon [5] if
the parameter space is properly chosen.
At or around the epoch of EWPT the energy density of the universe was dom-
inated by relativistic species with negligible chemical potential. In addition to
that, the universe was almost always in thermal equilibrium except some special
epochs. Thus entropy density per comoving volume of the relativistic plasma was
conserved. However, EWPT is a strongly thermally non-equilibrium process and
thus there is a possibility that entropy might have been generated during this
cosmic process.
In this work, we explored the increase in entropy during the epoch of EWPT in the
real type-I 2HDM framework. We have shown that entropy density per comoving
volume increases if EWPT happens as a first-order phase transition in 2HDM
model.
The article is arranged as follows: In the next section the Lagriangian of the model
along with the results are given. A generic conclusion follows and in the appendix
the detailed potential is mentioned.
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8.2 Lagrangian density of the model

The Lagrangian density of EWPT theory in real type-I 2HDM is given by

L = Lgauge,kin + Lf + LYuk + LHiggs − V(Φ1, Φ2, T) (8.1)

where Lgauge,kin, Lf and LYuk are the kinetic energy term of gauge bosons (Wα and
Bα with α = 0, 1, 2, 3) , kinetic energy of fermions and Yukawa interaction term of
fermions with Higgs bosons. These terms are defined in [6, 7] and also discussed
in Appendix A. Throughout this article, all the Greek indices used in super or
sub-script run from 0 to 3 and Latin indices from 1 to 3 if not mentioned otherwise.
LHiggs incorporates the kinetic term of the Higgs field and their interaction with
the gauge bosons. Thus

LHiggs = {(∂µ + iWµ)Φa}
†
{(∂µ + iWµ)Φa} (8.2)

where a = 1, 2 for two Higgs field, i =
√

(−1), iWµ ≡ +igTkWkµ
+ ig ′YBµ, and

g and g ′ are coupling constants, T i is the generator of SU(2)L (left-Chiral), which
is also a form of Pauli matrices, and Y is the hyper-charge generator of the U(1).
The total CP-conserving potential for our 2HDM model considered is

V(Φ1, Φ2, T) = Vtree(Φ1, Φ2) + VCW(Φ1, Φ2) + VT (T)+Vdaisy(T) (8.3)

The tree-level potential can be written as

Vtree(Φ1, Φ2) =m
2
11Φ

†
1Φ1 +m

2
22Φ

†
2Φ2 −

[
m2

12Φ
†
1Φ2 +m

∗
12Φ

†
2Φ1

]
+
1

2
λ1

(
Φ†

1Φ1

)2

+
1

2
λ2

(
Φ†

2Φ2

)2
+ λ3

(
Φ†

1Φ1

)(
Φ†

2Φ2

)
+ λ4

(
Φ†

1Φ2

)(
Φ†

2Φ1

)

(8.4)

+

[
1

2
λ5

(
Φ†

1Φ2

)2
+
1

2
λ∗5
(
Φ†

2Φ1

)2]
.

m2
12,m2

11, andm2
22 can be estimated from the following formula

m2
12 = 1002 GeV2 (8.5)

m2
11 =

1

4v1

(
−2λ1v

3
1 + 4m

2
12v2 − 2λ3v1v

2
2 − 2λ4v1v

2
2 − λ5v1v

2
2 − v1v

2
2λ5
)

(8.6)

m2
22 =

1

4v2

(
4m2

12v1 − 2λ3v
2
1v|2 − 2λ4v

2
1v2 − λ5v

2
1v2 − 2λ2v

3
2 − v

2
1v2λ5

)
(8.7)

The value of m2
12 can alter for different parameter space. These formulas are valid

since λ5 is real and λ6 = λ7 = 0. The λ1−5 can be calculated from the parameter
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space as

l1 =
m2

H cosα2 +m2
h sinα2 −m2

12 tanβ
v2 cosβ2

, (8.8)

l2 =
m2

H sinα2 +m2
h cosα2 −m2

12 tanβ−1

v2 sinβ2
, (8.9)

l3 =
(m2

H −m2
h) sinα cosα+ 2m2

H± cosβ sinβ−m2
12

v2 sinβ cosβ
, (8.10)

l4 =
(m2

A − 2m2
H±) sinβ cosβ+m2

12

v2 sinβ cosβ
, (8.11)

l5 =
m2

12 −m
2
A sinβ cosβ

v2 sinβ cosβ
. (8.12)

where v is the standard model expectation value, v2 = v21 + v
2
2, tanβ = v2/v1 and

cos(β− α) → 0 leads to SM result. The details about the parameter space ofmH,
mh,mH± can be found in the recent works [8–10].
The Coleman–Weinberg correction to the potential -

VCW (v1 + v2) =
∑
j

nj

64π2
(−1)2sjm4

j (v1, v2)

[
log

(
m2

j (v1, v2)

µ2

)
− cj

]
(8.13)

The values of nj, sj, cj and different mass-values m2
j (v1, v2) are mention in Ap-

pendix B and µ = 246 GeV.
Temperature correction of potential and its series expansion in Landau gauge are

VT =
T4

2π2


 ∑

j=bosons

njJB

[
m2

j (v1, v2)

T2

]
+

∑
j=fermions

njJF

[
m2

j (v1, v2)

T2

]
(8.14)

T4JB

[
m2

T

]
= −

π4T4

45
+
π2

12
T2m2 −

π

6
T(m2)3/2 −

1

32
m4 ln

m2

abT2
+ · · · ,(8.15)

T4JF

[
m2

T

]
=
7π4T4

360
−
π2

24
T2m2 −

1

32
m4 ln

m2

afT2
+ · · · , (8.16)

where ab = 16af = 16π2 exp(3/2 − 2γE) with γE being the Euler-Mascheroni
constant.
The daisy term is defined as

Vdaisy(T) = − T
12π

∑
i=1

[(
M2

i (v1, v2, T)
)3/2

−
(
m2

i (v1, v2)
)3/2] (8.17)

Details about theM2
i (v1, v2, T) term can be found in [12, 13]. Actually, we will see

later that all these terms will be taken care of the software package we have used
for this work.
At sufficiently high temperature, the total potential of eq.(8.3) has only one mini-
mum at ⟨Φ1⟩ = ⟨Φ2⟩ = 0 and there is no symmetry breaking. The critical tempera-
ture (Tc) is defined as the temperature at which if the temperature drops down,
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the total potential gets a second minimum at (Φa,min) ≡ {⟨Φ1⟩ = v1, ⟨Φ2⟩ = v2}.
For simplicity, we are assuming in this work that both of the Higgs fieldΦ1 and
Φ2 get the second minimumat the same temperature Tc at the same time. Thus

V (Φ1 = 0,Φ2 = 0, Tc) = V (Φ1 = v1, Φ2 = v2, Tc) . (8.18)

As soon as the Higgs potential gets a non-zero minimum, the other relativistic
particles starts to gain mass and becomes non-relativistic. The reaction rate among
them and also with photon becomes comparable with the Hubble parameter and
thus decouples from relativistic plasma. The mass of the particle and coupling
constant determine the decoupling temperature. For instance, top quark decouples
earlier than electron or other quarks.
Now, at the time of EWPT the universe can be assumed as perfectly homogeneous
and isotropic and thus we can neglect the spatial partial derivatives of the Higgs
fields. Therefore, when the Higgs fields start to oscillate around their minima
(Φa,min) then energy density ρ and pressure P are

ρ = Φ̇2
a,min + Vtot(Φ1, Φ2, T) +

g∗π2

30
T4. (8.19)

P = Φ̇2
a,min − Vtot(Φ1, Φ2, T) +

1

3

g∗π2

30
T4 (8.20)

The last terms in eq.(8.19) and eq.(8.20) arise from the Yukawa interaction between
fermions and Higgs bosons and from the energy density of the fermions, the gauge
bosons, and the interaction between the Higgs and gauge bosons. g∗ depends
on the effective number of particles present in the relativistic soup at or near the
EWPT. It’s value in our model is greater than the value in SM.
Since the oscillation of Φa around Φa,min is small compared to Hubble expansion,
we can neglect the time derivative of Φ̇a,min [11] for simplicity in this work.
Again, entropy density per comoving volume is defined as

s =
ρ+ P

T
a3 (8.21)

which is conserved for relativistic species with negligible chemical potential. From
eq.(8.19) and eq.(8.20) we get

ρ+ P = 2Φ̇2
a,min +

4

3

g∗π2

30
T4 (8.22)

As discussed earlier, g∗ will change with the decoupling process and thus s for
relativistic plasma will increase for our considered scenario. Then the increase in
entropy can be calculated using conservation of energy momentum tensor

ρ̇ = −3H (ρ+ P) (8.23)

To solve eq.(8.23), we have used BSMPT [13, 14], a C++ package to calculate the
vacuum expectation value (VEV) of the total potential, value of the total potential
at VEV for different temperatures including Tc. We have chosen the parameter
in such a way so that VEV/Tc > 0.02. We have considered five sets of benchmark
values and the corresponding figures are shown in Fig. 8.1
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Table 8.1: 2HDM Benchmark points for entropy production
mh [GeV] mH [GeV] mH± [GeV] mA [GeV] tan β cos (β − α) m2

12 GeV2 λ1 λ2 λ3 λ4 λ5 Tc vev/Tc δs/s[%]

BM 1 125 500 500 500 2 0 105 0.258 0.258 0.258 0 0 161.36 1.4 57

BM 2 ” ” 485 500 2 0.00 105 0.258 .258 −0.23 0.49 0 153.27 1.25 53

BM 3 ” ” 485 485 2 0.07 105 1.28 0.002 0.21 0.244 0.244 168.61 1.7 59

BM 4 ” 485 485 485 10 0.1 23,289.6 3.9 0.22 3.9 0 0 230.18 1.86 70

BM 5 ” 90 200 300 10 0 801.98 0.258 0.258 1.31 0.3 −1.35 135.38 1.06 37

0.2 0.4 0.6 0.8 1.0

T
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s
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s
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0.6

0.7

δs

s

Fig. 8.1: The figures show the entropy production for five different benchmark
(BM) points: Pink line (BM 5, Tc = 135.38 GeV and δs/s = 37%), Red line (BM
2, Tc = 153.27 GeV and δs/s = 53%), Green line (BM 1, Tc = 161.36 GeV and
δs/s = 30%), Black line (BM 3, Tc = 168.61 GeV and δs/s = 59%), and Blue line
(BM 4 Tc = 230.18 GeV and δs/s = 70%).

8.3 Conclusion

As seen from Fig.8.1, the entropy productions for some benchmark points are
shown here. A proper difference can be noticed from the standard model scenario.
As seen in [11], the entropy released is around 13% and in the present scenario,
we see that the production is considerably higher. This is because first-order
phase transition as seen in 2HDM can release more entropy compared to smooth
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crossover or second-order in the case of the standard model. The massive scalar
particles in 2HDM contribute considerably to this production as well.
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Appendix A

The kinetic energy term of gauge bosons, kinetic energy of fermions and Yukawa
interaction term of fermions with Higgs bosons are

Lf =
∑

Ψ=Q,L,u,d,l

i
(
Ψ̄L /DΨL + Ψ̄R /DΨR

)
(8.24)

LYuk = −
[
yeēRΦ

†
aLL + y∗eL̄LΦ

†
aeR + · · ·

]
(8.25)

Lgauge,kin = −
1

4
Gj

µνG
jµν

−
1

4
FBµνF

Bµν
(8.26)

where Ψ is the fermionic field, subscript L (R) is for the left (right) chiral field. The
sum in eq.(8.25) is also over quarks. ye is the complex constant and

Gj
µν = ∂µW

j
ν − ∂νW

j
µ − gϵjklWk

µW
l
ν (8.27)

FBµν = ∂µBν − ∂νBµ (8.28)

/DΨ
(j)
L,R ≡ γµ(∂µ + igWµ + ig ′YL,RBµ)Ψ

(j)
L,R (8.29)

8.4 Appendix B: Masses of new Scalars

ci =

{
5
6
, (i =W±, Z, γ)

3
2
, otherwise

(8.30)

Bosons ni si m(v)2

h 1 1 eigenvalues of 8.42 Higgs
H 1 1 eigenvalues of 8.42 Higgs
A 1 1 eigenvalues of 8.42 Higgs
G0 1 1 eigenvalues of 8.42 Goldstone
H± 2 1 Eq.8.34 Charged Higgs
G± 2 1 Eq.8.35 Charged Goldstone
ZL 1 1 Eq.8.32 Higgs
ZT 2 2 Eq.8.32 Higgs
WL 2 1 Eq.8.31 Higgs
WT 4 2 Eq.8.31 Higgs
γL 1 2 Eq.8.33
γT 2 2 Eq.8.33

m2
W =

g2

4
v2. (8.31)

m2
Z =

g2 + g ′2

4
v2. (8.32)

m2
γ = 0. (8.33)
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m̄2
H± =

1

2

(
MC

11 +MC
22

)
+
1

2

√
4
((

MC
12

)2
+
(
MC

13

)2)
+
(
MC

11 −MC
22

)2
.(8.34)

m̄2
G± =

1

2

(
MC

11 +MC
22+

)
−
1

2

√
4
((

MC
12

)2
+
(
MC

13

)2)
+
(
MC

11 −MC
22

)2
.(8.35)

where

c1 =
1

48

(
12λ1 + 8λ3 + 4λ4 + 3

(
3g2 + g ′2)) (8.36)

c2 =
1

48

(
12λ2 + 8λ3 + 4λ4 + 3

(
3g2 + g ′2)+ 24

v22
m2

t(T = 0)

)

+
1

2v22
m2

b(T = 0) (8.37)

wheremt(T = 0) = 172.5Gev andmb(T = 0) = 4.92GeV. For our case (v3 = 0),

MC
11 = m2

11 + λ1
v21
2

+ λ3
v22
2

(8.38)

MC
22 = m2

22 + λ2
v22
2

+ λ3
v21
2

(8.39)

MC
12 =

v1v2

2
(λ4 + λ5) −m

2
12 (8.40)

MC
13 = 0 (8.41)

Masses of h, H and A are the eigen values of the matrix

M̄N =
(
MN

)
(8.42)

For our case (v3 = 0),

MN
11 = m2

11 +
3λ1

2
v21 +

λ3 + λ4
2

v22 +
1

2
λ5v

2
2 (8.43)

MN
22 = m2

11 +
λ1

2
v21 +

λ3 + λ4
2

v22 −
1

2
λ5v

2
2 (8.44)

MN
33 = m2

22 +
3λ2

2
v22 +

1

2
(λ3 + λ4 + λ5) v

2
1 (8.45)

MN
44 = m2

22 +
λ2

2
v22 +

1

2
(λ3 + λ4 − λ5) v

2
1 (8.46)

MN
12 = 0 (8.47)

MN
13 = −m2

12 + (λ3 + λ4 + λ5) v1v2 (8.48)

MN
14 = 0 (8.49)

MN
23 = 0 (8.50)

MN
24 = −m2

12 + λ5v1v2 (8.51)

MN
34 = 0 (8.52)
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Table 8.2: Field dependent mass of all fermions

Fermions ni si mf(T = 0)

e 4 1
2

ye√
2
vk lepton

µ 4 1
2

yµ√
2
vk lepton

τ 4 1
2

yτ√
2
vk lepton

u 12 1
2

yu√
2
vk quark

c 12 1
2

yc√
2
vk quark

t 12 1
2

yt√
2
vk quark

d 12 1
2

yd√
2
vk quark

s 12 1
2

ys√
2
vk quark

b 12 1
2

yb√
2
vk quark
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9 Gravitational waves in the modified gravity
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Abstract. We have taken a modified version of the Einstein Hilbert action, f(R, Tϕ) gravity
under consideration, where Tϕ is the energy-momentum tensor trace for the scalar field
under consideration. The structural behaviour of the scalar field considered varies with
the form of the potential. The number of polarization modes of gravitational waves in
modified theories has been studied extensively for the corresponding fields. There are two
additional scalar modes, in addition to the usual two transverse-traceless tensor modes
found in general relativity: a massive longitudinal mode and a massless transverse mode
(the breathing mode).

Povzetek: V spremenjeni razli’v cici Einstein-Hilbertove akcije, f(R, Tϕ), gravitacije,
kjer je Tϕ sled tenzorja energije in gibalne količine za obravnavano skalarno
polje, študirajo pojav gravitacijskih valov.
Število polarizacij gravitacijskih valov v različicah teorije za izbrana
skalarna polja je bilo doslej dobro raziskano.
Poleg običajnih dveh transverzalnih tenzorskih polarizacij gravitacijskih valov,
ki jih predvidi splošna teorija relativnosti, obstajata še dva dodatna skalarna
načina, ki ju avtorja opazita, ko spreminjata obliko skalarnega potenciala: masivni
vzdolžni način in brezmasni prečni (dihalni) način.

9.1 Introduction

The FLRW metric is an exact solution to Einstein’s equations, achieved under
the implication of space homogeneity and isotropy. It has been well recognized
for satisfactorily explaining several other observational evidence about our Uni-
verse, including the distribution of large-scale galaxies and the near-uniformity of
the CMB temperature [1]. The FLRW metric [2] underpins the existing accepted
cosmological model, which is quite good at likely fitting continued application
data sets and trying to explain measured cosmic acceleration. The fact that the
cosmological space-time metric differs from the FLRW metric would have massive
consequences for inflation theory as well as fundamental physics.
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Alternative explanations of gravity have long been considered to prevent a few
of the contradictions in conventional cosmology [3, 4]. A potential substitute is
the f(R, T) gravity, created recently by Harko et al. [5]. The latest identification
of gravitational waves (GWs) by the Advanced LIGO group has opened up a
massive door to analyse the Universe. [6–8]. Apart from directly detecting GWs
with LIGO/VIRGO interferometers, one could use the informal identification of
GWs by assessing the substantial reduction of the orbital period of stellar binary
configuration. Detecting nano-Hertz GWs with a pulsar timing array includes
timing various millisecond pulsars, which seem to be extremely stable celestial
clocks, according to Jenet [9]. This connection is effected by the angular distance
(θ) between both the two pulsars, as well as the polarization of GW and graviton
mass, according to C(θ) [10].
The range of the GW, including its polarization modes, is based on the theories.
In the radiative domain, the polarization and dispersion of GWs in vacuum are
two critical features of GWs that distinguish between the authenticity of gravity
theories.GWs can also have up to six conceivable polarization states in substitute
metric theories, four more than GR permits.
Hou et al. [11] carried out a detailed analysis of the polarization mode for the
Horndeski theory. Using GWs polarization, Alves et al. [12] investigated the f(R)
framework. In f(R) gravity metric methodology, the model, including other f(R)
theoretical models, confirms the effectiveness of scalar degrees of freedom. There
is a scalar mode of polarization of GWs exists in theory. This polarization mode
appears in two different states: a massive longitudinal mode and a transverse
massless breathing mode with non-vanishing trace [13]. Capozziello and Laurentis
[14] find the palatini formalism, conformal transformations and find the new
polarization states for gravitational radiation for the higher order of extended
gravity (f(R) = R+ αR2) Later on, Alves et al. [15] studied for f(R, T) and f(R, Tϕ)
theoretical models, .
In this article, we studied the polarization modes based on the potential, which is
a function of the scalar field under the framework of modified gravity f(R, Tϕ) for
the vacuum system. In Sec. 9.2 we developed the basic formalism of the modified
gravity. The scalar field structure and equation of motion is developed in Sec. 9.3.
Polarization modes using Newman-Penrose (NP) formalism is analyzed Sec. 9.4.
And in Sec. 9.5 we conclude the results.

9.2 Basic formalism of the modified gravity

In the context of modified gravity [5], for the vacuumed system, the total action
including the scalar field can be introduced in the following manner,

S =

∫
d4x

√
−g
[
f(R, Tϕ) + L(ϕ, ∂µϕ)

]
, (9.1)

where R stands for the Ricci scalar, while Tϕ is the trace of the scalar field’s
energy-momentum tensor.
The field’s action, with g as the metric’s determinant and signature (-, +, +, +). We
use geometric units with the formula G = c = 1.
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Following that, we considered L(ϕ, ∂µϕ) = Lϕ. Here Lϕ is the standard La-
grangian density for a real scalar field (ϕ), as follow [16],

Lϕ =
1

2
∇αϕ∇αϕ− V(ϕ). (9.2)

A self-interacting potential is represented by V(ϕ). In this theory, matter fields
have a relatively limited coupling to gravity and no coupling to the scalar field.
The stress-energy tensor can define as

Tϕµν = −
2√
−g

δ(
√
−gL)
δgµν

. (9.3)

We assumed that the Lagrangian density L is free of its derivatives and is only
conditional on the metric tensor modules gµν.
Therefore, the energy-momentum tensor of the scalar field is

Tϕµν =
1

2
gµν∇αϕ∇αϕ− gµνV(ϕ) −∇µϕ∇νϕ, (9.4)

and the corresponding trace is given by

Tϕ = ∇αϕ∇αϕ− 4V(ϕ). (9.5)

The generalized form of the Einstein field equation in vacuum in the involvement
of scalar field is obtained by varying the gravitational field’s action S concerning
the metric tensor components, gµν, and then on integration as follow,

fRRµν −
f

2
gµν =

1

2
Tϕµν + fTT

ϕ
µν − fTgµνLϕ (9.6)

Here, fR = fR(R, T
ϕ) and fT = fT (R, T

ϕ) denotes ∂f(R, Tϕ)/∂R and ∂f(R, Tϕ)/∂Tϕ,
respectively.
We assume that the modified gravity function f(R, Tϕ) is given by f(R, Tϕ) =

R + βTϕ, β is an arbitrary constant. The field equation immediately takes the
following form,

Gµν =
1

2
[Tϕµν + gµνβT

ϕ − 2β∇µϕ∇νϕ]. (9.7)

9.3 Scalar Field

On contraction and simplification, the Eq. (9.6) the Ricci scalar of can be obtained
as follows,

R = −
1

2
[4βTϕ + Tϕ − 2β∇µϕ∇µϕ] (9.8)

The equation of motion for the scalar field can be found from the covariant diver-
gence of the field Eq. (9.7) as follows,

(1+ 2β)□ϕ+ (1+ 4β)

(
∂V

∂ϕ

)
= 0. (9.9)



i
i

“U” — 2021/12/15 — 21:46 — page 118 — #134 i
i

i
i

i
i

118 S. Roy Chowdhury, M.Yu. Khlopov

Since we are considering the vacuum system, we consider the potential in the
following form,

V(ϕ) =
1

2
µ2ϕ2 +

1

4
λϕ4, (9.10)

where, µ and λ are real constants.

Fig. 9.1: variation of the potential V(ϕ) with scalar variable ϕ. Red curve shows
the variation for µ2 > 0, and Blue curve shows the variation for µ2 < 0.

We limited ourselves to first-order terms in ϕ. The third term of Eq. (9.9) disappear
as a result of this estimation. V is being expanded around the non-null minimum
value V0. η = ϕ−ϕ0 can be used to expand the field. Following identical approach
as before, we encounter it with such assumptions and first-order restrictions,

□ϕ+

(
1+ 4β

1+ 2β

)(
∂V

∂ϕ

)
= 0. (9.11)

The field equations in the linear region has been investigated and leads to the
solution in the following form,

ϕ(x) = ϕ ′ + ϕ1 exp (iqρx
ρ), (9.12)

Solution of the scalar field corresponds to the above equation can be written as in
Eq. (9.12) with,

ϕ ′ = ϕ0 −

(
µ2 + λϕ2

0

µ2 + 3λϕ2
0

)
ϕ0, (9.13)

and

qµq
µ = (µ2 + 3λϕ2

0)

(
1+ 4β

1+ 2β

)
. (9.14)

The variation of the effective mass (mϕ) with the coupling constant is shown in
the Fig. 20.2. The restricted range is for −0.50 ≤ β ≤ −0.25, from Eq. (9.14).
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Fig. 9.2: variation of the mass functionmϕ with coupling constant β.

Corresponding energy of the system can be written as

E = ±
[
q2 + (µ2 + 3λϕ2

0)

(
1+ 4β

1+ 2β

)]1/2
(9.15)

The first-order minimally coupled scalar field exposes an effective cosmological
constant, as follows:

Λ =
V0

2

(
4β+ 1

)
. (9.16)

With λ being a positive constant, the potential in Eq. (9.10) could be categorized
into two situations: (i) µ2 > 0, and (ii) µ2 < 0. This is what the universe needs
to be stable. While the minimum scalar field for µ2 < 0 is non-zero, the effective
cosmological constant is non-zero. The cosmological constant that is effective is

Λ = −
1

2

[
β

(
µ4

λ

)
+
µ4

4λ

]
. (9.17)

The steady minimum of the scalar field is zero for µ2 > 0, which causes the
effective cosmological constant (Λ) to be zero.

9.4 Polarization modes of the modified gravity

Newman-Penrose formalism

The Newman-Penrose (NP) [17, 18] method is used to find additional polarization
modes; further information is available in the references [19,20]. Tetrads are a com-
bination of standardized linearly independent vectors (et, ex, ey, ez) that could
be used to describe the NP quantities that correlate to all of the six polarization
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Fig. 9.3: Propagation for the perturbation of vacuum scalar field. Upper panel
shows the variation for µ2 < 0, and lower panel shows the variation for µ2 > 0.
Considered β = 0.5.

modes of GWs at any spatial position. The NP tetrads k, l, m , m̄. can be used to
recognize these vectors. The actual null vectors are as follows:

k =
1√
2
(et + ez), l =

1√
2
(et − ez), (9.18)

And the other two complex null vector are,

m =
1√
2
(ex + iey), m̄ =

1√
2
(ex − iey). (9.19)

−k.l = m.m̄ = 1, Ea = (k, l,m, m̄).
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While all other dot product vanishes.
In the NP notation, the indefinable components of the Riemann tensor Rλµκν

are defined by ten components of the Wely tensor (Ψ’s), nine components of the
traceless Ricci tensor (Φ’s), and a curvature scalar (Λ). They are reduced to six
by some symmetrical and differential properties: Ψ2, Ψ3, Ψ4 and Φ22 are real and
Ψ3 and Ψ4 are complex. These NP variables are associated with the following
components of the Riemann tensor in the null tetrad basis:

Ψ2 = −
1

6
Rlklk ∼ longitudinal scalar mode,

Ψ3 = −
1

2
Rlklm̄ ∼ vector-x & vector-y modes,

Ψ4 = −Rlm̄lm̄ ∼ +, × tensorial mode,

Φ22 = −Rlmlm̄ ∼ breathing scalar mode. (9.20)

The additional nonzero NP variables are Φ11 = 3Ψ2/2, Φ12 = Φ21 = Ψ3 and
Λ = Ψ2/2, respectively. All of them can be defined base on the variables in Eq.
(9.20).
The group E(2), the group of the Lorentz group for massless particles, can be
used to classify these four NP variables Ψ2, Ψ3, Ψ4, and Φ22 based on their trans-
formation properties. Only Ψ2 is invariant, and the amplitudes of the four NP
variables are not observer-independent, according to these transformations. The
absence (zero amplitude) of some of the four NP variables, on the other hand, is
not dependent on the observer.
The following relations for the Ricci tensor and the Ricci scalar hold:

Rlklk = Rlk,

Rlklm = Rlm,

Rlklm̄ = Rlm̄,

Rlm̄lm̄ =
1

2
Rll,

R = −2Rlklk = 2Rlk. (9.21)

Following Eq. (9.6), the Ricci tensor can be written as,

Rµν =
1

2α
[αRgµν + gµνf(T

ϕ) + Tϕµν − 2fT∇µϕ∇µϕ] (9.22)

Using Eq. (9.20) and Eq. (9.21), one finds the following Ricci tensors:

Rlklk ̸= 0, Rlmlm̄ ̸= 0, Rlklm = Rlklm̄ = 0.

From the above relation and Eq. (9.20), one finds the following NP quantities:

Ψ2 ̸= 0;Ψ3 = 0;Ψ4 ̸= 0, and Φ22 ̸= 0

Thus we get four polarization modes for the GW: +,× tensorial mode, breathing
scalar mode and longitudinal scalar mode.
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9.5 Conclusion

The theoretical foundations of modified gravity, a new approach intended to
address and find solutions to the shortcomings and discrepancies of GR, are
outlined in this report. These issues primarily manifest themselves at infrared and
ultraviolet ranges, i.e., cosmological and astrophysical scales on the one hand and
quantum scales on the other.
The stability analysis of the scalar field varies depending on the circumstances of
potential, and we have taken into account the spontaneous symmetry breaking
analogous potential for our structure. The scalar field’s behaviour varies identi-
fication and characterization of the critical parameter (µ2). The stable minimum
value of the scalar field for µ2 > 0 is zero, resulting in a zero effective cosmological
constant (Λ). For µ2 < 0, the minimum scalar field would be non-zero, and the
effective cosmological constant is non-zero as well. The variation of potential is
shown in Fig. 20.3. The µ2 > 0 variation is shown in red, whereas in blue coloured,
the interpretation of µ2 < 0 is shown.
The scalar field Lagrangian is taken in conjunction may emerge a new set of
Friedmann equations. Due to a mathematical constraint, the effective mass has a
finite discontinuity. It is found for the range −0.50 ≤ β ≤ −0.25 effective mass is
discontinuous. The variation is shown in Fig. 20.2.
The post-Minkowskian constraint of modified gravity, the problem of gravitational
radiation, also deserves careful consideration. When the gravitational action is
just not Hilbert–Einstein, new polarizations emerge: in general, massive, massless,
and ghost modes must be considered, whereas, in GR, only massless modes and
two polarizations are present. This result necessitates a rethinking of GW physics.
If GWs have nontensorial polarization modes, as mentioned, an analyzed signal,
such as a stochastic cosmological background of GWs, would be an integration of
each of these modes.
In Einstein’s General Relativity, the plus and cross modes of polarization are quite
common. The plus mode is depicted by P+ = Rtxtx + Rtyty, the cross mode by
P× = Rtxty, the vector-x mode by Pxz = Rtxtz, the vector-y mode by Pyz = Rtytz,
and the longitudinal mode by Pl = Rtztz, and the transverse breathing mode by
Pb = Rtxtx + Rtyty. For the form of potential V(ϕ) = 1

2
µ2ϕ2 + 1

4
λϕ4, in the frame

of modified gravity f(R, Tϕ) = R + βTϕ, we obtain four polarization modes of
GWs exists : +,× tensorial mode, breathing scalar mode and longitudinal scalar
mode, respectively.
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10 Representing rational numbers and divergent
geometric series by binary graphs
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Abstract. We consider digital (mostly binary) representations of rational numbers as ex-
plicit finite graphs, meaning digits as nodes, and expressing their positioning with directed
edges. Following the symmetries of graphs, we found out that some divergent geometric
series also can be represented this way as finite graphs. They manifest arithmetical proper-
ties that allow us to map them onto the set of negative fractions with odd denominators.
Their values appear the same with results of sum formula S = 1

1−b
continued to the range

of common rates b exceeding 1. We suppose that these series in fact converge when they
are expressed declarative as graphs, while the divergence is connected to the character of
the sum operator, that can be in some cases avoided.

Povzetek: Avtor predstavi racionalna (večinoma binarna) racionalna števila kot končne
grafe, kjer ševilke določajo vozle in robovi usmerjenost. Ugotovi, da lahko nekatere diver-
gentne vrste predstavi s končnimi grafi s simetrijo, ki omogočajo preslikavo na množico
negativnih ulomkov z lihimi imenovalci. Njihove vsote so izrazljive z enačbo S = 1

1−b
, ko b

preseže vrednost 1. Avtor domneva, da te vrste, predstavljene z grafi, dejansko konvergirajo,
divergentnost pa poveže z načinom iskanja vsote vrste, čemur se je v nekaterih primerih
mogoče izogniti.

10.1 Overview of numeric representations and graphs

Representation of integer and rational numbers by sequences of digits is the
common way to visualize, express and manipulate them. Real numbers in practical
applications are usually approximated by rationals, that also assumes using their
digital representations.
The way the numbers being written is following some rules. They establish rela-
tionships between digits that can be, in principle, expressed explicitly. We review
here the rules of writing numbers focusing on expressing them in the declarative
style, as graphs.

10.1.1 Digital representation of a number

The number a is mapped to the ordered sequence of digits ai, usually written as a
string from left to right. Digits are elements of a finite set isomorphic to Zb, where
b is called the base of the representation.
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By default, the base b = 10 and the digit set is {0, 1, ..9}.
It is assumed that the represented number can be calculated as a sum of base’s
powers with digits’ numeric values as factors:

a = . . . anan−1an−2an−3 . . . a1a0.a−1a−2 · · · =
∞∑

i=−∞aib
i. (10.1)

To mark the place of digit a0 that corresponds to the 0th power of the base, the point
or comma symbol is used. The point can be omitted. In this case, it is implicitly
assumed after the last written digit, so the number expressed this way is an integer.

10.1.2 Calculability of representations

Note that the sum with infinite starting index can not be calculated directly since
the starting digit in the position −∞ is unreachable.
However, in most practical cases, the leading, or trailing digits, or both are all
zeroes, so they are omitted. The remaining finite number of ’significant’ digits are
usually written. This sum

∑m
n aib

i can be calculated following (10.1), producing
the represented rational number. The infinite sum with the most significant digit
but without the less significant one also can be calculated iterating from themth

power down:

m∑
i=−∞aib

i =

∞∑
i=−m

a−ib
−i = lim

n→∞
n∑

i=−m

a−ib
−i = a. (10.2)

It converges to the represented number, that is in this case real. The calculation
can be stopped when the desired precision is reached.
On another hand, the sum having no most significant digit

∞∑
i=n

aib
i = lim

m→∞
m∑

i=n

aib
i = ∞ (10.3)

is not limited from above and diverges. In most cases it is treated as having no
meaning, but in some applications it is possible to re-normalize some infinities,
obtaining finite results by using special tricks.

10.1.3 Splitting into integer and fractional parts

There is other way to make the sum (10.1) calculable, that has the advantage of
symmetry. Namely, the sequence of digits is splitted in two parts by the point. The
left part, starting with 0th power, is integer, and the right part, starting with −1th

power, is fractional:

a =

∞∑
i=−∞aib

i =

∞∑
i=0

aib
i +

∞∑
i=1

a−ib
−i. (10.4)

Both parts are sequences of digits starting at the point. The calculations can be
performed recurrently with the same initial power b0 that is 1, and with the same
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algorithm. It includes finding current power of b, multiplying it to the current
digit’s value and accumulating the sum.
The difference is just in the b power modification on each iteration, that is the
post-multiplication by b for integer, and the pre-division by b for fraction part.
Note that there is exactly one bit of information that is required to determine
whether the part is integer or fractional.
Also note that the integer parts sequences should have leading zeros on the left to
avoid divergence, while the fractional part may end with either trailing zeroes or
nines (for binary numbers, ones) since both converge.

10.1.4 Non-equivalence of numbers and their representations

The tradition of representing numbers in the form of digital symbol chains has
become so well established, that it is sometimes perceived as the only conceivable
or natural way of expressing a particular number. In practice, in the mind digital
strings often actually replace original numbers that they represent.
However, there are some differences between them:

• The map of numbers to digital sequences is not bijective. Leading zeroes for
integers, and also trailing zeroes for finite rationals, can be freely added or
eliminated without affecting the represented value. Being omitted in writing,
they appear back when they are needed to perform a digit-wise calculations.

• It is known that in decimal representations (b = 10) the least significant digit,
that resides just before the trailing zeroes, can be decreased by one together
with replacing of all these zeroes with nines, for instance:

5.3840000 . . . = 5.3839999 . . . (10.5)

It can be proved by taking the limit of the sum in (10.1).
So, the integers, and also fractional rational numbers with denominators of
10n, n ∈ N can be decimal-represented in two different ways. Zeroes (that are
omitted) are preferred to nines for convenience reasons.
Representations with other bases also have this effect. In case of base=2 trailing
zeros and ones are the only possible cases of repeating digits.

• The negative numbers have no representations in the sense noted above. It is
obvious because all the factors are non-negative. Instead, conventional repre-
sentations of positive numbers are used, preceded by the extra (non-digital)
minus sign, for instance ”−0.155”. This sign has a meaning of subtraction
operation 0 − a, that should be applied to this positive number to make it
negative.
This problem becomes serious in digital computers, that have native digits 0
and 1 but do not have any native minus sign.
Luckily this problem has been gracefully solved by implementing the so-called
two’s complement encoding [1], that involves leading ones that is the binary
equivalent of leading nines.
In our opinion, this solution is not just a useful trick but it sheds some light on
the mathematical nature of numbers.
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10.1.5 Loops in rational numbers representations

Unlike the irrationals, rational numbers with denominators other than 10n are
represented by infinite sequences of digits (that are finite-periodic). These se-
quences are conventionally written using some extra non-digital symbols, for
instance 21

7
= 2.1428571428 . . . = 2.142857=̇2.(142857). In vague writing, and

also often in calculators and computers they are implicitly rounded or truncated
without any notice to the nearest finite decimal number, that sometimes may cause
computational errors.
These additional parenthesis or lines applied to help keeping the representations
finite and writable. Without them the loops and infinite chains would not be
writable on paper or in computer memory.
So these representations are either non-writable infinite sequences, or they are
not pure sequences of digits if they are decorated by extra non-digital symbols to
make them finite.

10.1.6 Graphs

Graphs are mathematical objects that correspond to the common-sense concept of
entities interconnected to each other by some relations.
The graph is a set of nodes, and the nodes can be explicitly related to each others
by edges. Both nodes and edges can be weighted, i.e. carry some additional
information.
Generally, graph may consist of one or more connectivity components, nodes of
which are connected to each other through some path of edges (may be, through in-
termediate nodes), but nodes from different components have no such connection.
We consider here the special, limited kind of graphs that have all the edges directed
(weighted with one bit of information about direction), and all the nodes also
weighted with one binary digit.
Such a graph we call a binary graph [3].
In order to represent numbers, we restrict the freedom of graphs a little more, by
requirement that each node has one and only one outgoing edge, meaning that
when standing on the particular node, the next node is always known.
The edge must end on some node. When it ends on the same node, it is the shortest
loop:

0 1 (10.6)

With this restriction, the graph has well-known structure [2]. Each connectivity
component has the only loop with trees on its nodes. The loop can be of one node
and the tree can have a form of the linear sequence.
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011

0

1 1

1 1

0 1 1 0 1

01 (10.7)

10.2 Converting numbers into graphs

We see that number representations in form of strings of digits have the structure
similar to linear graphs. The digits corresponding to nodes are followed by (related
to) other digits:

202110 7→

 2 0 2 1

nextnextnext

 (10.8)

Here we convert numbers of several kinds into graphs.
In this paper, we consider only binary graphs as representations of numbers, so
the rules for the conversion are the following:

• the base b = 2, so the digits are bits with values in the set Z2 = {0, 1},
• all graph nodes are weighted, and the weight is always one explicit bit - either

0 or 1.
• the implicit connections between digits in the sequence are expressed explicitly

by directed edges,
• edges follow the symmetrical calculation scheme of (10.4), starting from the

point towards the positions of higher powers by magnitude.

1410 = 11102 7→

 1 1 1 0

nextnextnext(no next)



(10.9)
As noted before, each node is equipped with an outgoing edge.
This requirement fixes the possible structure of graph connectivity component that
now can contain a forest of one or more directed trees or sequences, terminated by
one loop.
To satisfy the requirement, the last node of the graph (10.9) should also be ter-
minated by a loop that represent trailing zeroes. The loop can be the minimal,
containing one zero node.

10.2.1 Positive integers

To build the binary-graph representation of a positive integer number, we sim-
ply treat the bits of the binary representation as nodes, and explicitly apply the



i
i

“U” — 2021/12/15 — 21:46 — page 129 — #145 i
i

i
i

i
i

Title Suppressed Due to Excessive Length 129

edges between them, in the order of the bits in the string. The leading zeros are
represented by one additional self-cycled zero-bit:

14.10 = (0)1110.2 7→ 1 1 1 00 (10.10)

We can see that any linear binary graph with the zero terminating loop of one
node corresponds to the binary representation of an integer number.
It is not strong bijection since one could ’unwind’ one or more zeroes from the
loop into the linear part without affecting the numeric value.

0
∼

00 (10.11)

10.2.2 Positive binary fractions

There is the mirror symmetry between finite integers and fractional parts of the
representation. Since that they are linear, the difference is only in the the Next
operation. According to this symmetry, the graphs corresponding to integers also
can be mapped to positive binary fractions, 0 ⩽ a < 1, with the denominator 2n.
We re-write the graph (10.10) from left to right, as fractions are usually written, to
show this correspondence:

7

1610
= .0111(0)2 7→ 0 1 1 1 0 (10.12)

10.2.3 Negative integers

According to the two’s complement encoding consideration, negative integers can be
represented by performing the subtraction of their magnitude from zero (ignoring
the carry bit). The leading zeroes turns into the leading ones. The same result is
achieved by inversion of all the bits and incrementing by one.
This representations is focused on the arithmetic: the addition and subtraction
are performed the same way as with positive numbers, so they can be mixed in
expressions and computations. For instance, adding 1 to -1 gives 0:

−1+ 1 = (1).+ (0)1. = . . . 1111.+ . . . 0001. = [carrybit] . . . 0000. = 0 (10.13)

The carry bit gets ”lost in the infinity”. In the graph form there is no infinity and
after two bit additions the calculation ends and the carry bit is discarded.
Subtracting positive numbers from the binary representations of 0 or −1, we
always get representations with leading ones, or graphs with the looped one.
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Thus, negative integers can be mapped to linear binary graphs terminated with
the loop of node 1.

−14.10 = (1)0010.2 7→ 0 0 1 01 (10.14)

10.2.4 Reflected negative integers are again the positive binary fractions

Making the same reflection as with positive integers (that is, in fact, just rewriting
from left to right) we do not get representatios of negative fractions. Instead, we
get another representations of positive binary fractions, this time with trailing 1s.
To get the same value, two bits are inverted: the bit in the loop, zero to one, and
the last bit before loop - one to zero.

7

1610
= .0110(1)2 7→ 0 1 1 0 1 (10.15)

10.2.5 Non-binary fractions

In case the loop consist of two or more nodes, the corresponding binary fraction is
periodic, so it maps to geometric series that converges to some fraction with the
denominator that is not the power of 2:

0 1 1 0 1
7→ .011(01)2 =

3

8
+
1

8

∞∑
i=1

1

4n
=
5

12

(10.16)

0 1 1

0

1

7→ .01(101)2 =
1

4
+
1

4

∞∑
i=1

5

8n
=
3

7
(10.17)

Each loop of N nodes gives fractions with the denominator 2N − 1. Probably there
always exists such N that 2N − 1 has an arbitrary divisor d, to ensure that each
rational fraction 0 ⩽ a < 1 can be represented by the finite binary graph.
If the fraction has even denominator, the representation must be shifted right
according with the power of two in the denominator.
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10.2.6 Irrational numbers

Irrational numbers in their digital representations have infinite tail of non-repeating
digits on the right side. Corresponding binary graphs would also be infinite, hav-
ing no loops. We did not focus on them since we interested namely in closed forms.
To be practically usable, they may be rounded up into finite graphs (representing
rational fractions) by switching the end of some node’s outgoing edge, instead of
the next node, to some previous one or to self, forming a loop. So the rounding
has here the literal meaning of closure the sequence into the circle.
The length of this loop determines denominator of the rational number, as noted
above (10.2.5). Taking in account the local quasi-periodicity of digits, one can
choose optimal place and loop length for rounding, getting rational approxima-
tions with the size and precision balanced.
For instance, the binary representation of

π ≈ 11.00100 10000 11111 10110 10101 00010 00100 00101 10100... (10.18)

can be cut in any place and looped back. Doing so after the 3rd position and
looping back to the 1st one, we exploit the repeating sequence (001) 7→ 1

7
. Here 1

is the value represented by 001 and 7 = 23 − 1 follows from the length of the loop.
The corresponding rational value is 3+ 1

7
= 3.(142857).

Looping to self in the 7th position we get the finite binary fraction with trailing
zeros: 11.001001(0) = 3+ 9

64
= 201

64
= 3.140625.

The repeating 1s starting from the 11th position allow to get

11.0010010000(1) = 3+
144

1024
+

1

1024
, or (10.19)

11.0010010001(0) = 3+
145

1024
= 3.1416015625. (10.20)

By cutting the tail in the 20th position, where the pattern 01 repeats three times,
and rounding 2 nodes back, we get the loop (01) 7→ 1

3
and the result is 3+ 74235

54288
+

1
220

1
3
≈ 3.1415923.

10.2.7 Reflections of non-binary fractions

We consider here the reflections of graphs (10.17) corresponding to the fractions.
Rewritten right to left, they map to infinite geometric series that now have the
common ratio b = 2 instead of 1

2
. These series are divergent, but representing

binary graphs are still finite. They terminate with the loop that contains different
bits (Thus, the minimal length of the loop is 2 because loops 11 and 00 can be
replaced by 1 and 0, respectively).
Consider the following examples:

01101
7→ (10)110.2 = 6+ 8

∞∑
n=1

2 · 4n = ∞
(10.21)
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Here 6 = 0 · 20 + 1 · 21 + 1 · 22 comes from the linear part of the graph, 8 = 23

arises because the loop begins in the 3rd place (shift by one position to the left
is multiplication by 2), 2 is the value of bits 1 and 0 in the loop and the 4 in the
power base is used because the loop size is 2 and each iteration is shifted left for
two positions, so that is the multiplication by 4.

011

0

1

7→ (101)10.2 = 2+ 4

∞∑
n=1

5 · 8n = ∞ (10.22)

Again, 2 is linear part, the loop is shifted left twice, so the factor before sum is
22 = 4, the loop "101" is 5 and the loop length of three digits shifts this 5 three times
left on each iteration.
We can see that despite of the divergence of the series, that comes from the loop,
and the formal infinite sum as the result, the graphs of such a form keep their
individuality. The set of such graphs is as rich as set of rationals in the segment
(0; 1].

10.2.8 Arithmetic of divergent series in the graph form

Consider two ”divergent” graphs of the kind 10.2.7:

A =
01

7→ (10). = . . . 10101010. =

∞∑
n=0

(2 · 4n) = ∞ (10.23)

and

B =
10

7→ (01). = . . . 01010101. =

∞∑
n=0

4n = ∞ (10.24)

They are the same (consisting of the loop of 1 and 0 only), excepting that the
starting point points to different nodes.
Binary representation of A can be produced from B by shifting left once, so

A = 2B. (10.25)

They can be added with the usual way. Since there is no carry, the result is obvious:

A+ B 7→ (10).+ (01). = (11). = (1). = . . . 1111. 7→ −1. (10.26)

In the binary representation it is an infinite sequence of leading ones, that is
mapped to −1 (10.2.3).
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Combining with (10.25) we get A 7→ −2
3
, B 7→ −1

3

The same result we get when applying the formula of convergent geometric series
sum, S = 1/(1− q):

B =

∞∑
n=0

4n =
1

1− 4
= −

1

3
. (10.27)

Addition of graphs representing negative numbers can be more complicated in
case of different loop lengths. It corresponds to the addition of fractions with
different denominators.
To perform this addition, one must first turn the denominators into the form
2N − 1, that would be its multiple. Then both operands are denormalized by
explicit repetition of their loops, making them equal-sized. Maximal length of loop
is the product of lengths of the operands’ loops:

−
2

5
−
3

7
= −

6

15
−
3

7
7→ (0110).+ (011).

= (011001100110).+ (011011011011). =

= (110101000001). 7→ −
3393

4095
= −

29

35
.

(10.28)

In this example 4-loop and 3-loop, repeated 3 and 4 times, become 12-loops, that
corresponds to denominator 212 − 1 = 4095. Adding 12-loops node-by-node with
carrying, we get the result in the form of 12-loop.

−
29

35
7→ 100000101011

(10.29)
In the case of carry in the loop, that occurs to the pointed node, it must be avoided
by unwinding turns of the chain:

−
4

5
−
6

7
= −

12

15
−
6

7
7→ (1100).+ (110).

= (110011001100).+ (110110110110). =

= (101010000011)101010000010. =

= (110101000001)0. 7→ −1
23

35
.

(10.30)

The carry bit that goes from the ”most significant” bit of the loops sum, is added
to the ”least significant” bit of it, again. This process is not repeated since there are
zeroes inside, stopping the carry.
But the carry bit must not be added to the first instance of the loop, that follows
the point. To avoid it, one turn is unwinded, and in it the zero in the first position
is kept.
We can see that there is no need to unwind the whole turn, so eleven nodes can be
winded back to the loop.
This avoiding of addition of carry bit is in fact the same operation as subtraction
of one, and it is reflected in the result.
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10.3 Discussion

From examples above we can see that negative rational numbers, which can be
represented by the single-component graphs having non-trivial loop, are not
limited by range −1 < a < 0 but can contain both integer and fractional parts.
However, the negative numbers with denominators containing 2 as a divisor, are
not representable by graphs of the kind considered, since the common denomina-
tor 2N − 1 is odd.
It is not strict limit. The rational numbers having both integer and fractional part
are also non-representable by just one of them. So the negative numbers with 2
in denominators can be effectively represented by shifting digits from the left,
”integer” part, to the right, ”fractional” one. The right shift is the operation of
division by 2, so all the powers of 2 can be excluded from the left part this way.
The general form of the graph representing a number seems to be two symmetric
components discussed above, together with special non-digital node explicitly
representing the point. This node has two outgoing edges instead of usual one, but
no explicit bits weighting the node:

◀011

0

1

0 1 1 0 1

(10.31)

The symmetry is broken by one implicit bit of information encoded by the point.
This bit determines, along which edge the power of base must rise, i.e. which
outgoing edge points to the left, ”integer” component, and which points to the
”fractional”, right. Note that in most cases there is no extra information carried by
the point, since in the absence of point the starting nodes of both components can
be determined by the absence of incoming edges.

10.4 Summary and Conclusion

We found out that at least some finite binary graphs with non-trivial loop can be
mapped to the set of negative rational numbers.
These graphs allow some arithmetic on them that is similar to usual arithmetic of
the integers.
Another result is that some divergent geometric series can be represented by finite
binary graphs.
As a combination, we have the way to obtain finite and meaningful numeric
values for some divergent series instead of useless infinities. The key point here is
avoiding repetitive carries between nodes.
This result may meet its application as a method of renormalization of infinities
that arise in some models in the theoretical physics.
Some other graphs also have quasi-numerical meaning and this feature can be
studied more systematically. For instance, the pointless loops and non-linear trees
can be mapped to multi-valued objects such as colors in chromodynamics [3] or
rational matrix eigenvalues.
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Abstract. Within a broken local vector-like SU(3) family symmetry, we address the problem
of quark masses and mixing in a framework with five sterile neutrinos.
Heavy fermions, top and bottom quarks and tau lepton become massive at tree level from
see-saw mechanisms implemented by the introduction of a new set of SU(2)L weak singlets
vector-like fermions U,D, E,N, with N a neutral lepton. The fermion content also include
three right handed neutrinos. Therefore, in this scenario light quarks and leptons, including
active neutrinos, become massive from radiative loop corrections mediated by the massive
SU(3) gauge bosons.
We correct the number of neutrino free parameters, update numerical results and report the
non-unitary (UPMNS)4×8 lepton mixing matrix.

Povzetek: Avtor obravnava mase in mešalno matriko kvarkov v modelu z lokalno družinsko
simetrijo SU(3) ter ustreznimi umeritvenimi polji, katerih simetrijo zlomi, doda pa še pet
sterilnih nevtrinov. Fermioni z veliko maso, to so kvarki top in bottom ter lepton tau,
pridobijo maso že na drevesnem nivoju s pomočjo mehanizma ”see-saw, ki sledi, ko av-
tor privzame še niz šibkih singletnih vektorskih fermionov U,D, E,N s simetrijo SU(2)L,
kjer je N nevtralni lepton. Doda tudi tri desnoročne nevtrine. V tem modelu poskrbijo
za maso lahkih kvarkov in leptonov masivna umeritvena polja družinske simetrije SU(3)
v popravkih višjih redov. Avtor pokaže nove rezultate za mase kvarkov in leptonov, za
mešalno matriko kvarkov, pa tudi za neunitarno mešalno matriko leptonov (UPMNS)4×8.

11.1 Introduction

The origin of the hierarchy of fermion masses and mixing continues to be one of
the most important open problems in particle physics. In this report we address
the problem of generating neutrino masses and mixing within the framework of a
broken SU(3) gauged family symmetry model [1, 2].
This framework introduce a hierarchical mass generation mechanism in which
light fermions become massive from radiative corrections, mediated by the mas-
sive gauge bosons associated to the SU(3) family symmetry that is spontaneously
broken, while the masses of the top and bottom quarks as well as for the tau
lepton, are generated at tree level from ”Dirac See-saw”mechanisms implemented
by the introduction of a new set of SU(2)L weak singlets U,D, E andN vector-like



i
i

“U” — 2021/12/15 — 21:46 — page 137 — #153 i
i

i
i

i
i

11 Neutrino masses within a SU(3) family symmetry and a 3+5 scenario 137

fermions, with N a neutral lepton. In addition this BSM introduce three right
handed neutrinos in order to cancel anomalies. Therefore, we have a scenario with
five ”Standard Model”(SM) singlet ”sterile neutrinos” and three active L-handed
neutrinos, that is a 3+5 scenario.
Previous theories addressing the problem of quark and lepton masses and mixing
with spontaneously broken SU(3) gauge symmetry of generations include the
ones with chiral SU(3) family symmetry [3]- [6], as well as other SU(3) family
symmetry proposals [7]- [10]
Neutrinos are one of the most exciting areas of research. Cosmology and Short
Baseline Oscillation experiments hint the possible existence of light sterile neu-
trinos. For recent studies of neutrino masses, including sterile neutrinos, see for
instance [11]- [14]

11.2 SU(3) family symmetry model

The model is based on the gauge symmetry

G ≡ SU(3)⊗ SU(3)C ⊗ SU(2)L ⊗U(1)Y (11.1)

where SU(3) is a completely vector-like and universal gauged family symme-
try. That is, the corresponding gauge bosons couple equally to Left and Right
Handed ordinary Quarks and Leptons, with gH, gs, g and g′ the corresponding
coupling constants. The content of fermions assumes the standard model quarks
and leptons:

Ψo
q = (3, 3, 2,

1

3
)L , Ψo

l = (3, 1, 2,−1)L (11.2)

Ψo
u = (3, 3, 1,

4

3
)R , Ψo

d(3, 3, 1,−
2

3
)R , Ψo

e = (3, 1, 1,−2)R (11.3)

where the last entry is the hypercharge Y, with the electric charge defined by
Q = T3L + 1

2
Y.

The model includes two types of extra fermions: Right Handed Neutrinos: Ψo
νR

=

(3, 1, 1, 0)R, introduced to cancel anomalies [7], and a new family of SU(2)L
weak singlet vector-like fermions: Vector like quarks Uo

L, U
o
R = (1, 3, 1, 4

3
) and

Do
L, D

o
R = (1, 3, 1,−2

3
), Vector Like electrons: EoL, E

o
R = (1, 1, 1,−2), and New Ster-

ile Neutrinos: No
L, N

o
R = (1, 1, 1, 0).

The particle content and gauge symmetry assignments are summarized in Table
11.1. Notice that all SU(3) non-singlet fields transform as the fundamental representation
under the SU(3) symmetry.

11.3 SU(3) family symmetry breaking

SU(3) family symmetry is broken spontaneously by heavy SM singlet scalars
η1 = (3, 1, 1, 0) and η2 = (3, 1, 1, 0) in the fundamental representation of SU(3),
with the ”Vacuum ExpectationValues” (VEV’s):
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SU(3) SU(3)C SU(2)L U(1)Y

ψo
q 3 3 2 1

3

ψo
uR 3 3 1 4

3

ψo
dR 3 3 1 - 2

3

ψo
l 3 1 2 -1

ψo
eR 3 1 1 -2

ψo
νR 3 1 1 0

Uo
L,R 1 3 1 4

3

Do
L,R 1 3 1 - 2

3

EoL,R 1 1 1 -2
No

L,R 1 1 1 0

Φu 3 1 2 -1
Φd 3 1 2 +1

η1 , η2 3 1 1 0

Table 11.1: Particle content and charges under the gauge symmetry

⟨η1⟩T = (Λ1, 0, 0) , ⟨η2⟩T = (0,Λ2, 0) . (11.4)

It is worth to mention that these two scalars in the fundamental representation is the
minimal set of scalars to break down completely the SU(3) family symmetry.
The interaction of the SU(3) gauge bosons to the SM massless fermions is

iLint,SU(3) = gH (f̄o1 , f̄o
2

, f̄o
3) γµ




Z
µ
1
2

+
Z
µ
2

2
√
3

Y
+µ
1√
2

Y
+µ
2√
2

Y
−µ
1√
2

−
Z
µ
2√
3

Y
+µ
3√
2

Y
−µ
2√
2

Y
−µ
3√
2

−
Z
µ
1
2

+
Z
µ
2

2
√
3







fo1

fo2

fo3


 (11.5)

where gH is the SU(3) coupling constant, Z1, Z2 and Y±j =
Y1j ∓iY2j√

2
, j = 1, 2, 3 are

the eight gauge bosons.
Thus, the contribution to the horizontal gauge boson masses from the VEV’s of
Eq.(11.4) read

• ⟨η1⟩ : g2HΛ21
2

(Y+1 Y
−
1 + Y+2 Y

−
2 ) +

g2HΛ21
4

(Z2
1 +

Z22
3

+ 2Z1
Z2√
3
)

• ⟨η2⟩ : g2HΛ22
2

(Y+1 Y
−
1 + Y+3 Y

−
3 ) + g2HΛ

2
2
Z22
3

The ”Spontaneous Symmetry Breaking” (SSB) of SU(3) occurs in two stages

SU(3)×GSM
⟨η2⟩
−−−→ SU(2) ? ×GSM

⟨η1⟩
−−−→ GSM

FCNC ?
(11.6)

Notice that the hierarchy of scales Λ2 > Λ1 yield an ”approximate SU(2) global
symmetry” in the spectrum of SU(2) gauge boson masses of order gHΛ1.
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Therefore, neglecting tiny contributions from electroweak symmetry breaking, the
gauge boson masses read

(M2
1 +M

2
2) Y

+
1 Y

−
1 +M2

1 Y
+
2 Y

−
2 +M2

2 Y
+
3 Y

−
3

+
1

2
M2

1 Z
2
1 +

1

2

M2
1 + 4M

2
2

3
Z2
2 +

1

2
(M2

1)
2√
3
Z1 Z2 (11.7)

M2
1 =

g2HΛ
2
1

2
, M2

2 =
g2HΛ

2
2

2
(11.8)

Z1 Z2

Z1 M
2
1

M21√
3

Z2
M21√

3

M21+4M22
3

Table 11.2: Z1 − Z2 mixing mass matrix

Diagonalization of the Z1 − Z2 squared mass matrix yield the eigenvalues

M2
− =

2

3

(
M2

1 +M
2
2 −

√
(M2

2 −M
2
1)

2 +M2
1M

2
2

)
(11.9)

M2
+ =

2

3

(
M2

1 +M
2
2 +

√
(M2

2 −M
2
1)

2 +M2
1M

2
2

)
(11.10)

and finally

(M2
1 +M

2
2) Y

+
1 Y

−
1 +M2

1 Y
+
2 Y

−
2 +M2

2 Y
+
3 Y

−
3 +M2

−

Z2
−

2
+M2

+

Z2
+

2
, (11.11)

where
(
Z1

Z2

)
=

(
cosϕ sinϕ
− sinϕ cosϕ

)(
Z−

Z+

)
(11.12)

cosϕ sinϕ =

√
3

4

M2
1√

M4
1 +M

2
2(M

2
2 −M

2
1)

(11.13)

11.4 Electroweak symmetry breaking

The ”Electroweak Symmetry Breaking” (EWSB) is achieved by the Higgs fields
Φu

i andΦd
i , which transform simultaneously as triplets under SU(3) and as Higgs

doublets with hypercharges −1 and +1 under the SM, respectively, explicitly:
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Φu =




(
ϕo

ϕ−

)u

1

(
ϕo

ϕ−

)u

2

(
ϕo

ϕ−

)u

3




, Φd =




(
ϕ+

ϕo

)d

1

(
ϕ+

ϕo

)d

2

(
ϕ+

ϕo

)d

3




with the VEV’s

⟨Φu⟩ =




1√
2

(
vu1

0

)

1√
2

(
vu2

0

)

1√
2

(
vu3

0

)




, ⟨Φd⟩ =




1√
2

(
0

vd1

)

1√
2

(
0

vd2

)

1√
2

(
0

vd3

)




The contributions from ⟨Φu⟩ and ⟨Φd⟩ generate the W and Zo SM gauge boson
masses

g2

4
(v2u + v2d)W

+W− +
(g2 + g′2)

8
(v2u + v2d)Z

2
o (11.14)

+ tiny contribution to the SU(3) gauge boson masses and mixing

with Zo,

v2u = v21u + v22u + v23u , v2d = v21d + v22d + v23d. So, if MW ≡ 1
2
g v, we may write

v =
√
v2u + v2d ≈ 246 GeV.

11.5 Fermion masses

11.5.1 Dirac see-saw mechanisms

The gauge symmetry G ≡ SU(3) × GSM, the fermion content, and the transfor-
mation of the scalar fields, all together, avoid Yukawa couplings between SM
fermions. The allowed Yukawa couplings involve terms between the SM fermions
and the corresponding vector-like fermions U, D, E and N:

The scalars and fermion content allow the gauge invariant Yukawa couplings for
quarks and charged leptons
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Hu ψo
q Φ

u Uo
R + huη1 ψ

o
uR η1 U

o
L + huη2 ψ

o
uR η2 U

o
L + MU U

o
L U

o
R + h.c

Hd ψo
q Φ

d Do
R + hdη1 ψ

o
dR η1 D

o
L + hdη2 ψ

o
dR η2 D

o
L + MD D

o
L D

o
R + h.c

He ψ
o
l Φ

d EoR + heη1 ψ
o
eR η1 E

o
L + heη2 ψ

o
eR η2 E

o
L + ME E

o
L E

o
R + h.c

MU ,MD ,ME are free mass parameters and Hu , HdHe , h
f
η1
hfη2 , f = u, d, e are

coupling constants. When the involved scalar fields acquire VEV’s, we get for
charged leptons in the gauge basis ψo

L,R
T = (eo, µo, τo, Eo)L,R, the mass terms

ψ̄o
LMoψo

R + h.c, where

Mo =




0 0 0 He vd1
0 0 0 He vd2
0 0 0 He vd3

he1Λ1 h
e
2Λ2 0 ME


 (11.15)

It is worth to notice that completed analogous tree level mass matrices are obtained for u
and d quarks

Mo is diagonalized by applying a biunitary transformation ψo
L,R = Vo

L,R χL,R.

Vo
L
TMo Vo

R = Diag(0, 0,−λ3, λ4) (11.16)

Vo
L
TMoMoT

Vo
L = Vo

R
TMoTMo Vo

R = Diag(0, 0, λ23, λ
2
4) , (11.17)

where λ3 and λ4 are the nonzero eigenvalues, λ4 being the fourth heavy fermion
mass, and λ3 of the order of the top, bottom and tau mass for u, d and e fermions,
respectively. We see from Eqs.(11.16,11.17) that from tree level there exist two
massless eigenvalues associated to the light fermions:

11.6 Neutrino masses

Now we describe the procedure to generate neutrino masses

11.6.1 Tree level Dirac neutrino masses

With the fields of particles introduced in the model, we may write the Dirac type
gauge invariant Yukawa couplings

hD Ψ̄
o
l Φ

uNo
R + h1 Ψ̄

o
ν η1N

o
L + h2 Ψ̄

o
ν η2N

o
L + h3 Ψ̄

o
ν η3N

o
L

+ MD N̄
o
LN

o
R + h.c (11.18)
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hD, h1, h2 and h3 are Yukawa couplings, andMD a Dirac type, invariant neutrino
mass for the sterile neutrinos No

L,R. After electroweak symmetry breaking, we
obtain in the interaction basis Ψo

ν
T
L,R = (νoe , ν

o
µ, ν

o
τ , N

o)L,R, the mass terms

hD
[
v1 ν̄

o
eL + v2 ν̄

o
µL + v3 ν̄

o
τL

]
No

R

+
[
h1Λ1 ν̄

o
eR + h2Λ2 ν̄

o
µR + h3Λ3 ν̄

o
τR

]
No

L +MD N̄
o
LN

o
R + h.c. (11.19)

11.6.2 Tree level Majorana masses:

Since No
L,R, Table 1, are sterile neutrinos, we may also write left and right handed

Majorana type couplings

hL Ψ̄
o
l Φ

u(No
L)

c + mL N̄
o
L (N

o
L)

c + h.c (11.20)

and

h1R Ψ̄
o
ν η1 (N

o
R)

c + h2R Ψ̄
o
ν η2 (N

o
R)

c + h3R Ψ̄
o
ν η3 (N

o
R)

c

+mR N̄
o
R (No

R)
c + h.c , (11.21)

respectively. After spontaneous symmetry breaking, we also get the left handed
and right handed Majorana mass terms

hL
[
v1 ν̄

o
eL + v2 ν̄

o
µL + v3 ν̄

o
τL

]
(No

L)
c + mL N̄

o
L (N

o
L)

c + h.c. , (11.22)

+
[
h1RΛ1 ν̄

o
eR + h2RΛ2 ν̄

o
µR + h3RΛ3 ν̄

o
τR

]
(No

R)
c

+mR N̄
o
R (No

R)
c + h.c. (11.23)

Thus, in the basis Ψo
ν
T =

(
νoeL, ν

o
µL, ν

o
τL, N

o
L, (ν

o
eR)

c, (νoµR)
c, (νoτR)

c, (No
R)

c
)
, the

Generic 8× 8 tree level Majorana mass matrix for neutrinos Mo
ν, from Table 11.3,

Ψ̄o
ν Mo

ν (Ψo
ν)

c, read

Mo
ν =




0 0 0 α1 0 0 0 a1
0 0 0 α2 0 0 0 a2
0 0 0 α3 0 0 0 a3
α1 α2 α3 mL b1 b2 0 mD

0 0 0 b1 0 0 0 β1

0 0 0 b2 0 0 0 β2

0 0 0 0 0 0 0 0

a1 a2 a3 mD β1 β2 0 mR




(11.24)

Diagonalization of M(o)
ν , Eq.(11.24), yields four zero eigenvalues:

Uo
ν
T Mo

ν Uo
ν = Diagonal(0, 0, 0, 0,mo

5 ,m
o
6 ,m

o
7 ,m

o
8) (11.25)
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(νoeL)
c (νoµL)

c (νoτL)
c (No

L)
c νoeR νoµR νoτR No

R

νoeL 0 0 0 hLv1 0 0 0 hDv1

νoµL 0 0 0 hLv2 0 0 0 hDv2

νoτL 0 0 0 hLv3 0 0 0 hDv3

No
L hLv1 hLv2 hLv3 mL h1Λ1 h2Λ2 0 MD

(νoeR)
c 0 0 0 h1Λ1 0 0 0 h1RΛ1

(νoµR)
c 0 0 0 h2Λ2 0 0 0 h2RΛ2

(νoτR)
c 0 0 0 0 0 0 0 0

(No
R)

c hDv1 hDv2 hDv3 MD h1RΛ1 h2RΛ2 0 mR

Table 11.3: Tree Level Majorana masses

11.7 One loop neutrino masses:

11.7.1 One loop Dirac Neutrino masses

After the breakdown of the electroweak symmetry, neutrinos may get tiny Dirac
mass terms from the generic one loop diagram in Fig. 1, The internal fermion line
in this diagram represent the tree level see-saw mechanisms, Eqs.(11.18-11.23).
The vertices read from the SU(3) family symmetry interaction Lagrangian

iLint =
gH

2
(ν̄oeγµν

o
e − ν̄oτγµν

o
τ) Z

µ
1 +

gH

2
√
3
(ν̄oeγµν

o
e − 2ν̄oµγµν

o
µ + ν̄oτγµν

o
τ) Z

µ
2

+
gH√
2

(
ν̄oeγµν

o
µ Y

+
1 + ν̄oeγµν

o
τ Y

+
2 + ν̄oµγµν

o
τ Y

+
3 + h.c.

)
(11.26)

The contribution from these diagrams may be written as

cY
αH

π
mν(MY)ij , αH =

g2H
4π
, (11.27)

mν(MY)ij ≡
∑

k=5,6,7,8

mo
k Uo

νik Uo
νjk f(MY ,m

o
k) , (11.28)

f(MY ,m
o
k) =

M2
Y

M2
Y
−mo2

k

ln
M2
Y

mo2
k

≈ ln M2
Y

mo2
k

, M2
Y >> m

o2
k valid for neutrinos.

11.7.2 One loop L-handed and R-handed Majorana masses

Neutrinos also obtain one loop corrections to L-handed and R-handed Majorana
masses from the diagrams of Fig. 2 and Fig. 3, respectively. A similar procedure as
for Dirac Neutrino masses, leads to the one loop Majorana mass terms
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νo
jR νo

kR

Y

No No νo
fL νo

iL

M

< ηk > < Φu >

Fig. 11.1: Generic one loop diagram contribution to the Dirac mass termmij ν̄
o
iLν

o
jR.

M =MD,mL,mR

νoeR νoµR νoτR No
R

ν̄oeL Dν 15 Dν 16 0 0

ν̄oµL Dν 25 Dν 26 0 0

ν̄oτL Dν 35 Dν 36 Dν 37 0

N̄o
L 0 0 0 0

Table 11.4: One loop Dirac mass terms αH
π
Dν ij ν̄

o
iL ν

o
jR

νo
jL

Y

νo
kL No No νo

fL νo
iL

M

< Φu > < Φu >

Fig. 11.2: Generic one loop diagram contribution to the L-handed Majorana mass
termmij ν̄

o
iL(ν

o
jL)

T . M =MD,mL,mR

Thus, in the Ψo
ν basis, the one loop contribution for neutrinos read
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νoeL νoµL νoτL No
L

νoeL Lν 11 Lν 12 Lν 13 0

νoµL Lν 12 Lν 22 Lν 23 0

νoτL Lν 13 Lν 23 Lν 33 0

No
L 0 0 0 0

Table 11.5: One loop L-handed Majorana mass terms αH
π
Lν ij ν̄

o
iL (νojL)

T

νoeR νoµR νoτR N
o
R

νoeR Rν 55 Rν 56 0 0

νoµR Rν 56 Rν 66 0 0

νoτR 0 0 0 0

No
R 0 0 0 0

Table 11.6: One loop R-handed Majorana mass terms αH
π
Rν ij ν̄

o
iR (νojR)

T

νo
jR

Y

νo
kR No No νo

fR νo
iR

M

< ηk > < ηs >

Fig. 11.3: Generic one loop diagram contribution to the R-handed Majorana mass
termmij ν̄

o
iR(ν

o
jR)

T . M =MD,mL,mR

Mo
1 ν =




Lν 11 Lν 12 Lν 13 0 Dν 15 Dν 16 0 0

Lν 12 Lν 22 Lν 23 0 Dν 25 Dν 26 0 0

Lν 13 Lν 23 Lν 33 0 Dν 35 Dν 36 Dν 37 0

0 0 0 0 0 0 0 0

Dν 15 Dν 25 Dν 35 0 Rν 55 Rν 56 0 0

Dν 16 Dν 26 Dν 36 0 Rν 56 Rν 66 0 0

0 0 Dν 37 0 0 0 0 0

0 0 0 0 0 0 0 0




αH

π
, (11.29)
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where, after using the relationships coming from the zero entries of Mo
ν, eq.(11.24);

Mo
ν = Uo

ν Diagonal(0, 0, 0, 0,m
o
5 ,m

o
6 ,m

o
7 ,m

o
8) Uo

ν
T
, (11.30)

and in the limitM2
Y >> m

o2
k , we may write:

Lν ij =
1

3
Fij , i, j = 1, 2, 3

Dν15 = 1
3
F15 +

1
2
F26 , Dν16 = −1

6
F16 ,

Dν25 = −1
6
F25 , Dν26 = 1

3
F26 +

1
2
F15 ,

Dν35 = −1
6
F35 , Dν36 = −1

6
F36 , Dν37 = 1

2
(F15 + F26)

Rν55 =
1

3
F55 , Rν56 =

1

3
F56 , Rν66 =

1

3
F66

where

Fij = Uo
νi5 Uo

νj5 ln
mo2

8

mo2
5

+ Uo
νi6 Uo

νj6 ln
mo2

8

mo2
6

+ Uo
νi7 Uo

νj7 ln
mo2

8

mo2
7

(11.31)

11.7.3 Neutrino mass matrix up to one loop

Finally, we obtain the Majorana mass matrix for neutrinos up to one loop

Mν = Uo
ν
T Mo

1ν Uo
ν +Diag(0, 0, 0, 0,mo

5 ,m
o
6 ,m

o
7 ,m

o
8) , (11.32)

11.7.4 (VCKM)4×4 and (VPMNS)4×8 mixing matrices

Within this scenario, the transformation from massless to physical mass fermion
eigenfields for quarks and charged leptons is

ψo
L = Vo

L V
(1)
L ΨL and ψo

R = Vo
R V

(1)
R ΨR ,

and for neutrinos Ψo
ν = Uo

ν U1
ν Ψν;

U1
ν

T Mν U1
ν = Diagonal(λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) (11.33)

Recall now that vector like fermions, Table 1, are SU(2)L weak singlets, and hence,
they do not couple to W boson in the interaction basis. So, the coupling of L-
handed up and down quarks; fouL

T = (uo, co, to)L and fodL
T = (do, so, bo)L, to

theW charged gauge boson is

g√
2
f̄ouLγµf

o
dLW

+µ

=
g√
2
Ψ̄uL [(Vo

uL V
(1)
uL )3×4]

T (Vo
dL V

(1)
dL )3×4 γµΨdL W

+µ
, (11.34)
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with g the SU(2)L gauge coupling. Hence, the non-unitary VCKM of dimension
4× 4 is identified as

(VCKM)4×4 = [(Vo
uL V

(1)
uL )3×4]

T (Vo
dL V

(1)
dL )3×4 (11.35)

[Vo
uL V

(1)
uL ]3×4 = (Vo

uL)3×4 (V
(1)
uL )4×4 , [V

o
dL V

(1)
dL ]3×4 = (Vo

dL)3×4 (V
(1)
dL )4×4

Similar analysis of the coupling between active L-handed neutrinos and L-handed
charged leptons toW boson, leads to the lepton mixing matrix

(UPMNS)4×8 = [(Vo
eL V

(1)
eL )3×4]

T (Uo
ν U1

ν)3×8 (11.36)

[Vo
eL V

(1)
eL ]3×4 = (Vo

eL)3×4 (V
(1)
eL )4×4 , (Uo

ν U1
ν)3×8 = (Uo

ν )3×8 (U1
ν)8×8

11.8 Numerical results for Neutrino masses and mixing in a 3+5
scenario

We report here numerical results for lepton masses and mixing, at theMZ scale [15]

The input values for the horizontal boson masses, Eq.(8), and the coupling constant
of the SU(3) family symmetry are:

M1 = 5.3× 103 TeV , M2 = 3.3× 105 TeV ,
αH

π
= 0.05 , (11.37)

Λ1 = 3352.7 TeV , Λ2 = 103Λ1 , gH = 2.23561

Horizontal gauge bosons from the SU(3) family symmetry introduce flavor chang-
ing couplings, and in particular mediate ∆F = 2 processes at tree level. The above
high scales and heavy boson masses provide the proper suppression of Ko − K̄o

and Do − D̄o meson mixing from the tree level exchange diagrams mediated by
the SU(3) horizontal gauge bosons.

11.8.1 Charged leptons:

Tree level:

Mo
e =




0 0 0 2670.25

0 0 0 11902.6

0 0 0 16264.7

1.21882× 1010 −2.32202× 109 0 6.07835× 1010


 MeV ,
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up to one loop corrections:

Me =




0 −19.9797 −83.226 −16.9884

0.6408 71.9782 293.027 59.814

−0.8544 168.853 −1712.54 480.432

−2.74× 10−7 0.000054 0.000755 6.20× 1010


 MeV

the charged lepton masses

(me , mµ , mτ , ME ) = ( 0.486031 , 102.717 , 1746.17 , 6.20× 1010 ) MeV

Mixing matrix:

VeL = Vo
eL V

(1)
eL :




0.986458 0.0744614 −0.146138 4.30921× 10−8

0.00276675 −0.898433 −0.439101 1.93334× 10−7

−0.163991 0.43275 −0.886473 2.62497× 10−7

0 5.68933× 10−8 3.23887× 10−7 1
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11.8.2 Neutrino masses and Lepton (UPMNS)4×8 mixing:

Tree level Mo
ν, eq.(11.24): in eV




0 0 0 975.261 0 0 0 13.2472

0 0 0 4601.39 0 0 0 62.502

0 0 0 5663.49 0 0 0 76.9286

975.261 4601.39 5663.49 800. 1404. 2188.33 0 22500.

0 0 0 1404. 0 0 0 2.73 × 107

0 0 0 2188.33 0 0 0 1.24382 × 107

0 0 0 0 0 0 0 0

13.2472 62.502 76.9286 22500. 2.73 × 107 1.24382 × 107 0 1.81238 × 109




Mo
1ν, eq.(11.29): in eV




−0.57491 −2.71249 −3.33859 0 −0.755918 0.148816 0 0

−2.71249 −12.7979 −15.7519 0 −3.18585 0.62145 0 0

−3.33859 −15.7519 −19.3877 0 −3.9212 0.864196 −0.0806809 0

0 0 0 0 0 0 0 0

−0.755918 −3.18585 −3.9212 0 −284546. −129640. 0 0

0.148816 0.62145 0.864196 0 −129640. −59065.7 0 0

0 0 −0.0806809 0 0 0 0 0

0 0 0 0 0 0 0 0




Mν, eq.(11.32): in eV



0 0 0 −0.0470918 0.00670865 0.00603167 0.0648786 −0.00107364

0 0 0.0515474 0.0490276 −0.00671814 −0.00655172 0.0368801 −0.00061029

0 0.0515474 0 −0.0116693 −0.0442476 −0.0419316 3.5622 × 10−6 −3.4263 × 10−9

−0.0470918 0.0490276 −0.0116693 −3.45879 −6.3112 −5.99272 2.35948 −0.0390377

0.00670865 −0.00671814 −0.0442476 −6.3112 −7121.58 −12.9471 −873.148 14.4492

0.00603167 −0.00655172 −0.0419316 −5.99272 −12.9471 7892.83 897.758 −14.8564

0.0648786 0.0368801 3.5622 × 10−6 2.35948 −873.148 897.758 −839967. 5684.58

−0.00107364 −0.00061029 −3.4263 × 10−9 −0.0390377 14.4492 −14.8564 5684.58 1.8128 × 109
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Neutrino masses:

(m1 = 0.000645302 ,m2 = 0.0510146 ,m3 = 0.0517498 ,m4 = 3.45909 ,

m5 = 7120.68 ,m6 = 7893.8 ,m7 = 839969 ,m8 = 1.81288× 109) eV

Squared neutrino mass differences:

m2
2 −m

2
1 = 2.602× 10−3 eV2

m2
3 −m

2
2 = 7.555× 10−5 eV2

m2
4 −m

2
1 = 11.965 eV2

Neutrino mixing: Uν = Uo
ν U1

ν



0.97728 0.123928 −0.106511 −0.035932

−0.211124 0.529448 −0.536153 −0.103884

−0.000103928 −0.448468 0.452078 −0.1536

−0.0000170002 9.508 × 10−6 −0.0000155169 −0.00116041

−0.00557906 0.00505439 −0.00311974 −0.407139

0.0122451 −0.0110938 0.00684744 0.893615

0.0129939 −0.709263 −0.704815 −0.00358262

1.45741 × 10−9 6.46089 × 10−10 −1.15813 × 10−10 9.37014 × 10−9

0.0945439 −0.0893912 3.50955 × 10−6 7.30727 × 10−9

0.446074 −0.421754 0.000016186 3.44794 × 10−8

0.549035 −0.519105 0.000019873 4.24383 × 10−8

−0.687182 −0.726481 −0.0021559 0.0000124295

−0.0576333 0.0524664 0.909874 0.015054

0.122879 −0.11889 0.41455 0.00685878

6.22084 × 10−6 5.30567 × 10−6 0 0

0.0000333177 0.0000346837 −0.0165428 0.999863



(UPMNS)4×8 lepton mixing matrix :
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0.963479 0.19726 −0.180688 −0.0105438

0.262405 −0.660521 0.669404 0.0241869

−0.0500208 0.146962 −0.149764 0.187029

1.26831 × 10−9 −1.00207 × 10−8 1.04226 × 10−8 −6.19523 × 10−8

0.00446092 −0.00421887 2.47814 × 10−7 3.442 × 10−10

−0.156133 0.147619 −5.68064 × 10−6 −1.20681 × 10−8

−0.696392 0.658429 −0.000025237 −5.38282 × 10−8

2.34435 × 10−7 −2.21655 × 10−7 0 0



11.9 Conclusions

We have reported an updated numerical analysis for neutrino masses and mixing
in a 3+5 scenario, within a local SU(3) Family symmetry model, which combines
tree level ”Dirac see-saw” mechanisms and radiative corrections to implement a
successful hierarchical spectrum, for charged fermion masses and mixing.
The mass of the active SM neutrinos and a sterile neutrino with mass of a few eV’s
come out from the application of the see-saw approximation.
We update numerical results for neutrinos and report the non-unitary (UPMNS)4×8

lepton mixing matrix.
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Abstract. Now Standard Λ CDM cosmology is based on physics Beyond the Standard
Model (BSM), which in turn needs cosmological probes for its study. This vicious circle of
problems can be resolved by methods of cosmoparticle physics, in which cosmological mes-
sengers of new physics provide sensitive model dependent probes for BSM physics. Such
messengers, which are inevitably present in any BSM basis for now Standard cosmology,
lead to deviations from the Standard cosmological paradigm. We give brief review of some
possible cosmological features and messengers of BSM physics, which include balancing of
baryon asymmetry and dark matter by sphaleron transitions, hadronic dark matter and
exotic cosmic ray components, a solution for puzzles of direct dark matter searches in dark
atom model, antimatter in baryon asymmetrical Universe as sensitive probe for models
of inflation and baryosynthesis and its possible probe in AMS02 experiment, PBH and
GW messengers of BSM models and phase transitions in early Universe. These aspects are
discussed in the general framework of methods of cosmoparticle physics.

Povzetek: Kozmologija CDM temelji na fiziki, ki standardni model razširi (BSM), ven-
dar so zato potrebne metode, primerne za opazovanje novih fenomenov, ki jih nove teorije
ponujajo. Avtor ponudi kratek pregled nekaterih kozmoloških modelov, ki razširijo stan-
dardni model in napovedujejo uravnoteženje barionske asimetrije in temne snovi s pre hodi
sfalerona, hadronsko temno snov in eksotične komponente kozmičnih žarkov. Ponuja tudi
razlago za dosedanje neujemanje rezultatov različnih poskusov, ki merijo sipanje delcev
temne snovi na merilnih aparaturah, razlago za morebitni obstoj antisnovi v barionskem
asimetričnem vesolju, ki utegne biti občutljiva sonda za preizkušanje modelov za inflacijo
vesolja in bariosinteze ter možna sonda v eksperimentu AMS02, PBH in GW ter za fazne
prehode v zgodnjem vesolju.

12.1 Introduction

The now Standard model of elementary particles appeals to its extension for
recovery of its internal problems and/or embedding in the framework of unified
description of the fundamental natural forces (see [23] for recent review). Such
extensions are unavoidable in the fundamental physical basis for now Standard
cosmological scenario, involving inflation, baryosynthesis and dark matter/energy
[2,3,3–5,8,9,20]. Probes for the BSM physics, underlying now standard cosmology,
inevitably imply methods of cosmoparticle physics of cross disciplinary study of
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physical, astrophysical and cosmological signatures of new physics [3, 8]. Here
we discuss some development of these methods presented at the XXIV Bled
Workshop ”What comes beyond the Standard models?” with special emphasis on
the cosmological messengers of new physics, which can find positive evidence
in the experimental data and thus acquire the meaning of signatures for the
corresponding BSM models, specifying their classes and ranges of parameters.
If confirmed, such cosmological signatures should find explanation together with
the basic elements of the modern cosmology. Therefore, the approach, which
pretends on the unified description of Nature [11, 15] should not only reproduce
the Standard model of elementary particles and propose BSM features, which
provide realistic description of inflation, baryosynthesis and dark matter, but
should be in possession to confront possible signatures of new physics, which can
go beyond the standard cosmological paradigm.
Cosmological messengers of new physics can help to remove conspiracy of BSM
physics, related with absence of its experimental evidence at the LHC, as well as
conspiracy of BSM cosmology, reflected in concordance of the data of precision
cosmology with now standardΛCDM cosmological scenario [12]. Multimessenger
cosmological probes can provide effective tool to study new physics at very high
energy scale [13, 14]. Signatures for new physics play especially important role
in these studies. They can strongly reduce the possible class of BSM models and
provide determination of their parameters with high precision.
We consider such possible signatures in the direct searches of dark matter (Section
12.2.1), in gravitational wave signals from coalescence of massive black holes
and searches for antinuclear component of cosmic rays (Section 12.3. We spec-
ify open questions in their confrontation with the corresponding messengers of
BSM physics. We discuss is the conclusive Section 12.4 there signatures and their
significance in the context of cosmoparticle physics of BSM physics and cosmology.

12.2 Signatures of dark matter physics

12.2.1 Dark atom signature in direct dark matter searches

The highly significant positive result of underground direct dark matter search in
DAMA/NaI and DAMA/LIBRA experiments [15] can hardly be explained in the
framework of the Standard cosmological paradigm of Weakly Interacting Massive
Particles (WIMP), taking into account negative results of direct WIMP searches
by other groups (see [23] for review and references). Though these apparently
contradicting results may be somehow explained by difference of experimental
strategy and still admit WIMP interpretation, their non-WIMP interpretation seems
much more probable, making the positive results of DAMA group the signature
for dark atom nature of cosmological dark matter [14, 16, 17, 23].
The idea that dark matter can be formed by stable particles with negative even
charge −2n bound in dark atoms with n primordial helium nuclei can qualitatively
explain negative results of direct WIMP searches based on the search for nuclear
recoil from WIMP interaction [14, 16, 23]. Dark atom interaction with matter is
determined by its nuclear interacting helium shell, so that cosmic dark atoms
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slow down in terrestrial matter and cannot cause significant recoil in underground
experiments. However, in the matter of underground detector dark atoms can form
low energy (few keV) bound states with nuclei of detector. The energy release in
such binding possess annual modulation due to adjustment of local concentration
of dark atoms to the incoming cosmic flux and can lead to the signal, detected in
DAMA experiment.
Dark atoms represent strongly interacting asymmetric dark matter, since the
corresponding models assume excess of −2n charged particles over their +2n

antiparticles. Such excess can naturally be related with baryon asymmetry, if mul-
tiple charged particles possess electroweak charges and participate in electroweak
sphaleron transitions. It is shown in [18] that the excess of −2n charged particles
in model of Walking Technicolor (WTC) and Ū antiquarks (with the charge −2/3

of new stable generation can be balanced with baryon asymmetry and explain
the observed dark matter density by dark atoms. The open question is whether
such balance, which should also take place in the case stable 5th generation in the
approach [11], can lead to the sufficient excess of ū5 antiquarks to implement the
idea of dark atoms in this case.
Pending on the value of −2n charge, multiple charged constituents of dark atoms
form either Bohr-like OHe atoms, binding -2 charged particles with primordial
helium nucleus, or Thomson-like XHe atoms for n > 1. In the first case, double
charged particles may be either composite, being formed by chromo-Coulomb
binding in cluster ŪŪŪ of stable antiquarks Ū with charge −2/3, or -2 stable
technileptons or technibaryons. Heavy quark clusters have strongly suppressed
interaction with nucleons, while techniparticles behave as leptons. It leads to
rather peculiar properties of dark atom - they have a heavy lepton or lepton-like
core and nuclear interacting helium shell, which determines their interaction with
baryonic matter.
Though interaction of dark atoms with nuclei are determined by their helium shell
and thus don’t involve parameters of new physics, the problem needs develop-
ment of special methods for its solution. The approach of [19], assumed continuous
extension of a classical three body problem to realistic quantum-mechanical de-
scription, taking into account finite size of interacting nuclei and helium shell,
in order to reach self-consistent account for Coulomb repulsion and nuclear at-
traction, which can lead to creation of a shallow potential well with low energy
bound state in dark atom - nucleus interaction. The development of this approach
is presented in [20] for both Bohr-like and Thomson-like atoms. However, it be-
comes clear that probably the correct quantum-mechanical description should
start from very beginning from quantum-mechanical nature of dark atom and
numerical solutions for Schrodinger equation for dark-atom -nucleus quantum
system. Development of self-consistent quantum-mechanical model of dark-atom
interaction with nuclei and will make possible interpretation of the results [15] in
terms of signature of dark atoms.

12.2.2 Multimessenger probes for decaying dark matter

Development of large scale experimental facilities like IceCube, HAWC, AUGER
and LHAASO provides multimessenger astronomical probes for cosmological
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messengers of superhigh energy physics [21]. The complex of LHAASO can pro-
vide unique measurement of ultra high energy photons, being in some cases most
sensitive probe for existence of messengers of new physics at ultra-high energy
scales. Superheavy decaying dark matter may be one of such messengers. Its decay
products may contain ultrahigh energy neutrinos, photons, charged leptons and
quarks. Sensitivity of LHAASO for the measurement of dark matter decay time

Fig. 12.1: Multimessenger probes for decaying supermassive dark matter particles

for DM decaying to quarks is demonstrated on Fig. 22.9, taken from [22]. Yellow
band shows the range of decay times for which DM decays give sizable contribu-
tion to the IceCube neutrino signal [23]. Blue and gray shaded regions show the
existing bounds imposed by HAWC [24] and ultra-high-energy cosmic ray experi-
ments [25]. and dashed curves are from the HAWC search of the DM decay signal
in the Fermi Bubble regions [26]. It makes possible to confront multimessenger
cosmological probes with the data of multimessenger astronomy.

12.3 Signatures for strong primordial inhomogeneities

12.3.1 Massive PBHs

Strong inhomogeneity of early Universe can lead to formation of primordial black
holes (PBH). Such inhomogeneity may result from BSM physics at superhigh
energy scales and thus even absence of positive evidence of PBH existence can
provide important tool to probe allowed parameters of new physics at these
scales [21, 27]. Formed within the cosmological horizon, which was small in the
early Universe, it can seem that PBHs should have mass much smaller, than Solar
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mass M⊙. However, the mechanisms of PBH formation can provide formation
of PBHs with stellar mass, and even larger than stellar up to the seeds for Active
Galactic nuclei (AGN) [28–30].
LIGO/VIRGO detected gravitational wave signal from coalescence of black holes
with masses exceeding the limit of pair instability (50M⊙). Therefore black holes
of such mass cannot be formed in the evolution of first stars. It has put forward
the question on their primordial origin [31,32] and may be considered as signature
for BSM physics, underlying formation of such massive PBHs.
In the approach [28] massive PBHs are formed in the collapse of closed walls
originated from succession of phase transitions of breaking of U(1) symmetry and
their mass is determined by the scale f of spontaneous symmetry breaking at the
inflationary stage and scale Λ of successive explicit symmetry breaking. Therefore
confirmation of primordial origin of massive PBHs would strongly narrow the
choice of models of very early Universe and its underlying physics.

12.3.2 Cosmic antinuclei as probe for matter origin

Baryon asymmetry of the Universe reflects absence of macroscopic antimatter in
the amount comparable with baryonic matter within the observed Universe. Its
origin is related with the mechanism of baryosynthesis, in which baryon excess
is created in very early Universe. However, inhomogeneous baryosynthesis can
lead not only to change of the value of baryon excess in different regions of space,
but in the extreme case can change sign of this excess, giving rise to antimatter,
produced in the same process, in which the baryonic matter was created [3, 9, 11,
13, 17, 33]. Antimatter domains should be sufficiently large to survive in matter
surrounding and it implies also effect of inflation in addition to nonhomogeneous
baryosynthesis. It means that the prediction of macroscopic antimatter, surviving
to the present time, involves rather specific combination of necessary conditions
and correspondingly specific choice of BSM model parameters.
The choice of BSM model parameters determines the forms of macroscopic an-
timatter in our Galaxy. Antimatter domain can evolve in the way, similar to the
baryonic matter and form antimatter globular cluster in our Galaxy [3, 39]. The an-
tibaryon density may be much higher, than the baryonic density and then specific
ultra-dense antibaryon stars can be formed [12], In any case, the predicted fraction
of antihelium nuclei in cosmic rays from astrophysical sources is far below the
sensitivity of AMS02 experiment, making positive results of cosmic antihelium
signature of macroscopic antihelium in our Galaxy.
The possibility of confirmation of first indications to the antihelium events in
AMS02 makes necessary to study in more details evolution of antibaryon domains
in baryon asymmetrical universe [42, 43] in the context of models of inhomoge-
neous baryosynthesis. It makes necessary to study expected composition and
spectrum of cosmic antinuclei from antimatter globular cluster [44], as well as
to consider more general question on propagation in galactic magnetic fields of
antinuclei from local source in galactic halo [45]
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12.4 Conclusions

There are some hints to new phenomena in the observational data [46–48]. The
deviations from the standard cosmological model may be related with the modified
gravity [49, 50], leading beyond the Standard model of all the four fundamental
interactions. Then one can expect additional types of polarization of gravitational
waves [51]. Such hints are not at such high significance level as the results of
DAMA experiments [15], but they can strongly extend the list of multimessenger
probes of BSM physics.
Constraints on such exotic phenomena, as PBHs or antimatter in baryon asym-
metrical Universe exclude rather narrow ranges of BSM model parameters. Signa-
tures for such phenomena make these ranges preferential, strongly reducing the
class of BSM models and fixing their parameters with high precision. In the con-
text of cosmoparticle physics, studying fundamental relationship of macro- and
micro- worlds signatures for cosmological messengers of BSM physics acquires
the meaning of precision measurement of parameters of fundamental structure of
microworld with astronomical accuracy.
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Abstract. Within the framework of scenarios of nonhomogeneous baryosynthesis, the
formation of macroscopic antimatter domains is predicted in a matter-antimatter asymmet-
rical Universe. The properties of antimatter within the domains are outlined; the matter-
antimatter boundary interactions are studied. The correlation functions for two astrophysi-
cal objects are calculated. The theoretical expression in the limiting process of the two-points
correlation function of an astrophysical object and an antibaryon is derived.

Povzetek: Avtorja uporabita model nehomogene bariosinteze za nesimetrično vesolje.
Študirata nastanek domen antisnovi, lastnosti antisnovi v domenah ter interakcijo med
snovjo in antisnovjo na mejah domen. Izračunala sta korelacijske funkcije dveh astrofizikalnih
objektov v nehomogenem vesolju. Prikažeta teoretične relacije za limitne procese dvotočkovnih
korelacijskih funkcij astrofizikalnega objekta in antibariona.

Keywords: General Relativity, Dark matter.

13.1 Introduction

The origin of the baryon asymmetry of the Universe is explained in the now Stan-
dard cosmology by the mechanism of baryosynthesis. If baryon excess generation
is nonhomogeneous, the appearance of domains with antibaryon excess can be
predicted in baryon asymmetrical Universe.
In such non-trivial baryosynthesis frameworks, we study evolution of antimatter
domains according to their dependence on the size and antimatter densities within
them.
The boundary conditions for antimatter domains are determined through the
interaction with the surrounding baryonic medium.



i
i

“U” — 2021/12/15 — 21:46 — page 162 — #178 i
i

i
i

i
i

162 M. Yu. Khlopov, O. M. Lecian

Within the analysis, new classifications for antibaryon domains, which can evolve
in antimatter globular clusters, are in order.
Differences must be discussed within the relativistic framework chosen, the nu-
cleosynthesis processes, the description of the surrounding matter medium, the
confrontation with the experimental data within the observational framework.
The space-time-evolution of antimatter domains and the correlation functions are
described within the nucleon-antinucleon boundary interactions.
The manuscript is organized as follows.
We consider formation of antibaryon domains in the spontaneous CP-symmetry-
breaking scenario (Section 13.2) and in the model of spontaneous baryosynthesis.
Evolution of such domains is determined by nucleon-antinucleon interaction at
the boundaries of antimatter domains.
We deduce correlation functions for the celestial objects, predicted in these scenar-
ios.
Them manuscript is organized as follows.
In Section 13.2, the symmetry-breaking scenario have been recalled.
In Section 13.3, the cosmological implications have been studied.
In Section 13.4, the spontaneous baryosynthesis process has been analyzed.
I Section 13.5, different antimatter spacetime distributions have been presented.
In Section 13.6, antimatter interactions have been studied.
Is Section 13.7, nucleon-antinucleon interactions have been codified.
In Section 13.8, correlation function for celestial objects have been analytically
calculated.
Is Section 13.9, brief outlook and perspectives have been outlined.
Concluding remarks end the paper.

13.2 Symmetry-breaking scenario

The symmetry-breaking scenarios have been stusied in [1]- [5].
The spontaneous CP violation is described [1] after the Lagrangean potential
density

V(ϕ1, ϕ2, χ) = −µ21(ϕ
+
1 ϕ1 + ϕ

+
2 ϕ2) + λ1[(ϕ
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(13.1)

As a result, an effective low-energy electroweak SU(2)⊗U(1) theory is achieved,
allowing for a GUT spontaneousCP violation. The formation of vacuum structures
separated from the rest of the matter universe by domain walls follows. The size of
the domains is calculated to grow with the evolution of the Universe. The behavior
is calculated not to affect the evolution of the Universe if the volume energy ˜ρ(V)
density of the walls for

˜ρ(V) ∼ σ2ϕT
4/h̃,
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with h̃ value of the scalar coupling constant.

In Eq. (13.1), for the three effective scalar fields, the CP violation is achieved with
complex vev’s and vacuum domain structures appear with opposite CP viola-
tion sign: walls are predicted to be massive, and the size of walls is predicted to
grow [1].

A CP-invariant Lagrangian density can be assumed of the form [2]

L = (∂ϕ)2 − λ2(ϕ2 − χ2)2 + ψ̄(i∂−m− igγ5ϕ)ψ (13.2)

in which the vacuum is characterized by the values < ϕ >= ση, with σ = ±1.
The rotation ψ→ eiαγ5ψ, with tg2α = −gση/m

induces the appearance in the Lagrangian density of two terms with opposite CP
symmetry. The sign of the phase depends on σ, with λ ≤ 1, for which 1 ≤ η.
For the Lagrangian density [6]

L = (∂χ)2−
1

2
m2

χχ
2− 4σλ2χη3−λ2χ4+ ψ̄(i∂̂−M− i

gm

M
γ5χ−

g2ση

M
χ)ψ. (13.3)

a CP violation can be achieved after the substitution ϕ = χ+ ση.
For the Lagrangian potential

V(χ) = −m2
χχ

∗χ+ λχ(χ
∗χ)2 + V0, (13.4)

with χ = f√
2
e
iα
f , a U(1) symmetry breaking is achieved, with θ = α/f.

The domain wall problem can be solved after the Kuzmin-Shaposhnikov-Tkachev
mechanism.

13.3 Implications in cosmology

Several phenomena can be looked for following the described mechanisms.
The research for antinuclei in cosmic rays is analyzed as a possible outcome of the
model.
The research for annihilation products constitutes a further verification procedure
for the theoretical framework.
In particular, annihilation at rest on Relativistic background is to be studied.
The annihilation of small-scale domains is a further investigation theme. It can be
achieved within the thin-boundary approximation.
Moreover, at different times, the diffusion of the baryon charge is determined after
different processes.

13.4 Spontaneous baryosynthesis

A spontaneous baryosynthesis allowing for the possibility of sufficiently large
domains through proper combination of effects of inflation and baryosynthesis is
described after the choice of fields
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χ ≡ f√
2
eθ, for which the variance reads

< δθ >=
H3t

4π2f2
. (13.5)

as in [7], [8], [9], [10], [11]. This way, the probability for the existence of antimatter
particles is set.
The number of objects Ñ(t) − Ñ(t0) is calculated as

Ñ(t) − Ñ(t0) ≡
∫
t0

tι

P(χ) lnχdχ(t), (13.6)

with P(χ) including variance.
The evaluation of the number of antibaryons is performed after the use of the
quantity H̃, i.e. the Hubble-radius function, and after the definition of effective
quantities ∆feff, i.e. the effective (time-dependent) phase function, and

feff = f

√
1+

gϕχMPl

12πλ
(Nc −N), (13.7)

i.e. the effective phase, with N the e-foldings at inflation.

The following consequences are extracted.
If the density is so low that nucleosynthesis is not possible, low density antimatter
domains contain only antiprotons (and positrons).
High density antimatter domains contain antiprotons and antihelium.
Heavy elements can appear in stellar nucleosynthesis, or in the high-density
antimatter domains.
Strong non-homogeneity in antibaryons might imply (probably as a necessary
condition) strong non-homogeneity for baryons, and produce some exotic results
in nucleosynthesis.

13.5 Spacetime antimatter statistical distributions

It is possible to specify the standard deviation for the field χ for different spacetime
antimatter statistical distributions.

13.5.1 Binomial spacetime antimatter distribution

In the hypothesis antibaryons are described as following a binomial [12] statistical
spacetime distribution, the number of antibaryons Ñ contained in an antimatter
domain reads

Ñ(k) − Ñ0(k) ≃
∑
k

1

(k!)(1− k)!

χta
χt0

2

∆feff(t; ta, ti, t0)

(
(−2)

4π2
·
[
ln
Lue

Hc(tc−t0) − eH0t0

l

])k

(t)k−3

(13.8)

which is described after the effective quantities feff and those defined after the
Hubble function H.
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13.5.2 Poisson space-time antimatter statistical distribution

In the hypothesis antibaryons are described as following a Poisson statistical
space-time distribution, the number of antibaryons Ñ contained in an antimatter
domain reads

Ñ(k) − Ñ0(k)(∆t) ≃
∑
n

∑
k

knek

n!

χta
χt0

2

∆feff(t; ta, ti, t0)
·
(
(−2)

4π2

[
ln
Lue

H̃c(tc−t0) − eH̃0t0

l

])k

(t)k−3,

(13.9)

which is described after the effective quantities feff and those defined after the
Hubble function H.

13.5.3 Bernoulli spacetime antimatter distribution

In the hypothesis antibaryons are described as following a Bernoulli statistical
spacetime distribution, the number of antibaryons Ñ contained in an antimatter
domain reads

Ñ(k) − Ñ0(k) ≃
1

(k!)(1− k)!

χta
χt0

2

∆feff(t; ta, ti, t0)

(
(−2)

4π2
·
[

ln
Lue

Hc(tc−t0) − eH0t0

l

])k

(t)k−3

(13.10)

which is described after the effective quantities feff and those defined after the
Hubble function H.

13.6 Antimatter domains and antibaryons interactions

At the radiation-dominated era
within the cosmological evolution, the dominant contribution to the total energy
is due to photons.
In the case of low density antimatter domains, the contribution of the density of
antibaryons ρB is smaller than the contribution due to the radiation ργ even at the
matter-dominated stage.

In a FRW Universe, within its thermal history, for T < 100keV , only photons as a
dominant components are considered.

At the matter-dominated era and following
within a non-homogeneous scenario, ρDM > ρB, with ρ ≡ ρ(x).
The creation of high density antibaryon domains can be accompanied by similar
increase in baryon density in the surrounding medium. Therefore outside high
density antimatter domain baryonic density may be also higher than DM density
ρB(x) > ρDM(x).
In the case of low density antimatter domains:
the total density is such that ρB + ργ, and ρB < ργ, with ρdm > ρB
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13.7 Nucleon-antinucleon interaction studies

Within the framework of the studies of nucleons-antinucleons interaction, several
schematizations are possible.
In the case of proton-antiproton annihilation probability, the limiting process and the
theoretical formulation can be studied.
Let P(p̄) be the probability of existence of one antiproton of mass mp, with mp

being the proton mass, in the spherical shell of section rI, of (antimatter)-density
ρI, delimiting the antimatter domain, in which the interaction takes place P(p̄) ≡
3Nmp/(rIρI). This way, the
interaction probability reads
P̃i ≡ P̃p̄→(d.c.i)

i.e. it constitutes the probability of antiproton p̄ interaction with a proton p in
a chosen i annihilation channel a.c., possibly also depending on the chemical
potential.
Let ∆t be the time interval considered, under the most general hypotheses (most
stringent constraint), ∆t± δt, ∆t ≃ tU ≃ 4 · 1017s, with tU age of the universe, δt
to be set according to the particular phenomena considered. This way P̄p̄,i(t, ∆t).
i.e. the probability of antiproton interaction, i.e. antiproton-proton annihilation
(density), reads

P̄p̄,i ≃
1

∆t
Pp̄P̃i (13.11)

As a second study, the
nucleon-antinucleon interaction (annihilation) probabilities are evaluated after the
antinucleus M̄ interaction probability P̄M̄,j(t, ∆t) through the annihilation chan-
nel(s) k as

P̄M̄,k(t, ∆t) ≃
1

∆t
PĀP̃ ¯A,k. (13.12)

In these examples, all the probabilities are normalized as [t−1].

The studies of nucleons-antinucleons interactions are to be further specified for
non-trivial Relativistic scenarios such as perturbed FRW with the thermal history of
the Universe, i.e., also, according to the Standard Cosmological Principle.
The non-trivial Relativistic scenarios are schematized as at large scales asymptoti-
cally isotropic and homogeneous.
Further specifications can be in order in the case of non-trivial nucleosynthesis,
possibilities of surrounding media, antibaryon-baryon annihilation. In the latter
case, the most stringent constraint follows after P̄ evaluated for present times
in the description of reducing density in the limiting process of a low-density
antimatter domain.

13.7.1 An example

In the example of low-density antimatter domains, non-interacting antiprotons
are described, boundary interactions are taken onto account, and interaction with
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surrounding medium can be considered.
In particular, low-density antimatter domains can be surrounded by low-density
matter regions.

13.8 Correlation functions

Two-point correlation functions C̃2 for two antimatter domains α1 and α2 of size
> 103M⊙ each can be within the present framework analytically calculated.
More in detail, on (homogeneous, isotropic) Minkowski-flat background, and
under the hypothesis antimatter densities ρ ≡ Ñ/V following a Poisson space-
time statistical distribution.
The two-point correlation function C̃2 is defined as

dC̃2(α1, α2) ≡ ρ2(1+ ξ(| r⃗α1α2 |))dV1dV2 (13.13)

where
ξ(| r⃗α1α2 |) ≡| r⃗α1α2 | (13.14)

defines the estimator, and r⃗α1α2 the distance of the two antimatter domains.
Given two antimatter domains α1 and α2 of volume Vαl ≡ 4

3
πr3l , separated of a

distance | r⃗α1α2 | the correlation function is analytically integrated as

C̃2(α1, α2) = 2πñ(n, k;∆feff, H̃;∆t) | r⃗α1α2 |

(
1

r2
+
1

r1

)
H̃c

2k
t4k−4 (13.15)

evaluated at the present time t, with H̃c the effective Hubble-radius function.

13.8.1 An example: the two-point correlation functions for an antimatter
domain and another object

It is possible to consider the limiting example of the correlation function between
an antimatter domain α1 and an antibaryon α3. The Davis-Peebles estimator for the
macroscopic objects described in terms of density distribution and temperature
distribution reads

ξl,l ′ ≡ Ñbin

Ñ

Dl(| r⃗ |)

Dl ′(| r⃗ |)
− 1, (13.16)

with Ñ number of antibaryons in a low-density antimatter domain, where the
antimatter is assumed to be distributed according to a Poisson space-time statisti-
cal distribution, and Ñbin the number of antibaryons in a low-density antimatter
domain where the antimatter is distributed according to a binomial space-time
statistical distribution,
the quantity Dl(| r⃗ |) indicates the number of pairs of low-density appropriate-
mass antimatter domains within the geodesics (coordinate) interval distance[
r− dr

2
, r+ dr

2

]
, the quantity D ′

l(| r⃗ |) indicates the number of pairs of objects
between an antimatter domain and
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an (Poisson-distributed) antibaryon on the coordinate geodesics.
For the Davis-Peebles estimator

ξl,l ′ ≡ ñbin(n, k;∆feff, H̃;∆t)

ñ(n, k;∆feff, H̃;∆t)

Dl(| r⃗ |)

D ′
l(| r⃗ |)

− 1 (13.17)

within the use of statistical estimators, the time dependence H̃c
2k
t4k−4 is sup-

pressed, and the time dependence is expressed after the ratio ñbin(n,k;∆feff,H̃;∆t)

ñ(n,k;∆feff,H̃;∆t)
,

i.e. on the different statistical antimatter space-time distributions and on their
dependence on the H̃ Hubble-radius function, and on the ∆feff effective (time-
dependent) phase function.

13.8.2 Hamilton estimator

The Hamilton estimator
ξ̃l,l ′ takes into account the difference in distances among the Binomial distribution
and the Poisson distribution.

13.9 Outlook and perspectives

In the case antimatter domains are described to be separated in a small angular
distance, the Rubin-Limber correlation functions [13], [14] for small angles can be
used.
An analysis of the metric requiring a time evaluation after the time of the surface
of last scattering can be analyzed also for different metrics, as in [15]

13.10 Concluding remarks

Prediction of macroscopic antimatter in baryon asymmetrical Universe is based
on rather specific choice of parameters of baryosynthesis. To make antimatter do-
mains sufficiently large to survive in the baryon matter surrounding a nontrivial
combination of baryosynthesis and inflation are needed. It may look like we study
a highly improbable and very exotic case. However, on the other hand, positive
evidence for existence of macroscopic antimatter in our Galaxy, which may appear
in the searches of cosmic antinuclei in AMS02 [22] would strongly favor models,
predicting antimatter domains in baryon asymmetric Universe, and would make
possible to select the narrow classes of models of inflation and baryosynthesis,
as well as to specify their parameters with high precision [20]. In view of this
possibility we started to develop in the present work statistical analysis of possible
space distribution of antimatter domains with the account for their evolution.

Confrontation of the predicted distribution of antimatter domains with the ob-
servational data would be important for multimessenger test of the models of
nonhomogeneous baryosynthesis. The observable signatures of this distribution
is the important direction of our future studies. In particular, the most probable
forms of the evolved antimatter in our Galaxy should be clarified in this analysis.



i
i

“U” — 2021/12/15 — 21:46 — page 169 — #185 i
i

i
i

i
i

Title Suppressed Due to Excessive Length 169

It should be noted that the mechanisms of generation of antibaryon excess in
baryon asymmetrical Universe may be accompanied by formation of domain
walls at the border of antimatter domains. If these closed walls start to dominate,
before they enter the horizon, the corresponding domains, surrounded by walls
would become closed worlds, separating from our Universe. This open question is
another challenge for our future analysis
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Abstract. Models of highly inhomogeneous baryosynthesis of the baryonic asymmetric
Universe allow for the existence of macroscopic domains of antimatter, which could evolve
in a globular cluster of antimatter stars in our Galaxy. We assume the symmetry of the
evolution of a globular cluster of stars and antistars based on the symmetry of the properties
of matter and antimatter. Such object can be a source of a fraction of antihelium nuclei in
galactic cosmic rays. It makes possible to predict the expected fluxes of cosmic antinuclei
with use of known properties of matter star globular clusters We have estimated the lower
cutoff energy for the penetration of antinuclei from the antimatter globular cluster, situated
in halo, into the galactic disk based on the simulation of particle motion in the large-scale
structure of magnetic fields in the Galaxy. We have estimated the magnitude of the magnetic
cutoff for the globular cluster M4.

Povzetek: V modelih, ki predpostavijo zelo nehomogeno bariosintezo asimetričnega vesolja,
se lahko pojavijo makroskopske domene antisnovi. V naši galaksiji bi domena antisnovi
lahko nastala v kroglasti kopici zvezd iz antisnovi in bi bila izvor antihelijevih jeder v
galaktičnih kozmičnih žarkih. Avtorji prilagodijo spremembo simetrije rastoče kroglaste
kopice zvezd in antizvezd tako, da se lastnosti ujemajo s poznanimi lastnostmi snovi. Od
tod napovedo tok kozmičnih antijeder. S simulacijo gibanja delcev v magnetnih poljih v naši
galaksiji ocenijo mejno energijo, pri kateri še lahko antijedra iz kroglaste kopice antisnovi,
ki se nahaja v haloju galaksije, prodrejo v galaktičnini disk. Ti rezultati so namenjeni iskanju
kozmičnega antihelija v poskusu AMS02.

14.1 Introduction

Today, our knowledge of the chemical composition of galactic cosmic rays is being
enhanced by precision experiments such as PAMELA [1], BESS [2] and AMS-02 [3]
in near-Earth orbit. Along with common components such as protons or helium
nuclei, there is no doubt about the presence of antiprotons in the cosmic ray flux,
and a search for heavier anti-nuclei is also underway.
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For the first time experimentally antinuclei were discovered at accelerators, which
contributed to the development of theoretical models suggesting the existence of
antimatter in the Universe and, in particular, in our Galaxy [4]. According to them,
antimatter is usually classified into three groups:

• Relic or primary.
• Secondary.
• From exotic sources.

There is a classical mechanism of particle production, and antiparticles, as we
understand it, are born as a secondary component(for example, positrons, an-
tiprotons, antideuterons or antihelium [5]). But nevertheless, modern models of
cosmic ray generation suggest their formation and acceleration after supernova
explosions in termination shocks [6] and when propagating in the interstellar
medium, the fraction of various components in cosmic rays changes as a result of
nuclear reactions with interstellar gas [5].
In addition, secondary particles or antiparticles are born that are initially absent
from the sources, for example, positrons, antiprotons, antideuterons or antihelium.
Also, the creation of galactic antiprotons as a result of annihilation or decay of
massive hypothetical dark matter particles or during the evaporation of primordial
black holes is not excluded [7]. In this case, the calculated fluxes can exceed the
flux of the secondary component.
Antideuterons can be formed in the same mechanisms, but with a lesser probability,
they have not yet been detected in cosmic rays [5].
Antihelium was not found either: in the case of its secondary origin, the calculated
ratio of the fluxes of antihelium and helium nuclei is small and does not exceed ∼

1012−1014 [5]. Detection of antinuclei above this value would indicate the existence
of primordial antimatter, preserved from the moment of the Big Bang [8, 9]. The
creation of 4 antinucleons at once with a relatively small relative momentum in
processes in exotic sources is unlikely.
Today, primary antimatter could exist in the form of antimatter domains, which
are not excluded in models of inhomogeneous baryosynthesis, taking the form of
clusters of anti-stars or antigalaxies [10].

14.2 Globular cluster of antistars

Based on the symmetry of matter and antimatter [4], it is possible to indicate
the expected parameters of a globular cluster of antistars. That is, a globular
cluster will have the same set of properties as an ordinary cluster of ordinary
stars. This approach assumes similar initial conditions and similar evolution of
antimatter and matter. One should note that the mechanisms of nonhomogeneous
baryosynthesis may lead to difference in the conditions within antimatter domain
and in ordinary baryonic matter. In particular, the approach [11, 12] predicts
much higher antibaryon density in antimatter domains, than in surrounding
baryonic matter, what leads to prediction of ultra dense antibaryonic objects in the
Galaxy and their specific effects [12]. Here we follow the approach of [13], which
assumes similar conditions in antimatter domains as in the surrounding matter,
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and elaborate the prediction of antihelium flux from antistars accessible to the
AMS02 experiment [3], which follows from this similarity.
A globular cluster of stars is a group of stars that gather in the shape of a sphere
and orbit around the core of the Galaxy. The stars turn out to be gravitationally
bound, which, in fact, is the reason for such a shape of these clusters. Globular
clusters are localized far from most other objects in the Galaxy - in the halo. They
are much denser than open clusters, and they are also older and contain more
stars. In the Milky Way, the number of globular clusters about 150.
The birth regions of such clusters are the dense interstellar medium. However,
no star formation is currently observed in globular clusters. All dust and gas
have long been ”blown out” from the clusters. This confirms the opinion that
globular clusters are the oldest objects in the Galaxy [14]. Orbiting the outskirts of
the galaxy, globular clusters take several hundred million years to complete one
orbit. At the center of the cluster, the highest density is achieved - on the order
of 100-1000 stars/pc3. For comparison, the density of stars near the Sun is 0.14
stars/pc3. Globular clusters have a low metallicity due to the fact that they are
composed of first generation stars. Which once again confirms the opinion that
globular clusters are old clusters [15]

14.3 Cosmic antihelium propagation in interstellar medium

After generation and acceleration in the source, cosmic ray particles enter the
interstellar medium, where they change their original trajectory, ”entangled” in
the magnetic fields of the Galaxy and can leave it.
The propagation of cosmic rays in the modern view is of a diffusion nature. The
GCR confinement time before leaving the Galaxy is inversely proportional to
the diffusion coefficient, i.e. decreases with increasing energy. For particles with
energies of 1–2 GeV, it is ∼ 4 · 107 years. During this time, they manage to fill
the halo of the Galaxy and, although the substance in the Galaxy is generally
very rarefied, they also pass through a thickness of matter of about 10 g/cm2. For
high-energy particles, the distance traveled sharply decreases and, for example, at
an energy of 10 TeV is 0.1-0.4 g/cm2, and the lifetime is ∼ 106 years [5, 16].
At present, attempts are being made to calculate the fluxes of galactic CRs. Solving
this problem requires knowledge of the structure and size of the Galaxy, the
location and power of the sources, the location of the Solar System, and the
properties of the interstellar medium. CR propagation in the Galaxy is seriously
determined by the structure of magnetic fields. The regular field lines lie in the
galactic plane and approximately run along the spiral arms. The average amplitude
of the field strength is (2-3)·10−6 G. The magnetic field also exists in the halo,
but its structure is not exactly known. It should be noted that currently there is a
numerical implementation of the leaky box model in the form of a set of GALPROP
programs.
GALPROP is a numerical solver of the diffusion equation taking into account a
detailed description of the distributions of the interstellar gas and the galactic
magnetic field [5].
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The approach used in this work differs from the work of the GALPROP software
package, and instead of solving the transport equation, individual particles are
traced in interstellar space and we also take into account the parameters of the
interstellar medium and the structure of magnetic field.

14.4 Boris - Bunemann tracing method

Now there are various software packages that perform tracing of particles in
electromagnetic fields [17]. In 1970 Boris [18] proposed a convenient way to solve
the equations of motion of particles in electromagnetic fields, this method is now
widely known as the Boris method. De facto, it is the standard for modeling
particle motion in plasma.
The method solves the classical equation of motion in an electromagnetic field
specified by vectors E⃗ and B⃗ (vectors of electric and magnetic fields, respectively).
Further, the electric field is eliminated by redefining the variables and the equation
is reduced to describing only the rotational motion in the magnetic field. Then
Bunemann introduces some additions to Boris’s algorithm that increase the ac-
curacy of the method. Today, there is an implementation of the method with the
inclusion of relativistic corrections [19].

14.4.1 Using of method

To make the method convenient to use, a software package was created that allows
you to transfer all the necessary parameters to the function for calculating the
trajectory of the environment. Below is a list of them.

• Particle initial coordinates and directional distribution.
• Particle type and energy.
• Configuration of magnetic and electric fields.
• Characteristics of temporal and spatial steps for numerical solution.
• Conditions for saving trajectories, interrupting the tracing algorithm.

It is also important to note that for the development of the software package, it
is possible to determine the interstellar medium for calculating the absorption of
cosmic rays, and a program for calculating such interactions.

14.4.2 Helium antinucleus tracing

The following initial conditions were chosen for tracing helium antinuclei:

• The initial coordinates correspond to the globular cluster M4 with the position
(-5.9, -0.3, 0.6) kpc in the galactic coordinate system [17].

• The angular distribution of particles at the point of birth is isotropic.
• The energy of particles varied from 10 GeV to 10 TeV.
• The structure of regular component of magnetic field of the Galaxy is taken

from publication [18].
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14.5 Results

Figure 1 shows examples of trajectories of helium antinuclei launched towards
the plane of the galactic disk with different energies. Particles with an energy of

Fig. 14.1: Helium trajectories in regular galactic magnetic field. The plane of the
galactic disc is shown in black.

100 GeV did not penetrate into the plane of the disk, deflected and flew away into
intergalactic space. Particles of higher energy penetrated into the galactic disk and
at an energy close to 1 TeV they had the opportunity to leave it.
In Fig. 2, the line connecting the points with errors shows the fraction of antihelium
that fell into the galactic disk 300 pc thick, depending on the particle energy.

Fig. 14.2: The dependence of the fraction of particles penetrated into the disk on
the particle energy

The obtained dependence was smoothed taking into account the error and the
energies were determined at which the smoothed curves intersect the 0.25 level,
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i.e. width at half-height of the graph (with increasing energy, the graph tends to a
value of∼ 0.5, which corresponds to the geometric factor of the disk plane from
the point with the coordinates of the M4 cluster). The obtained energy – magnetic
cutoff energy is 100 ±10 GeV. This means that the flux of helium antinuclei from
the hypothetically globular cluster of antistars M4 will be largely suppressed at
energies less than ∼ 100 GeV, but will not be completely suppressed.

14.6 Conclusion

Helium antinuclei were traced with [24] from the M4 cluster, hypothetically con-
sisting of antistars, to the plane of the galactic disk. The characteristic energy of
magnetic cutoff is determined, below which it is difficult for particles to penetrate
into the disk. Predictions of antihelium flux would strongly depend on the interfer-
ence of the initial spectrum, which is expected to be falling down with energy and
magnetic cutoff, which redices the lower energy part of the spectrum in galactic
disk. The result will be used to interpret the experimental data on antinuclear
fluxes obtained by the PAMELA and AMS-02 in near-earth orbit.
The preliminary indications to possible detection of antihelium events in AMS02
experiment, which cannot be explained as secondaries from astrophysical sources
[22], if confirmed, would become serious evidence for existence of forms of pri-
mordial antimatter in our Galaxy. It will favor Beyond the Standard Model (BSM)
physics, which can support creation and survival of antimatter domains in baryon
asymmetrical Universe, and provide a sensitive probe for parameters of the cor-
responding models [23]. Whatever is the actual form of antimatter objects in our
Galaxy, propagation of antinuclei from these sources would inevitably involve
their diffusion in galactic magnetic fields, studied in the present paper.
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Abstract. The Standard Model (SM) ascribes the observed mass of elementary particles
to an effective interaction between basis states defined without mass terms and a scalar
potential associated with the Higgs boson.
In the relativistic field theory that underlies the SM, mass itself, understood as the Lorentz-
invariant squared 4-momentum of a particle or field, is fixed a priori, imposing a constraint
on possible momentum states.
Stueckelberg introduced an alternative approach, positing antiparticles as particles evolving
backward in time, thus relaxing the mass shell constraint for individual particles.
Further work by Piron and Horwitz established a covariant Hamiltonian mechanics on an
unconstrained 8D phase space, leading to a gauge field theory that mediates the exchange
of mass between particles, while the total mass of particles and fields remains conserved.
In a recently developed extension of general relativity, consistent with this approach, the
spacetime metric evolves in a manner that permits the exchange of mass across spacetime
through the gravitational field.
Mechanisms that restrict mass exchange between particles have also been identified.
Nevertheless, mass exchange remains possible under certain circumstances and may have
phenomenological implications in particle physics and cosmology.

Povzetek Standardni model pripiše maso osnovnih delcev interakciji delcev s skalarnim
poljem — Higgsovim bozonom. V kvantni teoriji polja, na kateri standardni model gradi,
je masa določena s kvadratom Lorentzove invariantne gibalne količine delca ali polja, kar
omeji njuno gibalno količino.
Stueckelbergov privzetek, da so antidelci delci, ki potujejo v času nazaj, omejitev masne
lupine za posamezne delce odstrani.
Delo Pirona in Horwitza uveljavi kovariantno Hamiltonovo mehaniko na neomejenem 8D
faznem prostoru, kar vodi do teorije umeritvenega polja, ki posreduje izmenjavo mase med
delci in polji, medtem ko se skupna masa delcev in polj ohrani.
V nedavno razviti razširitvi splošne teorije relativnosti, ki je skladna z omenjenim pristopom,
se metrika prostora-časa razvija na način, ki dovoljuje izmenjavo mase preko gravitacijskega
polja pod določenimi pogoji. Avtor študira fenomenoloǩe posledice te omejitve v fiziki
delcev in kozmologiji.

15.1 Introduction

The Standard Model (SM) of elementary particles is a locally gauge invariant
relativistic quantum field theory with particular choices for the basis states and
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the gauge group. While efforts to move beyond the SM usually begin by gener-
alizing the algebraic structure of the gauge fields, other work has focused on the
underlying framework of relativistic dynamics. In this paper, we present such
an approach pioneered by Stueckelberg in 1941 in his work on antiparticles. In
this approach, particle mass is treated as a dynamical quantity, leading to gauge
theories in which fields and particles may exchange mass, just as they exchange
energy-momentum. We review the resulting classical and quantum electrodynam-
ics, indicating mechanisms that maintain particle masses at their familiar on-shell
values. Recent work on general relativity and gravitation is also outlined.
The notion of an elementary particle characterized by a fixed mass can be traced
back to the 1897 discovery by Thomson [1] that cathode rays are composed of
discrete bodies with a fixed charge-to-mass ratio, and the 1909 Millikan-Fletcher [2]
oil-drop experiment indicating a minimum electron charge. Today, the measured
mass uncertainty of an electron is on the order of ∆m ≃ 10−8 [3] and so it is
conventional to write single-electron equations of the type

m
duµ

dτ
= eFµνuν

(
i/∂− e /A−m

)
ψ = 0 (15.1)

for fixedm and metric signature

ηµν = (−,+,+,+) . (15.2)

The fixed mass shell pµpµ = −m2c2 is expressed in scattering by writing

d4p δ
(
pµpµ +m2c2

)
=

d3p
2
√

p2 +m2c2
(15.3)

for the momentum space measure. This picture is, of course, complicated by
the SM, which defines a Lagrangian containing no mass terms for elementary
states, finding effective mass terms through interaction with the symmetry-broken
Higgs boson. Intriguingly, the effective masses of the composite nucleons p and
n are sharper (∆m ∼ 10−10) than the masses of their constituent u and d quarks
(∆m ∼ 25%) [3]. The assumption of fixed masses is associated with a number of
issues in physics, including flavor oscillations, the problem of time, and missing
mass/energy in cosmology [4].

15.2 The Stueckelberg-Horwitz-Piron (SHP) framework

A different approach was proposed by Stueckelberg [5] in his work on antiparticles.
Pair creation and annihilation are described in QED by the Feynman diagram in
Figure 1a, showing an intermediate electron state propagating backward in time
with E < 0, but observed as a positron with E > 0 propagating forward in time.
In the quantum picture, the electron jumps from forward timelike propagation to
backward timelike propagation, remaining on its mass shell throughout.
But Stueckelberg proposed this model of pair processes in classical electrodynamics,
for a continuously evolving spacetime trajectory xµ(τ) as shown in Figure 1b. In
such a curve, ẋ0(τ) = dx0/dτmust vanish for some τ, and so ẋµ(τ) must cross the
spacelike region twice.
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E
<

0

xµ(τ )

xi(τ )

x0(τ )

τ −→ −∞

τ −→ ∞

x0
1

x0
2

x0
3

Figure 1a Figure 1b

Stueckelberg observed that ẋ2(τ) = ẋµẋµ is a dynamical quantity for this trajectory,
and so all eight components of xµ(τ) and ẋµ(τ) must be independent. Moreover,
since ẋ2 changes sign, the evolution cannot be parameterized by the proper time
of the motion ds =

√
−ẋ2dτ. The evolution parameter τ must be external to the

spacetime manifold, much as Newtonian time t is external to space.
Horwitz and Piron [6] were led to a similar model when constructing a covariant
canonical mechanics with non-trivial interactions. Writing a classical Lagrangian
system on 8D unconstrained phase space

L =
1

2
Mẋµẋµ + eẋµAµ (x) − V

d

dτ

∂L

∂ẋµ
−
∂L

∂xµ
= 0 (15.4)

one obtains the generalized Lorentz force

M
(
ẍµ + Γµνρẋ

νẋρ
)
= eFµνẋν − ∂µV (15.5)

with field strength and conjugate momentum

Fµν = ∂µAν − ∂νAµ pµ =
∂L

∂ẋµ
=Mẋµ + eAµ (x) . (15.6)

Transforming to the manifestly covariant Hamiltonian mechanics

K = ẋµpµ − L =
1

2M
(pµ − eAµ)(pµ − eAµ) + V (15.7)

leads to the classical and quantum equations of motion

ẋµ =
∂K

∂pµ
ṗµ = −

∂K

∂xµ
i∂τψ(x, τ) = Kψ(x, τ) . (15.8)

Generalizing the classical central force problem as

V(x1, x2) = V(ρ) ρ =
√
(x1 − x2)2 − (t1 − t2)2 (15.9)

Horwitz and Arshansky [7] obtained solutions for relativistic scattering and bound
states, Horwitz and Land studied radiative transitions, selection rules, perturba-
tion theory, Zeeman and Stark effects, and bound state decay [8], and Horwitz
demonstrated entanglement and interference in time [9].
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The physical picture [10] that emerges from Stueckelberg’s unconstrained mechan-
ics can be summarized as an upgrade of nonrelativistic classical and quantum
mechanics in which Galilean symmetry is replaced with Poincaré symmetry:

Newtonian time t
+

Unconstrained
{
xi,
dxj

dt

}
+

Scalar Hamiltonian H


−→



External time τ
+

Unconstrained
{
xµ,

dxν

dτ

}
+

Scalar Hamiltonian K

This covariant canonical mechanics inherits many methods and insights of Newto-
nian mechanics, so for example, from the Poisson bracket

{F,G} =
∂F

∂xµ
∂G

∂pµ
−
∂G

∂xµ
∂F

∂pµ

dF

dτ
= {F, K}+

∂F

∂τ
(15.10)

it follows that

∂H

∂t
= 0⇒ conserved energy −→ ∂K

∂τ
= 0⇒ conserved mass

which for a free particle can be seen from

K =
1

2M
pµpµ −→ ẋµ =

pµ

M
, ṗµ = 0 −→ ẋ2 = constant . (15.11)

As discussed by Horwitz, Arshansky, and Elitzur [11], this framework formalizes
a distinction between two aspects of time: the time t is one of four spacetime
coordinates xµ characterizing the location of a single event, while the time τ
represents the chronological order of multiple events. The physical spacetime event
xµ(τ) is understood as an irreversible occurrence at time τ so that for τ2 > τ1, event
xµ(τ2) occurs after xµ(τ1) and cannot change it. This changes the significance
of a closed timelike curve, resolving the grandfather paradox. The proverbial
traveler revisiting at τ3 > τ2 the spacetime locations xµ(τ) of his grandfather’s
trajectory as it evolved from τ1 to τ2 > τ1, may add events xµ(τ3) but cannot
alter that life trajectory as it has irreversibly occurred. More generally, the 4D
block universe M(τ) occurs at τ, evolving to the infinitesimally close the 4D block
universe M(τ+dτ) under motion generated by the Hamiltonian K. Because K is a
Lorentz scalar and τ is external, we expect no conflict with general diffeomorphism
invariance.

15.3 Classical Off-Shell Electrodynamics

The origin of the scalar potential V in (15.4) can be understood by requiring
invariance under τ-dependent gauge transformations [12], leading to a theory
with five gauge fields,Aµ(x) → aµ(x, τ) and a5(x, τ). The maximal gauge freedom
of the classical action [13]∫

dτ L −→ ∫
dτ

[
L+

d

dτ
Λ (x, τ)

]
=

∫
dτ [L+ ẋµ∂µΛ+ ∂τΛ] (15.12)
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suggests a coupling with a pure gauge field with components ∂µΛ and ∂τΛ.
Introducing the notation

µ, ν = 0, 1, 2, 3 and α,β = 0, 1, 2, 3, 5 (15.13)

and writing x5 = c5τ in analogy to x0 = ct, we rewrite the classical interaction as

e

c
ẋµAµ (x) − V(x) −→ e

c
ẋµaµ (x, τ) +

e

c
ẋ5a5 (x, τ) =

e

c
ẋαaα (x, τ) (15.14)

now invariant under 5D gauge transformations aα → aα + ∂αΛ (x, τ). The La-
grangian

L =
1

2
Mẋµẋµ +

e

c
ẋαaα (x, τ) (15.15)

admits the conserved 5-current

jα (x, τ) = cẋαδ4 (x− X (τ)) ∂αj
α = ∂µj

µ + ∂5j
5 = 0 (15.16)

which can be related to the Maxwell current by observing that under appropriate
boundary conditions

Jµ(x) =

∫
dτjµ (x, τ) −→ ∂µJ

µ = 0 . (15.17)

This integral is called concatenation, understood as the sum of contributions
g(x, τ) to G(x) along the worldline, under g(x,±∞) = 0. The interaction (15.14)
appears to be 5D symmetric, but this symmetry is broken to vector and scalar
representations of O(3,1), because ẋ5 = c5 ≪ c is a constant and not a dynamical
quantity. The Lorentz force [14] found from the Euler-Lagrange equations are

Mẍµ =
e

c
ẋβfµβ =

e

c
(ẋνfµν − c5f5µ) (15.18)

d

dτ

(
−
1

2
Mẋµẋµ

)
= c5

e

c
ẋµf5µ (15.19)

with 5D field strength

fαβ = ∂αaβ − ∂βaα α,β = 0, 1, 2, 3, 5 . (15.20)

From (15.19) we see that εµ (x, τ) = f5µ (x, τ) = ∂5aµ − ∂µa5 induces mass ex-
change. The field fµν (x, τ) becomes the Maxwell field Fµν (x) under concatenation,
decoupling from f5µ.
Expanding the interaction term

Ẋαaα −→ ∫
d4x Ẋα(τ)δ4

(
x− X(τ)

)
aα(x, τ) (15.21)

we define the sharp current, a delta function on 4D spacetime,

jα(x, τ) = cẊα(τ)δ4
(
x− X(τ)

)
(15.22)
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which by (15.17) recovers the standard Maxwell current

Jµ(x) = c

∫
dτẊµ(τ)δ4

(
x− X(τ)

)
. (15.23)

To complete the electromagnetic action, we introduce a kinetic term for the electro-
magnetic field

Sem

∫
d4xdτ

{
10
e

c2
jα(x, τ)aα(x, τ) −

∫
ds

λ

1

4c

[
fαβ(x, τ)Φ(τ− s)fαβ (x, s)

]}
(15.24)

where the interaction kernel

Φ(τ) = δ (τ) − (ξλ)2δ′′ (τ) ξ =
1

2

[
1+

(c5
c

)2]
(15.25)

smooths the sharp current (15.22). The constant λ has dimensions of time and
serves as a correlation length along the worldline. The scalars jαaα and fαβfαβ

suggest a 5D symmetry containing O(3,1), either O(4,1) or O(3,2). Although any
higher symmetry is broken by ẋ5 = constant and by the δ′′ (τ) term inΦ(τ), it is
convenient to introduce a formal 5D metric

gαβ −→
flat

ηαβ = diag(−1, 1, 1, 1, σ) η55 = σ = ±1 (15.26)

for raising the 5-index in fαβ. Since fαβfαβ = fµνfµν + 2η55f µ
5 f5µ we may regard

σ = η55 as simply the relative sign of the vector-vector kinetic term, with no
geometric significance. The interaction kernel is invertible as

φ(τ) = λΦ−1(τ) = λ

∫
dκ

2π

e−iκτ

1+ (ξλκ)
2
=
1

2ξ
e−|τ|/ξλ (15.27)

∫
ds

λ
φ (τ− s)Φ (s) = δ(τ)

∫
dτ

λ
φ (τ) = 1 (15.28)

so that variation of the electromagnetic action with respect to aα(x, τ) provides
the field equations

∂βf
αβ (x, τ) =

e

c

∫
ds φ (τ− s) jα (x, s) =

e

c
jαφ (x, τ) (15.29)

∂αfβγ + ∂γfαβ + ∂βfγα = 0 (identically) (15.30)

with source current jαφ (x, τ) smoothed along the worldline by convolution of
jα (x, τ) with the inverse interaction kernel φ. These are known as pre-Maxwell
equations, and when written in 4+1 (spacetime + τ) components

∂νf
µν −

1

c5

∂

∂τ
f5µ =

e

c
jµφ ∂µf

5µ =
e

c
j5φ

∂µfνρ + ∂νfρµ + ∂ρfµν = 0 ∂νf5µ − ∂µf5ν +
1

c5

∂

∂τ
fµν = 0

(15.31)
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are comparable to Maxwell’s equations in 3+1 (space + time) components where
f5µ plays the role of the electric field sourced by j5φ in Gauss’s law, and fµν is a
magnetic field induced by “curl” and τ dependence of f5µ. Writing

fαβ
Φ (x, τ) =

∫
ds

λ
Φ(τ− s)fαβ (x, s) (15.32)

translation invariance of the action leads to the Noether symmetry

∂αT
αβ
Φ = −

e

c2
fβαjα Tαβ

Φ =
1

c

(
fαγ
Φ fβγ −

1

4
gαβfδγΦ fδγ

)
(15.33)

where Tµν
Φ is the energy-momentum tensor, and the terms T5αΦ represent mass

density in the field and the flow of mass into spacetime. Inserting the current
(15.22) into (15.33) and using the second Lorentz force equation (15.19), we find

d

dτ

(∫
d4x T5µ +Mẋµ

)
= 0

d

dτ

(∫
d4x T55 − σ

1

2
Mẋ2

)
= 0 (15.34)

demonstrating that the total energy-momentum and mass of the particle and field
are conserved [14]. As was seen for the current, concatenation of the pre-Maxwell
equations leads to the Maxwell equations

∂βf
αβ (x, τ) =

e

c
jαφ (x, τ)

∂[αfβγ] = 0

 −−−−−−−−−→∫
dτ

λ


∂νF

µν (x) =
e

c
Jµ (x)

∂[µFνρ] = 0

(15.35)

representing a sum of microscopic contributions at each τ to the Maxwell fields at
a given spacetime point.
The pre-Maxwell equations lead to the 5D wave equation

∂β∂
βaα = (∂µ∂

µ + ∂τ∂
τ)aα = (∂µ∂

µ +
σ

c25
∂2τ)a

α = −
e

c
jαφ (x, τ) (15.36)

with Green’s function [15]

GP(x, τ) = −
1

2π
δ(x2)δ(τ) −

c5

2π2
∂

∂x2
θ(−σxαxα)

1√
−σxαxα

= (15.37)

= GMaxwell +GCorrelation (15.38)

where Gcorrelation is smaller than GMaxwell by c5/c and drops off faster with
distance. Notice that GCorrelation has spacelike support for σ = −1 and timelike
support for σ = +1. Under concatenationGMaxwell(x, τ) goes over to the standard
Maxwell Green’s function and GCorrelation vanishes.
A “static” source event evolving along the x0-axis in its rest frame as X (τ) =

(cτ, 0, 0, 0) induces for an observer on the parallel trajectory x(τ) = (cτ, x) a
Yukawa-type potential [16]

a0(x, τ) =
e

4π|x|
1

2ξ
e−|x|/ξλc (15.39)
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with photon mass spectrummγc
2 ∼ ℏ/ξλ. Using the accepted experimental error

for photon mass ∆mγ ∼ 10−18 eV leads to λ > 104 seconds. The constant λ can
be seen as a correlation time along the worldline, the width of the ensemble of
events contributing to the pre-Maxwell current and potential [17]. In the limit
λ → 0 the kinetic term in the action (15.3) reduces to fαβfαβ, the photon mass
spectrum goes to infinity, and a0 becomes a delta function. In the limit λ →∞ the photon mass spectrum vanishes and the pre-Maxwell system reduces to
Maxwell electrodynamics. The Liénard-Wiechert potential for an arbitrary source
event Xµ (τ) at an observation point xµ similarly leads to the Maxwell formula
multiplied by the factor φ (τ− τR) where τR is the retarded time found from
[x− X(τR)]

2
= 0. Comparing the Lorentz forces for e−/e+ and e−/e− scattering

leads to an experimental bound on c5 ≪ c [18].

15.4 Mass interactions and mass stability

A simple model of mass variation is a uniformly moving particle undergoing a
stochastic perturbation x = uτ→ uτ+ X(τ) when entering a dense distribution
of charged particles [19]. If the typical short distance between charge centers is d
then the particle will encounter charges periodically, with a short characteristic
period d/ |u|, leading to a high characteristic frequency ω0 = 2π |u| /d. Expanding
the perturbation in a Fourier series

X (τ) = Re
∑
n

an e
inω0τ aµn = αd

(
s0n, sn

)
= αd

(
cstn, sn

)
(15.40)

with normalized coefficients sµ0 ∼ 1 and some macroscopic factor α ≲ 1. We obtain
a small perturbation of position |Xµ (τ)| ∼ αd, but a velocity perturbation

ẋµ (τ) = uµ + α |u| Re
∑
n

2πn sµn ie
inω0τ (15.41)

of macroscopic scale α |u|. Writing the particle mass asm(τ) = −Mẋ2/c2 leads to
a macroscopic mass perturbation

m −→ m

(
1+

∆m

m

)
∆m

m
= 4πα |u|Re

∑
n

n stn ie
inω0τ (15.42)

which could persist when the particle leaves the charge distribution.
One possible reason that we do not see such mass perturbations more frequently
is a self-interaction that tends to restore mass to its familiar on-shell value. We
consider a particle with arbitrary ẋ0(τ) in its rest frame, where ẍ0 ̸= 0 entails
mass variation through −Mẋ2 =Mc2ṫ2(τ). Along the worldline, the particle may
interact at time τ∗ > τ with the field it produces at τ, but of course GMaxwell,
the leading term in the Green’s function, vanishes on ∆X(τ∗, τ) = X(τ∗) − X(τ) =
c(t(τ∗) − t(τ), 0), the timelike separation. Nevertheless, from (15.37) we see that
GCorrelation has support for −σxαxα > 0, which is this case is the condition

−
[
∆X2 + c25(τ

∗ − τ)2
]
= c2

([
t (τ∗) − t (τ)

]2
−
c25
c2

(τ∗ − τ)2
)
> 0 (15.43)
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when σ = +1. Expanding t(τ) in a Taylor series, one finds that condition (15.43) is
satisfied if and only if ẗ ̸= 0, which in the rest frame implies mass variation. Now
suppose that a particle evolves uniformly as t = τ until τ = 0 when it makes a
sudden jump to t = (1 + β)τ. The field strength acting on the particle at τ∗ > 0
contains only the component

f50 ≈ e

4π2
1

c25 (βτ
∗)3

Q

(
β,
c25
c2

)
(15.44)

where Q
(
β,
c25
c2

)
is a positive function that vanishes for β = 0 or c5 = 0. The

Lorentz force is then

Mẍ0 = −c5ef
50 =


0 , τ∗ < 0

−
λe2

4π2
1

c5 (βτ∗)
3
Q

(
β,
c25
c2

)
, τ∗ > 0

(15.45)

Mẍi = −c5ef
5iẋi = 0 (15.46)

and

d

dτ

(
−
1

2
Mẋ2

)
= ef5µẋµ = −ecf50ṫ = −

λe2

4π2
c

c25 (βτ
∗)3

Q

(
β,
c25
c2

)
ṫ (15.47)

which acts as a restoring force, damping the mass toward its on-shell value and
vanishing on shell.
Another approach [20] describes the particle as a statistical ensemble with both
an equilibrium energy and an equilibrium mass, controlled by temperatures and
chemical potentials, assuring asymptotic states with the correct mass. The ther-
modynamic properties are found from the microcanonical ensemble, where both
energy and mass are parameters of the distribution. A critical point in the free
energy emerges from equilibrium requirements of the canonical ensemble (where
total system mass is variable), and equilibrium requirements of the grand canonical
ensemble (where a chemical potential arises for the particle number). Because par-
ticle mass is controlled by a chemical potential, asymptotic variations in the mass
are restored to a given value by relaxation, satisfying the equilibrium conditions.

15.5 Off-Shell Quantum Electrodynamics

Transforming the classical Lagrangian (15.15) to Hamiltonian form, we are led to
the Stueckelberg-Schrodinger equation

(
iℏ∂τ + e

c5

c
a5

)
ψ (x, τ) =

1

2M

(
pµ −

e

c
aµ
)(
pµ −

e

c
aµ

)
ψ (x, τ) (15.48)

with local 5D gauge invariance

ψ(x, τ) → eieΛ(x,τ)/ℏcψ(x, τ) aα(x, τ) → aα(x, τ) + ∂αΛ(x, τ) (15.49)
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and global gauge invariance providing the conserved current ∂αjα = 0 with
4-vector part

jµ = −
iℏ
2M

{
ψ∗
(
∂µ −

ie

c
aµ
)
ψ−ψ

(
∂µ +

ie

c
aµ
)
ψ∗

}
(15.50)

and event density j5 = c5 |ψ(x, τ)|
2 representing the probability of finding an

event at a spacetime point x at time τ. The quantum Lagrangian is

L = ψ∗(i∂τ + ea5)ψ−
1

2M
ψ∗(−i∂µ − eaµ)(−i∂

µ − eaµ)ψ−
λ

4
fαβfΦαβ (15.51)

where fΦαβ (x, τ) is defined in (15.32), which admits Jackiw first order constrained
quantization [21] by introducing ϵµ = f5µ. Because ȧ5 does not appear in the
Lagrangian, path integration over a5 inserts the Gauss law constraint δ(∂µϵΦµ −

eψ∗ψ) which may be solved to eliminate longitudinal modes. Feynman rules may
be read from the unconstrained Lagrangian

L = iψ∗ψ̇−
1

2M
ψ∗(−i∂µ−ea⊥ µ)(−i∂

µ−eaµ⊥)ψ+
1

2
a⊥ µ

(
□+ σ∂2τ

)
aΦ⊥

µ (15.52)

as matter and photon propagators

1

(2π)5
−i

1
2M
p2 − P − iϵ

[
gµν −

kµkν

k2

]
−i

k2 + κ2 − iϵ

1

1+ λ2κ2
(15.53)

along with three and four particle vertex factors

e

2M
i(p+ p′)ν (2π)5δ4(p− p′ − k)δ(P − P′ − κ)12

−ie2

M
(2π)5gµνδ

4(k− k′ − p′ + p)δ(−κ+ κ′ + P′ − P)
(15.54)

which conserve total energy-momentum and mass. The matter propagator

G(x, τ) =

∫
d4kdκ

(2π)5
ei(k·x−κτ)

1
2M
k2 − κ− iϵ

= iθ(τ)

∫
d4k

(2π)4
ei(k·x−

1
2M

k2+iϵ) (15.55)

enforces retarded causality in τ, so that there are no matter loops, just as there are
no grandfather paradoxes. This expression was previously found by Feynman [22]
for the Klein-Gordon equation, leading to the Feynman propagator by extracting
a stationary eigenstate of the mass operator −iℏ∂τ as∫∞

−∞ dτe
−i(m2/2M)τG(x, τ) =

∫
d4k

(2π)4
eik·x

1
2M

(k2 +m2) − iϵ
= 2M ∆F(x) . (15.56)

We see that the interaction kernel inherited from the classical electromagnetic
term provides the natural mass cut-off

(
1+ λ2K2

)−1 which renders the theory
super-renormalizable. The cross-section for elastic scattering is nearly identical to
the Klein-Gordon case, but the pole is slightly shifted away from 0o for non-zero
mass exchange between the outgoing particles (expressed as an undetermined
hyperangle, much as the scattering angle is undetermined in on-shell QED) [23].
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15.6 General relativity with τ-evolution

As described in Section 15.2, the SHP framework poses a block universe M(τ) that
evolves to a block universe M(τ + dτ) under a Hamiltonian K. We thus expect
that the spacetime metric gµν(x, τ) should similarly evolve to gµν(x, τ + dτ).
To find field equations that prescribe this evolution, we look for hints from the
development of the pseudo-5D off-shell electromagnetic field equations, which
differ from Maxwell equations written in five dimensions because excluding x5

from the dynamical degrees of freedom breaks any 5D symmetry [13, 24]. Just
as there is no Lorentz force for ẍ5, there must be no geodesic equation for ẍ5 in
curved spacetime.
In standard 4D general relativity (GR), the invariance of the squared interval
δx2 = γµνδx

µδxν = (x2 − x1)
2 between neighboring events (an instantaneous

displacement) is a geometrical statement, characterizing the manifold M. For
events X1 = (x1, c5τ1) and X2 = (x2, c5 (τ1 + δτ)) belonging to M(τ) and M(τ+

dτ) the squared interval

dXαdXα =

(
δx+

d x(τ)

dτ
δτ

)2

+ σc25δτ
2 = gαβ (x, τ) δxαδxβ (15.57)

suggests a pseudo-5D metric gαβ (x, τ), analogous to the pseudo-5D electromag-
netic field fαβ (x, τ). The evolution of gαβ (x, τ) differs from a standard metric
defined in 5D, because it combines 4D geometrical symmetries of M(τ) with the
scalar dynamical symmetry of Hamiltonian K. To preserve the constraint x5 ≡ c5τ
we expand the classical Lagrangian as

L =
1

2
Mgαβ(x, τ)ẋ

αẋβ =
1

2
Mgµν ẋ

µẋν +Mc5 gµ5ẋ
µ +

1

2
Mc25 g55 (15.58)

to obtain four geodesic equations and an identity

0 = ẍα + Γαβγẋ
βẋγ −→

 ẍ
µ + Γµλσẋ

λẋσ + 2c5Γ
µ
5σẋ

σ + c25Γ
µ
55 = 0

ẍ5 = ċ5 ≡ 0
(15.59)

and the Hamiltonian

K = pµẋ
µ − L =

1

2
Mgµνẋ

µẋν −
1

2
Mc25 g55 = L−Mc25 g55 (15.60)

from which we find

dK

dτ
= −

1

2
Mẋµẋν

∂gµν

∂τ
−
1

2
Mc25

∂g55

∂τ
(15.61)

showing that particle mass is not generally conserved along geodesics.
We define the event density in spacetime n(x, τ) and mass density ρ(x, τ) =

Mn(x, τ), leading to the event current jα (x, τ) = ẋα(τ)ρ(x, τ) and continuity
equation ∇αj

α = 0 with covariant derivative ∇µ defined in the standard manner
and ∇5 = ∂5. Current conservation leads to conservation of the analogously
defined mass-energy-momentum tensor Tαβ = ρẋαẋβ. If we write the standard
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Einstein field equations in 5D and study the linearized form for weak gravitation
gαβ ≈ ηαβ +hαβ, we obtain a wave equation that can be solved using the Green’s
function (15.37). However, the metric perturbation found from a “static” source
in its rest frame includes h00 = 2hij = h55, which deviates from the expected
structure, h00 = hij ≫ h55. To determine the correct modification of the field
equations we choose a form that preserves the 5D symmetries of the Ricci tensor
Rαβ, but breaks the apparent 5D symmetry in the relationship between Rαβ and
Tαβ. In trace-reversed form, we write [13]

Rαβ =
8πG

c4

(
Tαβ −

1

2
ḡαβT̄

)
ḡµν = gµν ḡ5α = 0 (15.62)

where T̄ = ḡµνTµν, which for the “static” source in the weak field approximation
leads to

gµν =

(
−

(
1−

2Gm

c2r

)
,

(
1−

2Gm

c2r

)−1

δij

)
g55 = σ+ o

(
c25
c2

)
(15.63)

consistent with a spherically symmetric Schwarzschild metric. A source in its
rest frame with mass varying arbitrarily as ẋ0(τ) = c[1 + α (τ) /2] leads to a τ-
dependent perturbation. The geodesic equations for a test particle in this space
undergoes a nonlinear x0 acceleration, and satisfies a radial equation

d

dτ

{
1

2
Ṙ2 +

1

2

L2

M2R2
−
GM

R

(
1+

1

2
α (τ)

)}
= −

GM

2R

d

dτ
α (τ) (15.64)

with conserved angular momentum L =MR2ϕ̇. The term in brackets on the LHS
is the Hamiltonian in these coordinates, indicating that the mass of the test particle
is not conserved when the mass of the source varies. This simple example suggests
that a source particle of varying mass can transfer mass across spacetime to a test
mass moving geodesically under the influence of the metric field induced by the
source [24].
Decomposing these field equation (15.62) into 4+1 form [13], analogous to the 3+1
decomposition used in the ADM formalism [25], we find that the 20 spacetime
components Rµν are unconstrained second order evolution equations, while the
five components Rα5 are constraints that propagate at first order in ∂τ. Moreover,
from T̄ = T − g55T55, the mass density T55 sourced by g55 and not necessarily
constant, is seen to play the role of a small cosmological term Λ.
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Abstract. This contribution presents properties of the second quantized not only fermion
fields but also boson fields, if the second quantization of both kinds of fields origins in the
description of the internal space of fields with the ”basis vectors” which are the superposi-
tion of odd (when describing fermions) or even (when describing bosons) products of the
Clifford algebra operators γa’s. The tensor products of the ”basis vectors” with the basis in
ordinary space forming the creation operators manifest the anticommutativty (of fermions)
or commutativity (of bosons) of the ”basis vectors”, explaining the second quantization
postulates of both kinds of fields. Creation operators of boson fields have all the properties
of the gauge fields of the corresponding fermion fields, offering a new understanding of
the fermion and boson fields.

Povzetek: Prispevek razloži drugo kvantizacijo ne le fermionskih ampak tudi bozon-
skih polj. Notranji prostor fermionov opišejo ”osnovnimi vektorji”, ki so superpozicija
produktov lihega števila Cliffordovh operatorjev γa, bozonski ”osnovnimi vektorji” pa
so superpozicija produktov sodega števila Cliffordovih operatorjev γa. Kreacijski in ani-
hilacijski operatorji, ki so tenzorski produkt končnega števila ”osnovnih vektorjev” in
zvezno neskončnega števila komutirajočih vektorjev v običajnem prostoru, ”podedujejo”
antikomutativnost ali komutativnost od ”osnovnih vektorjev”. Posledično fermionska
stanja antikomutirajo in bozonska komutirajo, kar razloži postulate druge kvantizacije za
fermionska in bozonska polja in ponudi nov pogled za lastnosti obeh vrst polj.

16.1 Introduction

In a long series of works [19,20,23,25,26,28,29,31] I have found, together with the
collaborators ( [1, 26, 32, 34, 35, 37] and the references therein), with H.B. Nielsen
and in long discussions with participants during the annual workshops ”What
comes beyond the standard models”, the phenomenological success with the
model named the spin-charge-family theory: The internal space of fermions are in
this model described with the Clifford algebra objects of all linear superposition
of odd products of γa’s in d = (13 + 1). Fermions interact with only gravity —
with the vielbeins and the two kinds of the spin connection fields (the gauge
fields of Sab = i

4
(γaγb − γbγa) and S̃ab = 1

4
(γ̃aγ̃b − γ̃bγ̃a) 1). Spins from higher

1 If there are no fermion present the two kinds of the spin connection fields are uniquely
described by the vielbeins [36].



i
i

“U” — 2021/12/15 — 21:46 — page 192 — #208 i
i

i
i

i
i
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dimensions, d > (3+ 1), described by γa’s, manifest in d = (3+ 1) as charges of
the standard model quarks and leptons and antiquarks and antileptons, appearing
in (two times four) families, the quantum numbers of which are determined by
the second kind of the Clifford algebra object S̃ab’s. Gravity in higher dimensions
manifests as the standard model vector gauge fields as well as the scalar Higgs and
Yukawa couplings [1, 5, 23, 25, 26, 26–29, 31, 32, 34, 35, 37], predicting new scalar
fields, which offer the explanation besides for higgs scalar and Yukawa couplings
also for the asymmetry between matter and antimatter in our universe and for
the dark matter (represented by the stable of the upper group of four families),
predicting a new family — the fourth family to the observed three.
In this contribution I shortly repeat the description of the internal space of the
second quantized fermion fields with the odd products of the Clifford operators
γa’s, what leads to the creation operators for fermions without postulating the sec-
ond quantization requirements of Dirac [7–9]. The creation operators for fermions,
which are superposition of tensor products of the ordinary basis and the ”basis
vectors” describing the internal space of fermions, anticommute, explaining corre-
spondingly the postulates of Dirac, offering also a new understanding of fermion
fields ( [1] and references therein). The creation operators of fermions appear
in families, carrying either left or right handedness, their Hermitian conjugated
partners belong to another set of Clifford odd ”basis vectors” carrying the opposite
handedness.
The main part of this contribution discusses properties of the second quantized
boson fields, which are the gauge fields of the corresponding second quantized
fermion fields. The internal space of bosons is described by the superposition
of even products of γa’s. The boson fields correspondingly commute. The cor-
responding creation operators and their Hermitian conjugated partners belong
to the same set of ”basis vectors”, carrying all the quantum numbers in adjoint
representations. They interact among themselves and with the corresponding
fermion fields.
In Sect. 16.2 the anticommuting Grassmann and Clifford algebras are presenting
and the relations among them discussed. The ”basis vectors” are defined as the
egenvectors of the Cartan subalgebra of the Lorentz algebra for the Grassmann and
the two Clifford algebras for odd and for even products of algebras members, and
their anticommutation or commutation relations presented, Subsect. 16.2.1. The
reduction of the two kinds of the Clifford algebras to only one makes the Clifford
odd ”basis vectors” anticommuting, giving to different irreducible representations
of the Lorentz algebra the family quantum numbers, Subsect. 16.2.2. To make
understanding of the properties of the Clifford odd and Clifford even ”basis
vectors” easier in Subsect. 16.2.3 the case of d = (5 + 1)-dimensional space is
chosen and the ”basis vectors” of odd, 16.2.3, and even, 16.2.3, Clifford character
are presented in details and then generalized to any even d, Subsect. 16.2.4.
In Sect. 16.3 the creation operators of the second quantized fermion and boson
fields are discussed, as well as their Hermitian conjugated partners. In Sub-
sect. 16.3.1 the simple action for fermion interacting with bosons and for cor-
responding bosons, as assumed in the spin-charge-family theory is presented.
Sect. 17.5 reviews shortly what one can learn in this contribution.
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Both algebras, Grassmann and Clifford, offer ”basis vectors” for the description
of the internal space of fermions [1, 19, 20] and the corresponding bosons with
which fermions interact. The oddness or evenness of ”basis vectors”, transfered to
the creation operators, which are tensor products of the finite number of ”basis
vectors” and the (continuously) infinite number of momentum (or coordinate)
basis, and to their Hermitian conjugated partners annihilation operators, offers
the second quantization of fermions and bosons without postulating the second
quantized conditions [7–9] for either the half integer spin fermions or integer spin
bosons, enabling the explanation of the Dirac’s postulates. Further investigations
are needed in both case, for the boson case in particular, although promising, the
time for this study was too short.

16.2 Grassmann and Clifford algebras

To describe the internal space of fermions and bosons one can use either the
Grassmann or the Clifford algebras.
In Grassmann d-dimensional space there are d anticommuting operators θa,
{θa, θb}+ = 0, a = (0, 1, 2, 3, 5, .., d), and d anticommuting derivatives with respect
to θa, ∂

∂θa
, { ∂

∂θa
, ∂
∂θb

}+ = 0, offering together 2 · 2d operators, the half of which
are superposition of products of θa and another half corresponding superposition
of ∂

∂θa
.

{θa, θb}+ = 0 , {
∂

∂θa
,
∂

∂θb
}+ = 0 ,

{θa,
∂

∂θb
}+ = δab , (a, b) = (0, 1, 2, 3, 5, · · · , d) . (16.1)

Defining [32]

(θa)† = ηaa
∂

∂θa
, leads to (

∂

∂θa
)† = ηaaθa . (16.2)

θa and ∂
∂θa

are, up to the sign, Hermitian conjugated to each other. The identity
is the self adjoint member of the algebra. We make a choice for the complex
properties of θa, and correspondingly of ∂

∂θa
, as follows

{θa}∗ = (θ0, θ1,−θ2, θ3,−θ5, θ6, ...,−θd−1, θd) ,

{
∂

∂θa
}∗ = (

∂

∂θ0
,
∂

∂θ1
,−

∂

∂θ2
,
∂

∂θ3
,−

∂

∂θ5
,
∂

∂θ6
, ...,−

∂

∂θd−1
,
∂

∂θd
) . (16.3)

In d-dimensional space of anticommuting Grassmann coordinates and of their
Hermitian conjugated partners derivatives, Eqs. (17.3, 16.2), there exist two kinds
of the Clifford coordinates (operators) — γa and γ̃a — both expressible in terms
of θa and their conjugate momenta pθa = i ∂

∂θa
[20].

γa = (θa +
∂

∂θa
) , γ̃a = i (θa −

∂

∂θa
) ,

θa =
1

2
(γa − iγ̃a) ,

∂

∂θa
=
1

2
(γa + iγ̃a) ,

(16.4)
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offering together 2 · 2d operators: 2d of those which are products of γa and 2d of
those which are products of γ̃a. Taking into account Eqs. (16.2, 16.4) it is easy to
prove that they form two independent anticommuting Clifford algebras, Refs. ( [1]
and references therein)

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,

{γa, γ̃b}+ = 0 , (a, b) = (0, 1, 2, 3, 5, · · · , d) ,
(γa)† = ηaa γa , (γ̃a)† = ηaa γ̃a , (16.5)

with ηab = diag{1,−1,−1, · · · ,−1}.
While the Grassmann algebra can be used to describe the ”anticommuting integer
spin second quantized fields” and ”commuting integer spin second quantized
fields” [1, 25], the Clifford algebras describe the second quantized fermion fields,
if the superposition of odd products of γa’s or γ̃a’s are used. The superposition
of even products of either γa’s or γ̃a’s describe the commuting second quantized
boson fields.
The reduction, Eq. (17.9) of Subsect. (16.2.2), of the two Clifford algebras — γa’s
and γ̃a’s — to only one is needed — γa’s are chosen — for the correct description
of the internal space of fermions. After the decision that only γa’s are used to
describe the internal space of fermions, the remaining ones, γ̃a’s, are used to
equip the irreducible representations of the Lorentz group (with the infinitesimal
generators Sab = i

4
{γa, γb}−) with the family quantum numbers in the case that

the odd Clifford algebra describes the internal space of the second quantized
fermions.
It then follows that the even Clifford algebra objects, the superposition of the even
products of γa’s, offer the description of the second quantized boson fields, which
are the gauge fields of the second quantized fermion fields, the internal space of
which are described by the odd Clifford algebra objects. This will be demonstrated
in this contribution.

16.2.1 ”Basis vectors” determined by superposition of odd and even products
of Clifford objects.

There are d
2

members of the Cartan subalgebra of the Lorentz algebra in even
dimensional spaces. One can choose

S03,S12,S56, · · · ,Sd−1 d ,

S03, S12, S56, · · · , Sd−1 d ,

S̃03, S̃12, S̃56, · · · , S̃d−1 d ,

Sab = Sab + S̃ab . (16.6)

Let us look for the ”eigenstates” of each of the Cartan subalgebra members,
Eq. (16.6), for each of the two kinds of the Clifford algebras separately,

Sab
1

2
(γa +

ηaa

ik
γb) =

k

2

1

2
(γa +

ηaa

ik
γb) , Sab

1

2
(1+

i

k
γaγb) =

k

2

1

2
(1+

i

k
γaγb) ,

S̃ab
1

2
(γ̃a +

ηaa

ik
γ̃b) =

k

2

1

2
(γ̃a +

ηaa

ik
γ̃b) , S̃ab

1

2
(1+

i

k
γ̃aγ̃b) =

k

2

1

2
(1+

i

k
γ̃aγ̃b) ,(16.7)
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k2 = ηaaηbb. The proof of Eq. (17.7) is presented in Ref. [1], App. (I).
Let us introduce for nilpotents 1

2
(γa+ηaa

ik
γb), (1

2
(γa+ηaa

ik
γb))2 = 0 and projectors

1
2
(1+ i

k
γaγb), (1

2
(1+ i

k
γaγb))2 = 1

2
(1+ i

k
γaγb) of both algebras the notation

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

(k)

†
= ηaa

ab

(−k) , (
ab

(k))2 = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k]

ab

[k]: =
1

2
(1+

i

k
γaγb) ,

ab

[k]

†
=

ab

[k] , (
ab

[k])2 =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,

ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(k)
ab

[−k]=
ab

(k) ,
ab

[k]
ab

(−k)= 0 ,

ab
˜(k): =

1

2
(γ̃a +

ηaa

ik
γ̃b) ,

ab
˜(k)

†

= ηaa
ab
˜(−k) , (

ab
˜(k))2 = 0 ,

ab
˜[k]: =

1

2
(1+

i

k
γ̃aγ̃b) ,

ab
˜[k]

†

=
ab
˜[k] , (

ab
˜[k])2 =

ab
˜[k] ,

ab
˜(k)

ab
˜[k] = 0 ,

ab
˜[k]

ab
˜(k)=

ab
˜(k) ,

ab
˜(k)

ab
˜[−k]=

ab
˜(k) ,

ab
˜[k]

ab
˜(−k)= 0 , (16.8)

Statement 1. One can define ”basis vectors” to be eigenvectors of all the members of
the Cartan subalgebras as even or odd products of nilpotents and projectors in any even
dimensional space.

Due to the anticommuting properties of the Clifford algebra objects there are
anticommuting and commuting ”basis vectors”. The anticommuting ”basis vec-
tors” contain an odd products of nilpotents, at least one nilpotent, the rest are
then projectors. Let us denote the Clifford odd ”basis vectors” of the Clifford γa

kind as b̂m†
f , where m and f determine the mth member of the fth irreducible

representation. We shall denote by b̂mf = (b̂m†
f )† the Hermitian conjugated part-

ner of the ”basis vector” b̂m†
f . The ”basis vectors” of the Clifford γ̃a kind would

correspondingly be denoted by ^̃bm†
f and ^̃bmf .

It is not difficult to prove the anticommutation relations of the Clifford odd ”basis
vectors” and their Hermitian conjugated partners for both algebras ( [1, 19] and
references therein). Let us here present only the one of the Clifford algebras —
γa’s.

b̂mf ∗A |ψoc > = 0 |ψoc > ,

b̂m†
f ∗A |ψoc > = |ψm

f > ,

{b̂mf , b̂
m ′
f ′ }∗A+|ψoc > = 0 |ψoc > ,

{b̂m†
f , b̂m†

f }∗A+|ψoc > = |ψoc > , (16.9)

where ∗A represents the algebraic multiplication of b̂m†
f and b̂m

′
f ′ among them-

selves and with the vacuum state |ψoc > of Eq.(17.10), which takes into account
Eq. (17.5),

|ψoc >=

2
d
2

−1∑
f=1

b̂mf ∗A b̂
m†
f | 1 > , (16.10)
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for one of the membersm, anyone, of the odd irreducible representation f, with
| 1 >, which is the vacuum without any structure — the identity. It follows that
b̂mf ||ψoc >= 0. The relations are valid for both kinds of the odd Clifford algebras,
we only have to replace b̂m†

f by ^̃bm†
f and equivalently for the Hermitian conjugated

partners.
The Clifford odd ”basis vectors” almost fulfil the second quantization postulates
for fermions. There is, namely, the property, which the second quantized fermions
must fulfil in addition to the relations of Eq. (16.9). If the anticommutation rela-
tions of ”basis vectors” and their Hermitian conjugated partners would fulfil the
relation:

{b̂mf , b̂
m ′†
f ′ }∗A+|ψoc > = δmm ′

δff ′ |ψoc > , (16.11)

for either γa or γ̃a, then the corresponding creation and annihilation operators
would fulfil the anticommutation relations for the second quantized fermions,
explaining the postulates of Dirac for the second quantized fermion fields. For

any b̂mf and any b̂m
′†

f ′ this is not the case. It turns out that besides b̂m=1
f=1 =

d−1d

(−)

· · ·
56

(−)
12

(−)
03

(−i), for example, also b̂m
′

f ′ =
d−1d

(−) · · ·
56

(−)
12

[+]
03

[+i] and several others
give, when applied on b̂m=1†

f=1 , nonzero contributions. There are namely 2
d
2
−1 − 1

too many annihilation operators for each creation operator which give, applied on
the creation operator, nonzero contribution.
The problem is solvable by the reduction of the two Clifford odd algebras to
only one [1, 5, 36, 37] as it is presented in subsection 16.2.2: If γa’s are chosen
to determine internal space of fermions, the remaining ones, γ̃a’s, determine
then quantum numbers of each family (described by the eigenvalues of S̃ab of
the Cartan subalgebra members). Correspondingly the creation and annihilation
operators, expressible as tensor products, ∗T , of the ”basis vectors” and the basis
in ordinary (momentum or coordinate) space, fulfil the anticommutation relation
for the second quantized fermions.
Let me point out that the Hermitian conjugated partners of the ”basis vectors”
belong to different irreducible representations of the corresponding Lorentz group
than the ”basis vectors”. This can be understood, since the Clifford odd ”basis

vectors” have always odd numbers of nilpotents, so that an odd number of
ab

(k)’s

transforms under Hermitian conjugation into
ab

(−k)’s, which can not be the member
of the ”basis vectors”, since the even generators of the Lorentz transformations
transform always even number of nilpotents, keeping the number of nilpotents
always odd. It is different in the case of the Clifford even ”basis vectors”, since an

even number of
ab

(k)’s, transformed with the Hermitian conjugation into en even

number of
ab

(−k)’s belongs to the same group of the ”basis vectors”.

Statement 2. The Clifford odd 2
d
2
−1 members of each of the 2

d
2
−1 irreducible representa-

tions of ”basis vectors” have their Hermitian conjugated partners in another set of 2
d
2
−1

·2d2−1 ”basis vectors”. Each of the two sets of the 2
d
2
−1 × 2d2−1 Clifford even ”basis

vectors” has their Hermitian conjugated partners within the same set.
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The Clifford even ”basis vectors” commute. Let us denote the Clifford even ”basis
vectors”, described by γa’s, by Âm†

f . There is no need to denote their Hermitian
conjugated partners by Âm

f , since in the even Clifford sector the ”basis vectors”
and their Hermitian conjugated partners appear within the same group. We shall
manifest this in the toy model of d = (5+ 1). In the Clifford even sectorm and f
are just two indexes: f denotes the subgroups within which the ”basis vectors” do
not have the Hermitian conjugated partners (Subsect. 16.2.3, Eq. (16.21)).
We shall need also the equivalent ”basis vectors” in the Clifford even part of the
kind γ̃a’s. Let these ”basis vectors” be denoted by ^̃Am†

f .
These commuting even Clifford algebra objects have interesting properties. I shall
discuss the properties of even and odd ”basis vectors” in Sects. 16.2.3, 16.2.4, first
in d = (5+ 1)-dimensional space, then in the general case.

16.2.2 Reduction of the Clifford space

The creation and annihilation operators of an odd Clifford algebra of both kinds, of
either γa’s or γ̃a’s, turn out to obey the anticommutation relations for the second
quantized fermions, postulated by Dirac [1], provided that each of the irreducible
representations of the corresponding Lorentz group, describing the internal space
of fermions, would carry a different quantum number.
But we know that a particular member m has for all the irreducible representa-
tions the same quantum numbers, that is the same ”eigenvalues” of the Cartan
subalgebra (for the vector space of either γa’s or γ̃a’s), Eq. (17.8).
Statement 3. The only possibility to ”dress” each irreducible representation of one kind of
the two independent vector spaces with a new, let us say ”family” quantum number, is
that we ”sacrifice” one of the two vector spaces.
Let us ”sacrifice” γ̃a’s, using γ̃a’s to define the ”family” quantum numbers for each
irreducible representation of the vector space of ”basis vectors of an odd prod-
ucts of γa’s, while keeping the relations of Eq. (17.5) unchanged: {γa, γb}+ =

2ηab = {γ̃a, γ̃b}+, {γa, γ̃b}+ = 0, (γa)† = ηaa γa, (γ̃a)† = ηaa γ̃a, (a, b) =

(0, 1, 2, 3, 5, · · · , d).

We therefore postulate:
Let γ̃a’s operate on γa’s as follows [20, 29, 31, 32, 35]

{γ̃aB = (−)B i Bγa} |ψoc > , (16.12)

with (−)B = −1, if B is (a function of) an odd products of γa’s, otherwise
(−)B = 1 [35], |ψoc > is defined in Eq. (17.10).

Statement 4. After the postulate of Eq. (17.9) ”basis vectors” which are superposition
of an odd products of γa’s obey all the fermions second quantized postulates of Dirac,
presented in Eqs. (16.11, 16.9).
We shall see in Sect. 16.2.3 that the Clifford even ”basis vectors” obey the bosons
second quantized postulates.
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After this postulate the vector space of γ̃a’s is ”frozen out”. No vector space of γ̃a’s
needs to be taken into account any longer for the description of the internal space
of fermions or bosons, in agreement with the observed properties of fermions. γ̃a’s
obtain the role of operators determining properties of fermion and boson ”basis
vectors”.

Let me add that we shall still use S̃ab for the description of the internal space of
fermion and boson fields, Subsects. 16.2.3, 16.2.3, 16.2.3. S̃ab’s remain as operators.
One finds, using Eq. (17.9),

ab
˜(k)

ab

(k) = 0 ,
ab
˜(−k)

ab

(k)= −i ηaa
ab

[k] ,
ab
˜(k)

ab

[k]= i
ab

(k) ,
ab
˜(k)

ab

[−k]= 0 ,
ab
˜[k]

ab

(k) =
ab

(k) ,
ab
˜[−k]

ab

(k)= 0 ,
ab
˜[k]

ab

[k]= 0 ,
ab
˜[−k]

ab

[k]=
ab

[k] .(16.13)

Taking into account anticommuting properties of both Clifford algebras, γa’s and
γ̃a’s, it is not difficult to prove the relations in Eq. (16.13).

16.2.3 Properties of Clifford odd and even ”basis vectors” in d = (5 + 1)

To make discussions easier let us first look for the properties of ”basis vectors” in
d = (5+ 1)-dimensional space. Let us look at: i. internal space of fermions as the
superposition of odd products of the Clifford objects γa’s, ii. internal space of the
corresponding gauge fields as the superposition of even products of the Clifford
objects γa’s.
Choosing the ”basis vectors” to be eigenvectors of all the members of the Cartan
subalgebra of the Lorentz algebra and correspondingly the products of nilpotents
and projectors (Statement 1.) one finds the ”basis vectors” presented in Table 16.1.
The table presents the eigenvalues of the ”basis vectors” for each member of the
Cartan subalgebra for the group SO(5, 1).
The odd I group (is chosen to) present the ”basis vectors” describing the internal
space of fermions. Their Hermitian conjugated partners are then the ”basis vectors”
presented in the group odd II.
The even I and even II represent commuting Clifford even ”basis vectors”, repre-
senting bosons, the gauge fields of fermions.
We shall analyse both kinds of ”basis vectors” through the subgroups of the
SO(5, 1) group. The choices of SU(2)× SU(2)×U(1) and SU(3)×U(1) subgroups
of the SO(5, 1) group will also be discussed just to see the differences in properties
from the properties of the SO(5, 1) group.
In Table 16.1 the properties of ”basis vectors” are presented as products of nilpo-

tents
ab

(+i) (
ab

(+i)

2

= 0) and projectors
ab

[+](
ab

[+]

2

=
ab

[+]). ”Basis vectors” for fermions
contain an odd number of nilpotents, ”basis vectors” for bosons contain an even

number of nilpotents. In both cases nilpotents
ab

(+i) and projectors
ab

[+] are chosen to
be the ”eigenvectors” of the Cartan subalgebra. Eq. (16.6), of the Lorentz algebra.
The ”basis vectors”, determining the creation operators for fermions and their
Hermitian conjugated partners, b̂m†

f and b̂mf , respectively, as we shall see in Sub-
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sect. 16.2.3 they are superposition of odd products of γa, algebraically anticom-
mute, due to the properties of the Clifford algebra

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,

{γa, γ̃b}+ = 0 , (a, b) = (0, 1, 2, 3, 5, · · · , d) ,
(γa)† = ηaa γa , (γ̃a)† = ηaa γ̃a ,

γaγa = ηaa , γa(γa)† = I , γ̃aγ̃a = ηaa , γ̃a(γ̃a)† = I , (16.14)

where I represents the unit operator.

”Basis vectors” of odd products of γa’s in d = (5+ 1). Let us see in more details
properties of the Clifford odd ”basis vectors”, analysing them also with respect
to two kinds of the subgroups SO(3, 1) × U(1) and SU(3) × U(1) of the group
SO(5, 1), with the same number of Cartan subalgebra members in all three cases,
d
2

= 3. We use the expressions for the commuting operators for the subgroup
SO(3, 1)×U(1)

N3
±(= N

3
(L,R)) :=

1

2
(S12 ± iS03) , Ñ3

±(= Ñ
3
(L,R)) :=

1

2
(S̃12 ± iS̃03) ,(16.15)

and for the commuting generators for the subgroup SU(3) and U(1)

τ3 :=
1

2
(−S1 2 − iS0 3) , τ8 =

1

2
√
3
(−iS0 3 + S1 2 − 2S13 14) ,

τ4 := −
1

3
(−iS0 3 + S1 2 + S5 6) . (16.16)

The corresponding relations for τ̃3, τ̃8 and τ̃4 can be read from Eq. (16.16), if re-
placing Sab by S̃ab. Recognizing that Sab = Sab + S̃ab one reproduces all the
relations for the corresponding τ⃗ and N 3

±.

The rest of generators of both kinds of subgroups of the group SO(5, 1) can be
found in Eqs. (17.26, 17.28) of App. 16.7.

In Table 16.2 the properties of the odd ”basis vectors” b̂m†
f are presented with

respect to the generators of the group i. SO(5, 1) (with 15 generators, 3 of them
forming the corresponding Commuting among subalgebra), ii. SO(4)×U(1) (with
7 generators and 3 of the corresponding Cartan subalgebra members) and iii.
SU(3) × U(1) (with 9 generators and 3 of the corresponding Cartan subalgebra
members), together with the eigenvalues of the commuting generators. These ”ba-
sis vectors” are already presented as a part of Table 16.1. They fulfil together with
their Hermitian conjugated partners the anticommutation relations of Eqs. (16.9,
16.11).
The right handed, Γ (5+1) = 1, fourthplet of the fourth family of Table 16.2 can be
found in the first four lines of Table 16.5 if only the d = (5+ 1) part is taken into
account. The left handed fourthplet of the fourth family of Table 16.4 can be found
in four lines from line 33 to line 36, again if only the d = (5+ 1) part is taken into
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Table 16.1: 2d = 64 ”eigenvectors” of the Cartan subalgebra of the Clifford odd
and even algebras in d = (5+ 1)-dimensional space are presented, divided into
four groups. The first group, odd I, is chosen to represent ”basis vectors”, named
b̂m†
f , appearing in 2

d
2
−1 = 4 ”families” (f = 1, 2, 3, 4), each ”family” with 2

d
2
−1 = 4

”family” members (m = 1, 2, 3, 4). The second group, odd II, contains Hermitian
conjugated partners of the first group for each family separately, b̂mf = (b̂m†

f )†. The
”family” quantum numbers of b̂m†

f , that is the eigenvalues of (S̃03, S̃12, S̃56), are
written above each ”family”. The properties of anticommuting ”basis vectors” are
discussed in Subsects. 16.2.3, 16.2.4. The two groups with the even number of γa’s,
even I and even II, have their Hermitian conjugated partners within their own
group each. The two groups which are products of even number of nilpotents and
even or odd number of projectors represent the ”basis vectors” for the correspond-
ing boson gauge fields. Their properties are discussed in Subsecs. 16.2.3 and 16.2.4.
Γ (5+1) and Γ (3+1) represent handedness in d = (3 + 1) and d = (5 + 1) space
calculated as products of γa’s, App. 16.9.

′′basis m f = 1 f = 2 f = 3 f = 4

vectors ′′ ( i
2
,− 1
2
,− 1
2

) (− i
2
,− 1
2
, 1
2

) (− i
2
, 1
2
,− 1
2

) ( i
2
, 1
2
, 1
2

) S03 S12 S56 Γ(5+1) Γ(3+1)

03 12 56 03 12 56 03 12 stackrel56 03 12 56

odd I b̂
m†
f

1
03

(+i)
12
[+]

56
[+]

03
[+i]

12
[+]

56
(+)

03
[+i]

12
(+)

56
[+]

03
(+i)

12
(+)

56
(+) i

2
1
2

1
2

1 1

2 [−i](−)[+] (−i)(−)(+) (−i)[−][+] [−i][−](+) − i
2

− 1
2

1
2

1 1

3 [−i][+](−) (−i)[+][−] (−i)(+)(−) [−i](+)[−] − i
2

1
2

− 1
2

1 −1

4 (+i)(−)(−) [+i](−)[−] [+i][−](−) (+i)[−][−] i
2

− 1
2

− 1
2

1 −1

03 12 56 03 12 56 03 12 56 03 12 56 Γ(5+1)

odd II b̂m
f

1 (−i)[+][+] [+i][+](−) [+i](−)[+] (−i)(−)(−) −1

2 [−i](+)[+] (+i)(+)(−) (+i)[−][+] [−i][−](−) −1

3 [−i][+](+) (+i)[+][−] (+i)(−)(+) [−i](−)[−] −1

4 (−i)(+)(+) [+i](+)[−] [+i][−](+) (−i)[−][−] −1

even I m S03 S12 S56 Γ(5+1) Γ(3+1)

(− i
2
, 1
2
, 1
2

) ( i
2
,− 1
2
, 1
2

) (− i
2
,− 1
2
,− 1
2

) ( i
2
, 1
2
,− 1
2

)

03 12 56 03 12 56 03 12 56 03 12 56

1 [+i](+)(+) (+i)[+](+) [+i][+][+] (+i)(+)[+] i
2

1
2

1
2

1 1

2 (−i)[−](+) [−i](−)(+) (−i)(−)[+] [−i][−][+] − i
2

− 1
2

1
2

1 1

3 (−i)(+)[−] [−i][+][−] (−i)[+](−) [−i](+)(−) − i
2

1
2

− 1
2

1 −1

4 [+i][−][−] (+i)(−)[−] [+i](−)(−) (+i)[−](−) i
2

− 1
2

− 1
2

1 −1

even II m S03 S12 S56 Γ(5+1) Γ(3+1)

( i
2
, 1
2
, 1
2

) (− i
2
,− 1
2
, 1
2

) ( i
2
,− 1
2
,− 1
2

) (− i
2
, 1
2
,− 1
2

)

03 12 56 03 12 56 03 12 56 03 12 56

1 [−i](+)(+) (−i)[+](+) [−i][+][+] (−i)(+)[+] − i
2

1
2

1
2

−1 −1

2 (+i)[−](+) [+i](−)(+) (+i)(−)[+] [+i][−][+] i
2

− 1
2

1
2

−1 −1

3 (+i)(+)[−] [+i][+][−] (+i)[+](−) [+i](+)(−) i
2

1
2

− 1
2

−1 1

4 [−i][−][−] (−i)(−)[−] [−i](−)(−) (−i)[−](−) − i
2

− 1
2

− 1
2

−1 1

account.

Statement 5. In a chosen d=dimensional space there is the choice that the ”basis vectors”
are right handed. Their Hermitian conjugated partners are correspondingly left handed.
One could make the opposite choice, like in Table 16.4.
Then the ”basis vectors” of Table 16.2 would be the Hermitian conjugated part-
ners to the left handed ”basis vectors” of Table 16.4. For the left handed ”basis
vectors” the vacuum state |ψoc >, Eq. (17.10), chosen as the

∑
f b̂

m
f ∗A b̂m†

f , has
to be changed, since the vacuum state must have the property that b̂mf |ψoc >= 0
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Table 16.2: The basic creation operators, ”basis vectors” — b̂
m=(ch,s)†
f (each is a

product of projectors and an odd product of nilpotents, and is the ”eigenvector” of
all the Cartan subalgebra members, S03, S12, S56 and S̃03, S̃12, S̃56, Eq. (16.6) (ch
(charge), the eigenvalue of S56, and s (spin), the eigenvalues of S03 and S12, explain
indexm, f determines family quantum numbers, the eigenvalues of (S̃03, S̃12, S̃56)
— are presented for d = (5 + 1)-dimensional case. This table represents also the
eigenvalues of the three commuting operators N3

L,R and S56 of the subgroups
SU(2) × SU(2) × U(1) and the eigenvalues of the three commuting operators
τ3, τ8 and τ4 of the subgroups SU(3) × U(1), in these two last cases index m
represents the eigenvalues of the corresponding commuting generators. Γ (5+1) =

−γ0γ1γ2γ3γ5γ6, Γ (3+1) = iγ0γ1γ2γ3. Operators b̂m=(ch,s)†
f and b̂m=(ch,s)

f fulfil
the anticommutation relations of Eqs. (16.9, 16.11).

f m = (ch, s) b̂
m=(ch,s)†
f

S03 S12 S56 Γ3+1 N3
L
N3
R

τ3 τ8 τ4 S̃03 S̃12 S̃56

I 1 ( 1
2
, 1
2

)
03

(+i)
12
[+] |

56
[+] i

2
1
2

1
2

1 0 1
2
1
2

0 0 − 1
2

i
2

− 1
2

− 1
2

2 ( 1
2
,− 1
2

)
03

[−i]
12
(−) |

56
[+] − i

2
− 1
2

1
2

1 0 − 1
2

0 − 1√
3

1
6

i
2

− 1
2

− 1
2

3 (− 1
2
, 1
2

)
03

[−i]
12
[+] |

56
(−) − i

2
1
2

− 1
2

−1 1
2

0 − 1
2

1
2
√
3

1
6

i
2

− 1
2

− 1
2

4 (− 1
2
,− 1
2

)
03

(+i)
12
(−) |

56
(−) i

2
− 1
2

− 1
2

−1 − 1
2

0 1
2

1
2
√
3

1
6

i
2

− 1
2

− 1
2

II 1 ( 1
2
, 1
2

)
03

[+i]
12
(+) |

56
[+] i

2
1
2

1
2

1 0 1
2

0 0 − 1
2

− i
2

1
2

− 1
2

2 ( 1
2
,− 1
2

)
03

(−i)
12
[−] |

56
[+] − i

2
− 1
2

1
2

1 0 − 1
2

0 − 1√
3

1
6

− i
2

1
2

− 1
2

3 (− 1
2
, 1
2

)
03

(−i)
12
(+) |

56
(−) − i

2
1
2

− 1
2

−1 1
2

0 − 1
2

1
2
√
3

1
6

− i
2

1
2

− 1
2

4 (− 1
2
,− 1
2

)
03

[+i]
12
[−] |

56
(−) i

2
− 1
2

− 1
2

−1 − 1
2

0 1
2

1
2
√
3

1
6

− i
2

1
2

− 1
2

III 1 ( 1
2
, 1
2

)
03

[+i]
12
[+] |

56
(+) i

2
1
2

1
2

1 0 1
2

0 0 − 1
2

− i
2

− 1
2

1
2

2 ( 1
2
,− 1
2

)
03

(−i)
12
(−) |

56
(+) − i

2
− 1
2

1
2

1 0 − 1
2

0 − 1√
3

1
6

− i
2

− 1
2

1
2

3 (− 1
2
, 1
2

)
03

(−i)
12
[+] |

56
[−] − i

2
1
2

− 1
2

−1 1
2

0 − 1
2

1
2
√
3

1
6

− i
2

− 1
2

1
2

4 (− 1
2
,− 1
2

)
03

[+i]
12
(−) |

56
[−] i

2
− 1
2

− 1
2

−1 − 1
2

0 1
2

1
2
√
3

1
6

− i
2

− 1
2

1
2

IV 1 ( 1
2
, 1
2

)
03

(+i)
12
(+) |

56
(+) i

2
1
2

1
2

1 0 1
2

0 0 − 1
2

i
2

1
2

1
2

2 ( 1
2
,− 1
2

)
03

[−i]
12
[−] |

56
(+) − i

2
− 1
2

1
2

1 0 − 1
2

0 − 1√
3

1
6

i
2

1
2

1
2

3 (− 1
2
, 1
2

)
03

[−i]
12
(+) |

56
[−] − i

2
1
2

− 1
2

−1 1
2

0 − 1
2

1
2
√
3

1
6

i
2

1
2

1
2

4 (− 1
2
,− 1
2

)
03

(+i)
12
[−] |

56
[−] i

2
− 1
2

− 1
2

−1 − 1
2

0 1
2

1
2
√
3

1
6

i
2

1
2

1
2

and b̂m†
f |ψoc >= b̂

m†
f .

One can notice that:
i. The family members of ”basis vectors” have the same properties in all the
families, independently whether one observes the group SO(d− 1, 1) (SO(5, 1) in
the case of d = (5+ 1)) or of the subgroups with the same number of commuting
operators (SU(2)×SU(2)×U(1) or ×SU(3)×U(1) in d = (5+1)case). The families
carry different family quantum numbers. This is true for right, (Γ (5+1) = 1), and
for left (Γ (5+1) = −1), representations.
ii. The sum of all the eigenvalues of all the commuting operators over the 2

d
2
−1

family members is equal to zero for each of 2
d
2
−1 families, separately for left and

separately for right handed representations, independently whether the group
SO(d− 1, 1) (SO(5, 1)) or the subgroups (SU(2)× SU(2)×U(1) or ×SU(3)×U(1))
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are considered.
iii. The sum of the family quantum numbers over the four families is zero as well.
iv. The properties of the left handed family members differ strongly from the right
handed ones. It is easy to recognize this in our d = (5+ 1) case when looking at
SU(3)×U(1) quantum numbers since the right handed realization manifests the
”colour” properties of ”quarks” and ”leptons” and the left handed the ”colour”
properties of ”antiquarks” and ”antileptons”.
v. For a chosen even d there is a choice for either right or left handed family
members. The choice of the handedness of the family members determine also the
vacuum state for the chosen ”basis vectors”.
Let me add that the ”basis vectors” and their Hermitian conjugated partners ful-
fil the anticommutation relations postulated by Dirac for the second quantized
fermion fields. When forming tensor products, ∗T , of these ”basis vectors” and the
basis of ordinary, momentum or coordinate, space the single fermion creation and
annihilation operators fulfil all the requirements of the Dirac’s second quantized
fermion fields, explaining therefore the postulates of Dirac, Sect. 16.3.

”Basis vectors” of even products of γa’s in d = (5 + 1) The Clifford even ”basis

vectors”, they are products of an even number of nilpotents,
ab

(k), and the rest

up to d
2

of projectors,
ab

[k], commute since even products of (anticommuting) γa’s
commute.

Let us see in more details several properties of the Clifford even ”basis vectors”:

A. The properties of the algebraic, ∗A, application of the Clifford even ”basis
vectors” on the Clifford odd ”basis vectors” b̂m†

f , presented in Table 16.2, teaches
us that the Clifford even ”basis vectors” describe the internal space of the gauge
fields of b̂m†

f .

A.i.
Let b̂m‘†

f‘ represents them‘th Clifford odd I ”basis vector” (the part of the creation
operators which determines the internal part of the fermion state) of the f‘th family
and let Âm†

f denotes themth Clifford even II ”basis vector” of the fth irreducible
representation with respect to Sab — but not with respects to Sab = Sab + S̃ab,
which includes all 2

d
2
−1 × 2d2−1 members. Let us evaluate the algebraic products

Âm†
f on b̂m‘†

f‘ for any (m,m ′) and (f, f ′).
Taking into account Eq. (17.8) and Tables (16.1, 16.2) one can easily evaluate the
algebraic products Âm†

f on b̂m
′†

f ′ for any (m,m ′) and (f, f ′). Starting with b̂1†1 one
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finds the non zero contributions only if applying Âm†
3 ,m = (1, 2, 3, 4) on b̂1†1

Âm†
3 ∗A b̂1†1 (≡

03

(+i)
12

[+]
56

[+]) :

Â1†
3 (≡

03

[+i]
12

[+]
56

[+]) ∗A b̂1†1 (≡
03

(+i)
12

[+]
56

[+]) → b̂1†1 ,

Â2†
3 (≡

03

(−i)
12

(−)
56

[+]) ∗A b̂1†1 → b̂2†1 (≡
03

[−i]
12

(−)
56

[+]) ,

Â3†
3 (≡

03

(−i)
12

[+]
56

(−)) ∗A b̂1†1 → b̂3†1 (≡
03

[−i]
12

[+]
56

(−)) ,

Â4†
3 (≡

03

[+i]
12

(−)
56

(−)) ∗A b̂1†1 → b̂4†1 (≡
03

(+i)
12

(−)
56

(−)) . (16.17)

The products of an even number of nilpotents and even or an odd number of
projectors, represented by even products of γa’s, applying on family members of a
particular family, obviously transform family members, representing fermions of
one particular family, into the same or another family member of the same family.
All the rest of Âm

f , f ̸= 3, applying on b̂1†1 , give zero for any family f.
Let us comment the above events, concerning only the internal space of fermions
and, obviously, bosons: If the fermion, the internal space of which is described
by Clifford odd ”basis vector” b̂1†1 , absorbs the boson Â1

3 (with S03 = 0,S12 =

0,S56 = 0), its ”basis vector” b̂1†1 remains unchanged.
The fermion with the ”basis vector” b̂1†1 , if absorbing the boson with Â2

3 (with
S03 = −i,S12 = −1,S56 = 0), changes its internal ”basis vector” b̂1†1 into the
”basis vector” b̂2†1 (which carries now S03 = − i

2
, S12 = −1

2
, and the same S56 = 1

2

as before). The fermion with ”basis vector” b̂1†1 absorbing the boson with the ”basis
vector” Â3

3 changes its ”basis vector” to b̂3†1 , while the fermion with the ”basis
vector” b̂1†1 absorbing the boson with the ”basis vector” Â4

3 changes its ”basis
vector” to b̂4†1 .
Let us see how do the rest of Âm

f , m = (1, 2, 3, 4), f = (1, 2, 3, 4) change the
properties of b̂n†

1 , n = 2, 3, 4.
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It is easy to evaluate if taking into account Eq . (17.8) that

Âm†
4 ∗A b̂2†1 (≡

03

[−i]
12

(−)
56

[+]) :

Â1†
4 (≡

03

(+i)
12

(+)
56

[+]) ∗A b̂2†1 (≡
03

[−i]
12

(−)
56

[+]) → b̂1†1 ,

Â2†
4 (≡

03

[−i]
12

[−]
56

[+]) ∗A b̂2†1 → b̂2†1 (≡
03

[−i]
12

(−)
56

[+]) ,

Â3†
4 (≡

03

[−i]
12

(+)
56

(−)) ∗A b̂2†1 → b̂3†1 (≡
03

[−i]
12

[+]
56

(−)) ,

Â4†
4 (≡

03

(+i)
12

[−]
56

(−)) ∗A b̂2†1 → b̂4†1 (≡
03

(+i)
12

(−)
56

(−)) ,

Âm†
2 ∗A b̂3†1 (≡

03

[−i]
12

[+]
56

(−)) :

Â1†
2 (≡

03

(+i)
12

[+]
56

(+)) ∗A b̂3†1 (≡
03

[−i]
12

[+]
56

(−)]) → b̂1†1 ,

Â2†
2 (≡

03

[−i]
12

(−)
56

(+)) ∗A b̂3†1 → b̂2†1 (≡
03

[−i]
12

(−)
56

[+]) ,

Â3†
2 (≡

03

[−i]
12

[+]
56

[−]) ∗A b̂3†1 → b̂3†1 (≡
03

[−i]
12

[+]
56

(−)) ,

Â4†
2 (≡

03

(+i)
12

(−)
56

[−]) ∗A b̂1†1 → b̂4†1 (≡
03

(+i)
12

(−)
56

(−)) , ′

Âm†
1 ∗A b̂4†1 (≡

03

(+i)
12

(−)
56

(−)) :

Â1†
1 (≡

03

[+i]
12

(+)
56

(+)) ∗A b̂4†1 (≡
03

(+i)
12

(−)
56

(−)) → b̂1†1 ,

Â2†
1 (≡

03

(−i)
12

[−]
56

(+)) ∗A b̂4†1 → b̂2†1 (≡
03

[−i]
12

(−)
56

[+]) ,

Â3†
1 (≡

03

(−i)
12

(+)
56

[−]) ∗A b̂4†1 → b̂3†1 (≡
03

[−i]
12

[+]
56

(−)) ,

Â4†
1 (≡

03

[+i]
12

[−]
56

[−]) ∗A b̂4†1 → b̂4†1 (≡
03

(+i)
12

(−)
56

(−)) . (16.18)

All the rest of Âm
f , applying on b̂n†

1 , give zero for any other f except the one
presented in Eqs. (16.17, 16.18).
We can repeat this calculation for all four family members b̂m‘†

f‘ of any of families
f‘. concluding

Âm†
3 ∗A b̂1†f → b̂m†

f ,

Âm†
4 ∗A b̂2†f → b̂m†

f ,

Âm†
2 ∗A b̂3†f → b̂m†

f ,

Âm†
1 ∗A b̂4†f → b̂m†

f . (16.19)

The recognition of this subsection concerns so far only internal space of fermions,
not yet its dynamics in ordinary space. Let us interpret what is noticed:

Statement 6. A fermion with the ”basis vector” b̂m‘†
f‘ , ”absorbing” one of the commuting

Clifford even objects, Âm†
f , transforms into another family member of the same family, to

b̂m†
f , changing correspondingly the family member quantum numbers and keeping the

same family quantum number or remains unchanged.
The application of the Clifford even ”basis vector” Âm†

f on the Clifford odd ”basis
vector” does not cause the change of the family of the Clifford odd ”basis vector”.
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A.ii.
We need to know the quantum numbers of the Clifford even ”basis vectors”, which
obviously manifest properties of the boson fields since they bring to the Clifford
odd ”basis vectors” — representing the internal space of fermions — the quantum
numbers which cause transformation into another fermion with a different Clifford
odd ”basis vectors” of the same family f. The Clifford even ”basis vectors” do not
cause the change of the family of fermions.
Let us point out that the Clifford odd ”basis vectors” appear in 2

d
2
−1 families

with 2
d
2
−1 family members in each family, four members in four families in the

d = (5+ 1) case, while the Hermitian conjugated partners belong to another group
of 2

d
2
−1 × 2d2−1 Clifford odd ”basis vectors”, (to oddII in Table 16.1), while the

Clifford even ”basis vectors” have their Hermitian conjugated partners within the
same group of 2

d
2
−1 × 2d2−1 members (appearing in our treating case in evenII

in Table 16.1). Since we found in Eqs. (16.19, 16.17, 16.17) that the Clifford even
”basis vector” transforms the Clifford odd ”basis vector” into another member of
the same family, changing the family members quantum numbers for an integer,
they must carry the integer quantum numbers.
One can see in Table 16.1 that the members of the group evenII, for example, are
Hermitian conjugated to one another in pairs and four of them are self adjoint.
Correspondingly † has no special meaning, it is only the decision that all the
Clifford even ”basis vector” are equipped with †: Âm†

f .
Let us therefore calculate the quantum numbers of Âm†

f , wherem and f distinguish
among different Clifford even ”basis vectors” (with fwhich does not really denote
the family, since Sab = Sab + S̃ab defines the whole irreducible representation
of 2

d
2
−1 × 2

d
2
−1 ”basis vectors”) with the Cartan subalgebra operators Sab =

Sab + S̃ab, presented in Eqs. (16.6).
In Table 16.3 the eigenvalues of the Cartan subalgebra members of Sab are pre-
sented, as well as the eigenvalues of the commuting operators of subgroups
SU(2)×SU(2)×U(1), that is the eigenvalues of (N 3

L ,N 3
R ,S03), and of SU(3)×U(1),

that is the eigenvalues of (τ3, τ8, τ4), expressions for which can be found in
Eqs. (16.15, 16.16) if one takes into account that Sab = Sab + S̃ab. The alge-
braic application of any member of a group f on the self adjoint operator (denoted
in Table 16.3 by ⃝) of this group f, gives the same member back.
The vacuum state of the Clifford even ”basis vectors” is correspondingly the
normalized sum of all the self adjoint operators of these Clifford even group
evenII. Each of Âm†

f when applying on such a vacuum state gives the same Âm†
f .

|ϕoceven >=
1

2
(

03

[+i]
12

[−]
56

[−] +
03

[−i]
12

[+]
56

[−] +
03

[+i]
12

[+]
56

[+] +
03

[−i]
12

[−]
56

[+]) .(16.20)

The pairs of ”basis vectors” Âm†
f , which are Hermitian conjugated to each other,

are in Table 16.3 pointed out by the same symbols. This property is independent
of the group or subgroups which we choose to observe properties of the ”basis
vectors”. If treating the subgroup SU(3)×U(1) one finds the 8members of Âm†

f ,
which belong to the group SU(3) forming octet which has τ4 = 0, six of them ap-
pear in three pairs Hermitian conjugated to each other, two of them are self adjoint
members of the octet, with eigenvalues of all the Cartan subalgebra members equal
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to zero. There are also two singlets with eigenvalues of all the Cartan subalgebra
members equal to zero. And there is the sextet, with three pairs which are mutually
Hermitian conjugated. One can notice that the sum of all the eigenvalues of all the

Table 16.3: The ”basis vectors” Âm†
f , each is the product of projectors and an

even number of nilpotents, and is the ”eigenvector” of all the Cartan subalgebra
members, S03, S12, S56, Eq. (16.6), are presented for d = (5 + 1)-dimensional
case. Indexes m and f determine 2

d
2
−1 × 2d2−1 different members Âm†

f . In the
third column the ”basis vectors” Âm†

f which are Hermitian conjugated partners
to each other, and can therefore annihilate each other, are pointed out with the
same symbol. For example with ⋆ are equipped the first member with m = 1

and f = 1 and the last member with m = 4 and f = 3. The sign ⃝ denotes the
”basis vectors” which are self adjoint (Âm†

f )† = Âm†
f . This table represents also

the eigenvalues of the three commuting operators N 3
L,R and S56 of the subgroups

SU(2) × SU(2) × U(1) of the group SO(5, 1) and the eigenvalues of the three
commuting operators τ3, τ8 and τ4 of the subgroups SU(3)×U(1).
f m ∗ Âm†

f
S03 S12 S56 N3

L
N3
R

τ3 τ8 τ4

I 1 ⋆⋆
03

[+i]
12
(+)

56
(+) 0 1 1 1

2
1
2

− 1
2

− 1
2
√
3

− 2
3

2 △
03

(−i)
12
[−]

56
(+) −i 0 1 1

2
− 1
2

− 1
2

− 3
2
√
3

0

3 ‡
03

(−i)
12
(+)

56
[−] −i 1 0 1 0 −1 0 0

4 ⃝
03

[+i]
12
[−]

56
[−] 0 0 0 0 0 0 0 0

II 1 •
03

(+i)
12
[+]

56
(+) i 0 1 − 1

2
1
2

1
2

− 1
2
√
3

− 2
3

2 ⊗
03

[−i]
12
(−)

56
(+) 0 −1 1 − 1

2
− 1
2

1
2

− 3
2
√
3

0

3 ⃝
03

[−i]
12
[+]

56
[−] 0 0 0 0 0 0 0 0

4 ‡
03

(+i)
12
(−)

56
[−] i −1 0 −1 0 1 0 0

III 1 ⃝
03

[+i]
12
[+]

56
[+] 0 0 0 0 0 0 0 0

2 ⊙⊙
03

(−i)
12
(−)

56
[+] −i −1 0 0 −1 0 − 1√

3
2
3

3 •
03

(−i)
12
[+]

56
(−) −i 0 −1 1

2
− 1
2

− 1
2

1
2
√
3

2
3

4 ⋆⋆
03

[+i]
12
(−)

56
(−) 0 −1 −1 − 1

2
− 1
2

1
2

1
2
√
3

2
3

IV 1 ⊙⊙
03

(+i)
12
(+)

56
[+] i 1 0 0 1 0 1√

3
− 2
3

2 ⃝
03

[−i]
12
[−]

56
[+] 0 0 0 0 0 0 0 0

3 ⊗
03

[−i]
12
(+)

56
(−) 0 1 −1 1

2
1
2

− 1
2

3
2
√
3

0

4 △
03

(+i)
12
[−]

56
(−) i 0 −1 − 1

2
1
2

1
2

3
2
√
3

0

Cartan subalgebra members over the 16members Âm†
f is equal to zero, indepen-

dent of whether we treat the group SO(5, 1), SU(2)×SU(2)×U(1), or SU(3)×U(1).

A.iii.
In A.i. we saw that the application of Âm†

f on the fermion ”basis vectors” b̂m†
f

transforms the particular member b̂m†
f to one of the members of the same family f,

changing eigenvalues of the Cartan subalgebra members for an integer. We found
in A.ii the eigenvalues of the Cartan subalgebra members for each of 2

d
2
−1×d

2
−1

(equal to 16 in d = (5+ 1)) Âm†
f , recognizing that they do have properties of the

boson fields.
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It remains to look for the behaviour of these Clifford even ”basis vector” when
they apply on each other. Let us denote the self adjoint member in each group of
”basis vectors” of particular f as Âm0†

f . We easily see that

{Âm†
f , Âm ′†

f }− = 0 , if (m,m ′) ̸= m0 orm = m0 = m ′ , ∀ f ,
Âm†

f ∗A Âm0†
f = Âm†

f , ∀m, ∀ f . (16.21)

Two ”basis vectors” Âm†
f and Âm ′†

f of the same f and of (m,m ′) ̸= m0 are orthog-
onal.
The two ”basis vectors” Âm†

f and Âm ′†
f ′ , the algebraic product, ∗A, of which gives

nonzero contribution, like Â1†
1 ∗A Â4†

2 = Â1†
2 , ”scatter” into the third one, or anni-

hilate into vacuum |ϕoceven >, Eq. (16.20), like Â2†
2 ∗A Â3†

4 = Â2†
4 . 2 To generate

creation and annihilation operators the tensor products, ∗T , of the ”basis vectors”
Âm†

f , as well as of the ”basis vectors” b̂m†
f , with the basis in ordinary, momentum

or coordinate, space is needed.

Statement 7. Two ”basis vectors” Âm†
f and Âm ′

0†
f of the same f and of (m,m ′) ̸= m0

are orthogonal. The two ”basis vectors” with nonzero algebraic product, ∗A, ”scatter” into
the third one, or annihilate into vacuum.

B. Let us point out that the choice of the Clifford odd ”basis vectors”, odd I,
describing the internal space of fermions, and consequently the choice of the
Clifford even ”basis vectors”, even II, describing the internal space of their gauge
fields, is ours. If we choose in Table 16.1 odd II to represent the ”basis vectors”
describing the internal space of fermions, then the corresponding ”basis vectors”
representing the internal space of bosonic partners are those of even I.

For a different choice of handedness of the Clifford odd ”basis vectors” for de-
scribing fermions — making a choice of the left handedness instead of the right
handedeness — Table 16.2 should be replaced by Table 16.4 and correspondingly
also A.i., A.ii., A.iii. should be rewritten.
For an even d there is a choice for either right or left handed family members. The choice
of the handedness of the family members determine also the vacuum state for the
chosen ”basis vectors” for either — Clifford odd ”basis vectors” of fermions or for
the corresponding Clifford even ”basis vectors” of the corresponding gauge boson
fields.

C. The Clifford even ”basis vectors” Âm†
f , representing the boson gauge fields

to the corresponding Clifford odd ”basis vectors” b̂m†
f , have the properties that

they transform Clifford odd ”basis vectors” b̂m†
f of each family within the family

members. There are the additional Clifford even ”basis vectors” ^̃A
m†
f which trans-

form each family member of particular family into the same family member of
some of the rest families.

2 I use ”scatter” in quotation marks since the ”basis vectors” Âm†
f determine only the

internal space of bosons, as also the ”basis vectors” b̂m†
f determine only the internal space

of fermions.
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These Clifford even ”basis vectors” ^̃A
m†
f are products of an even number of

nilpotents and of projectors, which are eigenvectors of the Cartan subalgebra
operators S̃03, S̃12, S̃56, . . . , S̃d−1d. The table like Table 16.3 should be prepared
and their properties described as in the case of A.i., A.ii., A.iii.. A short illustration

is to help understanding the role of these Clifford even ”basis vectors” ^̃A
m†
f .

Let us use for the Clifford even ”basis vectors” ^̃A
m†
f the same arrangement with

products of nilpotents and projectors as the one, chosen for the Clifford even ”basis
vectors” Âm†

f in the case of d = (5+ 1) in Table 16.3, except that now nilpotents
and projectors are eigenvectors of the Cartan subalgebra operators S̃03, S̃12, S̃56,

and are correspondingly written in terms of nilpotents
ab
˜(k) and projectors

ab
˜[k].

The application of these nilpotents and projectors on nilpotents and projectors

appearing in b̂m†
f are presented in Eq. (16.13). Making a choice of ^̃A

1†
1 (≡

03
˜[+i]

12
˜(+)

56
˜(+)), with quantum numbers (S03 = 0,S12 = 1,S56 = 1), on b̂4†1 (≡

03

(+i)
12

(−)
56

(−))

with the family members quantum numbers (S03 = i
2
, S12 = −1

2
, S56 = −1

2
) and

the family quantum numbers (S̃03 = i
2
, S̃12 = −1

2
, S̃56 = −1

2
) it follows

^̃A
1†
1 (≡

03
˜[+i]

12
˜(+)

56
˜(+)) ∗A b̂4†1 (≡

03

(+i)
12

(−)
56

(−)) → b̂4†4 (≡
03

(+i)
12

[−]
56

[−]) . (16.22)

b̂4†4 (≡
03

(+i)
12

[−]
56

[−]) carry the same family members quantum numbers as b̂4†1 (S03 =
i
2
, S12 = −1

2
, S56 = −1

2
)) but belongs to the different family with the family

quantum numbers (S̃03 = i
2
, S̃12 = 1

2
, S̃56 = 1

2
).

The detailed analyse of these last two cases B. and C. will be studied after this
Bled proceedings.

We can conclude that the Clifford even ”basis vectors” Âm†
f :

a. Have the quantum numbers determined by the Cartan subalgebra members of
the Lorentz group of Sab = Sab + S̃ab. Applying algebraically, ∗A, Âm†

f on the
Clifford odd ”basis vectors” b̂m†

f , Âm†
3 transform these ”basis vectors” to another

ones with the same family quantum numbers, b̂m‘†
f .

b. In any irreducibly representation of Sab Âm†
f appear in pairs, which are Hermi-

tian conjugated to each other or they are self adjoint.
c. The self adjoint members Âm†

f define the vacuum state of the second quantized
boson fields.
d. Applying Âm†

f algebraically to each other these commuting Clifford even ”basis
vector” forming another Clifford even ”basis vector” or annihilate into the vacuum.
e. The choice of the left or the right handedness of the ”basis vectors” of an odd
Clifford character, describing the internal space of fermions, is ours. The left and
the right handed ”basis vectors” of an odd Clifford character are namely Hermitian
conjugated to each other. With the choice of the handedness of the fermion ”basis
vectors” also the choice of boson Clifford even ”basis vectors” — which are their
corresponding gauge fields — are chosen.
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f. There exist the Clifford even ”basis vectors” ^̃A
m†
f (like ^̃A

1†
1 (≡

03
˜[+i]

12
˜(+)

56
˜(1))) which

transform the Clifford odd ”basis vectors” b̂m†
f , representing the internal space of

fermions, into the Clifford odd ”basis vectors” b̂m†
f ′ with the same family member

m belonging to another family f‘.

16.2.4 ”Basis vectors” describing internal space of fermions and bosons in any
even dimensional space

In Subsect. 16.2.3 the properties of the ”basis vectors”, describing internal space
of fermions and bosons in a toy model with d = (5+ 1) are presented in order to
simplify (to make more illustrative) the discussions on the properties of the Clifford
odd ”basis vectors” describing the internal space of fermions and the Clifford even
”basis vectors” describing the internal space of corresponding bosons, the gauge
fields of fermions.
The generalization to any even d is straightforward. For the description of the
internal space of fermions I follow here Ref. [1].

a. The ”basis vectors” offering the description of the internal space of fermions,

b̂m†
f , must contain an odd product of nilpotents

ab

(k), 2n ′ + 1, in d = 2(2n + 1),

n ′ = (0, 1, 2, . . . , 1
2
(d
2
− 1), and the rest is the product of n ′′ projectors

ab

[k], n ′′ =
d
2
− (2n ′ + 1). Nilpotents and projectors are chosen to be ”eigenvectors” of the d

2

members of the Cartan subalgebra.
After the reduction of the two kinds of the Clifford algebras to only one, γa’s, the
generators Sab of the Lorentz transformations in the internal space of fermions
described by γa’s, determine the 2

d
2
−1 family members for each of 2

d
2
−1 families,

while S̃ab’s determine the d
2

numbers (the eigenvalues of the Cartan subalgebra
members of the 2

d
2
−1 families).

The Cliford odd ”basis vectors” b̂m†
f obey the postulates of Dirac for the second

quantized fermion fields

{b̂mf , b̂
m ′†
f ′ }∗A+ |ψoc > = δmm ′

δff ′ |ψoc > ,

{b̂mf , b̂
m ′
f ′ }∗A+ |ψoc > = 0 · |ψoc > ,

{b̂m†
f , b̂m

′†
f ′ }∗A+ |ψoc > = 0 · |ψoc > ,

b̂m†
f ∗A |ψoc > = |ψm

f > ,

b̂mf ∗A|ψoc > = 0 · |ψoc > , (16.23)

with (m,m ′) denoting the ”family” members and (f, f ′) denoting ”families”, ∗A
represents the algebraic multiplication of b̂m†

f with their Hermitian conjugated
objects b̂mf , with the vacuum state |ψoc >, Eq. (17.10), and b̂m†

f or b̂m‘
f‘ among

themselves. It is not difficult to prove the above relations if taking into account
Eq. (17.5).
The Clifford odd ”basis vectors” b̂m†

f ’s and their Hermitian conjugated partners
b̂mf ’s appear in two independent groups, each with 2

d
2
−1× 2d2−1 members, Her-

mitian conjugated to each other.
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It is our choice which one of these two groups with 2
d
2
−1× 2d2−1 members to take

as ”basis vectors” b̂†mf ’s. Making the opposite choice the ”basis vectors” change
handedness.

b. The ”basis vectors” for bosons, Âm†
f , must contain an even number of nilpotents

ab

(k), 2n ′. In d = 2(2n + 1), n ′ = (0, 1, 2, . . . , 1
2
(d
2
− 1)), the rest, n ′′, are projectors

ab

[k], n ′′ = (d
2
− (2n ′)).

The ”basis vectors” are either self adjoint or have the Hermitian conjugated part-
ners within the same group of 2

d
2
−1× 2d2−1 members.

They do not form families,m and f only note a particular ”basis vector”. One of
the members of particular f is self adjoint and participates to the vacuum state
which has 2

d
2
−1 summands, Eq. (16.20).

The Clifford even ”basis vectors” Âm†
f commute, {Âm†

f , Âm ′†
f }− = 0, if both have

the same index f and none of them or both of them are self adjoint operators.

{Âm†
f , Âm ′†

f }− = 0 , if (m,m ′) ̸= m0 orm = m0 = m ′ , ∀ f ,
Âm†

f ∗A Âm0†
f = Âm†

f , ∀m, ∀ f . (16.24)

The two ”basis vectors”, Âm†
f and Âm ′†

f ′ , the algebraic product, ∗A, of which gives
nonzero contribution, ”scatter” into the third one, or annihilate into the vacuum
|ϕoceven >.
Quantum numbers of Âm†

f are determined by the Cartan subalgebra members of
the Lorentz group Sab = Sab + S̃ab.
If a fermion with the ”basis vector” b̂m†

f ”absorbs” one of the commuting Clifford
even objects, Âm‘†

f ′ , it transforms into another family member of the same family, to
b̂m

′†
f , changing correspondingly the family member quantum numbers, keeping

the family quantum number the same, or remains unchanged.
The remaining group of 2

d
2
−1 × 2d2−1 Clifford even ”basis vectors”, presented in

Table 16.1 do not influence the chosen Clifford odd ”basic vectors”, but rather their
Hermitian conjugated partners b̂mf .

There are the even ”basis vectors” ^̃A
m†
f , the nilpotents and projectors of which

are
ab
˜(k),

ab
˜[k], respectively. These ”basis vectors” ^̃A

m†
f , if applying on the Clifford

odd ”basis vectors” b̂m†
f , transform these ”basis vectors” into ”basis vectors” b̂m†

f ′

belonging to different family f, while the family member quantum number m
remains unchanged.
Exchanging the role of the Clifford odd ”basis vector” b̂m†

f and their Hermitian
conjugated partners b̂mf (what means in the case of d = (5 + 1) the exchange of
odd I, which is right handed, with odd II, which is lefthanded, in Table 16.1), not
only causes the change of the handedness of the new b̂n†

f , but also the change of
the role of the Clifford even ”basis vectors” (what means in the case of d = (5+ 1)

the exchange of even IIwith even I).
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16.3 Second quantized fermion and boson fields with internal
space described by Clifford algebra

After the reduction of the Clifford space to only the part determined by γa’s, the
”basis vectors”, which are superposition of odd products of γa’s, determine the
internal space of fermions. The ”basis vectors” are orthogonal and appear in even
dimensional spaces in 2

d
2
−1 families, each with 2

d
2
−1 family members. Quantum

numbers of family members are determined by Sab, quantum numbers of families
are determined by γ̃a’s, or better by S̃ab’s. γ̃a’s anticommute among themselves
and with γa’s, as they did before the reduction of the Clifford space, Eq. (17.11).
”Basis vectors” b̂m†

f , determining internal space of fermions, are in even dimen-
sional spaces products of an odd number of nilpotents and an even number of
projectors, chosen to be eigenvectors of the d

2
Cartan subalgebra members of the

Lorentz algebra Sab, Table 16.2. There are 2
d
2
−1 × 2d2−1 Hermitian conjugated

partners of ”basis vectors”, denoted by b̂mf (= (b̂m†
f )†. It is our choice which one of

these two groups of 2
d
2
−1 × 2d2−1 members are ”basis vectors” and which one are

their Hermitian conjugated partners. These two groups differ in handedness as
can be seen in Table 16.1, if observing odd I and odd II, as well as if we compare
Table 16.2 and Table 16.4.

The Clifford odd anticommuting ”basis vectors”, describing the internal space of fermions,
obey together with their Hermitian conjugated partners the postulates of Dirac for the
second quantized fermion fields, Eq. (17.11).
The Clifford even products of γa’s (with the even number of nilpotents) form twice
2
d
2
−1 × 2d2−1 ”basis vectors”, Âm†

f , describing properties of bosons, Table 16.3. Each
of the two groups are commuting objects due to the fact that even number of γa’s commute.

Also the Clifford even ”basis vectors” are chosen to be the eigenvectors of the
Cartan subalgebra of the Lorentz group, this time determined by Sab = Sab+ S̃ab,
Eqs. (16.19, 16.21). While the Clifford odd ”basis vectors” and their Hermitian con-
jugated partners form two independent groups, the Clifford even ”basis vectors”
have their Hermitian conjugated partners within each of the two groups.
The choice of the ”basis vectors” among the two groups of the Clifford odd
products of nilpotents and projectors for the description of the internal space
of fermions, distinguishing also in handedness and other properties (Table 16.2
and Table 16.4) made as well the choice foe the Clifford even ”basis vectors”
describing the corresponding boson fields. We notice in Table 16.1 that the choice
of odd I for the description of the internal space of fermions makes even II to be
the corresponding boson field.
The remaining group of the 2

d
2
−1 × 2d2−1 Clifford even ”basis vectors”, presented

in Table 16.1 as even I are not the boson partners to the chosen Clifford odd odd I
”basic vectors”, but rather to their Hermitian conjugated partners b̂mf , presented as
odd II in the same Table 16.1.

The creation operators, either for creating fermions or for creating bosons, must have
besides the ”basis vectors” defining the internal space of fermions and bosons also the
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basis in ordinary space in momentum or coordinate representation. I follow here shortly
Ref. [1].

Let us briefly present the relations concerning the momentum or coordinate part of
the single particle states. The longer version is presented in Ref. ( [1] in Subsect. 3.3
and in App. J)

|⃗p > = b̂†
p⃗
| 0p > , < p⃗ | =< 0p | b̂p⃗ ,

< p⃗ | p⃗ ′ > = δ(p⃗− p⃗ ′) =< 0p |b̂p⃗ b̂
†
p⃗ ′ | 0p > ,

leading to

b̂p⃗ ′ b̂
†
p⃗
= δ(p⃗ ′ − p⃗) , (16.25)

where the normalization < 0p | 0p >= 1 to identity is assumed. While the quan-
tized operators ^⃗p and ^⃗x commute {p̂i , p̂j}− = 0 and {x̂k , x̂l}− = 0, this is not the
case for {p̂i , x̂j}− = iηij. It therefore follows

< p⃗ | x⃗ > = < 0p⃗ | b̂p⃗ b̂
†
x⃗
|0x⃗ >= (< 0x⃗ | b̂x⃗ b̂

†
p⃗
|0p⃗ >)

†

{b̂†
p⃗
, b̂†

p⃗ ′ }− = 0 , {b̂p⃗, b̂p⃗ ′ }− = 0 , {b̂p⃗, b̂
†
p⃗ ′ }− = 0 ,

{b̂†
x⃗
, b̂†

x⃗ ′ }− = 0 , {b̂x⃗, b̂x⃗ ′ }− = 0 , {b̂x⃗, b̂
†
x⃗ ′ }− = 0 ,

while

{b̂p⃗, b̂
†
x⃗
}− = eip⃗·x⃗

1√
(2π)d−1

, , {b̂x⃗, b̂
†
p⃗
}− = e−ip⃗·x⃗ 1√

(2π)d−1
, (16.26)

Statement 8. While the internal space of either fermions or bosons has the finite degrees
of freedom — 2

d
2
−1 × 2d2−1 — the momentum basis has obviously continuously infinite

degrees of freedom.

Let us use the common symbol âmf for both ”basis vectors” b̂m†
f and Âm†

f . And
let be taken into account that either fermion or boson second quantized states are
solving equations of motion, which relate p0 and p⃗: p0 = |⃗p|. Then the solution of
the equations of motion can be written as the superposition of the tensor products,
∗T , of a finite number of ”basis vectors” describing the internal space of a second
quantized single particle state, âmf , and the continuously infinite momentum basis

{âs†
f (p⃗) =

∑
m

csmf (p⃗) b̂
†
p⃗
∗T âm†

f } |vacc > ∗T |0p⃗ > , (16.27)

where p⃗ determines the momentum in ordinary space and s determines all the
rest of quantum numbers. The state written here as |vaco > ∗T |0p⃗ > is considered
as the vacuum for a starting single particle state from which one obtains the other
single particle states by the operators, like b̂†

p⃗
, which pushes the momentum by

an amount p⃗ and the vacuum for either fermions |ψoc >, Eq. (17.10), or bosons
|ϕoceven >, Eq. (16.20).
The creation operators for fermions can be therefore written as

{b̂s†
f (p⃗) =

∑
m

csmf (p⃗) b̂
†
p⃗
∗T b̂m†

f } |ψoc > ∗T |0p⃗ > , (16.28)
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while for the corresponding gauge bosons it follows

{Âs†
f (p⃗) =

∑
m

Csm
f (p⃗) b̂

†
p⃗
∗T Âm†

f } |ϕoceven > ∗T |0p⃗ > . (16.29)

Since the ”basis vectors” b̂m†
f , describing the internal space of fermion, and

their Hermitian conjugated partners do fulfil the anticommuting properties of
Eq. (17.11), then also b̂s†

f (p⃗) and (b̂s†
f (p⃗))†, Eq. (17.12), fulfil the anticommutation

relations of Eq. (17.11) due the commutativity of operators b̂†
p⃗
= (b̂†−p⃗

)† = b̂−p⃗

and anticommutativity of ”basis vectors”.
The ”basis vectors” for fermions bring to the second quantized fermions, that is to
the creation and correspondingly to the annihilation operators operating on the
vacuum state, the anticomutativity and 2

d
2
−1 × 2d2−1 quantum numbers of family

members and of families for each of continuously ∞ many p⃗. The fermion single
particle states therefore already anticommute.

The 2
d
2
−1 × 2d2−1 Clifford even ”basis vectors” Âm†

f , appearing in pairs which are
Hermitian conjugated to each other, fulfil the commuting properties of Eq. (16.21),
transfering these commuting properties also to 2

d
2
−1 × 2d2−1 members of Âs†

f (p⃗),
Eq. (17.12), for any of continuously ∞ p⃗, so that Âs†

f (p⃗) fulfil the commutation
relations of Eq. (16.21) according to commutativity properties of operators Âm†

p⃗
.

Statement 9. The odd products of the Clifford objects γa’s offer the ”basis vectors” to
describe the internal space of the second quantized fermion fields. The even products of the
Clifford objects γa’s offer the ”basis vectors” to describe the internal space of the second
quantized boson fields. They are the gauge fields of the fermion fields described by the odd
Clifford objects.

Statement 9.a The description of the internal space of fermions with the odd Clifford
algebra explains the second quantization postulates of Dirac. The quantized single fermion
states anticommute.

The Âs†
f (p⃗) ”basis vectors” bring to the second quantized bosons, that is to the

creation operators and annihilation operators, appearing in pairs or as self ad-
joint operators, operating on the vacuum state, the commutativity properties and
2
d
2
−1 × 2d2−1 quantum numbers, explaining properties of boson particles. The or-

dinary basis, b̂†
p⃗

, brings to the creation operators the continuously infinite degrees
of freedom.

Statement 9.b The description of the internal space of bosons with the even Clifford
algebra explains the second quantization postulates for gauge fields. The quantized single
boson states commute.

Let us represent here the anticommutation relations for the creation and annihila-
tion operators of the second quantized fermion fields b̂s†

f (p⃗) and b̂s
f(p⃗) by taking
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into account Eq. (17.11)

{b̂s ′
f‘ (p⃗

′) , b̂s†
f (p⃗)}+ |ψoc > |0p⃗ > = δss

′
δff ′ δ(p⃗ ′ − p⃗) |ψoc > |0p⃗ > ,

{b̂s ′
f‘ (p⃗

′) , b̂s
f(p⃗)}+ |ψoc > |0p⃗ > = 0 |ψoc > |0p⃗ > ,

{b̂s ′†
f ′ (p⃗ ′) , b̂s†

f (p⃗)}+ |ψoc > |0p⃗ > = 0 |ψoc > |0p⃗ > ,

b̂s†
f (p⃗) |ψoc > |0p⃗ > = |ψs

f(p⃗) >

b̂s
f(p⃗) |ψoc > |0p⃗ > = 0 |ψoc > |0p⃗ >

|p0| = |⃗p| . (16.30)

The creation operators b̂s†
f (p⃗, p0)) and their Hermitian conjugated partners anni-

hilation operators b̂s
f(p⃗, p

0)), creating and annihilating the single fermion state,
respectively, fulfil when applying on the vacuum state, |ψoc > |0p⃗ >, the anti-
commutation relations for the second quantized fermions, postulated by Dirac
(Ref. [1], Subsect. 3.3.1, Sect. 5).
The anticommutation relations of Eq. (17.14) are valid also if we replace the vac-
uum state, |ψoc > |0p⃗ >, by the Hilbert space of Clifford fermions generated by
the tensor product multiplication, ∗TH , of any number of the Clifford odd fermion
states of all possible internal quantum numbers and all possible momenta (that is
of any number of b̂s †

f (p⃗) of any (s, f, p⃗)), Ref. ( [1], Sect. 5.).

The commutation relations among boson creation operators Âs†
f (p⃗) can be written

as

{Âs†
f (p⃗) , Âs ′†

f (p⃗ ′)}− = fss
′s ′′ff‘f ′′Âs ′′†

f ′′ δ(p⃗− p⃗
′) . (16.31)

Let us present an example with p⃗ = (0, 0, p3, 0, 0) and the choice Â3†
1 (p⃗) and

Â2†
2 (p⃗ ′), taken from Table 16.3, one finds

{Â3†
1 (p⃗) , Â1†

2 (p⃗ ′)}− = −δ(p⃗− p⃗ ′) Â2†
1 (p⃗) . (16.32)

One can notice that the sums over each of the quantum numbers (S03,S12,S56,N 3
L ,N 3

R , τ
3, τ8, τ4)

of the left hand side are equal to the corresponding quantum numbers on the right
hand side.

The study of properties of the second quantized bosons with the internal space of
which is described by the Clifford even algebra has just started and needs further
consideration.
Let us point out that when breaking symmetries, like in the case of d = (5 + 1)

into SU(2) × SU(2) × U(1), one easily sees that the same, either the right or the
left representations appear within the same, only the right, Table 16.2, or only the
left, Table 16.4, representation, manifesting the right (left) hand fermions and the
left (right) handed antifermions [24]. The same observation demonstrates also
Table 16.5, in which in each octet of u-quarks and d-quarks of any colour and
in the octet of colourless leptons the left and the right members of fermions and
antifermions appear.
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16.3.1 Simple action for fermion and boson fields

Let the space be d = 2(2n+1)-dimensional. The spin-charge-family theory proposes
d = (13+1)-dimensional space, or larger, so that the ”basis vectors”. describing the
internal space of fermions and bosons, offers the properties of the observed quarks
and leptons and their antiquarks and antileptons, as well as the corresponding
boson fields, as we learn in thic contribution.
The action for the second quantized massless fermion and antifermion fields, and
the corresponding massless boson fields in d = 2(2n + 1)-dimensional space is
therefore

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR+ α̃ R̃) ,

p0a = fαap0α +
1

2E
{pα, Ef

α
a}− ,

p0α = pα −
1

2
Sabωabα −

1

2
S̃abω̃abα ,

R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c. ,

R̃ =
1

2
{fα[afβb] (ω̃abα,β − ω̃caα ω̃

c
bβ)}+ h.c. . (16.33)

Here 3 fα[afβb] = fαafβb − fαbfβa.
It is proven in Refs. [26, 38] that the spin connection gauge fields manifest in
d = (3+ 1) as the ordinary gravity, the known vector gauge fields and the scalar
gauge fields, offering the (simple) explanation for the origin of higgs assumed by
the standard model, explaining as well the Yukawa couplings.

16.4 Conclusions

In the spin-charge-family theory the Clifford algebra is used to describe the internal
space of fermion fields, what brings new insights, new recognitions about proper-
ties of fermion and boson fields ( [1] and references therein):
The use of the odd Clifford algebra elements γa’s to describe the internal space
of fermions offers not only the explanation for all the assumptions of the standard
model, with the appearance of the families of quarks and leptons and antiquarks
and antileptons included, but also for the appearance of the dark matter in the
universe, for the explanation of the second quantized postulates for fermions of

3 fαa are inverted vielbeins to eaα with the properties eaαf
α
b = δab, e

a
αf

β
a = δβα, E =

det(eaα). Latin indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while
Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index (a curved index). Letters from
the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ),
from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and
µ, ν, ..), indexes from the bottom of the alphabets indicate the compactified dimensions
(s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.
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Dirac, for the matter/antimatter asymmetry in the universe, and for several other
observed phenomena, making several predictions.
This article is the first trial to describe the internal space of bosons while using the
even products of Clifford algebra objects γa’s.
Although this study of the internal space of boson fields with the even Clifford
algebra objects needs further considerations, yet the properties demonstrated in
this paper are at least very promising.

Let me repeat briefly what I hope that we have learned.
i. There are two kinds of the anticommuting algebras, the Grassmann algebra,
offering in d-dimensional space 2 · 2d operators, and the two Clifford algebras,
each with 2d operators. The Grassmann algebra operators are expressible with
the operators of the two Clifford algebras and opposite, Eq. (16.4), and opposite.
The two Clifford algebras are independent of each other, Eq. (16.5), forming two
independent spaces.
ii. Either the Grassmann algebra or the two Clifford algebras can be used to de-
scribe the internal space of anticommuting objects, if the odd products of operators
are used to describe the internal space of these objects, and of commuting objects,
if the even products of operators are used to describe the internal space of these
objects.
iii. The ”basis vectors” can be found in each of these algebras, which are eigenvec-
tors of the Cartan subalgebras, Eq. (16.6), of the corresponding Lorentz algebras
Sab, Sab and S̃ab, Eq. (17.7).
iv. After the reduction of the two Clifford algebras to only one — γab’s — as-
suming how does γ̃a apply on γa: {γ̃aB = (−)B i Bγa} |ψoc >, with (−)B = −1,
if B is (a function of) an odd products of γa’s, otherwise (−)B = 1, there remain
twice 2

d
2
−1 iredducible representations of Sab, each with the 2

d
2
−1 members. γ̃a’s

operate on superposition of products of γa’s.
v. The ”basis vectors”, which are superposition of odd products of γa’s, can be
arranged to fulfil the anticommutation relations, postulated by Dirac, explaining
correspondingly the anticommutation postulates of Dirac, Eqs. (16.9, 16.11).
v.a. The Clifford odd 2

d
2
−1 members of each of the 2

d
2
−1 irreducible representa-

tions of ”basis vectors” have their Hermitian conjugated partners in another set
of 2

d
2
−1 ·2d2−1 ”basis vectors”, Tables (16.1, 16.2). The two sets of ”basis vectors”

differ in handedness, Tables (16.2, 16.4).
v.b. It is our choice which set we use to describe the creation operators and which
one to describe the annihilation operators. Correspondingly we have either left or
right handed creation operators.
v.c. The family members of ”basis vectors” have the same properties in all the
families. The sum of all the eigenvalues of all the commuting operators over the
2
d
2
−1 family members is equal to zero for each of 2

d
2
−1 families, separately for left

and separately for right handed representations. The sum of the family quantum
numbers over the four families is zero.
vi. The Clifford even ”basis vectors”, which are superposition of even products of
γa’s, commute.
vi.a. The Clifford even ”basis vectors” have their Hermitian conjugated partners
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within the same group of 2
d
2
−1×2d2−1 members, Table 16.3, or are self adjoint.

vi.b. Each of the two groups of the Clifford even 2
d
2
−1× 2

d
2
−1 ”basis vectors”

applies algebraically on only one of the two Clifford odd ”basis vectors”, (in Ta-
ble 16.1 Clifford even II ”basis vectors” apply on Clifford odd I ”basis vectors”),
conserving the quantum numbers of the internal space.
vi.c. The Clifford even ”basis vectors”, applying algebraically on the Clifford odd
”basis vectors”, transform the Clifford odd ”basis vector” into another member of
the same family, Eqs. (16.17, 16.18, 16.19).
vi.d. The Clifford even ”basis vectors” have obviously the quantum numbers of
the adjoint representations with respect to the fundamental representation of the
Clifford odd partners of the Clifford even ”basis vectors”, Table 16.3.
vi.e. The sum of all the eigenvalues of all the Cartan subalgebra members over
the members of Clifford even ”basis vectors” is equal to zero, independent of
the choice of the subgroups (with the same number of the Cartan subalgeba),
Table 16.3.
vi.f. Two Clifford even ”basis vectors” (Âm†

f and Âm ′†
f ) of the same f and of

(m,m ′) ̸= m0 are orthogonal. The two ”basis vectors” with non zero algebraic
product, ∗A, ”scatter” into the third one, or annihilate into the vacuum,.
vi.g. The superposition of products of even number of γ̃a’s transform the member
of the Clifford odd ”basis vector” of particular family into the same family member
of another family.
vii. The creation and annihilation operators for either the Clifford odd or the
Clifford even fields, contain besides the corresponding ”basis vectors” also the
basis in ordinary, coordinate or momentum, space, Eqs. (17.12, 16.28, 16.29).
vii.a. The tensor products, ∗T , of the ”basis vectors” describing the internal space
of fermions or bosons and the basis in ordinary space have the properties of cre-
ation and annihilation operators for either fermion or boson fields, defining the
states when applying on the corresponding vacuum states, Eqs. (17.10, 16.20).
vii.b. While the internal space of either fermions or bosons has the finite degrees
of freedom — 2

d
2
−1 × 2d2−1 — the momentum basis has obviously continuously

infinite degrees of freedom. Correspondingly the single particle states have contin-
uously infinite degrees of freedom.
vii.c. There are the ”basis vectors” describing the internal spaces of either fermions
or bosons, which bring commutativity or anticommutativity to creation and anni-
hilation operators.
vii.d. The single particle states described by applying the Clifford odd creation
operators on the vacuum state, anticommute, while the single particle states de-
scribed by applying the Clifford even creation operators on the vacuum state
commute. The same rules are valid also when applying creation operators on the
corresponding Hilbert spaces, Ref. (nh2021RPPNP), Sect. 5.
vii.e. Fermion fields described by using the Clifford odd creation operators interact
with exchange of the corresponding boson fields described by the Clifford even
creation operators, Eq. (16.19). Bosons fields interacts on both ways, with boson
fields (if the corresponding two ”basis vectors” have non zero algebraic product,
∗A), as well as with fermions.
vii.f. The application of the creation operators with the Clifford even ”basis vec-
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tors”, in which all the γa’s are replaced by γ̃a’s, on the fermion creation operators,
transform the fermion creation operator to another one, belonging to different
family with the unchanged family members of the ”basis vectors”, Subsect. (16.2.4,
part b.).

Let me conclude this contribution by saying that so far the description of the
internal space of the second quantized fermions with the Clifford odd ”basis vec-
tors” offers a new insight into the Hilbert space of the second quantized fermions
(although there are still open questions waiting to be discussed, like it is the ap-
pearance of the Dirac sea in the usual approaches), the equivalent description of
the internal space of the second quantized boson fields with the Clifford even
”basis vectors” needs, although to my opinion very promising, a lot of further
study.

16.5 Eigenstates of Cartan subalgebra of Lorentz algebra

The eigenvectors of Sab and S̃ab in the space determined by γa’s is as follows

Sab
1

2
(γa +

ηaa

ik
γb) =

k

2

1

2
(γa +

ηaa

ik
γb) ,

Sab
1

2
(1+

i

k
γaγb) =

k

2

1

2
(1+

i

k
γaγb) ,

S̃ab
1

2
(γ̃a +

ηaa

ik
γ̃b) =

k

2

1

2
(γ̃a +

ηaa

ik
γ̃b) ,

S̃ab
1

2
(1+

i

k
γ̃aγ̃b) = −

k

2

1

2
(1+

i

k
γ̃aγ̃b) . (16.34)

with k2 = ηaaηbb.
The proof of the first two equations of Eq.(16.34) goes as follows, a ̸= b is assumed:
i
2
γaγb 1

2
(γa + ηaa

ik
γb) = i

2
1
2
(−ηaaγb + ηaaηbb

ik
γa) = k

2
1
2
(γa − ηaa i

k
γb).

i
2
γaγb 1

2
(1+ i

k
γaγb) = i

2
1
2
(γaγb − i

k
ηaaηbb) = k

2
1
2
(1+ i

k
γaγb).

For proving the second two equations it must be recognized that after the reduction
of the Clifford space to only the part spent by γa’s, that is after requiring
{γ̃aB = (−)B i Bγa} |ψoc >,
with (−)B = −1, if B is (a function of) an odd product of γa’s, otherwise (−)B =

1 [35], the relations of Eq. (16.5) remain unchanged.
One can see this as follows (I follow here Ref. [1], Statement 3a. of App.I)
{γ̃a, γ̃b}+ = 2ηab = γ̃aγ̃b + γ̃bγ̃a = γ̃aiγb + γ̃biγa = iγb(−i)γa + iγa(−i)γb =

2ηab.
{γ̃a, γb}+ = 0 = γ̃aγb + γbγ̃a = γb(−i)γa + γbiγa = 0.
Taking this into account it follows
S̃ab 1

2
(γa+ηaa

ik
γb) = i

2
γ̃aγ̃b 1

2
(γa+ηaa

ik
γb) = i

2
1
2
(γa+ηaa

ik
γb)γbγa = i

2
1
2
(−ηaaγb+

ηaaηbb

ik
γa) = k

2
1
2
(γa + ηaa

ik
γb),

S̃ab 1
2
(1+ i

k
γaγb) = i

2
1
2
(1+ i

k
γaγb)γbγa = i

2
1
2
(−γaγb + i

k
ηaaηbb) = −k

2
1
2
(1+

i
k
γaγb),

where it is taken into account that k2 = ηaaηbb.
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16.6 Clifford odd and even ”basis vectors” continue

In Table 16.2 the Clifford odd ”basis vectors” of the right handedness were chosen
for the description of the internal space of fermions in d = (5 + 1)-dimensional
space, noted in Table 16.1 as odd I.
If we make a choice of odd II for the Clifford odd ”basis vectors” in Table 16.1,
and take the odd I as their Hermitian conjugated partners, then these ”basis
vectors” are left (not right) handed and have properties presented in Table 16.4.
We can compare their properties by the properties of the right handed ”basis
vectors” appearing in Table 16.2. The two groups odd I and odd II are Hermitian
conjugated to each other. We clearly see if comparing both tables, Table 16.2 and

Table 16.4: The ”basis vectors”, this time left handed — b̂
m=(ch,s)†
f (each is a

product of projectors and an odd number of nilpotents, and is the ”eigenstate” of
all the Cartan subalgebra members, S03, S12, S56 and S̃03, S̃12, S̃56, Eq. (16.6) (ch
(charge), the eigenvalue of S56, and s (spin), the eigenvalues of S03 and S12, explain
indexm, f determines family quantum numbers, the eigenvalues of (S̃03, S̃12, S̃56)
— are presented for d = (5 + 1)-dimensional case. Their Hermitian conjugated
partners — b̂

m=(ch,s)
f — can be found in Table 16.2 as ”basis vectors”. This table

represents also the eigenvalues of the three commuting operators N3
L,R and S56 of

the subgroups SU(2)× SU(2)×U(1) and the eigenvalues of the three commuting
operators τ3, τ8 and τ4 of the subgroups SU(3) × U(1), in these two last cases
indexm represents the eigenvalues of the corresponding commuting generators.
Γ (5+1) = −γ0γ1γ2γ3γ5γ6 = −1, Γ (3+1) = iγ0γ1γ2γ3. Operators b̂m=(ch,s)†

f and
b̂
m=(ch,s)
f fulfil the anticommutation relations of Eqs. (16.9, 16.11).

f m = (ch, s) b̂
m=(ch,s)†
f

S03 S12 S56 Γ3+1 N3
L
N3
R

τ3 τ8 τ4 S̃03 S̃12 S̃56

I 1 ( 1
2
, 1
2

)
03

(−i)
12
(+) |

56
(+) − i

2
1
2

1
2

−1 1
2

0 − 1
2

− 1
2
√
3

− 1
6

− i
2

1
2

1
2

I 2 ( 1
2
,− 1
2

)
03

[+i]
12
[−] |

56
(+) i

2
− 1
2

1
2

−1 − 1
2

0 1
2

− 1
2
√
3

− 1
6

− i
2

1
2

1
2

I 3 (− 1
2
, 1
2

)
03

[+i]
12
(+) |

56
[−] i

2
1
2

− 1
2

1 0 1
2

0 1√
3

− 1
6

− i
2

1
2

1
2

I 1 (− 1
2
,− 1
2

)
03

(−i)
12
[−] |

56
[−] − i

2
− 1
2

− 1
2

1 0 − 1
2

0 0 1
2

− i
2

1
2

1
2

II 1 ( 1
2
, 1
2

)
03

[−i]
12
[+] |

56
(+) − i

2
1
2

1
2

−1 1
2

0 − 1
2

− 1
2
√
3

− 1
6

i
2

− 1
2

1
2

II 2 ( 1
2
,− 1
2

)
03

(+i)
12
(−) |

56
(+) i

2
− 1
2

1
2

−1 − 1
2

0 1
2

− 1
2
√
3

− 1
6

i
2

− 1
2

1
2

II 3 (− 1
2
, 1
2

)
03

(+i)
12
[+] |

56
[−] i

2
1
2

− 1
2

1 0 1
2

0 1√
3

− 1
6

i
2

− 1
2

1
2

II 4 (− 1
2
,− 1
2

)
03

[−i]
12
(−) |

56
[−] − i

2
− 1
2

− 1
2

1 0 − 1
2

0 0 1
2

i
2

− 1
2

1
2

III 1 ( 1
2
, 1
2

)
03

[−i]
12
(+) |

56
[+] − i

2
1
2

1
2

−1 1
2

0 − 1
2

− 1
2
√
3

− 1
6

i
2

1
2

− 1
2

III 2 ( 1
2
,− 1
2

)
03

(+i)
12
[−] |

56
[+] i

2
− 1
2

1
2

−1 − 1
2

0 1
2

− 1
2
√
3

− 1
6

i
2

1
2

− 1
2

III 3 (− 1
2
, 1
2

)
03

(+i)
12
(+) |

56
(−) − i

2
1
2

− 1
2

1 0 1
2

0 1√
3

− 1
6

i
2

1
2

− 1
2

III 4 (− 1
2
,− 1
2

)
03

[−i]
12
[−] |

56
(−) − i

2
− 1
2

− 1
2

1 0 − 1
2

0 0 1
2

i
2

1
2

− 1
2

IV 1 ( 1
2
, 1
2

)
03

(−i)
12
[+] |

56
[+] − i

2
1
2

1
2

−1 1
2

0 − 1
2

− 1
2
√
3

− 1
6

− i
2

− 1
2

− 1
2

IV 2 ( 1
2
,− 1
2

)
03

[+i]
12
(−) |

56
[+] i

2
− 1
2

1
2

−1 − 1
2

0 1
2

− 1
2
√
3

− 1
6

− i
2

− 1
2

− 1
2

IV 3 (− 1
2
, 1
2

)
03

[+i]
12
[+] |

56
(−) i

2
1
2

− 1
2

1 0 1
2

0 1√
3

− 1
6

− i
2

− 1
2

− 1
2

IV 4 (− 1
2
,− 1
2

)
03

(−i)
12
(−) |

56
(−) − i

2
− 1
2

− 1
2

1 0 − 1
2

0 0 1
2

− i
2

− 1
2

− 1
2
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Table 16.4, that they do differ in properties. In particular the difference among
these two kinds of ”basis vectors” is easily seen in the SU(3) × U(1) subgroup,
that is in (τ3, τ8, τ4) values.
In Table 16.5 one finds the left and the right handed content of one of the families,
the fourth ones, presented in Ref. [1], Table 5, if d = (5+1) is taken as the subspace
of the space d = (13+ 1).

16.7 Some useful relations in Grassmann and Clifford space,
needed also in App. 16.8

The generator of the Lorentz transformation in Grassmann space is defined as
follows [20]

Sab = (θapθb − θbpθa)

= Sab + S̃ab , {Sab, S̃cd}− = 0 , (16.35)

where Sab and S̃ab are the corresponding two generators of the Lorentz transfor-
mations in the Clifford space, forming orthogonal representations with respect to
each other.
We make a choice of the Cartan subalgebra of the Lorentz algebra as follows

S03,S12,S56, · · · ,Sd−1 d ,

S03, S12, S56, · · · , Sd−1 d ,

S̃03, S̃12, S̃56, · · · , S̃d−1 d ,

if d = 2n . (16.36)

We find the infinitesimal generators of the Lorentz transformations in Clifford
space

Sab =
i

4
(γaγb − γbγa) , Sab† = ηaaηbbSab ,

S̃ab =
i

4
(γ̃aγ̃b − γ̃bγ̃a) , S̃ab† = ηaaηbbS̃ab , (16.37)

where γa and γ̃a are defined in Eqs. (16.4, 16.5). The commutation relations for
either Sab or Sab or S̃ab, Sab = Sab + S̃ab, are

{Sab, S̃cd}− = 0 ,

{Sab, Scd}− = i(ηadSbc + ηbcSad − ηacSbd − ηbdSac) ,

{S̃ab, S̃cd}− = i(ηadS̃bc + ηbcS̃ad − ηacS̃bd − ηbdS̃ac) . (16.38)

The infinitesimal generators of the two invariant subgroups of the group SO(3, 1)
can be expressed as follows

N⃗±(= N⃗(L,R)) : =
1

2
(S23 ± iS01, S31 ± iS02, S12 ± iS03) . (16.39)
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The infinitesimal generators of the two invariant subgroups of the group SO(4)
are expressible with Sab, (a, b) = (5, 6, 7, 8) as follows

τ⃗1 : =
1

2
(S58 − S67, S57 + S68, S56 − S78) ,

τ⃗2 : =
1

2
(S58 + S67, S57 − S68, S56 + S78) , (16.40)

while the generators of the SU(3) and U(1) subgroups of the group SO(6) can be
expressed by Sab, (a, b) = (9, 10, 11, 12, 13, 14)

τ⃗3 :=
1

2
{S9 12 − S10 11 , S9 11 + S10 12, S9 10 − S11 12,

S9 14 − S10 13, S9 13 + S10 14 , S11 14 − S12 13 ,

S11 13 + S12 14,
1√
3
(S9 10 + S11 12 − 2S13 14)} ,

τ4 := −
1

3
(S9 10 + S11 12 + S13 14) . (16.41)

The group SO(6) has d(d−1)
2

= 15 generators and d
2
= 3 commuting operators.

The subgroups SU(3) ×U(1) have the same number of commuting operators, ex-
pressed with τ33, τ38 and τ4, and 9 generators, 8 of SU(3) and one of U(1). The
rest of 6 generators, not included in SU(3) ×U(1), can be expressed as 1

2
{S9 12 +

S10 11, S9 11 − S10 12, S9 14 + S10 13, S9 13 − S10 14, S11 14 + S12 13, S11 13 − S12 14.

The hyper charge Y can be defined as Y = τ23 + τ4.
The equivalent expressions for the ”family” charges, expressed by S̃ab, follow if
in Eqs. (17.26 - 17.28) Sab are replaced by S̃ab.
Let us present some useful relations from Ref. [23].

ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,
ab

(−k)
ab

(k)= ηaa
ab

[−k] ,
ab

(−k)
ab

(−k)= 0 ,
ab

[k]
ab

[k] =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,
ab

[−k]
ab

[k]= 0 ,
ab

[−k]
ab

[−k]=
ab

[−k] ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(−k)
ab

[k]=
ab

(−k) ,
ab

(−k)
ab

[−k]= 0 ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0 ,
ab

[−k]
ab

(k)= 0 ,
ab

[−k]
ab

(−k)=
ab

(−k) .

(16.42)

16.8 One family representation in d = (13 + 1)-dimensional
space with 2

d
2
−1 members representing quarks and leptons

and antiquarks and antileptons in the spin-charge-family
theory

In Table Table so13+1. the ”basis vectors” of one irreducible representation, one
family, of the Clifford odd basis vectors of left handedness, Γ (13+1), is presented,
including all the quarks and the leptons and the antiquarks and the antileptons of
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(Anti)octet, Γ(7,1) = (−1) 1 , Γ(6) = (1) − 1

of (anti)quarks and (anti)leptons
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03
[−i]

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
[−]

13 14
[−] -1 1

2
0 1

2
0 0 1

2
1 1

58 ēL
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Table 16.5: The left handed (Γ(13,1) = −1 [23]) multiplet of spinors — the members of the fundamental representation of the SO(13, 1)

group, manifesting the subgroup SO(7, 1) of the colour charged quarks and antiquarks and the colourless leptons and antileptons — is presented in the

massless basis using the technique presented in Refs. [23, 31, 34, 35]. It contains the left handed (Γ(3,1) = −1) weak (SU(2)I) charged (τ13 = ± 1
2

,

Eq. (17.27)), andSU(2)II chargeless (τ23 = 0, Eq. (17.27)) quarks and leptons and the right handed (Γ(3,1) = 1) weak (SU(2)I) chargeless and

SU(2)II charged (τ23 = ± 1
2

) quarks and leptons, both with the spin S12 up and down (± 1
2

, respectively). Quarks distinguish from leptons only

in theSU(3) ×U(1) part: Quarks are triplets of three colours (ci = (τ33, τ38)= [( 1
2
, 1
2
√
3

), (− 1
2
, 1
2
√
3

), (0,− 1√
3

)], Eq. (17.28))

carrying the ”fermion charge” (τ4 = 1
6

, Eq. (17.28)). The colourless leptons carry the ”fermion charge” (τ4 = − 1
2

). The same multiplet contains also the
left handed weak (SU(2)I ) chargeless andSU(2)II charged antiquarks and antileptons and the right handed weak (SU(2)I ) charged andSU(2)II
chargeless antiquarks and antileptons. Antiquarks distinguish from antileptons again only in theSU(3) ×U(1) part: Antiquarks are antitriplets, carrying

the ”fermion charge” (τ4 = − 1
6

). The anticolourless antileptons carry the ”fermion charge” (τ4 = 1
2

). Y = (τ23 + τ4) is the hyper charge, the

electromagnetic charge isQ = (τ13 + Y). The vacuum state, on which the nilpotents and projectors operate, is presented in Eq. (17.10). The reader can find
this Weyl representation also in Refs. [25], [26], [31] and the references therein.

the standard model. The needed definitions of the quantum numbers are presented
in App. 16.7.
In Tables 16.1, 16.2, 16.3 a simple toy model for d = (5+ 1)-dimensional space is
discussed, and the properties of fermions (appearing in families) and their gauge
boson fields (the vielbeins and the two kinds of the spin connection fields) analysed.
The manifold (5+1) was suggested to break either into SU(2)×SU(2)×U(1) or to
SU(3)×U(1) to study properties of the fermion and boson second quantized fields,
with second quantization origining in the anticommutativity or commutativity of
”basis vectors”.
Here only one family of ”basis vectors” is presented to see that while the starting
”basis vectors” can be either left or right handed, the subgroups,of the starting
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group contain left and right handed members, as it is SU(2) × SU(2) × U(1) of
SO(5+ 1) in the toy model.
The breaks of the symmetries, manifesting in Eqs. (17.26, 17.27, 17.28), are in
the spin-charge-family theory caused by the condensate and the nonzero vacuum
expectation values (constant values) of the scalar fields carrying the space index
(7, 8) (Refs. [23, 31] and the references therein), all originating in the vielbeins
and the two kinds of the spin connection fields. The space breaks first to SO(7, 1)
×SU(3)×U(1)II and then further to SO(3, 1)× SU(2)I ×U(1)I ×SU(3)×U(1)II,
what explains the connections between the weak and the hyper charges and the
handedness of spinors.

16.9 Handedness in Grassmann and Clifford space

The handedness Γ (d) is one of the invariants of the group SO(d), with the infinites-
imal generators of the Lorentz group Sab, defined as

Γ (d) = αεa1a2...ad−1ad S
a1a2 · Sa3a4 · · ·Sad−1ad , (16.43)

with α, which is chosen so that Γ (d) = ±1.
In the Grassmann case Sab is defined in Eq. (16.6), while in the Clifford case
Eq. (16.43) simplifies, if we take into account that Sab|a ̸=b = i

2
γaγb and S̃ab|a ̸=b =

i
2
γ̃aγ̃b, as follows

Γ (d) : = (i)d/2
∏
a

(
√
ηaaγa), if d = 2n .

(16.44)
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14. N.S. Mankoč Borštnik, ”Spin-charge-family theory is offering next step in understand-
ing elementary particles and fields and correspondingly universe”, Proceedings to the
Conference on Cosmology, Gravitational Waves and Particles, IARD conferences, Ljubl-
jana, 6-9 June 2016, The 10th Biennial Conference on Classical and Quantum Relativis-
tic Dynamics of Particles and Fields, J. Phys.: Conf. Ser. 845 012017 [arXiv:1409.4981,
arXiv:1607.01618v2].
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24. N.S. Mankoč Borštnik and H.B.F. Nielsen, ”Discrete symmetries in the Kaluza-Klein
theories”, JHEP 04:165, 2014 [arXiv:1212.2362].
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17 The achievements of the spin-charge-family theory
so far

N.S. Mankoč Borštnik

Department of Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia

Abstract. Fifty years ago, the standard model offered an elegant new step towards under-
standing elementary fermion and boson fields, making several assumptions, suggested
by experiments. The assumptions are still waiting for an explanation. There are many
proposals in the literature for the next step. The spin-charge-family theory, proposing a
simple starting action in d ≥ (13 + 1)-dimensional space with fermions interacting with
the gravity only (the vielbeins and the two kinds of the spin connection fields), is offering
the explanation for not only all by the standard model assumed properties of quarks and
leptons and antiquarks and antileptons, with the families included, of the vector gauge
fields, of the Higgs’s scalar and Yukawa couplings, of the appearance of the dark matter,
of the matter-antimatter asymmetry, making several predictions, but explains as well the
second quantization postulates for fermions and bosons by using the odd and the even
Clifford algebra ”basis vectors” to describe the internal space of fermions and bosons,
respectively. Consequently the single fermion and single boson states already anticommute
and commute, respectively. I present in this talk a very short overview of the achievement
of the spin-charge-family theory so far, concluding with presenting not yet solved problems,
for which the collaborators are very welcome.

Povzetek: Pred petdesetimi leti je standardni model, zgrajen na predpostavkah, porojenih iz
rezultatov poskusov, ponudil eleganten nov korak k razumevanju osnovnih fermionskih in
bozonskih polj. V literaturi je veliko predlogov, ki pojasnjujejo predpostavke in ponujajo
nov korak. Teorija spin-charge-family, ki predlaga preprosto začetno akcijo v d ≥ (13 + 1)-
razsežnem prostoru, v kateri si fermioni izmenjujejo samo gravitone (vektorske svežnje in
dve vrsti spinskih povezav), ponuja razlago ne le za vse predpostavke standardnega modela
— za vse lastnosti kvarkov in leptonov ter antikvarkov in antileptonov, ki se pojavljajo v
družinah, za umeritvena vektorska polja, za Higgsove skalarje in Yukawe sklopitve — am-
pak tudi za pojave v vesolju kot so temna snov, nesimetrija med snovjo in antisnovjo, ponudi
vrsto napovedi, ponudi pa tudi pojasnilo za postulate za drugo kvantizacijo za fermione in
bozone. Opis notranjega prostora fermionov in bozonov z liho in sodo Cliffordovo alge-
bro poskrbi, da fermionska stanja antikomutirajo, bozonska pa komutirajo. V predavanju
ponudim kratek pregled dosedanjih dosežkov spin-charge-family teorije, v zaključku pa
predstavim odprta vprašanja. Pri iskanju odgovorov nanje vabim k sodelovanju.

17.1 Introduction

The review article [1] presents a short overview of most of the achievements of the
spin-charge-family theory so far. I shall make use of this article when presenting my
talk.
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Fifty years ago the standard model offered an elegant new step towards understand-
ing elementary fermion and boson fields by postulating:
a. The existence of massless fermion family members with the spins and charges
in the fundamental representation of the groups, a.i. the quarks as colour triplets
and colouress leptons, a.ii the left handed members as the weak doublets, the
right handed weak chargeless members, a.iii. the left handed quarks differing
from the left handed leptons in the hyper charge, a.iv. all the right handed mem-
bers differing among themselves in hyper charges, a.v. antifermions carrying the
corresponding anticharges of fermions and opposite handedness, a.vi. the fami-
lies of massless fermions, suggested by experiments and required by the gauge
invariance of the boson fields (there is no right handed neutrino postulated, since
it would carry none of the so far observed charges, and correspondingly there is
also no left handed antineutrino allowed in the standard model).
b. The existence of massless vector gauge fields to the observed charges of quarks
and leptons, carrying charges in the adjoint representations of the corresponding
charged groups and manifesting the gauge invariance.
c. The existence of the massive weak doublet scalar higgs, c.i. carrying the weak
charge ±1

2
and the hyper charge ∓1

2
(as it would be in the fundamental represen-

tation of the two groups), c.ii. gaining at some step of the expanding universe
the nonzero vacuum expectation value, c.iii. breaking the weak and the hyper
charge and correspondingly breaking the mass protection, c.iv. taking care of the
properties of fermions and of the weak bosons masses, c.v. as well as the existence
of the Yukawa couplings.
d. The presentation of fermions and bosons as second quantized fields.
e. The gravitational field in d = (3+ 1) as independent gauge field. (The standard
model is defined without gravity in order that it be renomalizable, but yet the
standard model particles are ”allowed” to couple to gravity in the ”minimal”
way.)
The standard model assumptions have been experimentally confirmed without
raising any severe doubts so far, except for some few and possibly statistically
caused anomalies 1, but also by offering no explanations for the assumptions.
The last among the fields postulated by the standard model, the scalar higgs, was
detected in June 2012, the gravitational waves were detected in February 2016.
The standard model has in the literature several explanations, mostly with many
new not explained assumptions. The most popular seem to be the grand unifying
theories [2, 4–18, 59]. At least SO(10)-unifying theories offer the explanation for
the postulates from a.i. to a.iv, partly to b. by assuming that to all the ”fermion”
charges there exist the corresponding vector gauge fields — but does not explain
the assumptions a.v. up to a.vi., c. and d., and does not connect gravity with gauge
vector and scalar fields.
In a long series of works with collaborators ( [19–23, 25, 26, 28–32, 38] and the
references therein), we have found the phenomenological success with the model
named the spin-charge-family theory, with fermions, the internal space of which is
described with the Clifford algebra of all linear superposition of odd products of

1 I think here on the improved standard model, in which neutrinos have non-zero masses,
and the model has no ambition to explain severe cosmological problems.
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γa’s in d = (13 + 1), interacting with only gravity ( [38] and references therein).
The spins of fermions from higher dimensions, d > (3 + 1), manifest in d =

(3+ 1) as charges of the standard model, gravity in higher dimensions manifest as
the standard model gauge vector fields as well as the Higgs’s scalar and Yukawa
couplings [26, 31].
Let be added that one irreducible representation of SO(13, 1) contains, if looked
from the point of view of d = (3+1), all the quarks and leptons and antiquarks and
antileptons and just with the properties, required by the standard model, including
the relation between quarks and leptons and handedness and antiquarks and
antileptons of the opposite handedness, as can be reed in Table 5 of App. D,
appearing in the contribution of the same author in this Proceedings [33].
All that in the standard model had to be assumed (extremely effective ”read” from
experiments and also from the theoretical investigations) in the spin-charge-family
theory appear as a possibility from the starting simple action, Eq. (17.15), and
from the assumption that the internal space of fermions are described by the odd
Clifford algebra objects.
One can reed in my second contribution to this Proceedings [33] that the descrip-
tion of the internal space of fermions with the odd Clifford algebra operators γa’s
offers the explanation for the observed quantum numbers of quarks and leptons
and antiquarks and antileptons while unifying spin, handedness, charges and
families. The ”basis vectors” which are superposition of odd products of operators
γa’s, appear in irreducible representations which differ in the quantum numbers
determined by γ̃a’s.
The simple starting action of the spin-charge-family theory offers the explanation
for not only the properties of quarks and leptons and antiquarks and antileptons,
but also for the vector gauge fields, scalar gauge fields, which represent higgs and
explain the Yukawa couplings, and for the scalars, which cause matter/antimatter
asymmetry, the proton decay, while the appearance of the dark matter is explained
by the appearance of two groups of the decoupled families.
It appears, as it is explained in my second contribution to this Proceedings [33],
that the description of the internal space of bosons fields (the gauge fields of the
fermion fields described by the Clifford odd ”basis vectors”) with the Clifford
even ”basis vectors” explains the commutativity and the properties of the second
quantized boson fields, as the description of the internal space of fermion fields
with the Clifford odd ”basis vectors” explains the anticommutativity and the
properties of the second quantized fermion fields.
The description of fermions and bosons with the Clifford odd and Clifford even
”basis vectors”, respectively, makes fermions appearing in families, while bosons
do not. Both kinds of ”basis vectors” contribute finite number, 2

d
2
−1 × 2

d
2
−1,

degrees of freedom to the corresponding creation operators, while the basis of
ordinary space contribute continuously infinite degrees of freedom.
Is the way proposed by the spin-charge-family theory the right way to the next
step beyond the standard model? The theory certainly offers a different view of
the properties of fermion and boson fields and a different view of the second
quantization of both fields than that offered by group theory and the second
quantization by postulates.
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It has happened so many times in the history of science that the simpler model
has shown up as a more ”powerful” one.
My working hypotheses is that the laws of nature are simple and correspondingly
elegant and that the many body systems around the phase transitions look to
us complicated at least from the point of view of the elementary constituents of
fermion and boson fields.
To this working hypotheses belong also the description of the internal space of
fermions and bosons with the Clifford algebras and the simple starting action for
the (second quantized) massless fermions interacting with the (second quantized) 2

massless bosons, representing gravity only — the vielbeins and the two kinds of
the spin connection fields, the gauge fields of the two kinds of the generators of the
Lorentz transformations Sab(= i

2
(γaγb − γbγa)) and S̃ab(= i

2
(γ̃aγ̃b − γ̃bγ̃a)).

In Sect. 17.2 I shall very shortly overview the Clifford algebra description of
the internal space of fermions, following Ref. [1], and bosons (explained in my
additional contribution to this Proceedings [33]), after the reduction of the two
independent groups of Clifford algebras to only one.
In Sect. 17.3 the definition of the creation and annihilation operators as tensor
products of the ”basis vectors” defined by the Clifford algebra objects and basis in
ordinary space is presented.
In Sect. 17.4 the simple starting action of the spin-charge-family theory is presented
and the achievements of the theory so far discussed.
In Sect. 17.5 the open problems of the spin-charge-family theory are presented, and
the invitation to the reader to participate.

17.2 Clifford algebra and internal space of fermions and bosons

I follow here Ref. [1], Sect. 3 and also my second contribution to this Proceed-
ings [33], Sect. 2.
Single fermion states are functions of external coordinates and of internal space of
fermions. If Mab denote infinitesimal generators of the Lorentz algebra in both
spaces, Mab = Lab + Sab, with Lab = xapb − xbpa, pa = i ∂

∂xa
, determining

operators in ordinary space, while Sab are equivalent operators in internal space
of fermions, it follows

{Mab,Mcd}− = i{Madηbc +Mbcηad −Macηbd − Mbdηac} ,

{Mab, pc}− = −iηacpb + iηcbpa ,

{Mab, Scd}− = i{Sadηbc + Sad − Sacηbd − Sbdηac} , (17.1)

while the Cartan subalgebra operators of the Lorentz algebra are chosen as

M03,M12,M56, . . . ,Md−1d , (17.2)
2 Since the single fermion states, described by the Clifford odd ”basis vectors”, anticom-

mute due to the anticommuting properties of the Clifford odd ”basis vectors” and the
single boson states, described by the Clifford even ”basis vectors”, correspondingly
commute there are only the second quantized fermion and boson fields.
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and will be used to define the basis in both spaces as eigenvectors of the Cartan
subalgebra members. The metric tensor ηab = diag(1,−1,−1, . . . ,−1,−1) for
a = (0, 1, 2, 3, 5, . . . , d) is used.
There are two kinds of anticommuting algebras, the Grassmann algebra θa’s and
pθa’s (= ∂

∂θa
’s), in d-dimensional space with d anticommuting operators θa’s and

with d anticommuting derivatives ∂
∂θa

’s,

{θa, θb}+ = 0 , {
∂

∂θa
,
∂

∂θb
}+ = 0 ,

{θa,
∂

∂θb
}+ = δab , (a, b) = (0, 1, 2, 3, 5, · · · , d) ,

(θa)† = ηaa
∂

∂θa
, (

∂

∂θa
)† = ηaaθa , (17.3)

where the last line was our choice [32], and the two anticommuting kinds of the
Clifford algebras γa’s and γ̃a’s 3 are expressible with the Grassmann algebra
operators and opposite

γa = (θa +
∂

∂θa
) , γ̃a = i (θa −

∂

∂θa
) ,

θa =
1

2
(γa − iγ̃a) ,

∂

∂θa
=
1

2
(γa + iγ̃a) , (17.4)

offering together 2 · 2d operators: 2d of those which are products of γa and 2d of
those which are products of γ̃a, the same number of operators as of the Grassmann
algebra operators. The two kinds of the Clifford algebras anticommute, fulfilling
the anticommutation relations

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,

{γa, γ̃b}+ = 0 , (a, b) = (0, 1, 2, 3, 5, · · · , d) ,
(γa)† = ηaa γa , (γ̃a)† = ηaa γ̃a ,

γaγa = ηaa , γa(γa)† = I , γ̃aγ̃a = ηaa , γ̃a(γ̃a)† = I , (17.5)

where I represents the unit operator. The two kinds of the Clifford algebra objects
are obviously independent.

3 The existence of the two kinds of the Clifford algebras is discussed in [19, 20, 22, 34, 35].
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The corresponding infinitesimal Lorentz generators are then Sab for the Grass-
mann algebra, and Sab and S̃ab for the two kinds of the Clifford algebras.

Sab =
i

4
(γaγb − γbγa) ,

S̃ab =
i

4
(γ̃aγ̃b − γ̃bγ̃a) ,

Sab = i (θa
∂

∂θb
− θb

∂

∂θa
) ,

{Sab, S̃ab}− = 0 , Sab = Sab + S̃ab ,

{Sab, θe}− = −i (ηae θb − ηbe θa) ,

{Sab, pθe}− = −i (ηae pθb − ηbe pθa) ,

{Sab, γc}− = i(ηbcγa − ηacγb) ,

{S̃ab, γ̃c}− = i(ηbcγ̃a − ηacγ̃b) ,

{Sab, γ̃c}− = 0 , {S̃ab, γc}− = 0 . (17.6)

The reader can find a more detailed information in Ref. [1] in Sect. 3.
It is useful to choose the ”basis vectors” in each of the two spaces to be products of
eigenstates of the Cartan subalgebra members, Eq. (17.2), of the Lorentz algebras,
(Sab = i

4
(γaγb − γbγa), S̃ab = i

4
(γ̃aγ̃b − γ̃bγ̃a)). The ”eigenstates” of each of

the Cartan subalgebra members, Eqs. (17.4, 17.5), for each of the two kinds of the
Clifford algebras separately can be found as follows,

Sab
1

2
(γa +

ηaa

ik
γb) =

k

2

1

2
(γa +

ηaa

ik
γb) , Sab

1

2
(1+

i

k
γaγb) =

k

2

1

2
(1+

i

k
γaγb) ,

S̃ab
1

2
(γ̃a +

ηaa

ik
γ̃b) =

k

2

1

2
(γ̃a +

ηaa

ik
γ̃b) , S̃ab

1

2
(1+

i

k
γ̃aγ̃b) =

k

2

1

2
(1+

i

k
γ̃aγ̃b) ,(17.7)

k2 = ηaaηbb. The proof of Eq. (17.7) is presented in App. (I) of Ref. [1], Statement
2a. The Clifford ”basis vectors” — nilpotents 1

2
(γa+ ηaa

ik
γb), (1

2
(γa+ ηaa

ik
γb))2 = 0

and projectors 1
2
(1+ i

k
γ̃aγ̃b), (1

2
(1+ i

k
γ̃aγ̃b))2 = 1

2
(1+ i

k
γ̃aγ̃b) — of both algebras

are normalized, up to a phase, as described in the contribution of the same outhor
in this Proceedings [33].
Both, nilpotents and projectors, have half integer spins.
It is useful to introduce the notation for the ”eigenvectors” of the two Cartan
subalgebras as follows, Ref. [34, 35],

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

(k)

†
= ηaa

ab

(−k) , (
ab

(k))2 = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k]

ab

[k]: =
1

2
(1+

i

k
γaγb) ,

ab

[k]

†
=

ab

[k] , (
ab

[k])2 =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,

ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(k)
ab

[−k]=
ab

(k) ,
ab

[k]
ab

(−k)= 0 . (17.8)

The corresponding expressions for nilpotents
ab
˜(k) and projectors

ab
˜[k] follows if we

replace in Eq. (17.8) γa’s by γ̃a’s, the same relation k2 = ηaaηbb is valid for both
algebras.
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Let us notice that the ”eigenvectors” of the Cartan subalgebras are equivalent and
the eigenvalues are the same in both algebras: Both algebras have projectors and

nilpotents: ((
ab

[k])2 =
ab

[k] , (
ab

(k))2 = 0), ((
ab
˜[k])2 =

ab
˜[k] , (

ab
˜(k))2 = 0).

In each of the two independent algebras we have two groups of 2
d
2
−1 members

which are eigenvectors of all the Cartan subalgebra members, Eq. (17.2), appearing
in 2

d
2
−1 irreducible representations which have an odd Clifford character — they

are products of an odd number of γa’s (γ̃a’s). These two groups are Hermitian
conjugated to each other. We make a choice of one of the two groups of the Clif-
ford odd ”basis vectors” and name these ”basis vectors” b̂m†

f , m describing 2
d
2
−1

members of one irreducible representation, f describing one of 2
d
2
−1 irreducible

representations. The 2
d
2
−1× 2d2−1 members of the second group, Hermitian conju-

gated to b̂m†
f , are named as b̂mf = (b̂m†

f )†.
There are besides two Clifford odd groups in each of the two algebras γa’s and
γ̃a’s, also two Clifford even groups. They are superposition of an even number
of γa’s (γ̃a’s). I named these two 2

d
2
−1× 2d2−1 Clifford even ”basis vectors” Âm†

f

and B̂m†
f , respectively. Âm†

f represent gauge vectors of b̂m†
f , on which they operate.

B̂m†
f operate on b̂mf . I discuss their properties in my second contribution of this

Proceedings [33].
The ”basis vectors” of an odd Clifford character, b̂m†

f , and their Hermitian conju-
gated partners, b̂mf , fulfil the postulates for second quantized fermions of Dirac,
if we reduce both Clifford algebras to only one [?, 37, 38], while keeping all the
relations, presented in Eq. (17.5), valid. Let us make a choice of γa’s and postulate
the application of γ̃a’s on B which is a superposition of any products of γa’s as
follows

{γ̃aB = (−)B i Bγa} |ψoc > , (17.9)

with (−)B = −1, if B is (a function of) an odd products of γa’s, otherwise (−)B =

1 [35], |ψoc > is defined in Eq. (17.10). (Sects. (2.1, 2.2 in [33]) and Sects. (3.2.2, 3.2.3
in [1])).
The vacuum state |ψoc > is defined as follows

|ψoc >=

2
d
2

−1∑
f=1

b̂mf ∗A b̂
m†
f | 1 > , (17.10)

for one of the membersm, anyone, of the odd irreducible representation f, with
| 1 >, which is the vacuum without any structure, the identity, ∗A means the
algebraic product. It follows that b̂mf ∗A |ψoc >= 0 and b̂m†

f ∗A |ψoc >= |ψm
f >.

After the postulate of Eq. (17.9) ”basis vectors” b̂m†
f which are superposition of an

odd products of γa’s (represented by an odd number of nilpotents, the rest are
projectors) obey all the fermions second quantization postulates of Dirac. There are
S̃ab which dress the irreducible representations with the family quantum numbers
of the Cartan subalgebra members (S̃03, S̃12, S̃56, . . . , S̃d−1d), Eq. (17.2).
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{b̂mf , b̂
m ′†
f ′ }∗A+ |ψoc > = δmm ′

δff ′ |ψoc > ,

{b̂mf , b̂
m ′
f ′ }∗A+ |ψoc > = 0 · |ψoc > ,

{b̂m†
f , b̂m

′†
f ′ }∗A+ |ψoc > = 0 · |ψoc > ,

b̂m†
f ∗A |ψoc > = |ψm

f > ,

b̂mf ∗A|ψoc > = 0 · |ψoc > , (17.11)

with (m,m ′) denoting the ”family” members and (f, f ′) denoting ”families”, ∗A
represents the algebraic multiplication of b̂†mf and b̂mf with the vacuum state
|ψoc > of Eq. (17.10) and among themselves, taking into account Eq. (17.5).
Ref. ( [33], Sects. 2.4 and 3) presents the starting study of properties of the second
quantized boson fields, the internal space of which is represented by the ”basis
vectors” Âm†

f which appear as the gauge fields of the second quantized fermion
fields the internal space of which is described by the ”basis vectors” b̂m†

f .
We pay attention on even dimensional spaces, d = 2(2n + 1) or d = 4n, n ≥ 0,
only.

17.3 Creation and annihilation operators

Here Sect. 3.3 of Ref. [1] is roughly followed.
Describing fermion fields as the creation b̂s†

f (p⃗) and annihilation b̂s
f(p⃗) operators

operating on the vacuum state we make tensor products, ∗T , of 2
d
2
−1× 2

d
2
−1

Clifford odd ”basis vectors” b̂m†
f and of continuously infinite basis in ordinary

space determined by b̂†
p⃗

{b̂s†
f (p⃗) =

∑
m

cms
f(p⃗) b̂

†
p⃗ ∗T b̂

m†
f } |ψoc > ∗T |0p⃗ > , (17.12)

where p⃗ determines the momentum in ordinary space with p0 = |⃗p| and s deter-
mines all the rest of quantum numbers. The state |ψoc > ∗T |0p⃗ > is considered as
the vacuum for a starting single particle state from which one obtains the other
single particle state by the operators, b̂p⃗, which pushes the momentum by an
amount p⃗, in a tensor product with b̂m†

f . We have

|⃗p > = b̂†
p⃗
| 0p > , < p⃗ | =< 0p | b̂p⃗ ,

< p⃗ | p⃗ ′ > = δ(p⃗− p⃗ ′) =< 0p |b̂p⃗ b̂
†
p⃗ ′ | 0p > ,

leading to

b̂p⃗ ′ b̂
†
p⃗
= δ(p⃗ ′ − p⃗) , (17.13)

since we normalize < 0p | 0p >= 1 to identity.
The ”basis vectors” b̂m†

f which are products of an odd number of nilpotent, the
rest to d

2
are then projectors, anticommute, transferring the anticommutativity

to the creation operators b̂s†
f (p⃗) and correspondingly also to their Hermitian

conjugated partners annihilation operators b̂s
f(p⃗), Eq. (17.12). The creation and
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annihilation operators then fulfil the anticommutation relations of the second
quantized fermions explaining the postulates of Dirac

{b̂s ′
f‘ (p⃗

′) , b̂s†
f (p⃗)}+ |ψoc > |0p⃗ > = δss

′
δff ′ δ(p⃗ ′ − p⃗) |ψoc > |0p⃗ > ,

{b̂s ′
f‘ (p⃗

′) , b̂s
f(p⃗)}+ |ψoc > |0p⃗ > = 0 |ψoc > |0p⃗ > ,

{b̂s ′†
f ′ (p⃗ ′) , b̂s†

f (p⃗)}+ |ψoc > |0p⃗ > = 0 |ψoc > |0p⃗ > ,

b̂s†
f (p⃗) |ψoc > |0p⃗ > = |ψs

f(p⃗) >

b̂s
f(p⃗) |ψoc > |0p⃗ > = 0 |ψoc > |0p⃗ >

|p0| = |⃗p| . (17.14)

Statement The description of the internal space of fermions with the superposition of odd
products of γa’s, that is with the clifford odd ”basis vectors”, not only explains the Dirac’s
postulates of the second quantized fermions but also explains the appearance of families of
fermions.
Ref. [33] is offering the explanation for the second quantized commuting boson
fields (described by the ”basis vectors” of an even number of nilpotents, the rest
are projectors), they are the gauge fields of the anticommuting fermion fields
(described by the ”basis vectors” of an odd number of nilpotents).

17.4 Achievements so far of spin-charge-family theory

Here Sects. (6, 7.2.2 and 7.3.1) of Ref. [1], which review shortly the achievements
so far of the spin-charge-family theory, are followed.
The main new achievement of this theory in the last few years is the recognition
that the description of the internal space of fermion fields with the Clifford algebra
objects in d > (3+ 1) not only offers the explanation for all the assumptions of the
standard model for fermion and boson fields, with the appearance of families for
fermion fields and the properties of the corresponding vector and scalar gauge
fields included, but also get to know, that the anticommuting property of the inter-
nal space of fermions takes care of the second quantization properties of fermions,
so that the second quantized postulates are not needed. The second quantized
properties of fermions origin in their internal space and are transferred to creation
and annihilation operators. This year contribution to Proceedings Ref. [33] offers
the recognition that also commuting properties of the second quantized boson
fields origin in the internal space of bosons.
Describing the internal space of bosons by the Clifford even ”basis vectors”,
written in terms of the Clifford even number of γa’s, these Clifford even ”basis
vectors”, Âm†

f , applying on fermion states transform the ”basis vectors” b̂m†
f either

into another ”basis vectors” b̂m
′†

f with the same family quantum number f, or if

written in terms of the Clifford even number of γ̃a’s, ^̃A
m†
f , transform b̂m

′†
f to b̂m†

f‘ ,
keeping the family member quantum number m unchanged and changing the
family quantum number to f‘. 4 This topic, started in Ref. [33], needs further study.

4 The first operation happens if the internal space of bosons is described by ”basis vectors”

which are even products of nilpotents of the kind Âm†
f =

03

(−i)
12

(−)
56

[+] · · ·
d−1 d

[+] ), in this
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The spin-charge-family theory proposes a simple action for interacting second
quantized massless fermions and the corresponding gauge fields in d = (13+ 1)-
dimensional space as

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR+ α̃ R̃) ,

p0a = fαap0α +
1

2E
{pα, Ef

α
a}− ,

p0α = pα −
1

2
Sabωabα −

1

2
S̃abω̃abα ,

R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c. ,

R̃ =
1

2
{fα[afβb] (ω̃abα,β − ω̃caα ω̃

c
bβ)}+ h.c. . (17.15)

Here 5 fα[afβb] = fαafβb − fαbfβa.
This simple action in d = (13+ 1)-dimensional space,
i. in which massless fermions interact with the massless gravitation fields only
(with the vielbeins and the two kinds of the spin connection fields, the gauge fields
of Sab and S̃ab, respectively),
ii. together with the assumption that the internal space of the second quantized
fermions are described by the Clifford odd ”basis vectors” (what explains after
the break of symmetries at low energies the appearance of quarks and leptons
and antiquarks and antileptons of the standard model and the existence of families,
predicting the number of families [46]),
iii.and the internal space of the second quantized boson fields are described by
the Clifford even ”basis vectors”, offers the explanations for
iv. not only all the assumptions of the standard model — for properties of quarks
and leptons and antiquarks and antileptons (explaining the relations among spins,
handedness and charges of fermions and antifermions [23, 44]) and for the appear-
ance of families of quarks and leptons [34, 35, 42],
v. for the second quantized postulates of Dirac [36, 37],
vi. for the appearance of the vector gauge fields to the corresponding fermion
fields [26],

particular case two nilpotents form ”basis vectors”, the second operation happens if

all the nilpotents
ab

(k) and projectors
cd

[k] are replaced by the corresponding
ab

˜(k) and
ab

˜[k],
respectively.

5 fαa are inverted vielbeins to eaα with the properties eaαf
α
b = δab, e

a
αf

β
a = δβα, E =

det(eaα). Latin indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while
Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index (a curved index). Letters from
the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ),
from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and
µ, ν, ..), indexes from the bottom of the alphabets indicate the compactified dimensions
(s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.
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vii. for the appearance of gauge scalars explaining the interactions among fermions
belonging to different families [26, 28, 29, 31, 39–41, 46], and correspondingly of the
appearance of the higgs scalar and Yukawa couplings,
viii. predicting the number of families — the fourth one to the observed three [46],
ix. predicting the second group of four families the stable of which explains the
appearance of the dark matter [23, 45],
x. predicting additional gauge fields,
xi. predicting additional scalar fields, which explain the existence of matter-
antimatter asymmetry [25],
and several others.
The manifoldM(13+1) breaks at high scale ∝ 1016 GeV or higher first toM(7+1) ×
M(6) due to the appearance of the scalar condensate (so far just assumed, not yet
proven that it appears spontaneously) of the two right handed neutrinos with the
family quantum numbers of the group of four families, which does not include
the observed three families bringing masses (of the scale of break ∝ 1016 GeV or
higher) to all the gauge fields, which interact with the condensate [25].
Since the left handed spinors — fermions — couple differently (with respect to
M(7+1)) to scalar fields than the right handed ones, the break can leave massless
and mass protected 2((7+1)/2−1)(= 8) families [49]. The rest of families get heavy
masses 6.
The manifoldM(7+1) × SU(3)×U(1) breaks further by the scalar fields, presented
in Sect. 17.4.2, toM(3+1)× SU(3)×U(1) at the electroweak break. This happens
since the scalar fields with the space index (7, 8), Subsubsect. 17.4.2, they are a part
of a simple starting action Eq.(17.15), gain the constant values (the nonzero vacuum
expectation values independent of the coordinates in d = (3 + 1)). These scalar
fields carry with respect to the space index the weak charge ±1

2
and the hyper

charge ∓1
2

[23, 25], Sect. 17.4.2, just as required by the standard model, manifesting
with respect to S̃ab and Sab additional quantum numbers.
Let us point out that all the fermion fields (with the families of fermions and the
neutrinos forming the condensate included), the vector and the scalar gauge fields,
offering explanation for by the standard model postulated ones, origin in the simple
starting action.
The starting action, Eq. (17.15), has only a few parameters. It is assumed that the
coupling of fermions toωab

c’s can differ from the coupling of fermions to ω̃ab
c’s,

The reduction of the Clifford space, Eq. 17.9, causes this difference. The additional
breaks of symmetries influence the coupling constants in addition.
The breaks of symmetries is under consideration for quite a long time and has not
yet been finished.

6 A toy model [49, 52, 53] was studied in d = (5 + 1)-dimensional space with the action
presented in Eq. (17.15), The break from d = (5 + 1) to d = (3 + 1)× an almost S2 was
studied for a particular choice of vielbeins and for a class of spin connection fields. While
the manifold M(5+1) breaks into M(3+1) times an almost S2 the 2((3+1)/2−1) families
remain massless and mass protected. Equivalent assumption, although not yet proved
how does it really work, is made also for the d = (13 + 1) case. This study is in progress
quite some time.
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All the observed properties of fermions, of vector gauge fields and scalar gauge
fields follow from the simple starting action, while the breaks of symmetries
influence the properties of fermion and boson fields as well.

17.4.1 Properties of interacting massless fermions as manifesting in
d = (3 + 1) before electroweak break

One irreducible representation of SO(13, 1) includes all the left handed and right
handed quarks and leptons and antiquarks and antileptons as one can see in Table 5
of Ref. [33] in this Proceedings or in Table 7 of Ref. [1]. In both tables fermion
”basis vectors” are represented by odd numbers of nilpotents and their properties
analysed from the point of view of the standard model subgroups SO(3, 1)×SU(2)×
SU(2) × SU(3) × U(1) of the group SO(13, 1). Quarks and leptons as well as
antiquarks and antileptons appear with handedness as required by the standard
model.
One easily notices that quarks and leptons have the same content of the subgroup
SO(7, 1), distinguishing only in SU(3)×U(1) content of SO(6): all the quarks, left
and right handed, have the ”fermion” τ4 equal to 1

6
and appear in three colours,

all the leptons, left and right handed, have τ4 equal to −1
2

and are colourless.
Also antiquarks and antileptons have the same content of the subgroup SO(7, 1)
(which is different from the one of quarks and leptons), and differ in SU(3)×U(1)
content of SO(6), all the antiquarks, left and right handed, have τ4 equal to −1

6

and appear in three anticolours, all the antileptons have τ4 equal to 1
2

and are
anticolourless.
Let us notice also that since there are two SU(2) weak charges the right handed
neutrinos and the left handed antineutrinos have non zero the second SU(2)II
weak charge and interact with the SU(2)II weak field. Both have the standard model
hyper charge Y = τ4 + τ23 equal to zero. Let me point out that this particular
property are offered also by the SO(10) unifying model [59], but with the manifold
M(3+ 1) decoupled from charges. (Comments can be found in Ref. [1], Sect. 7).
The expressions for the generators of the Lorentz transformations of subgroups
SO(3, 1)× SU(2)× SU(2)× SU(3)×U(1) of the group SO(13, 1) can be found in
App. 17.6 (also in Eqs. (39-41) of Ref. [33] or in Eqs. (85-89) of Ref. [1]).
The condensate, presented in Table 17.2 (Table 6 of Ref. [1]), makes one of the two
weak SU(2) fields massive and causes the break of symmetries fromM(13+1) to
M(7+1) × SU(3) × U(1) [49, 52, 53], leaving only two decoupled groups of four
families massless, 2

7+1
2

−1 = 8. The reader can find these two groups of families in
Table 17.1 (from Table 5 of Ref. [1]).
Table 17.1 presents ”basis vectors” (b̂m†

f , Eq. (17.11)) for eight families of the
right handed u-quark of the colour (1

2
, 1

2
√
3
) and the right handed colourless ν-

lepton. The SO(7,1) content of the SO(13, 1) group are in both cases identical, they
distinguish only in the SU(3) and U(1) subgroups of SO(6). All the members
of any of these eight families of Table 17.1 follows from either the u-quark or
the ν-lepton by the application of Sab. Each family carries the family quantum
numbers, determined by the Cartan subalgebra of S̃ab in Eq. (17.2) and presented
in Table 17.1.
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The two groups of families are after the break of symmetries decoupled since
{Ñi

L, Ñ
j
R}− = 0 ,∀(i, j), {τ̃1 i, τ̃2 j}− = 0 ,∀(i, j), {Ñi

L,R, τ̃
1,2 j}− = 0 ,∀(i, j), while

{Sab, S̃cd }− = 0, since {γa, γ̃a}− = 0, Eq. (17.5).

Table 17.1: Eight families of the ”basis vectors” b̂m†
f , of ûc1†

R — the right handed
u-quark with spin 1

2
and the colour charge (τ33 = 1/2, τ38 = 1/(2

√
3)), appearing

in the first line of Table 7 in Ref. [1], or Table 5 in Ref. [33] — and of the colourless
right handed neutrino ν̂†R of spin 1

2
, appearing in the 25th line of Table 7 in Ref. [1],

or Table 5 in Ref. [33] — are presented in the left and in the right part of this
table, respectively. Table is taken from [31]. Families belong to two groups of four
families, one (I) is a doublet with respect to ( ⃗̃NL and ⃗̃τ1) and a singlet with respect
to ( ⃗̃NR and ⃗̃τ2), App. 17.6 (Eqs. (85-88) of Ref. [1]), the other group (II) is a singlet
with respect to ( ⃗̃NL and ⃗̃τ1) and a doublet with respect to ( ⃗̃NR and ⃗̃τ2). All the
families follow from the starting one by the application of the operators (Ñ±

R,L,
τ̃(2,1)±). The generators (N±

R,L, τ(2,1)±) transform û†
1R to all the members of one

family of the same colour charge. The same generators transform equivalently the
right handed neutrino ν̂†1R to all the colourless members of the same family.

τ̃13 τ̃23 Ñ3
L
Ñ3
R
τ̃4

I û
c1†
R1

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] ν̂

†
R1

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) − 1

2
0 − 1

2
0 − 1

2

I û
c1†
R2

03
[+i]

12
(+) |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] ν̂

†
R2

03
[+i]

12
(+) |

56
[+]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) − 1

2
0 1

2
0 − 1

2

I û
c1†
R3

03
(+i)

12
[+] |

56
(+)

78
[+] ||

9 10
(+)

11 12
[−]

13 14
[−] ν̂

†
R3

03
(+i)

12
[+] |

56
(+)

78
[+] ||

9 10
(+)

11 12
(+)

13 14
(+) 1

2
0 − 1

2
0 − 1

2

I û
c1†
R4

03
[+i]

12
(+) |

56
(+)

78
[+] ||

9 10
(+)

11 12
[−]

13 14
[−] ν̂

†
R4

03
[+i]

12
(+) |

56
(+)

78
[+] ||

9 10
(+)

11 12
(+)

13 14
(+) 1

2
0 1

2
0 − 1

2

II û
c1†
R5

03
[+i]

12
[+] |

56
[+]

78
[+] ||

9 10
(+)

11 12
[−]

13 14
[−] ν̂

†
R5

03
[+i]

12
[+] |

56
[+]

78
[+] ||

9 10
(+)

11 12
(+)

13 14
(+) 0 − 1

2
0 − 1

2
− 1
2

II û
c1†
R6

03
(+i)

12
(+) |

56
[+]

78
[+] ||

9 10
(+)

11 12
[−]

13 14
[−] ν̂

†
R6

03
(+i)

12
(+) |

56
[+]

78
[+] ||

9 10
(+)

11 12
(+)

13 14
(+) 0 − 1

2
0 1

2
− 1
2

II û
c1†
R7

03
[+i]

12
[+] |

56
(+)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] ν̂

†
R7

03
[+i]

12
[+] |

56
(+)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) 0 1

2
0 − 1

2
− 1
2

II û
c1†
R8

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] ν̂

†
R8

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) 0 1

2
0 1

2
− 1
3

It is the assumption that the eight families from Table 17.1 remain massless after
the break of symmetry from SO(13, 1) to SO(7, 1)× SO(6), made after we proved
for the toy model [49, 52] that the break of symmetry can leave some families of
fermions massless, while the rest become massive. But we have not yet proven the
masslessness of the 2

7+1
2

−1 families after the break from SO(13, 1) to SO(7, 1)×
SO(6).
The break from the starting symmetry SO(13, 1) to SO(7, 1) × SU(3) × U(1) is
supposed to be caused by the appearance of the condensate of two right handed
neutrinos with the family quantum numbers of the upper four families, that is of
the four families, which do not contain the three so far observed families, at the
energy of ≥ 1016 GeV. This condensate is presented in Table 17.2.
To see how do gravitational fields — vielbeins and the two spin connection fields,
the gauge fields of Sab and S̃ab, respectively — contribute to dynamics of fermion
fields and after the electroweak break also to the masses of twice four families
and the vector gauge field let us rewrite the fermion part of the action, Eq. (17.15),
in the way that the fermion action manifests in d = (3 + 1), that is in the low
energy regime before the electroweak break, by the standard model postulated
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Table 17.2: The condensate of the two right handed neutrinos νR, with the quantum
numbers of the VIIIth family, Table 17.1, coupled to spin zero and belonging to
a triplet with respect to the generators τ2i, is presented, together with its two
partners. The condensate carries τ⃗1 = 0, τ23 = 1, τ4 = −1 and Q = 0 = Y.
The triplet carries τ̃4 = −1, τ̃23 = 1 and Ñ3

R = 1, Ñ3
L = 0, Ỹ = 0, Q̃ = 0. The

family quantum numbers of quarks and leptons are presented in Table 17.1. The
definition of the operators τ⃗1, ⃗̃τ1, τ⃗2, ⃗̃τ2, τ4, τ̃4, N3

R, Ñ
3
R, N

3
L, Ñ

3
L, Q, Y, Q̃, Ỹ can be

found in App. 17.6 (and in Ref. [1], Eqs. (85-88) or in Eqs. (39-41) of Ref. [33]).

state S03 S12 τ13 τ23 τ4 Y Q τ̃13 τ̃23 τ̃4 Ỹ Q̃ Ñ3
L Ñ

3
R

(|νVIII
1R >1 |νVIII

2R >2) 0 0 0 1 −1 0 0 0 1 −1 0 0 0 1

(|νVIII
1R >1 |eVIII

2R >2) 0 0 0 0 −1 −1 −1 0 1 −1 0 0 0 1

(|eVIII
1R >1 |eVIII

2R >2) 0 0 0 −1 −1 −2 −2 0 1 −1 0 0 0 1

properties, while manifesting the properties which make the spin-charge-family
theory a candidate to go beyond the standard model:

i. The spins, handedness, charges and family quantum numbers of fermions are
determined by the Cartan subalgebra of Sab and S̃ab, and the internal space of
fermions is described by the Clifford ”basis vectors” b̂m†

f .
ii. Couplings of fermions to the vector gauge fields, which are the superposi-

tion of gauge fields ωst
m, Sect. 17.4.2, with the space index m = (0, 1, 2, 3) and

with charges determined by the Cartan subalgebra of Sab and S̃ab (Sabωcd
e =

i(ωad
eη

bc −ωbd
eη

ac) and equivalently for the other two indexes of ωcd
e gauge

fields, manifesting the symmetry of space (d − 4)), and couplings of fermions
to the scalar gauge fields [19, 20, 23, 29, 31, 38, 41, 42, 45, 46] with the space index
s ≥ 5 and the charges determined by the Cartan subalgebra of Sab and S̃ab (as
explained in the case of the vector gauge fields), and which are superposition of
eitherωst

s or ω̃abt
s, Sect. 17.4.2

Lf = ψ̄γm(pm −
∑
A,i

gAiτAiAAi
m )ψ+

{
∑

s=7,8

ψ̄γsp0s ψ}+

{
∑

t=5,6,9,...,14

ψ̄γtp0t ψ} , (17.16)

where p0s = ps −
1
2
Ss

′s"ωs ′s"s −
1
2
S̃abω̃abs, p0t = pt − 1

2
St

′t"ωt ′t"t −
1
2
S̃abω̃abt,

with m ∈ (0, 1, 2, 3), s ∈ (7, 8), (s ′, s") ∈ (5, 6, 7, 8), (a, b) (appearing in S̃ab)
run within either (0, 1, 2, 3) or (5, 6, 7, 8), t runs ∈ (5, . . . , 14), (t ′, t") run either
∈ (5, 6, 7, 8) or ∈ (9, 10, . . . , 14). The spinor function ψ represents all family mem-
bers of all the 2

7+1
2

−1 = 8 families.
The first line of Eq. (17.16) determines in d = (3+1) the kinematics and dynamics

of fermion fields, coupled to the vector gauge fields [23, 26, 31]. The vector gauge
fields are the superposition of the spin connection fields ωstm, m = (0, 1, 2, 3),
(s, t) = (5, 6, · · · , 13, 14), and are the gauge fields of Sst, Sect. 17.4.2.
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The operators τAi (τAi =
∑

a,b c
Ai

ab S
ab, Sab are the generators of the Lorentz

transformations in the Clifford space of γa’s) are presented in Eqs. (17.27, 17.28) of
App. 17.6. They represent the colour charge, τ⃗3, the weak charge, τ⃗1, and the hyper
charge, Y = τ4 + τ23, τ4 is the ”fermion” charge, originating in SO(6) ⊂ SO(13, 1),
τ23 belongs together with τ⃗1 of SU(2)weak to SO(4) (⊂ SO(13+ 1)).
One fermion irreducible representation of the Lorentz group contains, as seen in Table 7
of Ref. [1] or in Table 5 of Ref. [33], quarks and leptons and antiquarks and antileptons,
belonging to the first family in Table 17.1.
Let us repeat again that the SO(7, 1) subgroup content of the SO(13, 1) group is the
same for the quarks and leptons and the same for the antiquarks and antileptons.
Quarks distinguish from leptons, and antiquarks from antileptons, only in the
SO(6) ⊂ SO(13, 1) part, that is in the colour (τ33, τ38) part and in the ”fermion”
quantum number τ4. The quarks distinguish from antiquarks, and leptons from
antileptons, in the handedness, in the SU(2)I (weak), SU(2)II, in the colour part
and in the τ4 part, explaining the relation between handedness and charges of
fermions and antifermions, postulated in the standard model 7.
All the vector gauge fields, which interact with the condensate, presented in
Table 17.2, become massive, Sect. 17.4.2. The vector gauge fields not interacting with
the condensate — the weak, colour, hyper charge and electromagnetic vector gauge fields
— remain massless, in agreement with by the standard model assumed gauge fields
before the electroweak break 8.
After the electroweak break, caused by the scalar fields, the only conserved charges
are the colour and the electromagnetic charge Q = τ13 + Y (Y = τ4 + τ23). All the
rest interact with the scalar fields of the constant value.

The second line of Eq. (17.16) is the mass term, responsible in d = (3+ 1) for the
masses of fermions and of the weak gauge field (originating in spin connection
fieldsωst

m). The interaction of fermions with the scalar fields with the space index
s = (7, 8) (to these scalar fields particular superposition of the spin connection
fields ωab

s and all the superposition of ω̃ab
s with the space index s = (7, 8)

and (a, b) = (0, 1, 2, 3) or (a, b) = (5, 6, 7, 8) contribute), which gain the constant
values in d = (3+ 1), makes fermions and antifermions massive.
The scalar fields, presented in the second line of Eq. (17.16), are in the �standard model
interpreted as the higgs and the Yukawa couplings, Sect. 17.4.2, predicting in the
spin-charge-family theory that there must exist several scalar fields 9.
These scalar gauge fields split into two groups of scalar fields. One group of two
triplets and three singlets manifests the symmetry S̃U(2)

(S̃O(3,1),L)
×S̃U(2)

(S̃O(4),L)

7 Ref. [30] points out that the connection between handedness and charges for fermions and
antifermions, both appearing in the same irreducible representation, explains the triangle
anomalies in the standard model with no need to connect ”by hand” the handedness and
charges of fermions and antifermions.

8 The superposition of the scalar gauge fields ω̃st
7 and ω̃st

8, which at the electroweak
break gain constant values in d = (3 + 1), bring masses to all the vector gauge fields,
which couple to these scalar fields.

9 The requirement of the standard model that there exist the Yukawa couplings, speaks by
itself that there must exist several scalar fields explaining the Yukawa couplings.
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×U(1). The other group of another two triplets and the same three singlets mani-
fests the symmetry S̃U(2)

(S̃O(3,1),R)
×S̃U(2)

(S̃O(4),R)
×U(1).

The three U(1) singlet scalar gauge fields are superposition of ωs ′t ′s, s = (7, 8),
(s ′, t ′) = (5, 6, · · · , 14), with the sums of Ss

′t ′
arranged into superposition of τ13,

τ23 and τ4. The three triplets interact with both groups of quarks and leptons and
antiquarks and antileptons [39–41, 45–48].
Families of fermions from Table 17.1, interacting with these scalar fields, split
as well into two groups of four families, each of these two groups are coupled
to one of the two groups of scalar triplets while all eight families couple to the
same three singlets. The scalar gauge fields, manifesting S̃U(2)L,R × S̃U(2)L,R, are
the superposition of the gauge fields ω̃abs, s = (7, 8), (a, b) = either (0, 1, 2, 3) or
(5, 6, 7, 8), manifesting as twice two triplets.

17.4.2 Vector and scalar gauge fields before electroweak break

The second line of Eq. (17.15) represents the action for the gauge fields Agf

Agf =

∫
ddx E (αR+ α̃ R̃) ,

R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c. ,

R̃ =
1

2
{fα[afβb] (ω̃abα,β − ω̃caα ω̃

c
bβ)}+ h.c. . (17.17)

It is proven in Ref. [26] that the vector and the scalar gauge fields manifest in
d = (3+ 1), after the break of the starting symmetry, as the superposition of spin
connection fields, when the space (d−4) manifest the assumed symmetry. fβa and
eaα are vielbeins and inverted vielbeins respectively, eaαf

β
a = δβα, eaαf

α
b = δab,

E = det(eaα).
Varying the action of Eq. (17.17) with respect to the spin connection fields the
expression for the spin connection fieldsωab

e follows

ωab
e =

1

2E
{eeα ∂β(Ef

α
[af

β
b]) − eaα ∂β(Ef

α
[bf

βe]) − ebα∂β(Ef
α[efβa])}

+
1

4
{Ψ̄(γe Sab − γ[aSb]

e)Ψ}

−
1

d− 2
{δea[

1

E
edα∂β(Ef

α
[df

β
b]) + Ψ̄γdS

d
b Ψ]

− δeb[
1

E
edα∂β(Ef

α
[df

β
a]) + Ψ̄γdS

d
a Ψ]} . (17.18)

Replacing Sab in Eq. (17.18) with S̃ab, the expression for the spin connection fields
ω̃ab

e follows.
If there are no spinors (fermions) present, Ψ = 0, then either ωab

e or ω̃ab
e are

uniquely expressed with the vielbeins.
Spin connection fields ωab

e represent vector gauge fields to the corresponding
fermion fields if index e is m = (0, 1, 2, 3). If e ≥ 5 the spin connection fields
manifest in d = (3+ 1) as scalar gauge fields.
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It is proven in Ref. [26] 10 that in spaces with the desired symmetry the vielbein
can be expressed with the gauge fields,

fσm =
∑
A

τ⃗Aσ A⃗A
m ,

τAiσ =
∑
st

cAi
st (esτ f

σ
t − etτ f

σ
s)x

τ ,

AAi
m =

∑
st

cAi
stω

st
m ,

τAi =
∑
st

cAi
st S

st ,

{τAi, τBj}− = iδABfAijkτAk . (17.19)

The vector gauge fields AAi
m of τAi represent in the spin-charge-family theory all the

observed gauge fields, as well as the additional non observed vector gauge fields,
which interacting with the condensate gain heavy masses.
The scalar (gauge) fields, carrying the space index s = (5, 6, . . . , d), offer in the
spin-charge-family for s = (7, 8) the explanation for the origin of the Higgs’s scalar
and the Yukawa couplings of the standard model, while scalars with the space index
s = (9, 10, . . . , 14) offer the explanation for the proton decay, as well as for the
matter/antimatter asymmetry in the universe.
In the scalar gauge fields besidesωst

s ′ also ω̃ab
s contribute.

The explicit expressions for cAi
ab, and correspondingly for τAi, and AAi

a , are
written in Sects. 4.2.1. and 4.2.2 of Ref. [1].

2.a Vector gauge fields.

All the vector gauge fields are in the spin-charge-family theory expressible with the
spin connection fieldsωstm as

AAi
m =

∑
s,t

cAi
st ω

st
m , (17.20)

with
∑

A,i τ
AiAAi

m =
∑∗

a,b S
abωab

m,∗ means that summation runs over (a, b)

respecting the symmetry SO(7, 1)× SU(3)×U(1), with SO(7, 1) breaking further
to SO(3, 1)× SU(2)I × SU(2)II.
The vector gauge fields are namely analysed from the point of view of the possibly
observed fields in d = (3+ 1) space: besides gravity, the colour SU(3), the weak
SU(2)I, the second SU(2)II and theU(1)τ4 - the vector gauge field of the ”fermion”
quantum number τ4.

10 We presented in Ref. [26] the proof, that the vielbeins fσm (Einstein index σ ≥ 5, m =

0, 1, 2, 3) lead in d = (3 + 1) to the vector gauge fields, which are the superposition of
the spin connection fields ωstm: fσm =

∑
A A⃗

A
m τ⃗Aσ

τ x
τ, with AAi

m =
∑

s,t c
Ai

stω
st

m,
when the metric in (d − 4), gστ, is invariant under the coordinate transformations xσ

′
=

xσ +
∑

A,i,s,t ε
Ai (xm) cAi

st E
σst(xτ) and

∑
s,t c

Ai
st E

σst = τAiσ, while τAiσ solves the
Killing equation:Dσ τ

Ai
τ +Dττ

Ai
σ = 0 (Dσ τ

Ai
τ = ∂σ τ

Ai
τ − Γτ

′
τστ

Ai
τ ′ ). And similarly also for

the scalar gauge fields.
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Due to the interaction with the condensate the second SU(2)II (one superposition
of the third component of SU(2)II and of the U(1)τ4 vector gauge fields and the
rest two components of the SU(2)II vector gauge field) become massive, while the
colour SU(3), the weak SU(2)I, the second superposition of the third component
of SU(2)II and the U(1)τ4 , forming the hyper charge vector gauge field, remain
massless. That is: All the vector gauge fields, as well as the scalar gauge fields of
Sab and of S̃ab, which interact with the condensate, become massive.
The effective action for all the massless vector gauge fields, the gauge fields which
do not interact with the condensate and remain therefore massless, before the
electroweak break, equal to

∫
d4x {−1

4
FAi

mn F
Aimn }, with the structure constants

fAijk concerning the colour SU(3), weak SU(2) and hyper charge U(1) groups [26].
All these relations are valid as long as spinors and vector gauge fields are weak
fields in comparison with the fields which force (d− 4) space to be (almost) curled,
Ref. [50]. When all these fields, with the scalar gauge fields included, start to be
comparable with the fields (spinors or scalars), which determine the symmetry of
(d− 4) space, the symmetry of the whole space changes.
The electroweak break, caused by the constant (non zero vacuum expectation)
values of the scalar gauge fields, carrying the space index s = (7, 8), makes the
weak and the hyper charge gauge fields massive. The only vector gauge fields
which remain massless are, besides the gravity, the electromagnetic and the colour
vector gauge fields — the observed three massless gauge fields.

2.b. Scalar gauge fields in d = (3+ 1).

The starting action of the spin-charge-family theory offers scalar fields of two kinds:
a. Scalar fields, taking care of the masses of quarks and leptons have the space index
s = (7, 8) and carry with respect to this space index the weak charge τ13 = ±1

2

and the hyper charge Y = ∓1
2

, Table 17.3, Eq. (17.23). With respect to the index Ai,
determined by the relation τAi =

∑
ab c

Ai
abS

ab and τ̃Ai =
∑

ab c
Ai

abS̃
ab, that

is with respect to Sab and S̃ab, they carry charges and family charges in adjoint
representations.
b. There are in the starting action of the spin-charge-family theory, Eq. (17.15), scalar
fields, which transform antileptons and antiquarks into quarks and leptons and
back. They carry space index s = (9, 10, . . . , 14), They are with respect to the space
index colour triplets and antitriplets, while they carry charges τAi and τ̃Ai in
adjoint representations.
Following Refs. [1, 31, 38] I shall review both kinds of scalar fields. 11

2.b.i Scalar gauge fields determining scalar higgs and Yukawa couplings

Making a choice of the scalar index equal to s = (7, 8) (the choice of (s = 5, 6)

would also work) and allowing all superposition of ω̃ãb̃s, while with respect to

11 Let us demonstrate how do the infinitesimal generators Sab apply on the spin connections
fields ωbde (= fαe ωbdα) and ω̃b̃d̃e (= fαe ω̃b̃d̃α), on either the space index e or any
of the indices (b, d, b̃, d̃) SabAd...e...g = i (ηaeAd...b...g − ηbeAd...a...g) (Section IV. and
Appendix B in Ref. [31]).
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ωabs only the superposition representing the scalar gauge fields AQ
s , AY

s and A4
s ,

s = (7, 8) (or any three superposition of these three scalar fields) may contribute.
Let us use the common notation AAi

s for all the scalar gauge fields with s = (7, 8),
independently of whether they originate inωabs — in this case Ai = (Q,Y, τ4) —
or in ω̃ãb̃s. All these gauge fields contribute to the masses of quarks and leptons
and antiquarks and antileptons after gaining constant values (nonzero vacuum
expectation values).

AAi
s represents (AQ

s , A
Y
s , A

4
s ,

⃗̃A1̃
s ,

⃗̃A
ÑL̃
s , ⃗̃A2̃

s ,
⃗̃A

ÑR̃
s ) ,

τAi represents (Q, Y, τ4, ⃗̃τ1, ⃗̃NL, ⃗̃τ
2, ⃗̃NR) . (17.21)

Here τAi represent all the operators which apply on fermions. These scalars with
the space index s = (7, 8), they are scalar gauge fields of the generators τAi and
τ̃Ai, are expressible in terms of the spin connection fields, App. 17.6 (Ref. [31],
Eqs. (10, 22, A8, A9)).
All the scalar fields with the space index (7, 8) carry with respect to this space
index the weak and the hyper charge (∓1

2
, ±1

2
), respectively, all having therefore

properties as required for the higgs in the standard model.
To make the scalar fields the eigenstates of τ13 = 1

2
(S56 − S78) and to check their

properties with respect to Y (= τ4+τ23 = (1
2
(S56+S78)− 1

3
(S9 10+S11 12+S13 14))

andQ (= τ13 + Y) we need to apply the operators τ13, Y andQ on the scalar fields
with the space index s = (7, 8), taking into account the relation SabAd...e...g =

i (ηaeAd...b...g − ηbeAd...a...g).
Let us rewrite the second line of Eq. (17.16), paying no attention to the momentum
ps , s ∈ (5, . . . , 8), when having in mind the lowest energy solutions manifesting
at low energies.∑

s=(7,8),A,i

ψ̄ γs (−τAiAAi
s )ψ =

−
∑
A,i

ψ̄ {
78

(+) τAi (AAi
7 − iAAi

8 )+
78

(−) (τAi (AAi
7 + iAAi

8 ) }ψ ,

78

(±)=
1

2
(γ7 ± i γ8 ) , AAi

78
(±)

:= (AAi
7 ∓ iAAi

8 ) , (17.22)

with the summation over A and i performed, with AAi
s representing the scalar

fields (AQ
s , AY

s , A4
s) determined by ωs ′,s ′′,s , as well as (Ã4̃

s , ⃗̃A1̃
s , ⃗̃A2̃

s , ⃗̃AÑR
s and

⃗̃AÑL
s ), determined by ω̃a,b,s , s = (7, 8).

The application of the operators τ13, Y and Q on the scalar fields (AAi
7 ∓ iAAi

8 )

with respect to the space index s = (7, 8), gives

τ13 (AAi
7 ∓ iAAi

8 ) = ± 1
2
(AAi

7 ∓ iAAi
8 ) ,

Y (AAi
7 ∓ iAAi

8 ) = ∓ 1
2
(AAi

7 ∓ iAAi
8 ) ,

Q (AAi
7 ∓ iAAi

8 ) = 0 . (17.23)



i
i

“U” — 2021/12/15 — 21:46 — page 246 — #262 i
i

i
i

i
i

246 N.S. Mankoč Borštnik

Since τ4, Y, τ13 and τ1+, τ1− give zero if applied on (AQ
s ,AY

s andA4
s) (with respect

to the quantum numbers (Q, Y, τ4)), and since Y,Q, τ4 and τ13 commute with
the family quantum numbers, one sees that the scalar fields AAi

s ( =(AQ
s , AY

s ,
AY ′

s , Ã4̃
s , ÃQ̃

s , ⃗̃A1̃
s , ⃗̃A2̃

s , ⃗̃AÑR
s , ⃗̃AÑL

s )), s = (7, 8), rewritten as AAi
78
(±)

= (AAi
7 ∓ iAAi

8 ) ,

are eigenstates of τ13 and Y, having the quantum numbers of the standard model
Higgs’s scalar.
These superposition of AAi

78
(±)

are presented in Table 17.3 as two doublets with

respect to the weak charge τ13, with the eigenvalue of τ23 (the second SU(2)II
charge) equal to either −1

2
or +1

2
, respectively.

Table 17.3: The two scalar weak doublets, one with τ23 = −1
2

and the other with
τ23 = +1

2
, both with the ”fermion” quantum number τ4 = 0, are presented. In this

table all the scalar fields carry besides the quantum numbers determined by the
space index also the quantum numbers A and i from Eq. (17.21). The table is taken
from Ref. [31].

name superposition τ13 τ23 spin τ4 Q

AAi
78
(−)

AAi
7 + iAAi

8 + 1
2
− 1

2
0 0 0

AAi
56
(−)

AAi
5 + iAAi

6 − 1
2
− 1

2
0 0 -1

AAi
78
(+)

AAi
7 − iAAi

8 − 1
2
+ 1

2
0 0 0

AAi
56
(+)

AAi
5 − iAAi

6 + 1
2
+ 1

2
0 0 +1

It is not difficult to show that the scalar fields AAi
78
(±)

are triplets as the gauge fields

of the family quantum numbers ( ⃗̃NR,
⃗̃NL, ⃗̃τ

2, ⃗̃τ1 or singlets as the gauge fields of
Q = τ13 + Y, Q ′ = − tan2 ϑ1Y +τ13 and Y ′ = − tan2 ϑ2τ

4 + τ23.
Table 17.1 represents two groups of four families. It is not difficult to see that Ñ±

L

and τ̃1± transform the first four families among themselves, leaving the second
group of four families untouched, while Ñ±

R and τ̃2± do not influence the first
four families and transform the second four families among themselves. All the
scalar fields with s = (7, 8) ”dress” the right handed quarks and leptons with the
hyper charge and the weak charge so that they manifest charges of the left handed
partners.
The mass matrices 4× 4, representing the application of the scalar gauge fields on
fermions of each of the two groups, have the symmetry SU(2)× SU(2)×U(1) of
the form as presented in Eq. (17.24) 12. The influence of scalar fields on the masses
of quarks and leptons depends on the coupling constants and the masses of the

12 The symmetry SU(2) × SU(2) × U(1) of the mass matrices, Eq. (17.24), is expected to
remain in all loop corrections [47].
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scalar fields, determining parameters of the mass matrix

Mα =




−a1 − a e d b

e∗ −a2 − a b d

d∗ b∗ a2 − a e

b∗ d∗ e∗ a1 − a




α

, (17.24)

with α representing family members — quarks and leptons [39–41, 46, 48]. In
Subsect. 17.4.3 the predictions of the spin-charge-family theory following from the
symmetry of mass matrices of Eq. (17.24) are discussed.
The spin-charge-family theory treats quarks and leptons in equivalent way. The
differences among family members occur due to the scalar fields (Q · AQ

78
(±)

, Y ·
AQ
78
(±)

, τ4 ·A4
78
(±)

) [46, 48].

Twice four families of Table 17.1, with the two groups of two triplets applying
each on one of the two groups of four families and one group of three singlets
applying on all eight families, i. offer the explanation for the appearance of the
Higgs’s scalar and Yukawa couplings of the observed three families, predicting
the fourth family to the observed three families and several scalar fields, ii. predict
that the stable of the additional four families with much higher masses that the
lower four families contributes to the dark matter.

2.b.ii Scalar gauge fields causing transitions from antileptons and antiquarks
into quarks and leptons [25]

Besides the scalar fields with the space index s = (7, 8) which manifest in d =

(3 + 1) as scalar gauge fields with the weak and hyper charge ±1
2

and ∓1
2

, re-
spectively, and which gaining at low energies constant values cause masses of
families of quarks and leptons and of the weak gauge field, there are in the start-
ing action, Eqs. (17.15, 17.16), additional scalar gauge fields with the space index
t = (9, 10, 11, 12, 13, 14). They are with respect to the space index t either triplets or
antitriplets causing transitions from antileptons into quarks and from antiquarks
into quarks and back. These scalar fields are in Eq. (17.16) presented in the third
line.
These scalar fields are offering the explanation for the matter/antimater asymme-
try in the universe, and might be responsible for proton decay and lepton number
nonconservation. The reader is kindly ask to read the article [25], for a short review
one can see the Refs. [1, 23].

17.4.3 Predictions of spin-charge-family theory

Let me say that the fact that the simple starting action, Eq. (17.15) — in which
fermions interact with gravity only (the vielbeins and the two kinds of the spin
connection fields), while the internal spaces of fermions and bosons are describ-
able by the ”basis vectors” which are superposition of odd or even products of
Clifford algebra operators γa’s, respectively — offers the explanation for all the
assumptions of the standard model and for the second quantized postulates for
fermions and bosons, while unifying all the so far known forces, with gravity
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included, predicting new vector gauge fields, new scalar gauge fields and new
families of fermions, gives a hope that the spin-charge-family theory is offering the
right next step beyond the standard model.

i. The existence of the lower group of four families predicts the fourth family
to the observed three, which should be seen in next experiments. The masses of
quarks of these four families are determined by several scalar fields, all with the
properties of the scalar higgs, some of them of which might also be observed.
The symmetry [46, 47], Eq. (17.24), and the values of mass matrices of the lower
four families are determined with two triplet scalar fields, ⃗̃A1̃

78

(±)

and ⃗̃A
ÑL̃
78

(±)

, and

three singlet scalar fields, AQ
78

(±)

, AY
78

(±)

, A4
78

(±)

, Eq. (17.21), explaining the Higgs’s

scalar and Yukawa couplings of the standard model, Refs. [23, 27, 31, 46, 48] and
references therein.
Any accurate 3 × 3 submatrix of the 4 × 4 unitary matrix determines the 4 × 4
matrix uniquely. Since neither the quark and (in particular) nor the lepton 3× 3
mixing matrix are measured accurately enough to be able to determine three
complex phases of the 4× 4mixing matrix, we assume (what also simplifies the
numerical procedure) [39–41, 45, 46] that the mass matrices are symmetric and
real and correspondingly the mixing matrices are orthogonal. We fitted the 6
free parameters of each family member mass matrix, Eq. (17.24), to twice three
measured masses (6) of each pair of either quarks or leptons and to the 6 (from
the experimental data extracted) parameters of the corresponding 4× 4 mixing
matrix.
I present here the old results for quarks only, taken from Refs. [46]. The accuracy
of the experimental data for leptons are not yet large enough that would allow any
meaningful prediction 13. It turns out that the experimental [54] inaccuracies are
for the mixing matrices too large to tell trustworthy mass intervals for the quarks
masses of the fourth family members 14. Taking into account the calculations
of Ref. [54] fitting the experimental data (and the meson decays evaluations in
the literature as well as our own evaluations) the authors of the paper [46] very
roughly estimate that the fourth family quarks masses might be pretty above 1
TeV.
Since the matrix elements of the 3 × 3 submatrix of the 4 × 4 mixing matrix de-
pend weakly on the fourth family masses, the calculated mixing matrix offers the
prediction to what values will more accurate measurements move the present ex-

13 The numerical procedure, explained in the paper [46], to fit free parameters of the mass
matrices to the experimental data within the experimental inaccuracy of the mixing
matrix elements of the so far observed quarks (the inaccuracy of masses do not influence
the results very much) is tough.

14 We have not yet succeeded to repeat the calculations presented in Refs. [46] with the
newest data from Ref. [55]. Let us say that the accuracy of the mixing matrix even for
quarks remains in Ref. [55] far from needed to predict the masses of the fourth two quarks.
For the chosen masses of the four family quarks the mixing matrix elements are expected
to slightly change in the direction proposed by Eq. (17.25).
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perimental data and also the fourth family mixing matrix elements in dependence
of the fourth family masses, Eq. (17.25):
Vud will stay the same or will very slightly decrease; Vub and Vcs, will still lower;
Vtd will lower, and Vtb will lower; Vus will slightly increase; Vcd will (after
decreasing) slightly rise; Vcb will still increase and Vts will (after decreasing)
increase.
In Eq. (17.25) the matrix elements of the 4× 4 mixing matrix for quarks are pre-
sented, obtained when the 4× 4mass matrices respect the symmetry of Eq. (17.24)
while the parameters of the mass matrices are fitted to the (exp) experimental
data [54], Ref. [46]. The two choices of the fourth family quark masses are used
in the calculations: mu4 = md4 = 700 GeV (scf1) and mu4 = md4 = 1 200 GeV
(scf2). In parentheses, ( ) and [ ], the changes of the matrix elements are presented,
which are due to the changes of the top mass within the experimental inaccuracies:
with the mt = (172 + 3 × 0.76) GeV and mt = (172 − 3 × 0.76), respectively (if
there are one, two or more numbers in parentheses the last one or more numbers
are different, if there is no parentheses no numbers are different) [arxiv:1412.5866].

|V(ud)| =




exp 0.97425± 0.00022 0.2253± 0.0008 0.00413± 0.00049
scf1 0.97423(4) 0.22539(7) 0.00299 0.00776(1)

scf2 0.97423[5] 0.22538[42] 0.00299 0.00793[466]

exp 0.225± 0.008 0.986± 0.016 0.0411± 0.0013
scf1 0.22534(3) 0.97335 0.04245(6) 0.00349(60)

scf2 0.22531[5] 0.97336[5] 0.04248 0.00002[216]

exp 0.0084± 0.0006 0.0400± 0.0027 1.021± 0.032
scf1 0.00667(6) 0.04203(4) 0.99909 0.00038

scf2 0.00667 0.04206[5] 0.99909 0.00024[21]

scf1 0.00677(60) 0.00517(26) 0.00020 0.99996

scf2 0.00773 0.00178 0.00022 0.99997[9]




.

(17.25)

Let me conclude that according to Ref. [46] the masses of the fourth family lie
much above the known three. The larger are masses of the fourth family the
larger are Vu1d4 in comparison with Vu1d3 and the more is valid that Vu2d4 <

Vu1d4 , Vu3d4 < Vu1d4 . The flavour changing neutral currents are correspondingly
weaker.
Let be noticed that the prediction of Ref. [56], Vu1d4 > Vu1d3 , Vu2d4 < Vu1d4 ,
Vu3d4 < Vu1d4 , agrees with the prediction of Refs. [46].
In Ref. [48] the authors discuss the question why the existence of the fourth family
is not (at least yet) in contradiction with the experimental data.

ii. The theory predicts the existence of several scalar fields. To the lower four fami-
lies two triplets and three singlets contribute, to the upper four families the same
three singlets and different two triplets contribute, Eq. (17.21), Sects. 17.4.2, 17.4.2.
Some superposition of the three singlets and two triplets contributing to masses
and to mixing matrices of quarks and leptons of the lower four families will be
observed, representing so far the observed scalar higgs and Yukawa couplings.



i
i

“U” — 2021/12/15 — 21:46 — page 250 — #266 i
i

i
i

i
i

250 N.S. Mankoč Borštnik

iii. The theory predicts the existence of besides the additional scalar fields also the
additional vector gauge fields of very high mass, Sects. 17.4.2, 17.4.2.

iv. The theory predicts the existence of the upper four families of quarks and
leptons and antiquarks and antileptons, Table 17.1, with the same family members
charges, Table 7 of Ref [1], as are the charges of the lower four families, interacting
correspondingly with the same vector gauge fields. At low energies the upper four
families are decoupled from the lower four families.
The masses of the upper four families are determined by the two triplets (⃗̃A2̃

78

(±)

, ⃗̃A
ÑR̃
78

(±)

)

and three singlets (AQ
78

(±)

, AQ ′

78

(±)

, AY ′
78

(±)

), the same singlets contribute also to masses

of the lower four families, Sect. 17.4.2.
The stable of the upper four families offers the explanation for the appearance of
the dark matter in our universe.
Since the masses of the upper four families are much higher than the masses of
the lower four families, the ”nuclear” force among the baryons and mesons of
these quarks and antiquarks differ a lot from the nuclear force of the baryons and
fermions of the lower four families.
A rough estimation of properties of baryons of the stable fifth family members, of
their behaviour during the evolution of the universe and when scattering on the
ordinary matter, as well as a study of possible limitations on the family properties
due to the cosmological and direct experimental evidences are done in Ref. [45].
In Ref. [57] the weak and ”nuclear” scattering of such very heavy baryons by
ordinary nucleons is studied, showing that the cross section for such scattering
is very small and therefore consistent with the observation of experiments so far,
provided that the quark mass of this baryon is about 100 TeV or above.
In Ref. [45] a simple hydrogen-like model is used to evaluate properties of baryons
of these heavy quarks, with one gluon exchange determining the force among the
constituents of the fifth family baryons 15.
The authors of Ref. [45] study the freeze out procedure of the fifth family quarks
and antiquarks and the formation of baryons and antibaryons up to the tempera-
ture kbT = 1 GeV, when the colour phase transition starts which depletes almost
all the fifth family quarks and antiquarks, while the colourless fifth family neu-
trons with very small scattering cross section decouples long before (at kbT = 100

GeV).
The cosmological evolution suggests for the mass limits the range 10 TeV< mq5 <

a few · 102 TeV and for the scattering cross sections 10−8 fm2 < σc5 < 10
−6 fm2.

The measured density of the dark matter does not put much limitation on the
properties of heavy enough clusters 16.

15 The weak force and the electromagnetic force start to be at small distances due to heavy
masses of quarks of the same order of magnitude as the colour force.

16 In the case that the weak interaction determines the cross section of the neutron n5, the
interval for the fifth family quarks would be 10 TeV < mq5 c

2 < 105 TeV.
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The DAMA/LIBRA experiments [60] limit, provided that they measure the heavy
fifth family clusters, the quark mass in the interval: 200TeV < mq5 < 105 TeV,
Ref. [45].
Baryons of the fifth family are heavy, forming small enough clusters with small
enough scattering amplitude among themselves and with the ordinary matter to
be the candidate for the dark matter.
Masses of the stable fifth family of quarks and leptons are much above the fourth
family members.
Although the upper four families carry the weak (of two kinds) and the colour
charge, these group of four families are completely decoupled from the lower four
families up to the < 1016 GeV when the breaks of symmetries are expected to
recover.

17.5 Conclusions

The spin-charge-family theory [1, 20, 21, 23, 36, 37, 42, 44] assumes in d = (13 + 1)-
dimensional space a simple action, Eq. (17.15), for the massless fermions and for
the massless vielbeins and the two kinds of spin connection fields, with which
fermions interact. The description of the internal space of fermions with ”basis
vectors” which are superposition of an odd products of the Clifford algebra objects
and of bosons with ”basis vectors” which are superposition of an even products of
the Clifford algebra objects offers the explanation for spins, charges and families
of fermions and their vector and scalar gauge fields, as required by the standard
model, while explaining as well the second quantization postulates for fermions
and bosons.
Some of the predictions of the spin-charge-family theory can experiments soon
confirm and correspondingly confirm (or reject) the theory. Because the theory
offers meaningful answers to many open questions in physics of elementary
fermion and boson fields and in cosmology and because the theory offers more
and more answers the more effort and work is put into it, it might very well be
that the theory does offer the right next step beyond the standard model.
The description of fermions and bosons, both second quantized, with the Clifford
odd and the Clifford even ”basis vectors”, respectively, clarifies how strongly are
all the properties of elementary fields determined by the internal space of fields,
and that the internal space of fermions not only unifies spin, handedness, all the
charges and families of fermions but manifests as well the strong connections with
the corresponding boson vector and scalar gauge fields.
The theory obviously needs more collaborators as it is necessary to find answers
to questions, like:
i. What is the dimension of space time? In any dimension d = 2(2n + 1) there
namely exist fermions of only one handedness, as discussed in Ref. [33], while in
any subspace of this space there are fermions of both handedness. i.a. How can
we look for anomalies of Kaluza-Klein theories in higher dimensions? i.b. As well
as for the renormalizability?
ii. The spontaneous breaks of symmetries, from the starting one to the final ones,
must carefully be done. ii.a. The breaks from any d = 2(2n + 1) in steps to the
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observable d = (3+ 1) must be done, following the number of massless families
of fermions and the appearance of the vector and scalar gauge fields in each step.
So far we studied only the breaks of symmetry for the toy models [49, 51, 52],
starting with d = (5+ 1). ii.b. To learn more the electroweak break with the scalar
fields defined in d = 2(2n + 1), n = 3, with the space index (7, 8) [49–52] needs
additional treating.
iii. The second quantization of fermion and boson fields with the description of
the internal space of fermions and bosons by the Clifford odd and even ”basis
vectors”, respectively, is opening a new insight in to quantum field theory. Ref. [33]
presents only the first step to the second quantization of bosons by the Clifford
even ”basis vectors”. A further study is needed.
iv. One irreducible representation of the Lorentz group in the internal space of
fermions, Table 7 in Ref. [1] and Table 5 in Ref. [33], includes all the quarks and
leptons and antiquarks and antileptons observed so far (with not yet observed
the right handed neutrinos and the left handed antineutrinos included). No Dirac
sea is needed. iv.a. Additional studies of masses of fermions and antifermions in
addition to those of Refs. [46, 58] are needed.
v. So far only three families of quarks and leptons have been observed. The spin-
charge-family theory predicts the fourth family to the observed three, very weakly
coupled to the observed three with masses a few TeV or higher. Although the
accurately known 3 × 3 submatrix of the 4 × 4 unitary matrix determines the
4× 4 matrix uniquely, even the quarks mixing matrix is known far non accurately
enough to enable prediction of masses of the fourth family, Ref. [46]. v.a. A further
study of the properties of the 4 × 4 mixing matrix as following from the mass
matrices of quarks and leptons with the known symmetries (what reduces the
number of free parameters to be fitted to the experimental data) is needed and the
way of improving the experimental accuracy needs to be suggested. v.b.The proof
that the symmetry of mass matrices S̃U(2)× S̃U(2)×U(1) keeps in all orders of
loop corrections, presented in Ref. [58], must be checked.
vi. There are scalar fields which are colour triplets and antitriplets, predicted
by the spin-charge-family theory [25], which transform antileptons into quarks
and antiquarks into quarks and back, causing in the expanding universe matter-
antimatter asymmetry. The study is needed to see their influence on the lepton
number non conservation.
vii. A study of the coupling constants of fermions to the corresponding gauge
vector and scalar fields in comparison with those of SO(10) and SO(13 + 1) is
needed.
viii. The masses of the upper four families after the electroweak break and the
influence of the neutrino condensate on their masses must be studied. viii.a. The
behaviour of the stable fifth family members, their ”freezing” out and formation
of neutral objects, interacting with the weak force, is needed and their contribution
to the dark matter. viii.b. As well as the contribution of the heavy neutrinos to the
xdark matter.
ix. If the spin-charge-family theory is the right next step beyond the standard model, it
is worthwhile to find out what it has in common with all the theories and models
which seems to be promising.
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x. And many more.

17.6 Infinitesimal generators of subgroups of SO(13, 1)group

The relations are taken from Ref. [1].
The reader can calculate all the quantum numbers of Table 5 in Ref. [33] and of Table 17.1,
if taking into account the generators of the two SU(2) (⊂ SO(3, 1) ⊂ SO(7, 1) ⊂ SO(13, 1))
groups, describing spins and handedness of fermions, their two kinds of the weak charges,
the colour charges, the ”fermion” charge, as well as the family quantum numbers.
One needs

N⃗±(= N⃗(L,R)) :=
1

2
(S23 ± iS01, S31 ± iS02, S12 ± iS03) , ⃗̃N±(=

⃗̃N(L,R)) :=
1

2
(S̃23 ± iS̃01 ,

(17.26)

the generators of the two SU(2) (SU(2)⊂ SO(4)⊂ SO(7, 1) ⊂ SO(13, 1)) groups, describing
the weak charge, τ⃗1, and the second kind of the weak charge, τ⃗2, of fermions and the
corresponding family quantum numbers

τ⃗1 : =
1

2
(S58 − S67, S57 + S68, S56 − S78) , τ⃗2 :=

1

2
(S58 + S67, S57 − S68, S56 + S78) ,

⃗̃τ1 : =
1

2
(S̃58 − S̃67, S̃57 + S̃68, S̃56 − S̃78) , ⃗̃τ2 :=

1

2
(S̃58 + S̃67, S̃57 − S̃68, S̃56 + S̃78) ,

(17.27)

and the generators of SU(3) and U(1) subgroups of SO(6) ⊂ SO(13, 1), describing the
colour charge and the ”fermion” charge of fermions as well as the corresponding family
quantum number τ̃4

τ⃗3 :=
1

2
{S9 12 − S10 11 , S9 11 + S10 12, S9 10 − S11 12 , S9 14 − S10 13,

S9 13 + S10 14 , S11 14 − S12 13 , S11 13 + S12 14,
1√
3
(S9 10 + S11 12 − 2S13 14)} ,

τ4 := −
1

3
(S9 10 + S11 12 + S13 14) ,

τ̃4 := −
1

3
(S̃9 10 + S̃11 12 + S̃13 14) .

(17.28)

The (chosen) Cartan subalgebra operators, determining the commuting operators in the
above equations, is presented in Eq. (17.2).
The hypercharge Y and the electromagnetic charge Q and the corresponding family quan-
tum numbers then follows as

Y := τ4 + τ23 , Q := τ13 + Y , Y ′ := −τ4 tan2 ϑ2 + τ
23 , Q ′ := −Y tan2 ϑ1 + τ

13 , ,

Ỹ := τ̃4 + τ̃23 , Q̃ := Ỹ + τ̃13 , Ỹ ′ := −τ̃4 tan2 ϑ2 + τ̃
23 , Q̃ ′ = −Ỹ tan2 ϑ1 + τ̃

13 . .

(17.29)
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Below are some of the above expressions written in terms of nilpotents and projectors

N±
+ = N1

+ ± iN2
+ = −

03

(∓i)
12

(±) , N±
− = N1

− ± iN2
− =

03

(±i)
12

(±) ,

Ñ±
+ = −

03

˜(∓i)
12

˜(±) , Ñ±
− =

03

˜(±i)
12

˜(±) ,

τ1± = (∓)
56

(±)
78

(∓) , τ2∓ = (∓)
56

(∓)
78

(∓) ,

τ̃1± = (∓)
56

˜(±)
78

˜(∓) , τ̃2∓ = (∓)
56

˜(∓)
78

˜(∓) . (17.30)
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Comes beyond the Standard Models”, 2021, Zaloznistvo DMFA, Ljubljana, December
2021, [arxiv: ].
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Holger Bech Nielsen, Colin Froggatt, Dragan Lukman, DMFA Založništvo, Ljubljana
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Abstract. Using ideas from our long studied Novel String Field Theory we consider in
this article a bound state of infinitely many constituents, something that at least very ap-
proximately could mean a hadron, since hadrons have typically very many constituents.
Our main point, so far, is to speculate that there should be a very high degree of symmetry
between the many consituents, since the constituents behave similarly at different places
in the bound state. We assume speculatively that there is a group represented sharply
3-transitively as permutation of the constituents; one can namely only have finite number of
elements sharply n-transitively permuted for n larger than 3. The scattering of such bound
states will in the zero Bjorken x limit (which is suggeted) only occur by exchange of parts
of the system of constituents, quite like in our Novel String field Theory the “objects” are
exchanged in bunches. The cyclically ordered chain of objects in this Novel String Field
Theory are identified as a projective line structure. Also a p-adic field is a natural possibility.

Povzetek: Autorja postavljata novo teorijo strun, ki jo sestavljajo bodisi fermioni bodisi
bozoni, ki ne interagirajo in se vendar sipajo. V tem prispevku želita posplošiti svoj prvotni
predlog za struno iz neiteragirajočih delcev (polj) na splošnejše objekte, ki so vezana stanja
velikega števila objektov, v struno strun. Primer takega sistema je vezano stanje velikega
števila hadronov, ki imajo enake lastnosti v vseh delih vezanega stanja. Predpostavita 3-
tranzitivnost, pri kateri se izmenjujejo sklopi delcev. Ciklično urejene verige hadronov imajo
projektivno enodimenzionalno strukturo, dopušca pa ta nova teorija strun tudi p-adična
polja.

PACS numbers: 11.25.-w,11.27td, 11.10.-2,03.70,tk,11.25.

⋆⋆ Speaker: Talk presented in 24th Bled-Workshop “What comes beyond the Standard
Models”Bled, July 3-11, 2021, Slovenia
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18.1 Introduction

18.1.1 Bound State with Infinitely Many Constituents

For a bound state [1] of infinitely many constituents you would at first expect
that the momentum of such a bound state would be shared evenly, so that each
constituent would have a negligible part of the total momentum of the bound state.
This is of course not safe, since a small part of the constituents might carry the bulk
of the momentum, but then the majority of constituents would carry even less.
One usually talks about a Bjorken-x [2] defined for each constituent and denoting
the (average) fraction of the bound state momentum carried by that constituent.
Scattering of Constituent on Constiuent Not Important for Many Constituents
If the single constituents carry only infinitesially small fraction of the momentum
of the bound state, the scattering of one constituent in one bound state with one
in another bound state would not be much connected to the scattering of the two
bound states.
Rather scattering of bound states on each other would be dominated by one
bound state exchnging a bunch of consituents with the other bound state.
Scattering by Excange of Constituents

Fig. 18.1: Scattering by Excange of Constutents This figure illustrates the scatter-
ing of two bound states with (inifinitely) many constituents marked in the one
as blue and in the other bound state as red. After the scattering there appears
again two bound states, but now notice that both of them have partly blue-marked
and red-marked constituents. This we may call an “exchange of parts of the
constituents”-scattering.
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A Motivation for People Interested in making Higher Dimensional Theories: It
is wellknown: You do not have genuine renormalizable quantum field theories in
higher than 3+1 dimensions.
However Exception: A very bad scalar theory with ϕ3-interaction in up to 5+1,
and completely free theories.

18.1.2 Novel String Field Theory of Ours

According to the Novel String Field Theory of ours [3, 6], which we shall go a bit
into later, (super)string theory can be considered a completely free theory!
“exchange of parts of constituents”-scattering known from our Novel String
Field Theory
In our novel string field theory, on which we worked much earlier, the strings are -
somewhat similarly, but differently, to/from C. Thorn’s [5] string bit resolution
of the string into “bits” (consituents) - described by means of “objects”. After
scattering of a couple of strings (almost, except for a null-set) all the objects from
the initial strings are either refound in the final state strings or recognized as
having been annihilated. Although we can consider the “objects” constituents,
they do not scatter on each other, but rather do not interact at all.

18.2 Motivation

18.2.1 Motivation and Plan

• Interpret the great feature of string theory to be that it is indeed - in our Novel
String field theory - a basically free and therefore solvable theory, so that even
no divergence problems appear.

• Ask if we can generalize such a string theory, still clinging the idea that
the “constituents” (identified with our “objects”) do not interact under the
scattering of the strings (identified as “bound states”).

• Thereby getting e.g. meaningfull ( renormalizable) theories in higher than 3+1
dimesnions.

18.2.2 This work especially: Generalize Möbius Transformations

Our series of objects making up so to say an open string in our novel string
field theory are organized in what we call a cyclically ordered chain, which is
topologically a circle. It has in fact a “natural” symmetry under a Möbius group,
as we shall explain, and can also be considered a projective line (meaning a line as
in projective geometry, in which one adds to the lines an extra “point at inifinity”,
so that the line topolgically becomes a circle rather than a usual line).
As a major part of the presentation we like to seek to go back from a very general
group being analogous to the Möbius group to see to what extend we can recon-
struct projective line for some field (in the sense of the algabraic structure with
unit element and invertibility for both a multiplication and an addition).
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Reminder of: Möbius transformations in Veneziano model and string theory [4]
From very early times in string theory and Veneziano model theory the Möbius
transformations has shown up. In fact physicists [7] were so kind as to call the
variable in the formulation of the Veneziano model with some extra variables so
that the formulation became precisely invariant under Möbius transformations
Koba-Nielsen variables.
What is Möbius transformations ? A priori the Möbius transformations are de-
fined as transformations of the extended complex number set C ∪ {∞} of the
complex numbers with a number ∞ added, a set equivalent to the complex projec-
tive line CP1 given by the transformation function

z→ f(z) =
az+ b

cz+ d
, (18.1)

but shall in the present article be more interested just in the real number version
transforming only R ∪ {∞}, and with the constants a, b, c, d being real numbers.

18.3 Novel SFT

How we thought in our Novel String Field Theory in the present Articles: We
used the splitting of the position variable field on the string into left and right-
moving parts

Xµ(σ, τ) = Xµ
R(τ− σ) + X

µ
L(τ+ σ), (18.2)

where σ is the “spatial” coordinate enumerating the points along the string and τ
a “time” for the single string, both arranged in the conformal gauge, meaning they
have been partially gauge chosen so that the Lagrangian simplified to a usual 1+1
dimensional massless scalar for each value of the external index µ enumerating
the imbedding space dimensions 25+1.

18.3.1 Crucial Feature of Our Novel String Field Theory, Use XR and XL.

Our approach was to discretize into small pieces - analogous to the string bits by
Charles Thorn, who used the full X - in the varibles on which these XR and XL

only depends, namely τ− σ and τ+ σ respectively. This means that we contrary
to C. Thorn discretize into pieces variables which are not a priori physically
enumerating the material of which the string consists, but a priori could be just
formal parameters enumerating some degrees of freedom of the system(=the
string). Therefore a priori we could not be sure if the “objects” corresponding to
the small pieces in variables τ− σ or τ+ σ can be considered “constituents”.
By Changing The Physical Interpretation a bit, the “Objects” may be however
be perceived as Constituents. A priori the “objects” are associated only with half
the degrees of freedom of a string bit - namely only the right or the left moving
d.o.f. - are not genuine constituents. If you speculate that the string is just a smart
way of looking at it, but not neccessarily the only way, then we may speculate
physically to split up a string bit (as by C. Thorn) into two physically seperate
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objects, a right and a left. Since the two, when interpreted as the “objects” do not
interact, are not really needed to be considered the same constituent, we can then
make the physical speculation, or interpretation rather, that the two “objects” for
same string bit are two quite independent constituents.
So we are allowed to take it that the “objects” are constituents.

18.3.2 Objects describing strings

Fig. 18.2: How strings are seen as crossing places of the objects being Constituents
Representing Strings Locally.

The figure shall illustrate how two kinds of “objects” denoted by red and blue
colored lines telling their path through space (respectively R and L), when flowing
through space in long series - infinitesimally close to the neighbors -can repre-
sent/look like a string moving with lower velocity.

The “objects” move with velocity of light - actually they are free so they never
change even direction -, but the string seemingly there move typically slower. The
string at one moment is just where the objects meet at that moment.

The strings are just some way of seeing the objects.

18.3.3 Philosophy of Looking at String Theory in this Talk:

String Theory is a successful theory in higher dimensions because it is actually -
according to our Novel String Field Theory - a free theory, so that it is, one can
say, renomalizable even in higher dimensions. The “ objects” are free massless

particles.
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String Versus Novel Object Chains? Is there a truth? We claim that there seem-
ingly are two different ways of imagining the strings in string theory:

• 1, The strings are the true physical objects.
• 2. The chains of “objects” are the true physical objects.

You may of course claim, that if we are right that the two ways of looking at it are
equivalent, then both are right!
But you could also begin to find argument, that one viewpoint is better or more
true than the other one:
In a moment we shall give a couple of weak arguments, that the chains of objects
are more true!
Mysterious in String Theory: Cross sections for End and String crossing are
same order of magnitude?

Fig. 18.3: On this figure you should imagine that the two strings truly cross each
other in the sense of going through the same point. This type of hitting each other
of two strings is more likely than that they should just hit each other just with the
end points

You expect End hitting much more unlikely than hitting of proper string bulk

• For two sticks or strings you expect the cross section for that they hit to be of
the order of the product of their length.

• But two genuine point particles will have in principle zero crossection for
hitting each other.

Thus we are forced to make a Conclusion:
Something wrong with string interpretation!
Can Vacuum Extensions of String Tails Solve Mystery by one string having an
end common with another without knowing
Scattering of two circlar chains (of “objects”) allways goes with two local inter-
actions of the chains
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Fig. 18.4: This figure illustrates how one may think, that all the strings continue
into being virtually present in the vacuum, so that although we at first thinks of
strings being like particles located to a place and moving around, then in fact
these phenomenological strings have indeed tails continuing out as virtual present
string-material present virtually in the vacuum (which is of course in all quantum
(field) theories a very complicated state). We call this possible phenomenon of
virtual string pieces in vacuum “Strings lost in vacuum”.

Fig. 18.5: Here we illustrate how two cyclically ordered chains of objects (to the
left) becomes two other cyclically ordered objects (to the right) via two steps of
local modification. First - illustrated by the left-most of the two arrows - the two
cyclically ordered chains on the left side by a single local combination becomes the
single cyclically ordered chain illustrated in the midle. Next this single cyclically
ordered chain touches itself and thereby split into the two cyclically ordered chains
illustrated on the right-most.
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18.4 Generalizing

It Would be Wonderful to Generalize String Theory, Now we say it is Free
Basically as soon as you calculate scatterings by approximating that all constituents
continue without interacting, you are in our present sense generalizing string
theory.
So bound states of very many constituents so as each of them having very little
momentum share are scattering as a generalization of the strings seen as composed
from objects.

18.5 Symmetry

Symmetry
If a bound state or an almost bound state consists of infinitely many constituents,
then one will, unless there are infinitely many types of particles, expect that most
of the constituents are in many ways very similar in their way of sitting in the
bound state.
One thus expects a large amount of symmetry between the constituents.
An idea to implement this expectation is to postulate a group of transformmations
of the constituents into each other, under which the “structure” of the bound state
is invariant.
Much Transfromations / Much Symmetry High n Transitivity

Fig. 18.6: The horizontal line here illustrates the set on which a group G acts shaply
3-transitively meaning that there is a unique (that is what “sharply” means) group
element fmapping the three points A, B, and C into three given points f(A), f(B),
and f(C) (that is what means it is 3-transitive).
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18.5.1 3-transitive group action

We say the group G acts on the space S n-transitively, when you for every n points
A ,...,K can find a group element f ∈ G transforming these n into n prescribed
image points [11, 12]. We call it “sharply”, when the group element achieving that
is unique.

Any f ∈ G (18.3)

acts f : S→ S (18.4)

For any n points A, ..., K (18.5)

and another set of n points A ′, ..., K ′ there exists f (18.6)

so that f(A) = A ′ (18.7)
... (18.8)

f(K) = K ′ (18.9)

18.5.2 Zassenhaus theorem, that is a not quite true theorem on 3-transitive
transformations

A mathematical article by Katrin Tent, Advances in Mathematics Volume 286, 2
January 2016, Pages 722-728, begins:
“ The finite sharply 2- and 3-transitive groups were classified by Zassenhaus in [17]
in the 1930’s and were shown to arise from so-called near-fields. They essentially
look like the groups of affine linear transformations x → ax + b or Moebius
transformations x→ ax+b

cx+d
, respectively.”

18.5.3 Our own Zassenhaus-like theorem:

Thinking instead Zassenhaus finite groups on infinite ones:
A set on which transforms a group in a sharply 3-transitive way will be a projective
line corresponding to some field F and the transformations under the group will
be Möbius transformations x→ ax+b

cx+d
with the variable enumerating the points on

the “projective line” x as well as the constants a, b, c, d of the transformation(group
element) belong to the field F.
Planning to “‘derive” this our own theorem, like Zassenhaus
We should at least reconstruct the field of real numbers R in the case we consider
the Möbius transformations of the real projective line R ∪ ∞ as the sharply 3-
transitive group of transformations.
First step in Reconstructing the Field F from the Group of sharply 3-transitive
transformations
Choose a point in the set S being transformed sharply 3-transitive under the group
G and call it ∞. Then look for the subgroup G1 of the group G consisting of the
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elements in G with only one fixed point in S, being ∞, (and of course also the unit
element in G)
The idea is to identify the subgroup G1 having ∞ as the only fix point with the
additive group of the field F to be found. The group multiplicaion in G1 inherited
from G of course shall be written with +.
(Say y, z ∈ (G1, ∗), then y ∗ x = y+ z).
(Here ∗ is the group multiplication in G.)
Second Step in Derivation, Identify Scalngs from Two Fix-point Transforma-
tions
Next we notice that by requiring just one more fixed point than the ∞ we get (at
least in the true Möbius case) a group of scalings of the “numbers” (the elements in
G1 ) around a certain number. We might call the second fix-point 0 and a similarity
transformation of G1 (the subgroup with one fix-point) by one m in the group
leaving 0 and ∞ say G2,(som ∈ G2) say the similarity transformation

y ∈ G1 → m ∗ y ∗m−1 ∈ G1 (18.10)

would be called y → m · y. (18.11)

This would first be a multiplication with anm ∈ G2.
Third step, Get Identification of G2 with G1 by Selecting Point in S to call 1
A priori the subgroupG1 leaving ∞ and no other points in S invariant, is of course
different from the subgroup G2 of elements in the 3-transitive transformation
group of S, which we called G having only two invariant points ∞ and 0 ∈ S.
We may, however, choose a third point 1 ∈ S (just in a few lines we call it explicitly
1in S, because we want to use the notation 1 also for an element in G1, which we
must then call 1in G1 to distinguish) different from the two points ∞ and 0 ∈ S
and define a correspondence:

y ∈ G1 ∼ my = m so that y = m · 1 = m ∗ 1 ∗m−1 (18.12)

(here we needed a 1 ∈ G1, but we can make a corresponding 1 in S as 1in S =

1in G1(0). Remember that 1in G1 is indeed an element in subgrouop G1 of G and
thus a map 1in G1 : S→ S so that it makes sence to take the image of an element
in S, namely 0 ∈ S).

18.6 Why just sharply 3-transitive? A good question.

Above we went to consider just sharply 3-transitively acting symmetries as the
symmetry required for the system of constituents of the bound state with very
many consituents and very much symmetry. It was done in the spirit that 3 was a
high number, when we talk about sharp transitivity. But is it a high number, and
why just 3?
The answer is that this 3 is indeed the highest transitivity one can have, if one
wants the set on which the group acts to be infinite.
Jordan [11] classified, that finite quadruply transitive group in which only the
identity fixes four letters must be one of the following groups: the symmetric
group of four or five letters, the alternating group of six letters or the Mathieu
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group [13] on eleven letters. In a work by Marshall Hall [12] we find this work
slightly extended and especially implying that there is no infinite set on which a
group acts sharply 4-transitively.
Thus in our search for a bound state consisting of infinitely many or at least more
than 11 constituents (the Mathieu group case; we shall not here tell exactly what a
Mathieu group is) we simply cannot find any sharply 4-transitive group acting on
it. We must be satisfied at most with a 3-transitive.

18.7 Wavefunction?

No Interaction: What determines the Wavefunction?
If we either assume or approximate away the interaction between the constituents,
then what can determine the wave function?
Usually the wave function of a bound state in non-relativistic physics is given as
an eigenfunction of a Hamiltonian

Hψ(“constituent-positions”) = Eψ(“constituent-positions”) (18.13)

But relativistically one has to use the Nambu-Bethe-Salpeter equation [1], which is
analogous to this eigenvalue equation for a bound state, where E is the enrgy of
the bound state. But if there is no interaction the Hamiltonian H is just trivial
(essentially 0) and of no help!
Nambu-Bethe-Salpeter-equation

Fig. 18.7: Formal graphic writting of the Bethe-Salpeter equation with two con-
stituents. The propagators with S are the propagators for the constituents, the black
sphere Γ is the wave function for the bound state, and the block K symbolizes the
interaction between the constituents. You may consider the Bethe-Salpeter-euation
as analogous to the eigenvalue equation in the case of non-relativistic constituents.
It is worth calling attention to, that while we for non-relativistic binding are accos-
tumed to only describing the constituents by say their momenta (and the energy is
only a consequence of that and it is positive energy for the constituent,) then here
in the Nambu-Bethe-Salpeter equation the energy (or equivalently it conjugate
x0) is also formally a degree of freedom for the constituent. And the energy of the
constituents can aslo be negative.
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Alternatives to make Wavefunction (meaningful)

• Postulate a new law of nature on initial and even final conditions specifying
the nature of allowed wave functions (to have e.g. the smooth chain character
giving the string topologically)

• Say that you do not take non-interaction 100% serious but allow very short
scale or high energy interactions.
This would be very realistic in higher dimensions than 3+1.
In fact couplings of a certain energy scale order of magnitude are very weak
in higher dimensions (at low energy). So one might at low energy in higher di-
mensions only see the interactions as left over influence on the wave functions,
but that would be negligible in the scatterings (at low energy).

Speculation of mainly Short Distance Interacting Particles in High Dimensions

• From dimensional arguments the interaction between particles in an effective
quantum field theory in high dimension goes to zero for small energy scales.
So the particles have only short range interactions.

• It is very easy that bound states can exist bound by the short range forces;
but they will typically have interactions only at short distances too and high
masses unless mass protected.

• If some bound states or “fundamental” particle, e.g. from being chiral fermions,
are mass protected they will of course be massless untill their symmetry
protection somehow gets spoiled.

Speculation of mainly Short Distance Interacting Particles in High Dimensions
(continued)

• But if they are of small extension - like fundamental scale - they will effectively
not interact from a low energy scale point of view.

• Only if we have spatially largely extended bound states, can there be apprecia-
ble interactions at low enrgy scales.

18.8 Hamiltonian ?

There is a little not quite acceptable point in our “novel string field theory” consist-
ing in, that we stress that there is no development or at least that “objects” behave
freely - in fact the position moves in a trivial way if we identify a conjugate variable
to what is essentially the momentum (called in our papers J) - but nevertheless
we had also a paper [18] in which a Hamiltonian appeared, which gave the usual
string spectrum. That of course cannot both be right: Either we have trivial or no
development at all or we have the not completely trivial Hamiltonian formulated
in our variables for the “objects”.
Here we must remind of an a bit technical detail in our novel string field theory:
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Fig. 18.8: Here we have drawn a presumably very realistic picture of a bound state
of many particles. Analysing perturbative quantum field theory you will typically
find that each dressed particle consists of at first two consituents - so that the
dressed particles are really boud states - but since when even further analysed,
these will again turn out to consist of more constituents each, even the dressed
particles come to consist of more and more consituents. So a picture with pairs
forming again pairs and so on is very realistic for such perturbatively treated
states. Such a picture with pairs forming pairs etc. is also very similar to what gets
when the field we arrive at happens to be the 2-adic field.

Because variables the XR and XL which we used to take out the degrees of freedom
for the “objects” do not commute with themselves taken at neighboring points of
the variable such as τ− σwe had to after having divided the variable τ− σ into
small pieces to include in the true representing objects only every second one of
the pieces. That we formulated by saying we only take as the true objects the small
pieces with an even number in the series along in the variable τ− σ. Then the idea
was to instead represent the odd numbered pieces as being proportional to the
difference of the conjugate momenta to the variables on the even places.
Without going too much in detail with this problem of only using every second
of the bits into which we cut the variable τ − σ we may tell that we obtained a
Hamiltonian H which gives the energy of the string in say infinite momentum
frame expressed by means of the momentum variable (which we called Jµ(I) and
defined only for even values of the piece enumerating integer I) and the conjugate
position variable (which we called Πµ(I) again using only even I).
The crux of this writting down the Hamiltonian, that could give the string energy
is that not only does it contain the for a free theory expected terms going with the
square of the momenta, but it had also, namely corresponding to the odd pieces in
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the chain which were of the form

(Πi(I+ 1) − Πi(I− 1))2 = (Xi
R(I+ 1) − X

i
R(I− 1))

2 (for I odd) (18.14)

Such terms look like interaction terms between the neighboring even numbered
“objects” and should not be allowed if we want to think of the model for the string
as being a construction / a bound state made out of non-interacting constiuents!
Infact the Hamiltonian giving the usual energy of the string takes the form, for the
Mass squareM2:

M2 = 2P+P− − Σ24
i=1(P

i)2 (18.15)

= 2
(
ΣN−1
I=0 J

+(I)
) (
ΣN−1
I=0 J

−(I)
)( 1

2πα ′

)2

(18.16)

−Σ24
i=1

(
ΣN−1
I=0 J

i(I)
)2 1

(2πα ′)2
(18.17)

in infnite momentum frame, where the summation I runs over the objects as sitting
along the cyclically ordered chain (identified with the projective line discretized)
and i over the transverse dimenisions, while the infinite momentum frame co-
ordinates denoted with index + and the index − take care of the longitudinal
momentum and of the energy.
In our works on the novel string field theory we make in order to not have
too many degrees of freedom in the description with the “objects” the trick of
replacing the odd I objects present at first by an expression in terms of the conjugate
momenta for the even I variables Jµ(I),(for the transverse coordinates i say)

Ji(I) = −πα ′(Πi(I+ 1) − Πi(I− 1)). (18.18)

In this notation with only the even objects being taken as physical, while the odd
ones are replaced by the conjugate of the neightbors the mass square may be rather
written

M2 =
1

(2piα ′)2
Σ24
i=1

(
NΣN−2

I=0 Ieven(J
i(I))2 − ΣN−2

K=0 KevenΣ
N−2
I=0 IevenJ

i(I)Ji(K)
)

+
N

4
Σ24
i=1Σ

N−1

I=1 Iodd(Π
i(I+ 1) − Πi(I− 1))2 (18.19)

For details on this kind of Hamiltonian expessions we refer to our work [18]. This
kind of Hamiltonian expressions obviously has the problem of having the seeming
interaction between the neighboring even numbered objects.
But then how can we keep up our claim of free constituents?
The idea to overcome this seeming contradition in our description of our novel
string field theory previously has to do with yet a technical point to which we
must allude:
We had to impose a condition that the state of the cyclical chain of objects to make
up the description of an open string should obey

Ji(I+ 1) ≈ −α ′(Πi(I+ 1) − Πi(I− 1)) ≈ Ji(I− 1) ( here i odd) (18.20)
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where in our a bit stupid notation the momentum of an even object is denoted by
Ji(I) for I even and the corresponding postion variable in our old notation is Πi(I)

correspondingly, since the Π and the J are conjugate.
But now the way this approximate relation has to be implemented is by the state
of the chain of objects has to be so as to full fill it.
So this relation relating the vector from one even object to the next in position
space to the momenta of the two neighboring objects is a restriction on the state,
one could say an intial state condition.

18.8.1 Rewritting the Hamiltonian

The crux of the matter of the idea to solve the just above explained seeming
contradiction is to say:
As long as we are only interested in states of the system of “ objects” obeying
the equation (18.20), we should at least approximately be allowed to use this
condition (18.20) to substitute parts of the Hamiltonian as using it as an equation,
and then one can easily compute that we can rewrite the wanted hamitonian to
totally free one!
This then means that indeed we can claim that if we have series of infinitely many
genuine particles (scalars in the simple case of the bosonic string) which are free -
they do not interact - but are in such a states that they form a chain and further
obey our constraint (18.20), then the free Hamiltonian can for such special states be
replaced by the usual string Hamiltonian. So for the states of relevance we indeed
get the usual energy spectrum well known for the strings, in spite of the fact that
we take the cnstituent particles to be genuine particles that do not interact.

18.9 An Idea of a Picture

Let us here present the idea, that we should apply the present infinite constituent
bound state picutre in a world in which the genuine physics theory is higher
dimensional - as e.g. the model by Norma Mankoc Borstnik [15] - and that we
in practice only see bound states of very many mass protected particles such as
chiral fermions or gauge particles. For example in 4 dimensions a chiral fermion is
described by spinor field ψ(x) imposed the restriction

(Γ − 1)ψ(x) = 0 (18.21)

where Γ is the chirality, the analogue of γ5. (18.22)

Then at low energies there will be effectively no interactions, because the di-
mensionalities of the coupling constants, κ say, would be of dimensions mass to
negative powers. E.g. an intraction could be of the four fermion type

L(x) = κψ̄(x)γµψ(x) ∗ ψ̄(x)γµψ(x) + ... (18.23)

[κ] =
[
GeV“negative”

]
(18.24)

so κ ≈ 0 at low energies. (18.25)
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So bound states of many such mass protected particles would have in the effective
low energy scattering limit [14] no interactions, just as we discussed in the present
article.
However, the initial - and even final - conditions for the bound states, which
in the no interaction approximation need an extra explanation, could now be
understood as a left over from the high energy time, when the bound states
were formed. That is to say: Once upon a time in the time just after Big Bang, say,
the coming consituents interacted because at high energies, the couplings - like
κ - with negative power of mass dimensions would not be quite negligible. This
interaction at high energy would bring the mass protected particles into bound
state structures - once cooling takes place - , which would then survive into the
colder times, when only the low energy approximation would be relevant, and
the constituents would effective no longer interact.
If it happens that the surviving bound states are of the many constituent types,
and they would obtain the symmetry properties speculated in the present article,
they would, if the symmetry becomes the Møbius group with real numbers as
the field, become real field projective lines, meaning circles topologigally. That
is to say, we would get the cyclically ordered chains of objects described in our
earlier Novel String Field Theory [6]. If one would instead take the p-adic field,
one (presumably) would obtain instead the p-adic Veneziano model scheme [8].
In any case in the here now suggested background model for our infinitely many
constituent bound states, there would be a usual quantum field theory picture in
higher dimensions behind, and the model should inherit the good physical proper-
ties from such a quantum field theory, although it would not be a renormalizable
one. Only the low energy limit with only exchange of consituents interactions
would be what one might call “renormalizable”. Really it would in the most impor-
tant case be string theory and that we would rather call “finite” than renomalizable,
but the “finite” theories are, one could say, included in the renoramlizable ones.
By taking such an at high energy interacting scheme as the model behind our
bound states one would get a more solid physical picture and could from this
picture better understand how to treat e.g. the Nambu-Bethe-Salpeter-equation
technique. In such a philosophy of the high dimensional theory behind one should
have a good chance using Weinbergs effective field theory [14] thinking to see
that the bound state scattering based on the Nambu-Bethe-Salpeter formalism [1]
would lead to amplitudes acceptable from say axiomatic field theory [16] point of
view. It thus looks as an outlook that we are close to having a scheme for making
models for scattering amplitudes, that are physically acceptable.

18.9.1 Scale Symmetry

Let us note, that when we in the low energy limit have just the free mass protected,
say chiral fermions or free “photons”, then the theory is scale invariant. There
are no dimensionized parameters left. So if it is as suggeted string theory the
dimensionized parameter α ′ in string theory cannot be in the low energy approx-
imation proper, but can only come in via initial and final state conditions. That
is to say here, that the Regge trajectory slope parameter α ′ can only come in by



i
i

“U” — 2021/12/15 — 21:46 — page 274 — #290 i
i

i
i

i
i

274 H. B. Nielsen, M. Ninomiya

having been inherited from the era, when it was hot and cooled down so that the
dimensionized parameters such as κwere relevant.

18.9.2 Momentum Fluctuation in “Unexcited cyclically ordered system of
objects/constituents”

At least for the unexcited bound state, but approximately for all in practice occur-
ing bound states in the model, we should have that the momentum distribution
for the constituents should be invariant under the Møbius transformations.
In the figure we see a drawing of the cyclically ordered chain equivalent to the

Fig. 18.9: Illustrated are the two small pieces AC and BD with respectively mo-
menta p2 and p1 on the projective line drawn as a cicle. We use the symbol
(A,C;B,D) for the anharmonic ratio, which in terms of e.g. distances counted
with sign on the circle would be (A,C;B,D) = AB∗CD

CB∗AD
= AB

CB
: AD
CD

.

real number projective line. The “four” (really we should call it d-momentum,
because we consider here more than four dimensions in order to have the effective
disappearance of the couplings) momentum p1 and p2 of the collection of the
consituents sitting in the projective line in the two small (infinitesimally small)
pieces AB and CD respectively have in the “ground state” of the bound state the
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correlation

< p1p2 > = coef. ∗ (A,C;B,D) (18.26)

where (A,C;B,D) = “anharmonic raatio” (18.27)

=
AB ∗ CD
CB ∗AD =

AB

CB
:
AD

CD
. (18.28)

or more precisely: < pµ1p
ν
2 > = gµν · coef. ∗ (A,C;B,D). (18.29)

The form given by the anharmonic ratio is specified by the Møbius invariance un-
der real numbers, because only the anharmonic ratios are invariant for four points.
Here the pairs of letters likeABmeans the difference of the field F coordinate for B
minus that for A. However, the coefficient coef. is an a priori unspecified constant.
What the value shall be is only specified by the initial and final state information
on the bound states we had to impose. In the picture of there being a short distance
or high energy interaction underneath the coef.would inherit from such a short
distance interaction. In the string theory with the open strings identified with our
bound states this coefficient would be given by the Regge-slope α ′,

coef. ∝ 1

α ′ . (18.30)

It should be in mind that the scale symmetry is only broken by these initial and
final state informations.
So the α ′ energy scale in the Veneziano model in our picture comes in via the
initial and final state information, only.

18.10 The Cyclic ordering partly violates the full Møbius
symmetry

We have to mention what formally looks like a little problem:
In our novel string field theory we had to impose the condition (18.20), which
is not invariant under shift of orientation along the cyclically ordered chain.
Formally such a condition would break the symmetry under half of the Møbius
transformations. To have this condition consistent with the symmetry we should
only keep those Møbius transfromations, which leave the orientation along the
chain or in the words of the present article along the projective line intact. This
means that formally the group does not act 3-transitively, but only 3-transitively
modulo the cyclic orientation.
But from what we could call an estetic point of view this only orientation keeping
subgroup is quite nice in as far as it indeed lies inside the full Møbius group as a
topologically seprate part, a component.
It might be needed in our building of the bound states from a high energy theory
to let this one have sufficient breaking of its symmetries so as to deliver such
bound states that the orientation gets fixed.

18.11 Conclusion

Conclusion
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We have proposed an approximation applicable hopefully to some bound states:
that they have so many constituents with so equally divided momenta - or better
Bjorken x’s ≈ 0 [2] - that we can ignore the scattering of the constituents, when
the bound states scatter.
(This means the constituents are in the approximation free, and thus the bound
state not truly bound)
Conclusion Details

• Requiring High Symmetry in form of 3-transitive symmetry operation we ex-
pected - like Zassenhaus - the constituents to form a structure like a projective
line F ∪ {∞} for a field F. The srting is the case F = R i.e. the field is the real
number field.(Topologically the projective line is a circle.)

• We suggest that such string theory might be used when the approximation of
many constituents with little momentum each becomes good. (of course string
theory historically started as attempt to describe hadron physics [19])

• The p-adic theory [8] of Veneziano model is suggestively incorporated.
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Abstract. We seek to explain both the seeming observation of dark matter by the seasonal
variation of the DAMA-LIBRA data and the observation of “electron recoil” events at
Xenon1T in which the liquid-Xe-scintillator was excited by electrons - in excess to the
expected background - by the same dark matter model. In our model the dark matter consists
of bubbles of a new type of vacuum containing ordinary atomic matter, say diamond, under
high pressure ensured by the surface tension of the separation surface (domain wall). This
atomic matter is surrounded by a cloud of electrons extending almost out to atomic size. We
also seek to explain the self interactions of dark matter suggested by astronomical studies
of dwarf galaxies and the central structure of galaxy clusters. At the same time we consider
the interaction with matter in the shielding responsible for slowing the dark matter down
to a low terminal velocity, so that collisions with nuclei in the underground detectors have
insufficient energy to be detected. Further we explain the “mysterious” X-ray line of 3.5
keV from our dark matter particles colliding with each other so that the surfaces/skins
unite. Even the 3.5 keV X-ray radiation from the Tycho supernova remnant is explained as
our pearls hitting cosmic rays in the remnant.
What the DAMA-LIBRA and Xenon1T experiments see is supposed to be our dark matter
pearls excited during their stopping in the shielding or the air. The most remarkable support
for our type of model is that both these underground experiments see events with about 3.5
keV energy, just the energy of the X-ray line.
We get a good numerical understanding of the fitted cross section over mass ratio of self
interacting dark matter observed in the study of dwarf galaxies. Also the total energy of the
dark matter pearls stopped in the shield is reasonably matching order of magnitudewise
with the absolute observation rates of DAMA-LIBRA and Xenon1T, although the proposed
explanation of their ratio requires further development.
It should be stressed that accepting that the different phases of the vacuum could be realized
inside the Standard Model, our whole scheme could be realized inside the Standard Model.
So then no new physics is needed for dark matter!

Povzetek: Avtorja predlagata novo vrsto vakuuma, ki bi lahko pojasnila neujemanje med
meritvama poiskusov DAMA-LIBRA in Xenon1T. V njunem modelu imajo lastnosti temne
snovi mehurčki v vakuumu, ki vsebuje običajno snov, recimo diamant, pod visokim tlakom,
ki je posledica površinske napetosti med običajno snovjo in oblakom elektronov, velikosti
atoma. S tem modelom razložita, zakaj je interakcija med konstituenti temne snovi tako

⋆⋆ Speaker at the Work Shop “What comes beyond the Standard Models” in Bled.
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majhna, kako se temna snov upočasni pri interakciji z običajno snovjo v ščitu galaksije.
Posledično ima temna snov majhno hitrost pri trkih z jedri v podzemskih detektorjih v
soglasju z rezultati obeh poskusov. Podporo svojemu predlogu vidita avtorja tudi v tem,
da pojasni hkrati rentgensko črto z energijo 3,5 keV v sevanju supernove Tycho in da
experimenta DAMA/LIBRA in Xenon1T izmerita trke temne snovi prav pri energiji 3,5
KeV. Sipalna amplituda in gostota njune temne snovi se ujemata z izmerjenima, pri tem pa
njun model ostaja znotraj standardnega modela.

19.1 Introduction

For a long time we have worked on a dark matter model [1–8], in which the dark
matter consisted of cm-size pearls which were in fact bubbles of a new vacuum
type surrounded by a skin caused by the surface tension of this new vacuum. This
skin kept a piece of usual atomic matter highly compressed inside the bubble. In
fitting data with this model the most and almost only successful fit consisted in
that we fitted, with a common parameter, both the overall rate and the very 3.5 keV
energy of the X ray line originally observed in several galaxy clusters, Andromeda
and the Milky Way Center [9–14] and supposedly coming from dark matter. But
now it turned out that this successful fitting relation between the 3.5 keV energy
and the overall rate of the X-ray radiation only depends on the density of the
pearls or equivalently the fermi momentum or energy of the electrons kept inside
the pearls, but not on the absolute size of the pearls. Thus we could change the
model to make the pearl sizes much smaller, as we shall do in this article, so that
they are e.g. now rather of atomic size. Really we shall let the pearls be of radius
rcloud 3.3MeV = 5 ∗ 10−12m. But even such small pearls get stopped to some
extent by the shielding into which they must penetrate to reach the underground
experiments like the DAMA-LIBRA and Xenon experiments looking for dark
matter. Using an astronomical observation based model by Correa [15] especially,
we shall construct a rather definite picture of our pearls from which we estimate
that the pearls hitting the earth actually get stopped presumably in the atmosphere,
but if not there then at least in the earth shielding. The pearls thereby lose so much
speed that it becomes quite understandable that the Xenon-experiments, looking
for nuclei being hit by them and causing scintillation in fluid xenon, will not
see any such events. However the DAMA-LIBRA experiment [16, 17] would not
distinguish if it is a nucleus that is hit or some energy is released which causes the
scintillator to luminesce. So only the DAMA-LIBRA experiment would be able
to get a signal if the dark matter, e.g. our pearls, could be somehow excited and
emit their excitation energy when they pass through the detector. In our model we
shall indeed suggest that the pearls get excited and emit their energy by electron
emission. That would not be easy to distinguish for DAMA-LIBRA but would
still of course come with seasonal variation1 so that it would be observed as dark
matter by DAMA-LIBRA. Whether the emission is via electrons or nuclei would
not matter. But for the xenon-experiments such electron emission was effectively

1 We note however that the ANAIS experiment has failed to see an annual modulation
with NAI(Tl) scintillators and their results [18] are incompatible with the DAMA-LIBRA
results at 3.3σ.
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not counted for a long time, but now rather recently the Xenon1T experiment has
actually observed an excess of “electron recoil events”. So they have now in fact
seen an electron emission somehow.
We shall see in section 19.7 that both the excess of electron recoil events in Xenon1T
[19] and the events seen by DAMA-LIBRA [16, 17] have the energy of each event
remarkably enough centering about the energy value 3.5 keV of the mysterious
X-ray line found astronomically!
This coincidence of course strongly suggests that these events from DAMA-LIBRA
and Xenon1T are related to dark matter particles that can be excited precisely by
this energy 3.5 keV.
In our earlier papers [5–7] we have already connected the excitability of our pearls
by just this energy 3.5 keV and especially the emission of photons (or here in the
present work also electrons) with just this energy with a gap in the single particle
electron spectrum of the pearls caused by what we call the homolumo-gap effect.
A very serious warning, which needs an explanation in order to rescue our model,
is delivered by the fact that if as we now suggest the Xenon1T electron recoil
event excess is coming from just the same decay of dark matter excitations as
the DAMA-Libra observation, then these two experiments ought a priori to see
equally many events, say per kg. However, DAMA-LIBRA sees 250 times as many
events as Xenon1T sees excess events.
We shall postpone this question to a later article in detail, but the hope for now is
that the Xenon1T experiment has the observed decaying pearls falling through
a fluid, namely the fluid xenon, while the scintillator in DAMA-LIBRA is a solid
made from NaI(Tl). The pearls are likely to form a little Xe-fluid bubble around
them and flow or fall through the xenon-fluid, while they will much more easily
get caught so as to almost sit still or only move much slower through the NaI
scintillator. If so the pearls with their supposed excitations would spend much
more time in the DAMA-LIBRA NaI than in a corresponding volume of xenon-
liquid.
In the following section 19.2 we describe how the particles making up the dark
matter in our model are imagined to be bubbles of the size R = rcloud 3.3MeV =

5 ∗ 10−12m with heavy atomic matter inside, which is surrounded out to a radius
rcloud 3.5keV = 5 ∗ 10−11m by electrons. Here the quantities 3.3 MeV and 3.5 keV
in the subscripts are the numerical electric potentials felt by an electron at the
distances mentioned. A special point to note in this section already present in the
earlier articles about the big pearls is the homolumo-gap effect, causing a band
or gap in the energy levels without any single particle electron eigenstates. The
width of this gap is fitted to the 3.5 keV line in the observed X-ray spectrum from
galaxy clusters, the Milky Way Center etc. [9–11].
Next in section 19.3 we briefly review astronomical observations and modelling
of the dark matter, which suggests the idea that dark matter interacts with itself
(strongly interacting dark matter SIDM). It is only when the corresponding cross
section σ is divided by the particle massM do we have a combination that has any
chance of being observed by its effects on the atomic matter. In fact this ratio σ

M

matches well with the atomic physics structure of our pearls including the cloud
of electrons outside the bubble itself.
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In section 19.4 we list a series of numerical successes of our model for the dark
matter, hopefully making the reader see that there is really some reason for it being
at least in some respects correct.
In section 19.5 we restress that our dark matter pearls get stopped and at the same
time excited, mainly to emit quanta of energy 3.5 keV, in the air and/or in the
shielding above the experiments. According to our best estimates they get stopped
already about 53 km up in the air. It is the braking energy from this slowing down
that is supposed to feed the excitations.
A special estimation, based on energy considerations, of whether the number of
events seen by DAMA-LIBRA and by the Xenon1T electron recoil excess are of a
reasonable order of magnitude is put forward in section 19.6. The success of such
an estimation has to be rather limited in as far as the rates of the two observations
- that should have been the same if we do not include the possibility of faster or
slower motion through the detectors - deviate by a factor of 250.
In section 19.7 we call attention to the perhaps most remarkable fact supporting a
major aspect of our model: That the energy per event for both DAMA-LIBRA and
the Xenon1T-electron recoil excess centers around 3.5 keV, just the energy of the
photons in the mysterious X-ray line seen in galactic clusters mentioned above! So
all three effects should correspond to the emission of an electron or photon due to
the same energy transition inside dark matter.
Finally in section 19.8 we conclude and provide a short outlook.

19.2 Pearl

Dark Matter Atomic Size Pearls, Electronic 3.5 keV Signal

Fig. 19.1: The figure illustrates the bit smaller than atom-size compli-
cated/macroscopic dark matter particle in our model, a pearl.
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We sketch the structure of our small dark matter pearls in Figure 1.

• In the middle is a spherical bubble of radius

R ≈ rcloud 3.3MeV ≈ 5 ∗ 10−12m. (19.1)

Here rcloud 3.3MeV denotes the radius where the electron potential is 3.3 MeV,
which is identified with the Fermi energy Ef of the electrons in the bulk of
the pearl - i.e. inside the radius R. We estimated the value Ef = 3.3 MeV in
previous papers [6–8] by fitting the overall rate of the intensity of the 3.5 keV
line emitted by galactic clusters and the very frequency 3.5 keV of the radiation
in our model.

• The outer radius
rcloud 3.5keV ≈ 5 ∗ 10−11m (19.2)

is where the electron potential is 3.5 keV. By our story of the “homolumo gap”:
the electron density crudely goes to zero at this radius. (It gradually falls in
the range between rcloud 3.3MeV and rcloud 3.5keV ).

The electron density and potential in the pearls

Fig. 19.2: Explaining the electron density and electric potential in the Pearl

• Due to an effect, we call the homolumo-gap effect [5, 20], the nuclei in the bubble
region and the electrons themselves become arranged in such a way as to
prevent there from being any levels in an interval of width 3.5 keV. So, as
illustrated in Figure 19.2, outside the distance r3.5keV = rcloud 3.5keV from
the center of the pearl at which the Coulomb potential is ∼ 3.5 keV deep there
are essentially (∼ in the Thomas-Fermi approximation) no more electrons in
the pearl-object.
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• The radius r3.3MeV = rcloud 3.3MeV at which the potential felt by an electron
is 3.3 MeV deep, is supposed to be just the radius to which the many nuclei
inside the pearl (which replace the single nucleus in ordinary atoms) reach out.
So inside the bubble the potential is much more flat.

• The energy difference between the zero energy line and the effective Fermi
surface, above which there are no more electrons, is of order 3.5 keV, the energy
so crucial in our work.

• Since in the Thomas-Fermi approximation there are no electrons outside
roughly the radius r3.5keV = rcloud 3.5keV , this radius will give the maxi-
mal cross section, even for very low velocity σv→0.

The homolumo gap effect.

Fig. 19.3: Explanation of Homolumo-gap effect

Let us consider the spectrum of energy levels for the electrons in a piece of material,
e.g. one of our pearls, and at first assume that the positions or distributions of the
charged particles in the material are fixed.
Then the ground state is just a state built e.g. as a Slater determinant for the
electrons being in the lowest single electron states, so many as are needed to have
the right number of electrons.
But now, if the charged particles can be moved due to their interactions, the ground
state energy could be lowered by moving them so that the filled electron state
levels get lowered.
So we expect introducing such a “back reaction” will lower the filled states.
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When the filled levels get moved downwards, then the homo = “highest occupied
molecular orbit” level will be lowered and its distance to the next level, the lumo
(= lowest unoccupied molecular orbit), will appear extended on the energy axis.
We believe that we can estimate the homolumo-gap EH.
Using the Thomas-Fermi approximation - or crudely just some dimensional ar-
gument where the fine structure constant has the dimension of velocity - we
calculated the homolumo gap in highly compressed ordinary matter for relativis-
tic electrons:

EH ∼ (
α

c
)3/2

√
2pf (19.3)

where pf = Fermi momentum (19.4)
α

c
=

1

137.03...
(19.5)

(the
√
2 comes from our Thomas-Fermi calculation).

It is by requiring this homolumo-gap to be the 3.5 keV energy of the X-ray line
mysteriously observed by satellites from clusters of galaxies, Andromeda and the
Milky Way Center that we estimate the Fermi-energy to be Ef ≈ pf = 3.3 MeV in
the interior bulk of the pearl.
Brief summary of theoretical ideas underlying our dark matter pearls

Fig. 19.4: Our Picture of Dark Matter Pearls.

• Principle Nothing but Standard Model! (Seriously it would mean not in a
BSM-workshop.)

• New Assumption Several Phases of Vacuum with Same Energy Density; this
is the so-called Multiple Point Principle [5, 6, 21–26].



i
i

“U” — 2021/12/15 — 21:46 — page 286 — #302 i
i

i
i

i
i

286 H.B. Nielsen, C.D.Froggatt

• Central Part Bubble of New Phase of Vacuum with e.g. carbon under very high
pressure, surrounded by a surface with tension S (= domain wall) providing
the pressure.

• Outer part Cloud of Electrons much like an ordinary atom having a nucleus
with a charge of order ten to a hundred thousand (Z ≈ 5 ∗ 104 effectively).

19.3 Non-gravitational Interactions

The collisionless cold dark matter model provides a good description of the large
scale structure of the Universe. However there are various problems at small
scales [27,28] for the hypothesis that dark matter only has gravitational interactions.
Originally Spergel et al [29] suggested that the lack of a peak or cusp in the center
of galaxy clusters, as expected for cold dark matter with purely gravitational
interactions, required self interacting dark matter with a relatively large cross
section. The relevant parameter is in fact the cross section per mass σ

M
and for the

cores in galaxy clusters, where the collision velocity is v ∼ 1000 km/s, a value σ
M

∼

0.1 cm2/g is needed. The self interaction can of course be velocity dependent and
the cores in spiral galaxies where v ∼ 100 km/s require σ

M
∼ 1 cm2/g. In dwarf

galaxies around our Milky Way, where dark matter moves more slowly v ∼ 30
km/s, larger cross section to mass ratios σ

M
∼ 50 cm2/g are needed.

Recently Correa [15] made a study of the velocity dependence of self interacting
dark matter. In particular she analysed the Milky Way dwarf galaxies and her
results are displayed in Figure 19.5. The extrapolation of Correa’s fit to the data
towards zero velocity points to the ratio σ

M
→ 150 cm2/g. This ratio can be taken

as an experimental estimate of the impact area over the mass as seen for very
soft collisions. In our model the cross section in this low velocity limit is given
by the extent out to which the electrons surrounding our pearls reach. This range
of extension of electrons is supposed to be given by the requirement that the
electron binding energy is of the order of the homolumo gap value 3.5 keV. So we
denote this radius by rcloud 3.5keV . Similarly the radius of the bubble containing
the nucleons inside our dark matter pearl corresponds to a radius rcloud 3.3MeV

at which the potential for the electron is -3.3 MeV (= Fermi energy of the electrons).
The high velocity hard collisions of our pearls, supposed to result in the unification
of two pearls into a single pearl, correspond to interactions between the bubble
skins with a cross section of order πr2cloud 3.3MeV .
We will now consider the electric potential for our pearl using the Thomas-Fermi
approximation for a heavy atom [30–32]. In this approximation the Coulomb
potential of the “nuclear” charge Z is multiplied by the Thomas-Fermi screening
function χ(r/b) where

b = 0.88
a0

Z1/3
(19.6)

and a0 is the Bohr radius. The skin of the bubble or “nucleus” of the pearl mainly
acts on the nucleons or rather nuclei. So the electrons spread out and an appreciable
part, say half of them, are outside the central part of the pearl inside the skin.
Therefore the effective charge Z of the central part of the pearl or bubble of the
new phase is e.g. one half of the number of protons inside the skin. Assuming also
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Fig. 19.5: Cross section per mass σ
M

of self interacting dark matter particles as a
function of the collision velocity v in dwarf galaxies from reference [15].



i
i

“U” — 2021/12/15 — 21:46 — page 288 — #304 i
i

i
i

i
i

288 H.B. Nielsen, C.D.Froggatt

that there are about equally many neutrons and protons inside the central part, the
mass of the pearl is then given order of magnitudewise byM = 4mN ∗ Z, where
mN is the nucleon mass.
In the Thomas-Fermi approach we are then led to the following equations for
rcloud 3.5keV and rcloud 3.3MeV :

α ∗ Z
rcloud 3.5keV

∗ χ(rcloud 3.5keV/b) = 3.5 keV (19.7)

α ∗ Z
rcloud 3.3MeV

∗ χ(rcloud 3.3MeV/b) = 3.3 MeV (19.8)

b = 0.88 ∗ a0

Z1/3
(19.9)

(19.10)

We identify rcloud 3.5keV with the radius of the electron cloud and rcloud 3.3MeV

with the skin radius R of the pearl.
It is going to be an important success of our model that we get a similar value for
R ≈ rcloud 3.3MeV using another method to calculate it. We shall use

σ

M
|v→0 = 150 cm2/g (19.11)

and
σ = π ∗ r2cloud 3.5keV (19.12)

to determine the mass M. Then using the formula for the mass of a pearl in terms
of the radius R and the Fermi momentum [7, 8]

M

mN
=
8

9π
∗ (R ∗ pf)3, (19.13)

we can calculate another value for R.
In our updated contribution to the Bled Proceedings from last year [8] we estimated
a pearl mass ofM ∼ 105 GeV. So we take here Z = 5.3 ∗ 104 as a typical charge in
the central part of the pearl, for which then b = 1.24 ∗ 10−12m. Using numerical
values for the Thomas-Fermi screening function in the paper [33], we obtain from
(19.7) the radius of the electron cloud to be

rcloud 3.5keV = 4.96 ∗ 10−11m (19.14)

Then assuming the low velocity ratio σ
M

= 150 cm2/gwe obtain

M =
π ∗ (4.96 ∗ 10−11m)2

150 cm2/g
(19.15)

= 5.2 ∗ 10−19g (19.16)

= 3.1 ∗ 105 mN (19.17)

As a side remark notice that, using our proposed rule of taking Z to be a quarter
of the numberM/mN, we would get Z = 8 ∗ 104 to be compared with our input
here 5.3 ∗ 104, which is very well consistent within a factor 2.
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Next using (19.13) with pf = 3.3 MeV = 1.6 ∗ 1013m−1

(R ∗ pf)3 = 3.1 ∗ 105 ∗ 9π
8

(19.18)

= 10.9 ∗ 105 (19.19)

R ∗ 1.6 ∗ 1013m−1 =
3
√
10.9 ∗ 105 = 102 (19.20)

giving

R =
102

1.6 ∗ 1013m−1
(19.21)

= 6.4 ∗ 10−12m. (19.22)

This is to be compared with the Thomas-Fermi value obtained from (19.8) using
the numerical values for χ(r/b) in [33]

R = rcloud 3.3MeV = 3.66 ∗ 10−12m. (19.23)

These two different estimates of the radius rcloud 3.3MeV at which the potential is
3.3 MeV essentially coincide to the accuracy of our calculation; they deviate by a
factor of order unity 6.4/3.7 =1.7. So we could claim that formally our model is able
to predict the low velocity limit σ

M
|v→0 in agreement with the value 150 cm2/g

estimated from the study of dwarf galaxies around the Milky Way.
We shall take the average of the two values (19.22) and (19.23) as our best estimate
of the bubble skin radius:

rcloud 3.3MeV = 5.0 ∗ 10−12m (19.24)

and from (19.14) we have the radius of the electron cloud

rcloud 3.5keV = 5.0 ∗ 10−11m. (19.25)

We note that these two radii differ by an order of magnitude, which means that
the quantity σ

M
for our pearls should differ by two orders of magnitude between

low velocities and high velocities, as astronomical observations indicate is the case
for self interacting dark matter [15].

19.4 Achievements

• Low velocity σ
M
|v→0 cross section to mass ratio. The a priori story, that dark

matter has only gravitational interactions seems not to work perfectly: Espe-
cially in dwarf galaxies (around our Milky Way) where dark matter moves
relatively slowly an appreciable self interaction cross section to mass ratio σ

M

is needed. According to the fits in [15] this ratio has the low velocity limit
σ
M
|v→0 = 150 cm2/g. We may say our pearl-model “predicts” this ratio in

order of magnitude.
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• Can make the Dark Matter Underground Searches get Electron Recoil Events
Most underground experiments are designed to look for dark matter particles
hitting the nuclei in the experimental apparatus, which is then scintillating
so that such hits presumed to be on nuclei can be seen. But our pearls are
excited in such a way that they send out energetic electrons (rather than nuclei)
and this does not match with what is looked for, except in the DAMA-LIBRA
experiment. In this experiment the only signal for events coming from dark
matter is a seasonal variation due to the Earth running towards or away from
the dark matter flow.

• The Intensity of 3.5 keV X-rays from Clusters etc. We fit the very photon-
energy 3.5 keV and the overall intensity from a series of clusters, a galaxy, and

the Milky Way Center [8] with one parameter ξ
1/4

fS

∆V
= 0.6 MeV−1.

• 3.5 keV Radiation from the Tycho Supernova Remnant. Jeltema and Profumo
[34] discovered the 3.5 KeV X-ray radiation coming from the remnant of Tycho
Brahe’s supernova, which was unexpected for such a small source. We have
a scenario giving the correct order of magnitude for the observed intensity
in our pearl model: supposedly our pearls are getting excited by the high
intensity of cosmic rays in the supernova remnant [8].

Even though we can use only the one parameter ξ
1/4

fS

∆V
= 2

pf
, it is nice to know

the notation:

∆V = “ difference in potential for a nucleon between the

inside and the outside of the central part of the pearl”

≈ 2.5 MeV (19.26)

ξfS =
R

Rcrit
estimated to be ≈ 5 (19.27)

where R = “actual radius of the new vacuum part”

≈ rcloud 3.3MeV (19.28)

and Rcrit = “ Radius when pressure is so high

that nucleons are just about being spit out” (19.29)

The subscript fS on the parameter ξfS indicates that the surface tension S is
fixed independent of the radius R.

• DAMA-rate Estimating observation rate of DAMA-LIBRA from kinetic energy
of the incoming dark matter as known from astronomy.

• Xenon1T Electron recoil rate Same for the electron recoil excess observed by the
Xenon1T experiment.

In order to explain these last calculational estimates it is necessary to know how
we imagine the dark matter to interact and get slowed down in the air and the
earth shielding; also how the dark matter particles get excited and emit 3.5 keV
radiation or electrons.
About the Xenon1T and DAMA-rates:
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• Absolute rates very crudely Our estimate of the absolute rates for the two
experiments are very very crude, because we assume that the dark matter
particles - in our model small macroscopic systems with ten thousands of
nuclei inside them - can have an exceedingly smooth distribution of lifetimes
on a logarithmic scale. These calculations are discussed in section 19.6.

• The ratio of rates The ratio of the rates in the two experiments - Xenon1T
electron recoil excess and DAMA - should in principle be very accurately
predicted in our model, because they are supposed to see exactly the same
effect just in two different detectors in the same underground laboratory below
the Gran Sasso mountain! One would therefore expect the rates to be the same,
but the Xenon1T rate is 250 times smaller than the DAMA rate. We briefly
refer to a possible resolution of this problem, which needs further study, in
section 19.6.

19.5 Impact

Illustration of Interacting and Excitable Dark Matter Pearls

The dark matter pearls come in with high speed (galactic velocity), but get stopped
down to much lower speed by interaction with the air and the shielding mountains,
whereby they also get excited to emit 3.5 keV X-rays or electrons.

Pearls Stopping and getting Excited in Earth Shield
What happens when the dark matter pearls in our model of less than atomic size
hit the earth shielding above the experimental halls of e.g. DAMA?

• Stopping Taking it that the pearls stop in the earth: The pearls are stopped
in about 5 ∗ 10−6s from their galactic speed of about 300 km/s down to a
speed 49 km/s below which collisions with nuclei can no longer excite the
3.5 keV excitations. The stopping length, modulo a logarithmic factor, is 1

4
m.

But taking it that they stop in the air, which is more likely: They are stopped
over a range of about 7 km - as the atmosphere density goes up with a factor
e = 2.71.. over such a range in about 2 ∗ 10−2s.

• Excitation As long as the velocity is still over the ca. 49 km/s collisions with
nuclei in the shielding can excite the electrons inside the pearl by 3.5 kev or
more and make pairs of quasi electrons and holes say. We expect that often the
creation of (as well as the decay of) such excitations require electrons to pass
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through a (quantum) tunnel and that consequently there will be decay half
lives of very different sizes. We hope even up to many hours or days...

• Slowly sinking: After being stopped in of the order of 1
4
m of the shielding,

the pearls continue with a much lower velocity driven by the gravitational
attraction of the Earth. After say about 26 hours a pearl reaches the 1400 m
down to the laboratories. Most of the pearls have returned to their ground
states, but some exceptionally long living excitations survive.

Note that the slowly sinking velocity is so low that collisions with nuclei cannot give
such nuclei enough speed to excite the scintillation counters neither in DAMA nor in
Xenon-experiments.

• Electron or γ emission Typically the decay of an excitation could be that a hole
in the Fermi sea of the electron cloud of the pearl gets filled by an outside
electron under emission of another electron by an Auger-effect. The electron
must tunnel into the pearl center. This can make the decay lifetime become
very long and very different from case to case.

Emission as electrons or photons makes Xenon-experiments not see events,
except...
That the decay energy is released most often as electron energy means that such
events are discarded by most of the Xenon-experiments, which only expect the
nucleus recoils to be dark matter events. This would explain the long standing
controversy consisting in DAMA seeing dark matter with a much bigger rate than
the upper limits from the other experiments.
Rather recently though Xenon1T looked for potential excess events among the
electron recoil events and found 16 events/year/tonne/keV in the lowest keV-
bands over a background of the order of (76± 2) events/year/tonne/keV .
In our model this rate should be compatible with the DAMA event rate. However
they deviate by a factor of 250. It therefore appears that we need the pearls to run
much faster through the xenon-apparatus than through the DAMA one.

19.6 Numerical Rates for DAMA and Xenon1T-electron-recoil-
excess

19.6.1 The Kinetic Energy Flux from Dark Matter

The dark matter densityDsol in our part of the Milky Way and its velocity v are of
the orders of magnitude

Dsol = 0.3 GeV/cm
3 (19.30)

= 5.34 ∗ 10−22kg/m3 (19.31)

v = 300 km/s (relative to solar system) (19.32)
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This gives a kinetic energy density

Dkin energy =
1

2
v2Dsol (19.33)

= 0.5 ∗ (10−3)2c2 ∗ 5.34 ∗ 10−22kg/m3 (19.34)

= 2.40 ∗ 10−11J/m3 (19.35)

meaning an influx of kinetic energy

“power perm2” = vDkin energy (19.36)

=
1

2
v3Dsol (19.37)

= 3 ∗ 105m/s ∗ 2.40 ∗ 10−11J/m3 (19.38)

= 7.2 ∗ 10−6W/m2 (19.39)

Distributing this energy rate over the amount of matter down to the depth 1400 m
with density 3000 kg/m3 we obtain the energy rate per kg

“ power to deposit” =
7.2 ∗ 10−6W/m2

1400 m ∗ 3000 kg/m3
(19.40)

= 1.7 ∗ 10−12W/kg. (19.41)

However, assuming that all the events from the dark matter - as given by the
modulated part of the signal found by DAMA-LIBRA - are just due to decays
with the decay energy 3.5 keV, the rate of energy deposition per kg observed by
DAMA-LIBRA [17] is

“deposited rate ” = 0.0412 cpd/kg ∗ 3.5 keV (19.42)

=
0.0412 cpd/kg ∗ 3.5 ∗ 1.6 ∗ 10−16J

86400 s/day
(19.43)

= 2.7 ∗ 10−22W/kg, (19.44)

which is

2.7 ∗ 10−22W/m2

1.7 ∗ 10−12W/m2
= 1.6 ∗ 10−10 times as much. (19.45)

We can express this by saying that there is a need for a suppression factor suppression
being 1.6 ∗ 10−10 for the DAMA-LIBRA rate. For the excess of the electronic recoil
events found by Xenon1T the corresponding suppression factor must be the 250
times smaller number. This is because the event rate of these excess electron recoil
events is 250 times smaller than that of the modulation part of the DAMA rate
and the depth of the experiment under the earth is the same 1400 m. Thus we
summarize the experimentally determined suppression factors:

suppressionDAMA = 1.6 ∗ 10−10 (19.46)

suppressionXenon1T =
1.6 ∗ 10−10

250
= 6.4 ∗ 10−13. (19.47)



i
i

“U” — 2021/12/15 — 21:46 — page 294 — #310 i
i

i
i

i
i

294 H.B. Nielsen, C.D.Froggatt

19.6.2 Estimating “suppression” theoretically

The idea for obtaining theoretical estimates of these suppression factors is to say
that the observed events come from excitations of our pearls with a lifetime of the
order of the time it takes for the pearl, after its excitation under its stopping in
the air or in the stone above the experiments, to reach down to the experimental
detectors. We here assume the scattering cross section of dark matter on ordinary
matter to be similar to that on dark matter. So we estimate the passage time of the
pearl down to the detectors as being of the order of 26 hours, by using the low
velocity value for the cross section over mass ratio

To be used for passage velocity:
σ

M
= 150 cm2/g (19.48)

Once the pearl has been stopped so much that its velocity is only upheld by the
gravitational field with the acceleration g = 9.8 m/s2, the terminal velocity will
be obtained formally from the drag-equation2

Drag force D = gM = 0.5 ∗ Cd ∗ σ ∗ ρv2. (19.49)

Here ρ is the density of the material passed through and the drag coefficient Cd is
of order unity (so the 0.5 is hardly relevant). That is to say the terminal velocity
becomes:

vterminal ≈
√

g
σ
M

∗ ρ (19.50)

≈
√

9.8 m/s2

150 cm2/g ∗ 3 g/cm3
(19.51)

=
√
2.2 cm2/s2 = 1.5 cm/s, (19.52)

which allows a pearl to pass though 1400 m in

“passage time” =
140000 cm

1.5 cm/s
(19.53)

= 93000 s = 26 hours. (19.54)

19.6.3 Equally hard to excite and to de-excite

In order that there can be any de-excitations of the pearls after such 26 hours it
is of course needed that an appreciable part of the possible 3.5 keV excitations
of our pearls have lifetimes of this order of magnitude. A priori these excitations
are excitons for which the electron and hole can be close by and decay rapidly
or it is possible that one of the partners is outside in the electron cloud and long
lived. By arguing that some tunnelling of electrons in or out or around in the
pearl may be needed for some (de-)excitations, we can claim that the lifetimes for

2 Strictly speaking this equation is only valid if the pearl velocity is greater than the thermal
velocity of the nuclei in the shielding and so needs further study.
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the various excitation possibilities are smoothly distributed over a wide range
in the logarithm of the lifetime; then there will be some pearl-excitations with
the appropriate lifetime, although somewhat suppressed by a factor of the order
of 1/width where the width here is the width of the logarithmic distribution.
We shall take this width to be of order ln suppressionDAMA ∼ 23. But more
importantly: If a certain excitation is long-lived, it is also hard to produce. So we
shall talk about an effective “ stopping” or “filling time” for a pearl passing into
the Earth, and imagine that during this “stopping” or “filling time” the excitations
of the pearls have to be created. So the probability for excitation or suppression
would be expected to be

suppression ≈ “filling time”
“lifetime”

. (19.55)

If the excitation happens to be of sufficiently long lifetime - say of order 26 hours -
then we can expect it to have a sensible chance of de-exciting just in the experi-
mental detectors in Gran Sasso, DAMA or Xenon1T say.
But what shall we take for this “stopping” or “filling time”? A relatively simple
idea, which is presumably right, is to say that the stopping takes place high in the
atmosphere because a pearl entering the Earth’s atmosphere with galactic speed
will be slowed down in the high air with a σ

M
∼ 2 cm2/g. Now the density of the

atmosphere rises by a factor e = 2.718... per about 7 km. So as the slowing down
begins it will, because of this rising density, essentially stop again after 7 km. Thus
the time during which the pearl is truly slowing down in speed and forming 3.5
keV excitations is of the order of the time it takes for it to run 7 km. With the pearl
velocity of about 300 km/s (essentially the escape velocity for the galaxy) we then
have

“stopping time” ≈ 7 km

300 km/s
(19.56)

= 0.023 s (19.57)

The crucial factor, which we believe to be most important, is that in order to excite
an excitation with a lifetime of the order 93000 s it would a priori need 93000 s so
that, if we only have 0.023 s, then there will be a suppression:

suppression =
“stopping time”

“lifetime”
(19.58)

≈ “stopping time”
“passage time”

(19.59)

≈ 0.023 s

93000 s
(19.60)

= 2.5 ∗ 10−7. (19.61)
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This crudest estimate has to be compared with the experimental suppressions
given above

suppressionDAMA = 1.6 ∗ 10−10 (19.62)

⇒ suppressiontheory

suppressionDAMA
=
2.5 ∗ 10−7

1.6 ∗ 10−10
(19.63)

= 1.6 ∗ 103 (19.64)

suppressionXenon1T =
1.6 ∗ 10−10

250
= 6.4 ∗ 10−13 (19.65)

⇒ suppressiontheory

suppressionXenon1T
=
2.5 ∗ 10−7

6.4 ∗ 10−13
(19.66)

= 3.9 ∗ 105. (19.67)

But here can be several corrections to suppressiontheory, at least we should
correct by the width in logarithm of the supposed distribution of the lifetimes
among the different excitations. Above we suggested a factor 23, which would
bring the DAMA rate to only deviate by about a factor 100. Our estimate is of
course extremely uncertain.
We can never get the DAMA rate and the electron recoil excess rate from Xenon1T
agree with the same estimate in as far as they deviate by a factor 250. Our only
chance is in a later paper to justify say the story that, because the scintillator
in which the Xenon1T events are observed is fluid while the NaI in the Dama
experiment is solid, the pearls pass much faster through the Xenon1T apparatus
than they pass through the DAMA instrument. Imagine say that the pearls partly
hang and get stuck in the DAMA experiment, but that they cannot avoid flowing
down all the time while they are in the fluid Xe in the Xenon1T scintillator.

19.7 3.5keV

Order of magnitudewise we see 3.5 keV in 3 different places.
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The energy level difference of about 3.5 keV occurring in 3 different places is
important evidence motivating our model of dark matter particles being excitable
by 3.5 keV:

• The line From places in outer space with a lot of dark matter, galaxy clusters,
Andromeda and the Milky Way Center, an unexpected X-ray line with photon
energies of 3.5 keV (to be corrected for Hubble expansion...) was seen.

• Xenon1T The Dark matter experiment Xenon1T did not find the standard
nuclei-recoil dark matter, but found an excess of electron-recoil events with
energies concentrated crudely around 3.5 keV.

• DAMA The seasonally varying component of their events lie in energy be-
tween 2 keV and 6 keV, not far from centering around 3.5 keV.

We take it seriously and not as an accident that both DAMA and Xenon1T see
events with energies of the order of the controversial astronomical 3.5 keV X-ray
line. We are thereby driven towards the hypothesis that the energies for the events
in these underground experiments are determined from a decay of an excited
particle, rather than from a collision with a particle in the scintillator material. It
would namely be a pure accident, if a collision energy should just coincide with
the dark matter excitation energy observed astronomically.
So we ought to have decays rather than collisions! How then can the dark matter particles
get excited ?
You can think of the dark matter pearls in our model hitting electrons and/or
nuclei on their way into the shielding:

• Electrons Electrons moving with the speed of the dark matter of the order of
300 km/s toward the pearls in the pearl frame will have kinetic energy of the
order

Ee ≈ 1

2
∗ 0.5 MeV ∗ ( 300 km/s

3 ∗ 105km/s )
2 = 0.25 eV. (19.68)

• Nuclei If the nuclei are say Si, the energy in the collision will be 28*1900 times
larger ∼ 5 ∗ 104 * 0.25 eV ≈ 10 keV. That would allow a 3.5 keV excitation.
To deliver such ≈ 10 keV energy the nucleus should hit something harder than
just an electron inside the pearls. It should preferably hit a nucleus, e.g. C,
inside the pearl.

19.8 Conclusion

• We have described a seemingly viable model for dark matter consisting of
atomic size but macroscopic pearls. These pearls consist of a bubble of a new
speculated type of vacuum containing some normal material - presumably
carbon - under the high pressure of the skin (surface tension). They each
contain about a hundred thousand nucleons in the bubble of radius about
5 ∗ 10−12m.

• The electrons in a pearl have partly been pushed out of the genuine bubble of
the new vacuum phase, out to a distance of about 5 ∗ 10−11m.
We have compared the model or attempted to fit:
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• Astronomical suggestions for the self interaction of dark matter in addition to
pure gravity.

• The astronomical 3.5 keV X-ray emission line found by satellites, supposedly
from dark matter.

• The underground dark matter searches.

We list below the quantities we have crudely estimated:

1. The low velocity cross section divided by mass.
2. That the signal from Xenon1T and Dama should agree except that the pearls

may run with different velocities through the scintillator materials, because
the xenon-instruments use fluid xenon, while the DAMA-LIBRA experiment
uses the solid NaI.

3. The absolute rate of the two underground experiments. (But unfortunately
unless we explain the ratio of the rates for the two experiments as say due
to the different velocities through the scintillator materials, we can of course
never predict the absolute rate to be better than deviating by about a factor of
250 with at least one of them.)

4. The rate of emission of the 3.5 keV X-ray line from the Tycho supernova
remnant due to the excitation of our pearls by cosmic rays [8].

5. Relation between the frequency 3.5 keV and the overall emission rate of this
X-ray line observed from galaxy clusters etc.

6. We also previously predicted the ratio of dark matter to atomic matter (=“usual”
matter) in the Universe to be of order 5 by consideration of the binding energies
per nucleon in helium and heavier nuclei, assuming that the atomic matter at
some time about 1 s after the Big Bang was spit out from the pearls under a
fusion explosion from He fusing into say C [1].

19.8.1 Outlook

At the end we want to mention a few ideas which we hope will be developed as a
continuation of the present model:

• Speculative Phase from QCD. QCD and even more QCD with Nambu-Jona-
Lasinio type spontaneous symmetry breaking is sufficiently complicated, that
possibly a new phase appropriate for our pearls could be hiding there. There
is already an extremely interesting observation [35].

• Relative Rates of DAMA and Xenon1T. A crucial test for our model is to
reproduce the relative event rates in DAMA and in the excess of electron
recoils in Xenon1T. This requires a careful study of the viscosity of fluid xenon
and the properties of our pearls.

• Walls in the Cosmos. With the usual expectations for the density per area
or equivalently tension S, cosmology would be so severely changed by such
domain walls that models with say S1/3 ≥ 10MeV are phenomenologically not
tenable. However, with our fit to a surprisingly small tension with S1/3 ≈ 2.2
MeV it just barely becomes possible to have astronomically extended domain
walls, e.g. walls around the large voids between the bands of galaxies; so that
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these voids could be say formally huge dark matter pearls, though with much
smaller density. In fact a series of domain walls with our fitted S = 2.23 MeV3

with distances between them of the order of 13 milliard light years would have
a density not much different for that of the universe we know.

• New Experiments? According to our estimates the observed rate of decays of
our dark matter pearls should be larger the less shielding they pass through.
So an obvious test of our model would be to make a DAMA-like experiment
closer to the earth surface where we would expect a larger absolute rate than
in DAMA, although there might of course be more background. Actually such
an experiment is already being performed by the ANAIS group [18], but they
have so far failed to see an annual modulation in their event rate.
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Abstract. This work continues the construction of a recently proposed model of dark matter
stars. In this model, dark matter quanta are sterile massless particles that are emitted from
the central regions of the galaxy in the radial direction. As a result, at large distances r from
the center of the galaxy, the mass density of dark matter has the form ρ ∼ r−2, in contrast to
the homogeneous model ρ = Const. In the cosmological context, the homogeneous model
with massless particles corresponds to the radiation epoch of the expansion of the universe,
while the proposed inhomogeneous model turns out to be equivalent to ΛCDM. In this
paper, scenarios will be considered in which the radial emission of dark matter is brought
into hydrostatic equilibrium with a uniform background. It is shown that solutions exist if
the uniform background has an equation of state typical for dark energy. Thus, this model
describes a phase transition from dark matter inside the galaxy to dark energy outside of
it. The specific mechanism for such a transition could be Bose-Einstein condensation. In
addition, the question of what happens if dark matter particles are not sterile, for example,
are photons of the Standard Model, is considered.

Povzetek: To delo je nov korak v predlaganem modelu zvezd iz temne snovi. V tem
modelu so kvanti temne snovi sterilni brezmasni delci, ki jih seva center galaksije v radialni
smeri. Zato ima v velikih oddaljenostih r od središča galaksije masna gostota temne snovi
obliko ρ ∼ r−2, za razliko od homogenega modela, kjer je ρ = Const.
Homogeni model z brezmasnimi delci opiše temno snov v obdoju širjenja vesolja, v katerem
prevladuje sevanje, predlagani nehomogeni model pa se je izkazal enakovreden modelu
ΛCDM. V tem prispevku obravnava avtor razmere, v katerih je radialna emisija temne
snovi v hidrostatičnem ravnovesju z enakomernim ozadjem. Pokaže, da taka rešitev obstaja,
če velja za enakomerno ozadje enačba stanja za temno energijo. Tedaj opisuje ta model fazni
prehod iz temne snovi znotraj galaksije v temno energijo izven nje. Sprecifičen mehanizem
za tak prehod bi lahko bila Bose-Einsteinova kondezacija. Pri tem se pojavi vprašanje, kaj
se zgodi, če delci temne snovi niso sterilni, kot na primer niso sterilni fotoni Standardnega
modela.

20.1 Introduction

This work continues the construction of the model [1] presented at Bled 2020
Workshop “What Comes Beyond the Standard Models?”. In this model, the sources
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Fig. 20.1: The considered scenarios for a connection of galactic dark matter halo
with uniform background, at the top – rejected, at the bottom – accepted ones.

of dark matter are Planck cores, Planck density objects located inside black holes.
These objects are permanently emitting particles of dark matter, of originally
Planck energy and Planck flux density. In this work, massless particles will be
considered as quanta of dark matter, that are also sterile, which means that they
do not enter into any interactions except gravitational. Radiation occurs in a T-
symmetric way, into the future and into the past, so no energy is spent during the
radiation, and such objects retain their mass. The radiation occurs in the radial
direction; therefore, the considered flows have no transverse pressure. We denote
this type of matter as null radial dark matter (NRDM).
The solution of Einstein’s field equations with such matter term has a structure dif-
ferent from the Schwarzschild’s one. This explains the designation of such compact
massive objects as quasi-black holes, dark stars, Planck stars [2–5]. These solutions
do not have an event horizon; instead, a deep gravitational well is formed at the
gravitational radius. In our model, calculations for realistic astrophysical scenarios
show the redshift value z ∼ 1049, which leads to a shift of the emitted dark mat-
ter from the Planck’s λin ∼ 10−35m to the ultrahigh wavelengths λout ∼ 1014m,
respectively, ultralow energies Eout ∼ 10

−20eV. Such extreme values complicate
direct detection of isolated dark matter particles. Nevertheless, the total number
of emitted quanta corresponds to the initially high Planck values. The energy
density and radial pressure of such radiation creates a hidden mass distribution
corresponding to the observed rotation curves of galaxies. The total mass con-
tained in such radiation, due to its extension, significantly exceeds the mass of
the emitting object within its gravitational radius. The geometric mass density
profile ρ ∼ r−2 typical for the radial radiation creates a linearly growing mass
profile M ∼ r and flat rotation curves v2 = GM/r = Const. Taking into account
the contributions of all black holes in the galaxy, supermassive and stellar mass
ones, the distributions are modulated, and the observed nonflat rotation curves
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of galaxies are reproduced with good accuracy. In addition, consideration of the
astrophysical scenario with the fall of an asteroid onto the Planck core leads to
electromagnetic radiation with the characteristics of Fast Radio Bursts.
In this work, the main attention will be paid to the following question. If we
count the massless dark matter as homogeneous (hot dark matter, HDM), then
the solution of the Friedmann equations will correspond to the radiation epoch
and will not coincide with the current evolution, which in the standard model
corresponds to a mixture of contributions from uniform cold dark matter (CDM)
and dark energy (DE). However, in the model under consideration, the distribution
of matter is inhomogeneous, and, as we will see, it allows the construction of
models that are in agreement with the experiment. Thus, within the framework
of this model, NRDM mimics CDM at the cosmological level. The CDM macro-
particles are galaxies with massive halos surrounding them.
In more detail, we will consider several scenarios for the connection of galaxies in
NRDM configuration with a uniform background. The backgrounds considered
are vacuum, CDM and matter with DE equation of state. In the first two cases,
totally uniform DE contribution can be also added. The hydrostatic equilibrium of
the system and the correspondence of the densities to the observed Ω-parameters
will be used as selection criteria. As a result of the analysis, it turned out that of
the considered scenarios, only NRDM-DE connections meet the selection criteria.
Such scenarios can be interpreted as a phase transition of dark matter from the
NRDM state inside galaxies to the DE state outside. The specific mechanism for
such a transition can be Bose-Einstein condensation (BEC).
In addition, we will consider the question of what happens if the dark matter
particles are not exactly sterile, for example, are photons of the Standard Model.
Phase transitions between dark matter and dark energy have been addressed in
a number of recent works. In [6], a phase transition in a system of two scalar
fields was considered, with a massive phase of dark matter condensing around
galaxies, while outside one of the fields was absent, and the other turned into
an exponentially rolling mode corresponding to dark energy. Conceptually, this
model expands the cosmons theory [7], in which there is only one scalar field
representing dark energy in the exponentially rolling mode, while its fluctuations
represent dark matter. In the works [8, 9], a phase transition similar to the Ising
model of ferromagnetism was considered, effectively generating two cosmological
constants during the evolution of the universe. In the works [10–13] various
scenarios of phase transitions at an early stage of the evolution of the universe,
with the formation of bubbles of a new vacuum – dark energy were considered. In
these scenarios, there was a transfer and filtration of dark matter through the walls
of the bubbles, which in specific calculations reproduces its present abundance.
In earlier works [14, 15], bubbles of a different vacuum after the phase transition
were stabilized and led to the formation of massive compact objects – dark energy
stars.
More general scenarios of the interaction of dark energy and dark matter were
considered in a number of works [16–19], in the framework of the so-called Q-
phenomenology. In this approach, the components of the dark sector are consid-
ered as two massive fluids, in which, in the absence of interaction, the energies are
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conserved separately. When interaction is enabled between components, energy
exchange occurs, parameterized by a single scalar function Q. For this function,
one chooses linear dependencies of elementary densities, products of their degrees
– by analogy with the kinetics of chemical reactions, and various other model forms.
The calculation results were then compared with the cosmological observables.
In works [20–33] the interaction of dark matter and dark energy was considered
in relation to cosmological tensions. These are the discrepancies between the
Hubble parameter and other cosmological properties, found in different types of
observations, in particular, for the early and late stages of the evolution of the
universe. The direct relation of the dark matter – dark energy interaction models
with cosmological tensions can be explained. In the absence of the interaction,
the components of the dark sector evolve independently, being bound only by
the common gravitational field. From here it is easy to obtain the individual de-
pendences of the component densities on the scale factor of the universe. This
makes directly observable variables (such as distribution of CMB inhomogeneities,
luminosity-distance-redshift dependence, etc.) related with model parameters
(such as Hubble parameter today, linear fluctuation of the matter density field,
etc.). When the interaction is turned on, the components begin to pump into each
other; as a result, the relationship of the model parameters with the observed
variables is modified. A similar approach is used in the models of dynamical
dark energy [34–36], where the equation of state or the density of dark energy are
modified directly. The resulting changes manifest themselves as tensions between
the values of the Hubble parameter, deduced from different types of measure-
ments without model modification. Within this framework, with the right model
modification, the cosmological tensions should disappear.
The idea that dark matter and/or energy are associated with Bose-Einstein con-
densation, are represented by a superfluid liquid, was considered in a number of
works [37–43]. In particular, [43] considered a complex scalar field with a potential
equivalent to Chaplygin gas. While the specific form of the potential is not impor-
tant, the presence of a minimum in it is significant. In this model, the dark energy
is the state of Bose-Einstein condensate, asymptotically attained by the scalar field
at this minimum. Dark matter was viewed as an excited state described by a gas of
quasiparticles. In our work, a similar model will be considered, in which the outer
zone of the galactic halo will also be occupied by Bose-Einstein condensate, while
the distribution of dark matter in the inner part of the halo will be associated with
the emission of particles from RDM stars.
First, in Section 20.2, we will recall the structure of the RDM model, then consider
a number of scenarios for its connection with a uniform background. Not all
of the scenarios will be successful, but we will describe all in detail to rule out
unsuccessful options. Section 20.3 considers separately the photon case. The details
of the constructions are given in the Appendix.

20.2 Estimations for various scenarios

The model [1] considers three cases: massive, null or tachyon radial dark matter
(M/N/T-RDM). The tachyon case is too exotic and will not be considered here. On
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the other hand, the massive case is similar to the commonly considered uniform
cold dark matter (CDM). In this paper, we focus on the intermediate case, null or
light-like dark matter. The quanta of such dark matter are massless sterile particles
of an unspecified type.
The main formulas that determine the distribution of masses and pressures of
dark matter in the model under consideration are

ρ = pr = ϵ/(8πr
2), pt = 0, ρgrav = ρ+ pr + 2pt, (20.1)

where ρ is the mass density, pr is the radial pressure, pt is the transverse pressure,
ρgrav is the gravitating mass density, r is the radius, ϵ is constant scaling parameter,
in the geometric system of units G = c = 1. Such dependence’s are established at
large distances from the center of the galaxy, when all sources of dark matter (RDM
stars), distributed over the galaxy in proportion to the density of the luminous
matter, can be considered as concentrated in one center. The integrated gravitating
mass for such a distribution is linear in the radius:Mgrav = ϵr, and the square of
the orbital velocity is constant and equal to v2 =Mgrav/r = ϵ.
In relation to the ϵ-parameter for the Milky Way (MW) galaxy, [1] provides several
estimates. The simplest, if one places a single RDM star in the center of the galaxy
and completely neglect the contribution of the luminous matter, leads to a flat
rotation curve with an orbital velocity v ∼ 200km/s, ϵ = (v/c)2 ∼ 4 · 10−7. A
more accurate estimate is obtained from the fit of the MW rotation curve, the
so-called Grand Rotation Curve (GRC, [44–48]). From this fit it can be seen, [1]
Fig.2, that on an approximately flat portion of the rotation curve at the position
of the Sun r ∼ 8kpc there is a significant contribution of luminous matter, as a
result of which the contribution of dark matter to v2 is less than the trivial estimate.
Further, with increasing radius, the contribution of luminous matter decreases,
while the contribution of dark matter remains constant up to Rcut ∼ 50kpc. This
contribution corresponds to the galactic ϵ =Mdm(Rcut)/Rcut, in geometric units,
being averaged over the scenarios considered in [1]:Mdm(Rcut) ∼ 2.6 · 1011M⊙,
ϵ ∼ 2.5 · 10−7. In this work, we will carry out estimates in order of magnitude, so
it is not so important which definition of the galactic ϵwill be chosen. We prefer
the latter, more precise definition and the corresponding valueMdm(Rcut).
When the contribution of individual black holes (identified with RDM stars) is
considered, [1] Fig.5 gives estimates for the central supermassive and peripheral
stellar black holes: ϵsmbh ∼ 10−10 − 10−7, rs,smbh ∼ 1.2 · 1010m; ϵsbh ∼ 10−16 −

10−12, rs,sbh ∼ 3 · 104m. This gives a floating estimate for the external wavelength
of DM particles: λout = rs(8π/ϵ)

1/2, λout,smbh ∼ 1014−1016m, λout,sbh ∼ 1011−

1013m. This wavelength is highly dependent on the model used to describe the
internal structure of RDM stars. In this work, for estimations, we prefer to use
the value of the external wavelength λout and the corresponding redshift factor
A

1/2
QG = lP/λout as phenomenological parameters.

The considered scenarios for the connection of galaxies in the NRDM configuration
with a uniform background are schematically shown in Fig.20.1.
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20.2.1 Rejected scenarios

Scenario S0.1: superposition of galactic halos without cutting. In this scenario, the
dark matter halo of each galaxy extends to the radius of the visible universe
Runi ∼ 14Gpc, dark matter from different halos does not interact and gives an
additive contribution to the total mass density. If this scenario was valid, then it
would be different from the radiation epoch, due to the following reasons. For the
radiation epoch, the Big Bang (more precisely, the moment of recombination) is the
initial flash, after which the homogeneous photon gas cools down as the universe
expands. The energy of the photons changes with the scale factor as a−1, and their
numerical density as a−3, which gives the dependence a−4 for the mass density.
For the RDM model, despite the expansion of the universe and the separation of
RDM stars from each other, the energy of DM particles near RDM stars is fixed,
related to the above-mentioned parameter λout. It is important that this energy
does not fall over time. The number density of RDM stars falls as a−3, and as a
result the average mass density also falls as a−3, just like for CDM.
The scenario is prohibited due to the following evaluation. According to cal-
culations for the Milky Way galaxy [1], the cutoff radius and halo mass are
Rcut ∼ 50kpc, Mdm(Rcut) ∼ 2.6 · 1011M⊙, and the mass of the disk and other
emitting structures can be neglected in the order estimate. If one does not use
the cutoff and continues the halo to the border of the universe, Mdm(Runi) =

Mdm(Rcut)Runi/Rcut ∼ 7.3 · 1016M⊙. If the result is multiplied by the estimated
number of galaxies in the universe Ngal ∼ 2 · 1012, we get Mdm ∼ 1.5 · 1029M⊙.
Compared to the estimated mass of dark matter in the universe Mdm,uni ∼

4.5 · 1023M⊙, this value is overestimated by the factor ∼ 3.2 · 105. The mass density
averaged over the volume of the universe for the obtained value of Mdm will
be ρdm ∼ 8.6 · 10−22kg/m3, which in ∼ 3.2 · 105 more than the estimate from the
critical densityΩdmρcrit = 2.7 · 10−27kg/m3.
The following corrections can be made to this calculation. The geometric cutoff
by Runi for the galaxies located far from the center (which we locate in the MW)
can reduce the halo mass, but the factor is small, at most 2. The mass density is
everywhere understood as the gravitating mass density, which also includes the
pressure ρgrav = ρ+ pr. At cosmological distances, the energy of DM particles is
redshifted, but considering distances up to 0.03Runi ∼ 420Mpc, the mass density
decrease factor will not exceed 20% (for the Hubble parameterH0 = 72km/s/Mpc
such distances correspond to z ∼ 0.1, 10% decrease in energy and 10% slowdown
in time, affecting 20% decrease in flux density). This can be used to estimate the
mass from below, as a result the > 7.6 · 103 discrepancy will remain unexplained.
Further, the estimate is based on the assumption that all galaxies have masses
of the order of the MW. This, of course, is not the case, there is a distribution of
galaxies by masses. An accurate account of the distribution of galaxies will be
given in the Appendix, and a similar result will be obtained, within the accuracy
of modeling the distribution of galaxies.
Now we assume that all galaxies are copies of the MW, the halo of each galaxy
is extended to the radius Rgal and the relation NgalMdm(Rcut)/Rcut · Rgal =

Mdm,uni holds, at which all the necessary mass relations are joined. Substituting
the known data, we get Rgal = 44kpc, which almost coincides with the value
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of Rcut,MW . An exact match of Rgal = Rcut,MW can be achieved by slightly
adjusting the estimated number of galaxies toN ′

gal = 1.7 ·1012. Thus, according to
this estimate, if we imagine that the universe consists of copies of the MW galaxy,
the halo of which is cut off by Rcut ∼ 50kpc, then the total mass of dark matter in
the universe will coincide in order of magnitude with its cosmological estimate.
With this configuration, dark matter is entirely concentrated in galaxies and is
absent in the intergalactic environment.
Let’s find out what happens if the Rcut parameter is increased to 1Mpc. This is
possible when the estimated number of galaxies is reduced to N ′

gal ∼ 8.7 · 1010.
It is known that the mass-to-light ratio of galaxies stops changing at distances of
this order of magnitude, see [49] Fig.2.5. Moreover, this value is of the order of
intergalactic distances. Thus, a scenario is theoretically possible in which galaxies
touch each other in the outer zones of their halos, although it may require tensions
of the Ngal parameter.
Finally, for the original scenario in which the halos overlap and reach the size of
the universe, it would beN ′

gal ∼ 6.2 ·106, a too strong deviation from the observed
value. Therefore, this scenario can be considered as excluded.

Scenario S0.2: touching halos in dynamic equilibrium. The above variant with halos
touching each other in the outer region, with the refinement that galaxies can
exchange dark matter. Null dark matter leaking from one galaxy is absorbed by
neighboring galaxies, and vice versa. In fact, the world lines of dark matter form
a network connecting the galaxies, and the concept of a spherical halo is only an
approximation.
The problem here is as follows. As a result of the expansion of galaxies, DM
particles coming from neighboring galaxies are subject to a small redshift z and
decrease their energy and flux density by the corresponding factor. We consider
RDM stars in a stationary T-symmetric scenario. The parameters of dark matter,
in particular, its energy and flux density, coincide for the incoming and outgo-
ing flows. Therefore, the exiting particles also have a reduced energy and flux
density. With multiple reflections between galaxies, the redshift of DM particles
accumulates, exactly as it would in a homogeneous environment. RDM stars act
as spherical mirrors, changing the direction of the DM particles, but not their
energy characteristics. Such an environment turns out to be equivalent to HDM, its
evolution coincides with the era of radiation, which is different from the observed
evolution of the universe today.
In fact, the stationary state of RDM stars requires T-symmetry only for the energy
flux density ϵ, the individual energies of incoming and outgoing DM particles
can be different, compensated by different number flux densities. This will not
help, since it is energy density that governs cosmological evolution. Note also that
in the equation ρP = ϵ/(8πr2sAQG), which determines conditions on the surface
of the Planck core, in the considered scenario the factors ϵ and AQG are scaled
equally so that the gravitational radius rs can remain unchanged. Strictly speaking,
changing ϵ and AQG in stationary scenarios is also unacceptable, but we consider
this change as performed rather slowly, quasi-statically. What happens in fast
scenarios, as well as with T-asymmetric ϵ and variable rs, can be found out only
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after solving the dynamic RDM problem, which goes beyond the scope of this
work.

Scenario S0.3: a halo surrounded by a massive thin shell. We now look at a few scenarios
from the termination shock type. This phenomenon occurs at the edge of the solar
system when the radially directed solar wind meets the isotropic interstellar
medium. Similar phenomena can occur with dark matter at the edge of the galaxy
when the radial flow of dark matter meets the intergalactic environment. First, we
will consider a scenario in which an NRDM galaxy at radius Rcut is surrounded
by a thin CDM layer, and there is a vacuum outside. The CDM layer is held in
equilibrium by the NRDM pressure force and the force of gravity. If such a scenario
was possible, the galaxies would be isolated from each other and would be massive
balls floating in a vacuum. On a cosmological level, such matter is equivalent to
CDM.
The equilibrium condition of forces can be written as ϵ/(8πr2) · 4πr2 = ϵ/r ·m
for r = Rcut, whence the mass of the CDM layerm = Rcut/2, in geometric units.
This is a huge mass, exceeding the mass of the galaxyMdm(Rcut) = ϵRcut, where
ϵ≪ 1, for MW ϵ = 2.5 · 10−7. Formally, with such a mass, the galaxy is covered
by its event horizon, becoming a black hole. More precisely, the calculation uses
Newtonian equations and only shows that there is no solution in weak fields. The
interpretation of this result is that the relativistic pressure at the boundary of the
NRDM galaxy can be compensated only by relativistic gravitational forces.
The distribution of matter in the CDM layer obeys the Tolman-Oppenheimer-
Volkoff (TOV) equation, the solution of which in weak fields and for a thin layer
is described by the one-dimensional hydrostatic equation ρ = ρ0 exp(−gh/w),
where w - parameter of the equation of state (EOS) p = wρ, for CDM w =

kT/m ≪ 1, all equations are written in geometric units. The pressure equilib-
rium at the boundary of the layer leads to ϵ/(8πR2cut) = wρ0, also g = ϵ/Rcut,
whence ρ = ϵ/(8πR2cutw) · exp(−ϵh/(wRcut)). Integrating this value, we get
m = 4πR2cut

∫
ρdh = Rcut/2. The result is independent of w and coincides with

the estimate above.

Scenario S0.4: halo surrounded by homogeneous dark matter. A variation of the pre-
vious scenario, where instead of vacuum there is a homogeneous dark mat-
ter with isotropic EOS outside: pbgr = wρbgr. Here we will consider two op-
tions: CDM w ≪ 1, HDM w = 1/3. Pressure equilibrium at the halo boundary:
ϵ/(8πR2cut) = wρbgr, gravitating masses: Mdm,gal = NgalϵRcut, Mdm,bgr =

(1 + 3w)ρbgr · (4π/3)(R3uni − NgalR
3
cut), an estimate of the total mass of dark

matter in the universe: Mdm,uni = Mdm,gal +Mdm,bgr = NgalϵRcut + ϵ(1 +

3w)/(6wR2cut)(R
3
uni −NgalR

3
cut). Note that, according to earlier calculations, the

first term already corresponds in order to the cosmological estimate for the mass
of dark matter. Only if the second term is small, this correspondence could be pre-
served. However, if we assume that the intergalactic distances significantly exceed
the size of the halo, and the estimate R3uni ≫ NgalR

3
cut holds, then the second term

Mdm,uni ∼ ϵR
3
uni/R

2
cut ·(1+3w)/(6w), which for ϵ = 2.5·10−7, Runi ∼ 14Gpc and

Rcut ∼ 50kpc matchesMdm,uni/M⊙ ∼ 5.7 · 1027(1+ 3w)/(6w). It can be seen that
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already for w = 1/3 and even more so for w≪ 1 the result significantly exceeds
the valueMdm,uni/M⊙ ∼ 4.5 · 1023, obtained from cosmological estimates. Also
for the above option with tension, Rcut = 1Mpc, N ′

gal = 8.7 · 1010 the resulting
formula is Mdm,uni/M⊙ = 4.5 · 1023 + 1.4 · 1025(1 + 3w)/(6w) does not allow
CDM/HDM as background matter, for continuous matching with NRDM pressure
at halo boundaries.

20.2.2 Accepted scenarios

Next, we’ll look at scenarios involving dark energy. We will represent dark energy
as a kind of matter, perhaps a kind of dark matter or its other phase state, which
has an isotropic EOS pde = −ρde, that is, w = −1, with positive ρde, constant
within each phase. The density of the gravitating mass for such matter is negative
and is equal to ρde,grav = ρde + 3pde = −2ρde. The negativity of this density,
provided that it prevails over other components, is the driving mechanism for the
accelerated expansion of the universe.

Scenario S1.1: jump in the dark energy density at the halo boundary. Let there be two dif-
ferent dark energy densities, outside the halo ρde,bgr, inside the halo ρde,gal, with
a jump at Rcut. Equilibrium pressure condition ϵ/(8πR2cut) = pde,bgr − pde,gal =

ρde,gal−ρde,bgr, gravitating masses:Mdm,gal = NgalϵRcut,Mde,gal = −2ρde,galNgal·
(4π/3)R3cut, Mde,bgr = −2ρde,bgr · (4π/3)(R3uni − NgalR

3
cut), an estimate of

the total mass of dark matter and dark energy in the universe: Mdm+de,uni =

Mdm,gal +Mde,gal +Mde,bgr = (2/3)ϵNgalRcut − (8π/3)ρde,bgrR
3
uni. The sec-

ond term here describes the total gravitating mass of dark energy, as if it uniformly
filled the entire universe, including galactic halos. The first term is the gravitat-
ing mass of the galactic halo reduced by the factor (2/3). In general, the model
behaves like a mixture of uniform cold dark matter and uniform dark energy, like
ΛCDM. In order of magnitude, for Rcut = 50kpc, the CDM mass corresponds to
cosmological estimates. Fine tuning is also possible similar to scenario S0.1, the
factor (2/3) can be compensated for by a small increase in the estimated number
of galaxies N ′

gal = 2.6 · 1012.
Let us also analyze the expression for the gravitating mass of one galaxy:M(r) =

ϵr − 2ρde,gal(4π/3)r
3. In the expression for the internal dark energy density

ρde,gal = ϵ/(8πR2cut) + ρde,bgr for the selected value Rcut = 50kpc, after con-
version to natural units, the first term is 5.6 · 10−24kg/m3, the second ρde,bgr =

Ωdeρcrit = 6.8·10−27kg/m3, the first term dominates. Thus, continuous matching
of pressures at the galactic boundary requires a jump in the dark energy density
by a factor of ∼ 103. Note that this jump can be reduced by adjusting the Rcut

parameter.
Further, the expression for the mass function at the selected parameters becomes
M(r)/M⊙ = 2.6·1011(r/Rcut)−8.7·1010(r/Rcut)

3. In the inner part of the rotation
curve, for example, up to the position of the Sun r ∼ 8kpc, the first term dominates.
Thus, the interior of the rotation curve is unaffected by the dark energy introduced
into the model. In the outer part of the curve, the contribution of the enhanced
internal dark energy density becomes noticeable, finally, it is this contribution
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that leads to the factor (2/3) in the mass formulas. The term proportional to the
external dark energy density for the chosen parameters of the model makes a
negligible contribution within the galaxy. It begins to dominate in the formula
M(r > Rcut) = (2/3)ϵRcut − (8π/3)ρde,bgrr

3 at distances r > 0.6Mpc, at which
the effects of cosmological expansion become noticeable.
It becomes clear that in the considered scenario the rotation curve undergoes a
change only in its outer part, where it decreases by

√
2/3 factor, about 18%. As

we will see later, the measurement errors in this range significantly exceed this
variation, which makes it impossible to distinguish this solution from the reference
profile.
Thus, we have obtained the first scenario, which connects null matter in galactic
halos with a cosmological background of dark energy and turns out to be equiva-
lent to the uniform ΛCDM model. A calculation based on a simple equilibrium of
pressures does not provide any indication for the possible nature of the increased
density of dark energy within the galaxy. Phenomenologically, dark energy can
be described as a medium in which its constituent particles experience mutual
attraction. This attraction corresponds to negative pressure, while the work of
external forces −pdV is used to increase the internal energy ρdV , in accordance
with EOS −p = ρ. The presence of two phases with different pressures suggests
two varieties for such media. An analogy can be drawn here with the string model.
The energy of a string is proportional to its length, just like the total mass for dark
energy is proportional to its volume. The strings have a fixed tension, which is a
constant in the model. One can consider strings with different tensions as separate
varieties of the same model. The considered scenario demonstrates a fundamental
possibility; further possible alternatives will be considered.

Scenario S1.2: surface tension at the boundary between the halo and the background
from dark energy. Let inside Rcut be NRDM, outside – dark energy with density
ρde,bgr, and surface tension with coefficient σ acts on the boundary. Equilibrium
pressure condition ϵ/(8πR2cut) = 2σ/Rcut + pde,bgr = 2σ/Rcut − ρde,bgr, gravi-
tating masses: Mdm,gal = NgalϵRcut, Mde,surf = −Ngalσ · 4πR2cut, Mde,bgr =

−2ρde,bgr · (4π/3)(R3uni −NgalR
3
cut), an estimate of the total mass of dark matter

and dark energy in the universe:Mdm+de,uni =Mdm,gal+Mde,surf+Mde,bgr =

(3/4)ϵNgalRcut + (2π/3) ·NgalR
3
cutρde,bgr − (8π/3)ρde,bgrR

3
uni. Here the third

term corresponds to the cosmological contribution of dark energy, it grows in
the negative direction in proportion to the volume of the expanding universe.
The first and second terms are preserved in the expansion and represent CDM.
At Rcut = 50kpc, the first term significantly exceeds the second, and, as in the
previous scenario, allows fine tuning of the parameters to the cosmological value
of CDM density.
In the above formulas, the gravitating mass corresponding to the boundary layer
is calculated as follows. Surface tension is related to negative transverse pressure
and positive energy density as −pt = ρ = σ/dr, where dr is the layer thickness.
The gravitating mass of the spherical layer is M = (ρ + 2pt)Sdr = −σ · 4πR2cut.
There is also a radial pressure pr inside the layer, which continuously interpolates
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the boundary values, remains bounded, and makes a vanishing contribution at
dr→ 0.
When choosing Rcut = 50kpc, the density jump between external dark matter and
NRDM is still ∼ 103 times, but here it is compensated by surface tension. As in
the previous scenario, the pressure jump can be reduced by adjusting the Rcut

parameter. The mass function for r < Rcut coincides with the NRDM dependence
M(r < Rcut) = ϵr, thus the inner rotation curve does not change. When passing
through Rcut, the mass function undergoes a jumpM(Rcut + 0) = (3/4)ϵRcut −

2πR3cutρde,bgr, the coefficient (3/4) appears in the first term, and the second
term also appears. With the chosen parameters, the first term is 1.9 · 1011M⊙,
the second −7.9 · 107M⊙, the first term dominates. Further, the mass function
includes the cosmological termM(r > Rcut) = (3/4)ϵRcut + (2π/3)R3cutρde,bgr −

(8π/3)ρde,bgrr
3, which dominates for r > 0.6Mpc.

The resulting scenario is very close to the previous one, only a different mech-
anism is used to compensate for the pressure jump at the edge of the galaxy.
Phenomenologically, if we consider dark energy as a medium consisting of inter-
acting particles, the presence of a boundary can lead to the appearance of a surface
term in the equations, as for classical media. The jump in the mass function that
appears in this scenario corresponds to a jump in the rotation curve by the factor√
3/4, about 13%. This jump also occurs in the outer region, where the scatter

of experimental data is large, so that it can be unnoticed. Also, this jump can be
an idealization of a more complex scenario in which the transition layer has a
finite thickness. The possibility of a gradual change of EOS will be explored in the
following scenario.

Scenario S1.3: phase transition of dark matter to dark energy. In this scenario, we
assume that dark energy is a form of dark matter, and with the increasing radius,
there is a continuous transition between the corresponding EOS: pr = wrρ, pt =
wtρ, (wr, wt) change from (1, 0) for r = Rcut1 to (−1,−1) for r = Rcut2 > Rcut1.
The result depends on the transition path, which we fix from physical consider-
ations as follows. Initially, from r = Rcut1 to the intermediate point r = Rcut1b,
only wt changes, from 0 to −1. The inclusion of transverse attraction between
flows of dark matter leads to the Joule-Thomson effect known in gas dynamics,
cooling of flows, which in our case manifests itself in a rapid decrease in the mass
density ρ. Further, from r = Rcut1b to r = Rcut2 only wr changes, from 1 to −1. In
this range, the contributions of dark matter from different sources are mixed, the
matter becomes isotropic. Further, the matter obeys isotropic EOS for dark energy,
and its density and pressure become constant.
It is convenient to solve the problem in logarithmic variables x = log r, ξ = log ρ,
with the restriction ρ > 0. To interpolate wt,r in the corresponding intervals, we
choose functions linear in x, and the positions of the endpoints {x1, x1b, x2} =

log{Rcut1, Rcut1b, Rcut2} will be chosen from the correspondence of the model to
the cosmological parameters.
The stationary spherically symmetric solutions considered here satisfy the hydro-
static equation for anisotropic medium, see Appendix for details: r(pr + ρ)A ′

r +

2A(r(pr)
′
r + 2pr − 2pt) = 0. The first term describes the gravitational interac-
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tion, which in our problems can be neglected. The reason for this is that in the
weak field limit A ∼ 1 + 2ϕ, A ′

r ∼ 2g, where ϕ is the gravitational potential,
g = ϕ ′

r =Mgrav(r)/r
2 is gravitational field in the used system of units, |ϕ| ≪ 1,

rg≪ 1. In our models, the density and pressure are controlled by a small common
factor ϵ, and the first term turns out to be of the next smallness order compared to
the second one. This property of the weak-field regime can also be verified on the
exact solutions of the hydrostatic equation, given in Appendix.
Thus, we can concentrate on the second term: r(pr) ′r + 2pr − 2pt = 0. Let’s go
to logarithmic variables and substitute EOS: wrξ

′
x + (wr)

′
x + 2(wr − wt) = 0.

The solution is: ξ = −
∫
dx((wr)

′
x + 2(wr − wt))/wr. In the following, we will

consider regular solutions in which the denominator and the numerator in the
integrand vanish simultaneously:wr = 0, (wr)

′
x = 2wt. Note that, with our choice

of the interpolation order, the condition wr = 0 can be satisfied only at the second
stage, in the interval [x1b, x2], while, due to the linearity of the interpolation, the
condition (wr)

′
x = 2wt = −2 holds on this entire interval.

At the first stage [x1, x1b], (wr, wt) = (1,−q), q = (x − x1)/(x1b − x1), calculat-
ing the integral, we get ξ1b − ξ1 = −3(x1b − x1). At the second stage [x1b, x2],
(wr, wt) = (1− 2q,−1), q = (x− x1b)/(x2 − x1b), from the condition (wr)

′
x = −2

we get q ′
x = 1, that is, x2 = x1b + 1. Calculating the integral, we get ξ2 − ξ1b = −2.

Hence log(ρ1/ρ2) = ξ1 − ξ2 = 3(x1b − x1) + 2. Choosing ρ1 = ϵ/(8πR2cut1),
Rcut1 = Rcut = 50kpc, ϵ = 2.5·10−7, ρ2 = ρde,bgr = Ωdeρcrit = 6.8·10−27kg/m3,
and also converting all values into the natural system of units, we get: ρ1/ρ2 = 824,
Rcut1b = 0.24Mpc, Rcut2 = 0.65Mpc. Thus, the required density variation from
NRDM to the background dark energy in the considered scenario fixes the halo
cutoff parameters to reasonable values.
Next, consider the contribution of the galaxy to the cosmological mass density.
The gravitating mass density is ρgrav = (1 + wr + 2wt)ρ, and the gravitating
mass of the spherical layer is ∆Mgrav = 4π

∫
ρgravr

2dr. After the transition
to logarithmic variables, the integrals over two interpolation intervals can be
taken analytically. Omitting cumbersome expressions, we will immediately give
the numerical answer {M1, ∆M1, ∆M2,Mvac} = {2.60, 2.67,−2.60, 2.35} · 1011M⊙.
Here M1 = ϵRcut is the mass of the NRDM halo, ∆M1,2 are the masses of the
spherical layers for two interpolation intervals, Mvac = (8π/3)ρde,bgrR

3
cut2 is

the compensation mass of the vacuole arising from the rearrangement of the
terms Mdm+de,uni = NgalMdm+de,gal − (8π/3)ρde,bgr(R

3
uni − NgalR

3
cut2) =

Ngal(Mdm+de,gal+Mvac)− (8π/3)ρde,bgrR
3
uni. TheMvac term should be taken

into account in cosmological calculations, when reducing to the parameters of a
homogeneous medium, while when calculating the rotation curves only the actu-
ally present masses should be taken, andMvac should be omitted. Interestingly,
there is an identityM1 +∆M2 = 0, which holds exactly, at the analytical level, but
is probably a coincidence due to a special choice of interpolating functions. Also
of interest is the approximate equality of all mass contributions in their absolute
value. The cosmological mass per galaxy is the sum of all these contributions and
is equal toMdm+de,gal +Mvac = 5 · 1011M⊙. This gives a coincidence with the
cosmological CDM massMdm,uni = 4.5 ·1023M⊙ in order of magnitude, for exact
coincidence the estimated number of galaxies should be reduced toN ′

gal = 9 ·1011,
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2.2 times less than the nominal value. One can also adjust the ϵ parameter, but
since our estimates of the halo cutoff parameters were tied to MW values, these
estimates must be repeated when ϵ changes.
The constructed scenario, obviously, contains wide arbitrariness in the choice of
interpolating functions and is rather a proof of the existence of a solution satisfying
cosmological estimates. This existence in itself is non-trivial. Recall that in standard
cosmology, null, hot dark matter leads to a different rate of cosmological expansion
today and is forbidden. The possibility of joining hot dark matter with dark energy
within the galactic halo, at a cosmological level equivalent to ΛCDM, is the main
result of this work. The specific way of joining may be different, in the Appendix
we will discuss the possibility of narrowing this arbitrariness.
For now, note that the interpolation order selected in the model is significant. The
reverse order when (wr, wt) changes from (1, 0) to (−1, 0) for r ∈ [Rcut1, Rcut1b]

leads to the condition (wr)
′
x = 2wt = 0, not feasible for linear functions. If

we interpolate both terms at the same time, (wr, wt) = (1 − 2q,−q), q = (x −

x1)/(x2b − x1), from the conditions wr = 0 , (wr)
′
x = 2wt we get q = 1/2,

q ′
x = 1/2, that is, x2b = x1 + 2. Moreover, ξ2b = ξ1 − 2, which for Rcut1 = 50kpc

gives Rcut2b = e2Rcut1 = 0.37Mpc, ρ1/ρ2b = e2 ∼ 7.4, far from the experimental
value of ρ1/ρ2 ∼ 824. The physical rationale with the initial cooling of dark matter
due to the Joule-Thomson effect and the subsequent transition to the isotropic
phase for the cooled gas was important for obtaining the strong density drop
observed in real galaxies.
Here are some graphs showing the behavior of the main physical profiles in the
considered scenario. Fig.20.2 left shows the dependence of ξ = log ρ on x = log r.
Initially, the graph contains an NRDM line with a slope of −2, which corresponds
to the ρ ∼ r−2 dependence. Further, at point 1, the transverse interaction between
the flows turns on, and the Joule-Thomson effect is superimposed on the contin-
uing radial drop in density. Here, the slope of the graph dξ/dx is continuously
changing from −2 to −4. Further, in the interval from 1b to 2, a transition to the
isotropic phase follows, the slope in this case being equal to −2. After point 2,
there is isotropic dark energy with constant density, slope 0. The resulting density
variation between points 1 and 2 corresponds to the experimentally observed
factor of ρ1/ρ2 ∼ 824.
For comparison, the option shown in gray when (wr, wt) are linearly interpolated
at the same time. The slope between points 1 and 2b is −1. After 2b, there is an
isotropic phase with a slope of 0. Due to these changes, the graph goes much
higher than the previous one, the density variation does not correspond to the
observed value.
Fig.20.2 right shows the dependence of Mgrav(r). Initially, there is an NRDM part
with a characteristic linear dependence, then at point 1b, the dependence passes
through a maximum and, after point 2, is described by a negative cubic term
corresponding to the contribution of dark energy.

Scenario S1.4: Bose-Einstein condensation. In this scenario, two phases are also
considered: the internal NRDM phase, described by the classical particle model,
and the external phase, described by a complex scalar field. This field theory is
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Fig. 20.2: Physical profiles for scenario S1.3.

Fig. 20.3: Left: an external part of the Milky Way rotation curve, according to [48].
A variety of profiles are shown, including the RDMcut scenario from [1]. Right:
outer part of the dependence of radial velocity on the distance, according to [46].
The position of the galaxy M31 is marked, the outer part of the graph is fitted with
a Hubble-alike dependence.

Fig. 20.4: Profiles built in the scenarios of this work, compared with the RDMcut
profile.
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used in phenomenological models of Bose-Einstein condensation, as well as in
cosmological models of quintessence and its variants (k-essence, quartessence,
Chaplygin gas), see [43] and references therein. Therefore, this scenario assumes
that dark matter particles are emitted by RDM stars in the galaxy and undergo
Bose-Einstein condensation at large distances. Alternatively, these can be particles
of different types that are in contact equilibrium at the edge of the galactic halo.
In the field theory under consideration, the Lagrangian, the energy-momentum
tensor, and the equations of motion have the form [50] Chap.6.3,7.5:

L = −(∂µϕ
∗∂µϕ)/2− V(|ϕ|2), (20.2)

Tµν = (∂µϕ
∗∂νϕ+ ∂νϕ

∗∂µϕ)/2+ gµνL, (20.3)

(−∂2/∂t2 + ∆)ϕ = 2V ′(|ϕ|2)ϕ. (20.4)

Here the equations of motion are written in a flat background, and the rest of the
expressions are valid for an arbitrary metric. We also remind that for a scalar field
the covariant and coordinate derivatives are equal: ∇µϕ = ∂µϕ. The field equa-
tions belong to the well-known nonlinear Klein-Gordon type with the potential.
For V(|ϕ|2) = Const +m2|ϕ|2/2 the equations become linear and describe the
behavior of a free massive scalar field. We neglect the influence of gravity on the
scalar field, assuming that the gravitational fields are weak and the corresponding
solutions are relativistic.
We will use a smooth potential V(s2), which has a minimum for a nonzero value
of the argument V(s21) = Vmin, s21 > 0. For this minimum, the constant function
ϕ = s1 is the exact solution to the problem. For such a function, using a spherical
coordinate system and a metric of signature (− + ++), we write out the mixed
components of the energy-momentum tensor:

Tνµ = diag(−ρ, pr, pt, pt) = −Vmin · diag(1, 1, 1, 1), (20.5)

ρ = Vmin, pr = pt = −Vmin, (20.6)

ρgrav = ρ+ pr + 2pt = −2Vmin. (20.7)

The result coincides with the standard EOS of dark energy, which explains the
interest to this model in the cosmological context. We will fix Vmin > 0, and for
simplicity we will assume V > 0 everywhere.
In this paper, we consider stationary spherically symmetric problems for which
there are particular solutions of the form ϕ = eiEts(r), with real E, s(r). With this
substitution, the dimension is reduced (E2+∆)s = 2V ′(s2)s. Next, we will consider
stationary solutions E = 0, ϕ = s(r). The uniqueness of solutions with stationary
boundary conditions is demonstrated in the Appendix. Thus, all solutions that
can be attached to the constant ϕ = s1 are globally stationary and have the form
ϕ = s(r).
Calculating EOS for stationary solutions

Tνµ = diag(0, s ′2, 0, 0) − diag(1, 1, 1, 1) · (s ′2/2+ V(s2)), (20.8)

ρ = −pt = s
′2/2+ V(s2) > 0, pr = s

′2/2− V(s2), (20.9)

ρgrav = ρ+ pr + 2pt = −2V(s2). (20.10)



i
i

“U” — 2021/12/15 — 21:46 — page 316 — #332 i
i

i
i

i
i

316 I. Nikitin

If the potential is shallow, then ρgrav ∼ −2Vmin, as for DE. This result is quite
remarkable. As a consequence, the scenario can be configured in such a way
that the gravitating density profile immediately after the NRDM phase ρgrav =

ϵ/(4πr2) > 0 drops sharply to the DE phase ρgrav ∼ −2Vmin. This reproduces
the phenomenological RDMcut scenario discussed in [1], with a sharp cutoff of
the density to almost zero at the Rcut radius. The DE contribution begins to be
felt at much larger distances and reproduces the observed effect of accelerated
cosmological expansion there.
Technically, the condition of connection for the radial pressure component at the
boundary between the phases must still be met. This condition can be satisfied
if the model has enough degrees of freedom to ensure that in pr, the first term
s ′2/2 dominates over the second −V(s2). In this case, it is possible to ensure the
continuous connection with the positive pr from the NRDM phase, no matter how
large this value may be. Physical manifestations are defined only by ρgrav and do
not depend on the details of this connection.
We will make such a connection for a particular choice of the potential. First of all,
we write the right-hand side of the equations of motion in the form 2V ′(s2)s =
V(s2) ′s. Next, using the reparametrization of the argument V(s2) = V1(s), we
choose the potential as given below. The remarkable properties of such a potential
are the linearity of the equation of motion, the existence of an analytical solution,
and also the fact that any potential in the vicinity of the minimum can be written
as follows:

V1(s) = Vmin + a/2 (s− s1)
2, a > 0, s1 > 0, (20.11)

s ′′ + 2s ′/r = a(s− s1), (20.12)

s = s1 + (e−
√
arC1)/r+ (e

√
arC2)/(2

√
ar). (20.13)

Selecting a branch with finite s → s1 at r → ∞, we get C2 = 0. We also impose
the condition C1 > 0 in order to ensure s > s1 on the solutions. For s > s1,
the ascending branch of V1(s) corresponds to the positive square of the mass,
normal particles. At that time, for s < s1, the descending branch of V1(s) formally
corresponds to the negative square of the mass, the tachyon case, but this branch
is not used in the solutions we have considered. Calculating the components

pr = e
−2

√
arC2

1(1+ 2
√
ar)/(2r4) − Vmin, (20.14)

ρgrav = −aC2
1e

−2
√
ar/r2 − 2Vmin, (20.15)

we see that by choosing C1 it is always possible to achieve a connection with
positive pr from the NRDM phase. At the same time, choosing small a, one can
reach ρgrav ∼ −2Vmin. With such a choice of parameters, the solution comes
arbitrarily close to the RDMcut+DE profile shown in Fig.20.3, thereby providing a
deeper physical foundation for it.
As before, exact matching with cosmological estimates can be achieved by compar-
ing N ′

gal(Mdm,gal +Mvac), Mdm,gal = ϵRcutc
2/G, Mvac = (8π/3)ρde,bgrR

3
cut,

with known Mdm,uni ∼ 4.5 · 1023M⊙. Exact matching is ensured, in particular,
when choosing Rcut = 50kpc, N ′

gal = 1.7 · 1012, or Rcut = 44kpc, N ′
gal = 2 · 1012,

or Rcut = 0.6Mpc, N ′
gal = 1.4 · 1011.
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20.3 Addition: photon case

Since the photons of the Standard Model are not sterile, corrections are required to
use them in the described scenarios. Specifically, an analysis of three questions is
required:

• generation of longwave photons by compact massive objects;
• the passage of such photons through the interstellar medium;
• Bose-Einstein condensation of photons.

In this article, we will only consider in detail the question of photon generation. The
main difference from the sterile case is the interaction of photons at high energies,
leading to the production of e+e− pairs and other particles. We will assume
that these particles are localized in the ultrarelativistic plasma layer between the
NRDM phase and the Planck core. Fortunately, the EOS of ultrarelativistic plasma
is independent of its actual composition and even its temperature. Such a plasma
is described by the universal TOV equation with a factor w = 1/3, as if the plasma
consisted entirely of radiation. In this case, it is only important that the kinetic
energies of plasma particles significantly exceed their rest masses, and also that
the EOS is isotropic and has equal components of radial and transverse pressure.
The second question, about the possible passage of photons through the ISM,
imposes a limitation on their frequency. Electromagnetic waves can propagate in
the ISM only if their frequency exceeds Langmuir’s value, which varies from a few
kHz in the central regions of the galaxy to some Hz in the outer regions. On the
other hand, if the wavelength becomes comparable to the size of galactic structures,
then, presumably, waves can penetrate them without absorption, similar to long
radio waves penetrating the walls of buildings and other structures. That is, it
can be expected that the ISM transparency window, which closes at Langmuir’s
frequency, reopens at ultra-low frequencies.
Finally, the third question, about the possibility of Bose-Einstein condensation of
photons, has been intensively discussed recently. In a complete vacuum, photons
cannot condense, because they are massless, and the state of minimum energy for
them coincides with the vacuum. At the same time, in [51] and references therein
it was noted that in ISM/IGM photons have a dispersion relation equivalent to the
presence of a nonzero mass of a photon. As a result, there is a theoretical possibility
that the photons in medium can undergo Bose-Einstein condensation.
Now we will consider the question of photon generation by the NRDM|TOV
system. The required equations are listed in the Appendix. The equations are
formulated for the metric profiles A and B, in the logarithmic representation:
x = log r, a = logA, b = logB. Hereinafter, A = −gtt and B = grr denote the tem-
poral and radial components of the metric tensor, which completely describe the
structure of the gravitational field for stationary spherically symmetric problems.
We numerically solve these equations using Mathematica NDSolve algorithm. As
noted in [1], TOV systems are characterized by critical phenomena, abrupt changes
in the solution with continuous change in parameters. As a result, the NRDM|TOV
system has a richer solution structure than a pure NRDM.



i
i

“U” — 2021/12/15 — 21:46 — page 318 — #334 i
i

i
i

i
i

318 I. Nikitin

Fig. 20.5: Solutions with NRDM, TOV and PC (Planck core) phases. See text for
details.

Fig.20.5 shows the solution for a compact object of stellar mass M = 10M⊙. At
the same time, as the study of the rotation curves [1] shows, the parameter ϵ for
the external NRDM phase can be chosen in the interval 10−12...−16, and here we
choose it in the center of this interval : ϵ = 10−14.
The top left image shows the behavior of a pure NRDM solution, similar to
the graphs from [1] for a supermassive solution. The solution starts at point 1,
located at a large distance from the object, in the weak field region. Then, near
the gravitational radius, the solution tries to enter the Schwarzschild mode with
symmetrically diverging a and b profiles. The b profile reaches its maximum at
point 2, which is very close to the Schwarzschild radius rs. After passing point 2,
the solution goes into the supershift or mass inflation mode [52]. In a thin layer
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Table 20.2: NRDM—TOV-star, stellar mass, critical case
model parameters M = 10M⊙, rs = 29532.4m, ϵ = 10−14

starting point a1 = 0, b1 = 0.0299773,
of integration r1 = 106m, L1 = 1.05738 · 106m

supershift a2 = −32.2362, b2 = 30.8799,
begins r2/rs − 1 = 5.26127 · 10−7, L2 = 5.819 · 10−3m

NRDM—TOV a2∗ = −154.936, b2∗ = −90.434,
transition r2∗/r2 − 1 = −1.2 · 10−12, L2∗ = 1.32074 · 10−29m
supershift a3 = −185.052, b3 = −182.216,

ends r3 = 20638m, L3 = 3.01835 · 10−36m
minimal radius, a4 = −95.1895, b4 = −272.808,

end of integration r4 = lP = 1.62 · 10−35m, L4 = 0

Table 20.4: various scenarios, global parameters
NRDM, Ein = EP , λin = lP

M = 10M⊙, ϵ = 10−12 AQG = 1.2 · 10−92, λout = 4.8 · 10−6pc
M = 10M⊙, ϵ = 10−16 AQG = 1.2 · 10−96, λout = 4.8 · 10−4pc

M = 4.06 · 106M⊙, ϵ = 10−7 AQG = 7.2 · 10−99, λout = 6.2 · 10−3pc
M = 4.06 · 106M⊙, ϵ = 10−10 AQG = 7.2 · 10−102, λout = 0.2pc

NRDM—TOV critical, Ein = 0.512MeV, λin = 2.42 · 10−12m
M = 10M⊙, ϵ = 10−12 A2∗ = 5.15 · 10−70, λout = 3.46Mpc
M = 10M⊙, ϵ = 10−14 A2∗ = 5.15 · 10−68, λout = 0.346Mpc
M = 10M⊙, ϵ = 10−16 A2∗ = 5.15 · 10−66, λout = 0.0346Mpc

M = 4.06 · 106M⊙, ϵ = 10−7 A2∗ = 2.97 · 10−86, λout = 4.56 · 105Gpc≫ Runi

M = 4.06 · 106M⊙, ϵ = 10−10 A2∗ = 2.94 · 10−83, λout = 1.45 · 104Gpc≫ Runi

near this point, the a and b profiles rapidly decrease with decreasing x, while the
mass density rapidly increases. At the point aQG, the mass density reaches the
Planck value. At this point, the NRDM phase joins the Planck core (PC). We recall
that in the models under consideration, the Planck core has a large effectively
negative mass due to quantum effects. This mass produces a force of gravitational
repulsion, which maintains in equilibrium a coat of large positive mass located in
the supershift region. These two masses almost cancel each other out, so that the
object as a whole has an initial stellar mass.
The top right image shows the modification of the solution when it is connected
with the TOV phase. The a and b profiles rapidly falling in a thin x-layer of the
NRDM phase, before passing the Planck boundary and after crossing the 2∗ phase
boundary, are replaced by more slowly falling TOV phase profiles. In the figure
at the bottom left, the TOV solution is continued into a wider x-layer. At point 3,
the solution passes through the minimum of the a profile. Further, the profiles
a and b diverge symmetrically in the region of large negative values, which is
typical for the Schwarzschild singularity of negative mass [50] Sec.28.5. Unlike
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other known solutions, this singularity is not naked, it is covered with a massive
coat and remains in the superstrong redshift zone until the integration stops at the
Planck radius.
The figure at the bottom right shows the behavior of the mass density of the
solution in the TOV phase. The maximum density is reached at the minimum
point a3. The critical solution, which touches the Planck density line, is specially
highlighted. For this solution, all the other TOV graphs in this figure are shown.
The key parameters for this solution are also listed in Table 20.2.
Upon reaching the Planck density, the solution joins the Planck core. In supercritical
mode, that is, when the point of joining of the phases a2∗ is selected below the
critical position, the density reaches the Planck value earlier, the boundary of the
Planck core shifts accordingly.
In subcritical mode, the Planck density is not reached at all, and the solution contin-
ues until the central singularity. This singularity is quite similar to the Planck core,
since it also has a large negative mass, and its repulsive force keeps the system
in equilibrium. The singularity can be smeared over the r ∼ lP neighborhood to
obtain a regular core. One can also expand the core to larger radius values. We
will call such solutions the Planck core of type II, in contrast to the previously
considered solutions, to which we assign the type I. Their difference is that core I
arises when the NRDM or TOV matter reaches the Planck density, while for core
II the density of this matter remains sub-Planckian, and the core consists of other
matter exceeding the Planck density. NRDM solutions for the physically relevant
selection of parameters necessarily exceed the Planck density, so a type I core is
formed there. For the TOV phase, both types of solutions are possible.

Wavelengths of photons in the resulting gravitational field are easy to calculate. The
initial wavelength, which was equal to λin = lP on the surface of the Planck core
for the NRDM solution, is replaced by Ein = 0.512MeV, λin = 2.42 · 10−12m at the
interface for the NRDM|TOV solution. This choice corresponds to the threshold
for the production of e+e− pairs in the collision of incoming and outgoing photon
fluxes. An ultrarelativistic TOV plasma is composed of these pairs and other
higher-energy particles. Applying the redshift to this wavelength for the critical
case A2∗ = 5.15 · 10−68 from Table 20.2, we get λout = λin/

√
A2∗ = 1.07 · 1022m

= 0.346Mpc. In the supercritical mode, longer wavelengths are obtained, in the
subcritical mode, shorter ones. Note the coincidence of the obtained wavelength
with the characteristic size of the MW galaxy. This coincidence is even more
surprising if we note that the metric coefficients appearing in the intermediate
calculations vary in the considered solutions by a hundred orders of magnitude.

L-integral. Table 20.2 also lists the values of the invariant length integral measured
in the radial direction: L =

∫
dr

√
B. Integration starts from the minimum radius

r = lP. The integral up to point 3 turns out to be less than the Planck length,
which does not pose a problem, since this region contains a Planck core with
unknown properties, and the integration over this region should not be carried
out at all. The integral up to point 2∗ represents the thickness of the TOV layer. It
is noteworthy that in the r-coordinate this thickness is about 9km, while in the
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L-coordinate this thickness is microscopic: L2∗ = 8 · 105lP. This difference is an
indicator of a strong deformation of the radial direction in the solution, which
manifests itself in an extremely small B-factor. Note that the “aerial” r-coordinate
is related to the area of the corresponding sphere (always equal to 4πr2), while the
L-coordinate is the more appropriate local thickness characteristic. The resulting
thin layer corresponds to a superdense TOV plasma sandwiched between the
Planck core and NRDM coat under tremendous pressure. We remind that in
our calculations we consider all the media to be continuous, disregarding their
microscopic structure. Apparently, a quantum calculation should be carried out in
this region, after which the results obtained here should be revised. In this work,
we restrict ourselves to classical calculations. Further, up to point 2, the coordinate
r changes microscopically by ∼ 3.5 · 10−8m, while the change in L is about 6mm. In
this region, the deformation becomes inverse, due to the large B-factor near point
2. Finally, in the outer region, an L-integral is accumulated, comparable to the
change in r, since the region of weak fields prevails here, and the space becomes
flat.
The picture obtained in the analysis of the L-integral coincides with the structure
of compact massive objects and the presence of a “shrinking volume” [3] inside
them. In the region shallow in the L-coordinate, thin superdense layers of matter
are localized, creating strong deformations of space, strong gravitational fields
that determine the structure of the solution as a whole.

Sensitivity to model parameters. Table 20.4 shows the calculation results for differ-
ent scenarios. For a pure NRDM model, the value of λout varies in the range of
1011...16m or 10−6...−1pc. If the DM particles in this scenario were photons, their
propagation in the ISM would be prohibited, since their frequency is significantly
less than Langmuir’s value and the wavelength is significantly less than the size
of the galaxy. However, this scenario is limited to the sterile case and does not
consider photons as DM particles. The photon case assumes an NRDM|TOV com-
bination, and here, for compact objects of stellar mass, wavelengths are obtained
in the range of 34.6kpc-3.46Mpc, that is, comparable to galactic sizes. We assume
that such waves can propagate in ISM and condense in BEC, thereby providing
a logical closure for the considered model. For the supermassive case, typical
for central black holes in galaxies, λout values are obtained that are much larger
than the size of the universe Runi ∼ 14Gpc. This means that either supermassive
black holes in this scenario do not participate in the formation of dark matter, or
cosmological processes must be taken into account for their analysis. Note also that
in the case of a pure NRDM for the described parameters there are exact formulas:
AQG = ϵ(lP/rs)

2/(8π), λout = rs(8π/ϵ)
1/2. For the NRDM|TOV combination, we

currently have only empirical relationships. Namely, for the data in Table 20.4,
with fixed rs and variable ϵ, the relations hold A2∗ ∼ ϵ−1, B2∗ ∼ ϵ−3, λout ∼ ϵ

1/2,
which are the sign of hidden symmetries in the considered system.

Qualitative analysis. At the first glance, the presented results are relevant only to the
model of NRDM|TOV stars studied here. Now we will show that many features
of the described solution are typical for a wider class of models, possibly for all
compact massive objects [2–5]. First of all, erasure of the event horizon is associated
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with the T-symmetry of solutions, which results in a grid of the intersecting flows
of incoming and outgoing particles. For true black holes, there are only incoming
flows, and for T-conjugated white holes, only outgoing flows. In the solutions
under consideration, there can be no horizons that could prevent the entry or exit
of the particles. Another explanation for the horizon erasure effect arises when
observing the mass functionM(r). The region below the horizon corresponds to
2M(r)/r > 1. In the presence of distributed positive mass density, the function
M(r) decreases with decreasing r (one can imagine how positive mass layers are
removed from the solution). If the density is high enough, then 2M(r) decreases
faster than r, so no horizon is formed. High density arises from the phenomenon of
mass inflation [52]. This phenomenon occurs due to the positive feedback between
pressure and gravity. In strong gravitational fields, in equilibrium systems, the
pressure increases rapidly with decreasing radius, due to the hydrostatic equation.
At high pressure, it begins to contribute to gravity on the same basis as mass
density, which also increases due to EOS. As a result, the gravitational field is
strengthened, which leads to a further increase in pressure and density. As a result,
a thin layer is formed in the solution, in which pressure, density and gravitational
field increase very rapidly. Further, the rapid decrease in the mass functionM(r)

does not stop at zero crossing, the mass becomes negative. While the local density
is still positive, the value of the central mass located under a certain radius r
is negative. A successful closure of the model is the concept of the Planck core,
according to which, when the Planck density is exceeded, the quantum corrections
make the mass effectively negative [4, 5]. We described another possibility in
this work, when a central singularity or a superdense core, consisting of matter
other than the surrounding massive coat, has a negative mass. Next, we observe
the behavior of the metric profiles A and B, where the first describes the time
dilation and redshift, and the second describes the deformation of the radial
coordinate. The mass function is directly related to the B-profile by the formula
B = (1− 2M/r)−1. Large negative masses correspond to a small positive B. As a
result, the integral of length L =

∫
dr

√
B in this region becomes small, the region

becomes shallow in L, although in r it can occupy an essential part of the solution.
Together with the coefficientB,A also becomes small in the region of mass inflation,
which is typical for strong gravitational fields. This leads to a strong time dilation
and redshift, as a result, from the point of view of an external observer, the object is
dark, almost like a black hole. At the same time, high energies inside the object
can result in high density radiation. The redshift does not affect the flux density in
the transverse direction and shifts the radiation to the low-energy region. In the
models under consideration, the superstrong redshift stretches photons into ultra-
long wave packets that can reach the size of a galaxy, while a large number of such
photons, after taking into account all sources, leads to a significant contribution
to the mass of the galaxy. Thus, microscopically thin high-energetic layers inside
compact objects appear to be conjugated with galactic-scale structures. At large
distances from the center, the radiation density decreases as ρ ∼ r−2, which leads
to flat rotation curves of galaxies. The distribution of black holes in the galaxy
modulates these dependencies and allows to describe the observed rotation curves
with their deviations from the flat shape [1]. These calculations do not depend on
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the nature of the emitting objects, only on the assumption that their distribution
is proportional to the luminous matter. Thus, radiation from compact massive
objects, be they photons or other particles, may be directly unobservable due to
long wavelengths. However, it can determine the rotation curves of galaxies and
produce other gravitational effects that are usually associated with dark matter. If
this type of radiation can pass the interstellar medium and become Bose-Einstein
condensate outside the galaxy, one will simultaneously obtain the description of
dark energy.

20.4 Conclusion

This work continued the construction of a recently proposed model of NRDM-
stars. In this model, the quanta dark of matter are sterile massless particles that are
emitted from quasi-black holes located mainly in the central regions of the galaxy.
At large distances from the center of the galaxy, the emission is directed radially
and the mass density has the form ρ ∼ r−2, in contrast to the homogeneous model
ρ = Const. In the cosmological context, the homogeneous model with massless
particles corresponds to the radiation epoch of the expansion of the universe, while
the proposed inhomogeneous model turns out to be equivalent to ΛCDM.
Specifically, several scenarios were considered in which the radial emission of
dark matter is brought into hydrostatic equilibrium with a uniform background:

S1.1: a jump in the dark energy density at the edge of the galactic halo;
S1.2: a surface tension at the boundary between the halo and the dark energy

background;
S1.3: a phase transition of dark matter into dark energy, accompanied by the Joule-

Thomson effect;
S1.4: Bose-Einstein condensation of dark matter inside the galaxy into dark energy

outside of it.

From the junction conditions, the density correspondence to the observed Ω-
parameters and mass functions typical for ΛCDM model were obtained. In these
scenarios, CDM macro-particles are galaxies with massive halos surrounding
them, floating in a homogeneous medium with the dark energy equation of state.
Additionally, the question of what happens if dark matter particles are not sterile,
for example, are photons of the Standard Model, is considered. When high-energy
photons collide inside NRDM stars, as a result of the production of e+e− pairs
and other particles, a thin layer of ultrarelativistic plasma appears. The performed
classical calculation shows that the photons emitted from this layer, after applying
the gravitational redshift, acquire a wavelength comparable to the galactic sizes.
For the logical closure of the photon scenario in this model, it is also necessary to
study the questions of the passage of such longwave photons through the inter-
stellar medium and Bose-Einstein condensation of the photons in the intergalactic
medium. The study of these questions will be continued.
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Appendix: Details of constructions

Modeling the outer part of the rotation curve. Fig.20.3 on the left shows the outer part
of the MW rotation curve, overlaid with various model profiles. RDMcut represents the
simplest radial dark matter halo model introduced in [1], which is cut off at the Rcut radius,
so that the velocity on the outer portion of the curve is v = (GMdm(Rcut)/r)

1/2. The graph
also shows the standard galactic profiles of Navarro-Frenk-White (NFW) and Einasto, with
parameters adjusted to the experimental points. The source of experimental data is the
work [48]. It can be seen that all the profiles pass approximately the same way in the
corridor of experimental scatter. Since the scatter in the outer region of the rotation curve is
extremely large, it is not possible to select any particular profile based on this data.
Fig.20.4 shows the profiles obtained in the accepted scenarios of this work, compared with
the RDMcut profile, with the parameters ϵ = 2.5·10−7, Rcut = 50kpc. The profiles are related
to the gravitating mass by the relation v = (GMgrav(r)/r)

1/2. The characteristic downward
bend of all new profiles at large distances corresponds to the negative contribution of
dark energy growing under the root. With a large value of the radius, the gravitating mass
becomes negative, and the corresponding radial acceleration also changes sign. In this zone,
v is not defined, circular orbital motion is impossible, here the accelerated cosmological
expansion of the universe begins to dominate.
All new profiles pass close to RDMcut and with it fit into the corridor of errors. The
S1.4 profile is effectively the same as RDMcut if DE contribution is included in it. Pro-
file S1.3 for the parameters selected above is shown in Fig.20.4 right in blue. It can be
pulled closer to RDMcut by setting Rcut1 = 30kpc, as a result, the key parameters of the
model will slightly change: ϵ = 2.5 · 10−7, {Rcut1, Rcut1b, Rcut2} = {0.03, 0.20, 0.55}Mpc,
{M1, ∆M1, ∆M2,Mvac} = {1.56, 2.07,−1.56, 1.41} · 1011M⊙, Mdm+de,gal +Mvac = 3.5 ·
1011M⊙, while the cosmological estimates are performed with new values ρ1/ρ2 = 2288,
N ′

gal = 1.3 · 1012.
Let’s pay attention again to Fig.20.3 left. Noteworthy is the presence of a rise in the ex-
perimental curve at the exterior of this graph. It is responsible for the Local Group (LG)
structures outside of the MW. Recall that the galaxy M31/Andromeda closest to the MW is
located at a distance of rM31 ∼ 0.8Mpc. Therefore, at the exterior of the curve, the radius
begins to capture M31 and other LG structures, increasing the total gravitating mass. Note
that spherical symmetry is lost in this case, and the formula v = (GMgrav(r)/r)

1/2 should
no longer be used for the velocity, except as a rough approximation. In the fit [1], shown
in green on the graph, the RDMcut contribution of dark matter was taken into account,
as well as the contribution of luminous matter, which is active at small radii, and the
region increasing at large LG radii was described empirically as an additive homogeneous
background. The density value obtained at the fit was ρbgr ∼ 4.4 · 10−26kg/m3, which is 4.4
times higher than the critical cosmological density. In this interpretation, this contribution
has nothing to do with the cosmological background, it only describes the overdensity
averaged by the Local Group, limited in space.
For a more detailed analysis, Fig.20.3 right shows the raw data from [46], on the basis of
which the experimental rotation curve [48] was built. Strictly speaking, Fig.20.3 right shows
not the rotation curve, but the dependence of the experimentally measured radial velocity
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component on the distance. The outer part of this dependence is taken from [46], Table 1, SF
sample, rGC and vGC columns. The radial velocities Fig.20.3 right have a sign, in contrast
to Fig.20.3 left, where the absolute value of the velocity is given. The pattern is striking:
on the outer part of the curve vr > 0, which corresponds to expansion, on the inner part
of vr < 0, there is a contraction. The outer part can be approximated by the Hubble law
v = Hr with the value H = 95± 16km/s/Mpc. Compared to recent cosmological estimates
H0 = 68 − 77km/s/Mpc, the average value is somewhat overestimated, but fits within 1.7
standard deviations. Thus, the outer part of the curve is consistent with the Hubble flow.
It was noted in [53] that Hubble’s law begins to operate directly outside of LG, here we
see that it also operates on the outer border of LG. The inner part of the graph Fig.20.3 on
the right corresponds to the collapse of matter under the influence of gravitation towards
massive galaxies that are part of LG. Recall that LG consists of two large galaxies, MW
and M31, and many globular clusters and satellite galaxies. For these satellites, the radial
velocities were measured relative to the MW, which are used to construct the outer part of
the rotation curve [48].
In the work [54], a model of the outer region of LG is described, which reproduces just such
a picture, Hubble flow at the outer boundary of the region and the collapse of matter to the
center of mass of LG at the inner boundary. In [54], Fig.10 qualitatively coincides with our
Fig.20.3 right. The details show differences caused by using a different coordinate system
and a different dataset for analysis. The work [54] also gives estimates of the total masses of
MW and M31:MMW = (0.8+0.4

−0.3) · 1012M⊙ andMM31 = (1.5+0.5
−0.4) · 1012M⊙. Since [54] uses

an additive homogeneous contribution of dark energy, for comparison with our scenario,
we need to take into account theMvac term, which in the above scenarios gives the value
MMW = (0.3 − 0.5) · 1012M⊙, within 1-1.7 standard deviations from the value [54]. As for
Andromeda, [46] assumed that the masses of MW and M31 were equal, and LG required
additional mass that is not part of these galaxies. Whereas in [54] scenarios with M31 mass
2 times the MW mass are preferred, and additional LG mass is not required.
In our work, we concentrate on describing internal orbits closely bound to the MW, for
which the masses of external structures are not important. The exact solution to the spheri-
cally asymmetric problem of the interaction of nearby galaxies with overlapping halos is
rather nontrivial. The resulting halo shape can deviate from the sphere. The gravitational
field is not described by a simple rotation curve depending only on the radius. The result
depends on a variety of model assumptions such as dark matter EOS and initial conditions.
Therefore, in this work, we prefer to restrict ourselves to cosmological estimates for spher-
ically symmetric halos of separately standing galaxies and will not consider the cases of
nearby galaxies overlapping by the outer parts of their halos. In practice, this means that in
the MW rotation curve we will consider only the descending part, cutting off its LG tail.

Model independent reconstruction of EOS. Let us describe another algorithm that, for
spherically symmetric halos, in principle, can reconstruct EOS directly from the rotation
curve, without the assumptions about the phase transition path made in scenario S1.3. Let
us know the rotation curve for an average-mass galaxy, approximated by some empirical
profile. The mass functionMgrav(r) and the density ρgrav(r) are trivially recovered from it.
On the outside of the rotation curve, these two functions are matched with cosmological
estimates:Mgrav(Rmax) +Mvac(Rmax) =Mdm,uni/Ngal,Mvac(r) = (8π/3)ρde,bgrr

3 and
ρgrav(Rmax) = −2ρde,bgr. Note that these conditions are imposed directly on the experi-
mental curves and not on the EOS components. We use the relations ρgrav = ρ + pr + 2pt
and r(pr) ′r + 2pr − 2pt = 0, these are two relations for three profiles (ρ, pr, pt). As a re-
sult, one functional degree of freedom remains. One can set an arbitrary function pr, then
(ρ, pt) will be reconstructed by linear formulas, even without solving differential equations.
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Boundary conditions on the outer radius are of the form pr = pt = −ρ, in this case, due to
the conditions imposed above, it will automatically satisfy ρ = ρde,bgr, pr = pt = −ρde,bgr,
p ′
r = 0. Using these constraints on (pr, p

′
r) as boundary conditions, we can construct EOS

in parametric form (ρ, pr, pt)(r). This construction can be supplemented with boundary
conditions for NRDM at the inner radius ρ = pr, pt = 0, by introducing the gravitational
term into the hydrostatic equation, and other model corrections.
A similar algorithm for recovering EOS from rotation curves was used in the work [55]. In
this case, EOS was assumed to be isotropic pr = pt, as a result, the solution did not contain
functional ambiguities, but the NRDM-type solution was missed. The main obstacle to
the implementation of such algorithms is the extremely large scatter in the outer region of
the rotation curves, which allows different empirical profiles and leads to an inaccurate
reconstruction of EOS in this region.

Taking into account the mass distribution of galaxies. The above calculations use the
estimated value of the number of galaxies Ngal = 2 · 1012 from [56]. This value takes
into account the evolution of the universe over time and represents an estimate of the
number of observed galaxies up to redshift values z < 8. In fact, to compare with the
density of dark matter today, we need the number of galaxies in a simultaneous slice in
a ball of radius Runi ∼ 14Gpc. This radius is purely nominal, the final formulas include
the ratio Mdm,uni/Ngal, from which this radius drops out. In fact, we need an estimate
of the density of galaxies dNgal/dV near our position, for small z. The mentioned ratio is
expressed through this density:Mdm,uni/Ngal = ρdm/(dNgal/dV).
In [56], the density of galaxies is modeled using the Schechter function:

dNgal/dV/dM = ϕ∗ log(10)10(M−M∗)(1+α) exp(−10(M−M∗)), (20.16)

where M = log
10
(Mlm,gal/M⊙), Mlm,gal is the stellar mass of the galaxy. For the rest of

the parameters, the values from the second row of Table 1 in [56] were selected, representing
the most accurate fit for the galaxies closest to us: α = −1.29, M∗ = 11.44, ϕ∗ = 12.2 ·
10−4Mpc−3. Integrating this expression over the interval 6 ≤M ≤ 12 shown in Fig.1 in [56],
we obtain dNgal/dV = 0.154Mpc−3, multiplying by (4π/3)R3

uni, we getNgal = 1.766·1012.
It is noteworthy that the obtained value is close to the number 2 · 1012, which was found
in [56] for the same mass interval and took into account the evolution of the universe.
Next, we need the mean < v2 > for the square of the outer orbital velocity, on the same dis-
tribution. To find it, we use the Tully-Fisher relation v ∼ (Mlm)p with exponent p = 1/4. Let
us introduce a normalization to the value of MW and denote ηp =< (Mlm/Mlm,MW)p >,
so that < v2 > /v2MW = η1/2. Using the value Mlm,MW = 6.08 · 1010M⊙ from [57] and
calculating the average, we get η1/2 = 0.0455, Ngalη1/2 = 1.196 · 1011. This estimate is
based only on experimental data in the form of Schechter and Tully-Fisher relations. It
needs to be compared with the corrected N ′

gal parameter in our scenarios.
Before proceeding to the comparison, note that for the integration we have chosen the lower
limitMmin = 6, as in [56]. This limit is slightly below the experimental data collection limit
Mmin = 8, that is, extrapolation is used in the calculations. Note that the number of galaxies
strongly depends on this limit. If we take Mmin = 8, we get Ngal = 4.189 · 1011. At the
same time, the value of η1/2 will increase by approximately the same factor and the value of
Ngalη1/2 will practically not change. The same effect is observed for all p > 0.3. The reason
for this is that the cumulative value of Ngalηp is expressed by an integral dominated by
large masses.
Also note that the modeling width for Schechter function Fig.1 [56] is 0.4-1dex, and the
scatter width of Tully-Fisher relation [58] for v2 is about 0.8dex. Therefore, deviations of <
1.8dex in comparison of model and experiment can be tolerated.
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Most of our scenarios have a clear algebraic structure, producing an analytical answer of the
formMdm,uni = Ngal(Mdm,gal+Mvac),Mdm,gal = k1ϵRcutc

2/G,Mvac = k2(8π/3)ρde,bgrR
3
cut.

The constants k1,2 for scenarios {S1.1, S1.2, S1.4} are of the form k1 = {2/3, 3/4, 1}, k2 =

{0, 1/4, 1}. In calculations in order of magnitude, for fixed Ngal = 2 · 1012, Mdm,uni ∼

4.5 · 1023M⊙, and for Rcut < 0.6Mpc, the contribution of Mvac can be neglected. Also,
in order of magnitude, we can consider k1 ∼ 1. As a result, we get the only relation
Mdm,uni ∼ NgalϵRcutc

2/G for these three scenarios, which we must check with the experi-
ment.
Next, we will make two estimates. In the first, for scenarios {S1.1, S1.2, S1.4}, we will assume
that Rcut is fixed, and ϵ is distributed over galaxies. In this case, the relation has the form
Mdm,uni ∼ Ngal < ϵ > Rcutc

2/G. The same relationship is obtained if we assume that
Rcut is distributed, but uncorrelated with ϵ, in this case it will beMdm,uni ∼ Ngal < ϵ ><

Rcut > c
2/G. Further, taking into account ϵ = (v/c)2 and using the value η1/2 introduced

above, we getMdm,uni ∼ Ngalη1/2Mdm,MW ,Mdm,MW = ϵMWRcutc
2/G. It is convenient

to rewrite this relation as N ′
gal ∼ Ngalη1/2, where N ′

gal = Mdm,uni/Mdm,MW is the
corrected number of galaxies introduced above in scenarios with MW copies. Substituting
here ϵMW = 2.5 · 10−7, with Rcut varying within 50kpc-0.6Mpc we get N ′

gal = 1.7 · 1012 −
1.4 · 1011, which coincides with the experimental estimate Ngalη1/2 = 1.196 · 1011 within
1.2-0.1dex, with preference for large values of Rcut.
Next, let’s make the estimation for the S1.3 scenario. In it, the adjustment of the ϵ and Rcut

parameters is not as easy as in other scenarios, unless additional assumptions are made
about the scaling of galaxies. As a working hypothesis, suppose the mass density is scaled
as ρ(r) → ρ(r/a), that is, in Fig.20.2 left, the graph simply shifts horizontally when looking
at different galaxies. It is easy to verify that all structural elements that define the position of
key points in the scenario withstand this scaling. The mass function shown in Fig.20.2 right
scales asMgrav(R) → 4π

∫R

0
drr2ρgrav(r/a) = a

3Mgrav(R/a), theMvac(R) contribution is
also scaled, which must be added here in cosmological estimates. Thus, the total mass of
dark matter in the galaxy under the taken assumptions is scaled asMdm,gal →Mdm,gala

3.
At the same time, the square of the orbital velocity v2 = GM/R is scaled as v2 → v2a2, the
velocity is scaled as v→ va. Due to the Tully-Fisher relation, the luminous mass scales as
Mlm →Mlma

4. Thus,Mdm ∼ (Mlm)3/4 proportionality holds along the sequence under
consideration, the required correction factor is Ngalη3/4 = 8.302 · 1010.
Note that the function Ngalηp has a minimum at p ∼ 0.9 and changes little in the range
p = 0.3...2, so other dependencies Mdm ∼ (Mlm)p lead to a similar result for p in this
interval. Also note that in other works, other values of pwere obtained, [59] p = 0.3, [60]
p = 1.34, [61] Eq. (7) p = 0.3− 1.1 for spiral galaxies, [62] Eq. (21) p = 1.05− 1.24 for dwarf
disc galaxies. This result strongly depends on the choice of the mass profile and the halo
cutoff radius. In our scenario S1.3, the cutoff is applied at the outer radius Rcut2, where the
phase transition of dark matter into dark energy is completed, outside of which the density
of dark matter vanishes.
Compared with the value obtained in S1.3 required for joining the relations Ngalη3/4 =∑
Mdm,gal/Mdm,MW ∼ 8 ·1010 andMdm,uni/Mdm,MW ∼ 9 ·1011, there is a discrepancy of

1.1dex. If we change the modeling of S1.3 a little and achieve an exact fit to the experimental
estimate [54] MMW ∼ 8 · 1011M⊙, we get a discrepancy of 0.8dex. Thus, our assumption
about the scale invariance of scenario S1.3 fits into the existing scatter of experimental data.
At the same time, it becomes clear that the remaining discrepancy, in fact, is not related to
the details of our modeling, but is the result of direct comparison of different experimental
estimates. Using relations of the formMdm ∼ (Mlm)p from the experimental works cited
above, a similar result will be obtained.
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A similar result will also be obtained in our other scenarios if we accept the same scaling
assumptions in them, that is, Rcut ∼ a and ϵ ∼ a2. In this case, the contributionsMdm,gal

and Mvac are scaled in the same way ∼ a3, and if for the initially taken MW galaxy the
contributionMvac can be neglected, then it can be neglected along the entire sequence. The
relation N ′

gal ∼ Ngalη3/4 is subject to verification, where N ′
gal = 1.7 · 1012 − 1.4 · 1011 for

Rcut =50kpc-0.6Mpc. The deviation from Ngalη3/4 = 8.302 · 1010 here is 1.3dex-0.2dex,
with a preference for larger values of Rcut.

Structure of solutions of the nonlinear Klein-Gordon equation. In general, solutions of this
equation for stationary spherically symmetric problems do not admit separation of variables
and cannot be represented in the form ϕ(t, r) = eiEts(r) or their linear combinations.
However, in the special case of harmonic boundary conditions ϕ(t, r1) = eiEts1, ϕ ′

r(t, r1) =

eiEtd1, the following consideration can be used. Let’s perform the numerical integration of
this equation using the finite difference scheme

∂2ϕ/∂t2 = (ϕ(t + dt, r) + ϕ(t − dt, r) − 2ϕ(t, r))/dt2, (20.17)

∂2ϕ/∂r2 = (ϕ(t, r + dr) + ϕ(t, r − dr) − 2ϕ(t, r))/dr2, (20.18)

∂ϕ/∂r = (ϕ(t, r + dr) − ϕ(t, r − dr))/(2dr). (20.19)

This is not the scheme that is used in practice to solve such equations, but here, for the
purpose of proof, it can be applied with a sufficiently small choice of integration steps. When
integrating the solution by layers of constant r, starting from r = r1 and then recurrently
into the region r < r1, it is easy to check that the equation solved with respect to the leading
layer ϕ(t, r− dr) will always carry the phase factor eiEt and the amplitude s(r) depending
only on r. Thus, the solution will globally have the form ϕ(t, r) = eiEts(r). In the particular
case E = 0, the solution will be globally stationary ϕ(t, r) = s(r).
A slight subtlety is that this reasoning is valid for finite r1, while for the considered solutions
the boundary condition is imposed for r→ ∞, asymptotically. This problem can be solved
as follows. Let’s approximate the potential near the minimum by an analytically solvable
form (20.11). The solutions will be (20.13) with C2 = 0. For a finite value of r1, when the
solution is still in the considered vicinity of the minimum, calculate s(r1) and s ′(r1) on the
solution and use them as boundary conditions in the above numerical integration scheme.
As a result, a global solution of the required form will be obtained.
Note also that as long as the consideration concerns stationary solutions, there is no dif-
ference between the theories of complex and real scalar field. The difference appears for
E ̸= 0, the real harmonic solutions have the form ϕ = cos(Et)s(r). In this case, the time
dependence penetrates into the argument of the potential function, and there is no reduction
in the dimension. In the nonlinear theory of real scalar field, single-frequency harmonic
functions can only be approximate solutions [42].

NRDM—TOV system. Stationary spherically symmetric gravitational fields are described
by the metric tensor and the energy-momentum tensor

gµν = diag(−A(r), B(r), r2, (r sin θ)2), Tµν = diag(−ρ(r), pr(r), pt(r), pt(r)), (20.20)

in the coordinate system composed of the time of distant observer and the standard spheri-
cal coordinate system xµ = (t, r, θ, ϕ). Einstein’s equations for such problems are:

ρ = (−B + B2 + rB ′
r)/(8πr

2B2), pr = (A −AB + rA ′
r)/(8πr

2AB), (20.21)

pt = (−rB(A ′
r)

2 − 2A2B ′
r +A(−rA

′
rB

′
r + 2B(A

′
r + rA

′′
rr)))/(32πrA

2B2). (20.22)
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This system can be taken from [63] (11.36-38) and converted to our notations or derived
from the first principles using Mathematica code [64]. It is easy to check that this system
satisfies the relation

r(pr + ρ)A
′
r + 2A(r(pr)

′
r + 2pr − 2pt) = 0. (20.23)

This equation has a profound meaning, as a consistency condition for the Einstein equations,
Bianchi identity. It is equivalent to conservation of energy-momentum ∇µT

µ
ν = 0. It also

has a physical meaning of hydrostatic equation, since it describes a distribution of pressure
and density in a stationary spherically symmetric gravitational field.
Now let’s consider EOS for two phases

NRDM: pr = ρ, pt = 0, TOV: pr = pt = wρ, w = 1/3 (20.24)

and join the corresponding solutions of the Einstein equations. First of all, the analysis of
the matching conditions for the hydrostatic equation shows that at the phase boundary
pr must be C0-continuous, while ρ and pt undergo a jump, repeating the jump of EOS.
Further, analyzing the behavior of the metric profiles in the Einstein equations, we see that
Amust be C1-continuous, and B - C0-continuous.
The hydrostatic equation for such EOS can be solved analytically:

NRDM: pr = ϵ/(8πr2A), TOV: pr = k/(4πA2), (20.25)

where ϵ and k are integration constants. Further, the Einstein equations for our combined
model are:

NRDM: a ′
x = −1 + eb + ϵ eb−a, b ′

x = 1 − eb + ϵ eb−a, (20.26)

TOV: a ′
x = −1 + eb + 2ke2x−2a+b, b ′

x = 1 − eb + 6ke2x−2a+b, (20.27)

in logarithmic variables x = log r, a = logA, b = logB. Integration starts in the NRDM
phase from a point distant from the center, where the initial conditions are selected a1 = 0,
b1 = − log(1 − 2M1/r1), 2M1 = ϵr1 + rs. In this case, C0-continuous matching of pr at
the phase boundary r = r2∗ leads to the condition k = ϵA2∗/(2r

2
2∗), whereby the equation

(20.27) can be rewritten as

TOV: a ′
x = −1 + eb + ϵ e2(x−x2∗)−2a+b+a2∗ , (20.28)

b ′
x = 1 − eb + 3ϵ e2(x−x2∗)−2a+b+a2∗ . (20.29)

From this it is clear that C0-continuous matching of (a, b) at the phase boundary enables
C0-continuous matching also for the derivative a ′

x, while b ′
x undergoes a jump by a factor

3. This provides the continuity mode C1 for a, C0 for b, in accordance with the above
theoretical analysis.
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Abstract. Structure of quantum corrections in N = 1 supersymmetric gauge theories is
investigated in the case of using the regularization by higher covariant derivatives. It is
demonstrated that this regularization allows revealing some interesting features which
lead to the exact relations between the renormalization group functions. In particular, the
NSVZ equation, which relates the β-function to the anomalous dimension of the matter
superfields, naturally appears in this case. We briefly review the all-loop derivation of this
equation and the construction of a simple renormalization prescription under which it is
valid.

Povzetek: Avtor razišče strukturo kvantnih popravkov v N = 1 super- simetričnih umer-
itvenih teorijah z regularizacijo z višjimi kovariantnimi odvodi. Pokaže, da ta način regu-
larizacije omogoča razkritje natančnih razmerij med funkcijami renormalizacijskih skupin.
Denimo, enačba NSVZ, ki povezuje funkcijo β z anomalno dimenzijo superpolj snovi,
postane očitna. Avtor na kratko predstavi izpeljavo popravkov te enačbe v vseh redih ter
ponudi preprosto navodilo za renormalizacijo, ko ta enačba velja.

21.1 Introduction

The investigation of quantum corrections in supersymmetric theories is very
important for both theory and phenomenological applications. As well known,
ultraviolet (UV) divergences in these theories are restricted by some nonrenormal-
ization theorems. The most known of them are the following:
1. N = 1 superpotential is not renormalized [1],
2. N = 2 theories are finite beyond the first loop [2–4],
3. N = 4 supersymmetric Yang–Mills theory is all-loop finite [2, 3, 5–7].
Due to the nonrenormalization theorems it is even possible to construct finite
theories with N < 4 supersymmetry. For N = 2 supersymmetric theories this
can be done by a special choice of a gauge group and representations for the
hypermultiplets [8]. For N = 1 supersymmetric theories [9–13] and theories with
softly broken supersymmetry [14–16] it is also necessary to make a special tuning
of a renormalization scheme.
However, the above list of the nonrenormalization theorems is not complete.
For instance, it is reasonable to include into this list the exact Novikov, Shifman,
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Vainshtein, and Zakharov (NSVZ) β-function [17–20]. This is an equation which
in general relates the β-function and the anomalous dimension of the matter
superfields in N = 1 supersymmetric gauge theories,

β(α, λ) = −
α2
(
3C2 − T(R) + C(R)i

j(γϕ)j
i(α, λ)/r

)

2π(1− C2α/2π)
, (21.1)

where α and λ denote the gauge and Yukawa coupling constants, respectively, and
we do not specify the definitions of the renormalization group functions (RGFs).
The numerical factors in the equation (21.1) are defined as

tr (TATB) ≡ T(R) δAB; (TA)i
k(TA)k

j ≡ C(R)ij;
fACDfBCD ≡ C2δ

AB; r ≡ δAA = dimG. (21.2)

However, there is an important problem, for which renormalization prescrip-
tions the nonrenormalization theorems do hold. Really, the explicit calculations in
N = 1 supersymmetric theories made in the DR-scheme in [21–24] revealed that
the NSVZ relation in this scheme is valid only in the one- and two-loop approxi-
mations, where this relation does not depend on a renormalization prescription.
However, it turned out that with the help of a specially tuned finite renormaliza-
tion of the gauge coupling constant one can restore the NSVZ equation, at least, in
the three- and four-loop approximations [22–26]. This (very nontrivial) fact implies
that the NSVZ relation holds, but only in some special renormalization schemes
usually called “the NSVZ schemes”. Evidently, the DR-scheme does not belong to
them.
In this paper we briefly review the recent progress in constructing the all-loop
prescription giving some NSVZ schemes based on the perturbative derivation
of the NSVZ β-function made in [27–29]. The main ingredient needed for this
is the regularization by higher covariant derivatives proposed by A.A.Slavnov
[30, 31] rather long ago. Note that, by construction, it also includes the Pauli–
Villars regularization for removing residual one-loop divergencies [32]. In the
supersymmetric case this regularization can be self-consistently formulated in
terms of N = 1 superfields [33, 34] and, therefore, does not break supersymmetry.

21.2 The NSVZ equation for N = 1 SQED

21.2.1 Regularization, quantization, and RGFs

As the simplest example illustrating how to derive the NSVZ equation and how
to construct NSVZ schemes we consider the (massless) N = 1 supersymmetric
electrodynamics (SQED) with Nf flavors. Manifest supersymmetry at all steps of
calculating quantum corrections is achieved by formulating the theory in terms of
N = 1 superfields,

S =
1

4e20
Re

∫
d4xd2θWaWa +

Nf∑
α=1

1

4

∫
d4xd4θ

(
ϕ∗

αe
2Vϕα + ϕ̃∗

αe
−2V ϕ̃α

)
. (21.3)
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In the action (21.3) the (real) gauge superfield is denoted by V , while ϕα and ϕ̃α

are chiral matter superfields with opposite U(1) charges. In the Abelian case the
strength of the superfield V is defined asWa = D̄2DaV/4.
Setting C2 = 0, C(R) = I (where I is the 2Nf × 2Nf identity matrix), T(R) = 2Nf,
and r = 1 in the equation (21.1) we see that in this case the NSVZ β-function takes
the form [35, 36]1

β(α) =
α2Nf

π

(
1− γ(α)

)
(21.4)

and relates the L-loop β-function to the (L− 1)-loop anomalous dimension of the
matter superfields γ(α).
The considered theory will be regularized by higher covariant derivatives in
two steps. First, we add a term with higher derivatives to the action (21.3) and
regularize divergences beyond the one-loop approximation. Then the resulting
regularized action can be written as

Sreg =
1

4e20
Re

∫
d4xd2θWaR(∂2/Λ2)Wa

+

Nf∑
α=1

1

4

∫
d4xd4θ

(
ϕ∗

αe
2Vϕα + ϕ̃∗

αe
−2V ϕ̃α

)
, (21.5)

where R(∂2/Λ2) is a regulator function, e.g., R = 1+ ∂2n/Λ2n. Next, for removing
one-loop divergences and subdivergences that will be still present, the Pauli–
Villars determinants are inserted into the generating functional,

Z[J, j, j̃] =

∫
Dµ

(
detPV(V,M)

)Nf
exp

{
iSreg + iSgf + Ssources

}
. (21.6)

The masses of the corresponding (Pauli–Villars) superfields should satisfy the
important conditionM = aΛwith a ̸= a(e0).
Calculating RGFs it is important to distinguish between the ones defined in terms
of the bare coupling constant α0,

β(α0) ≡
dα0(α,Λ/µ)

d lnΛ

∣∣∣
α=const

; γ(α0) ≡ −
d lnZ(α,Λ/µ)

d lnΛ

∣∣∣
α=const

, (21.7)

and the ones (standardly) defined in terms of the renormalized coupling constant
α [37],

β̃(α) ≡ dα(α0, Λ/µ)

d lnµ

∣∣∣
α0=const

; γ̃(α) ≡ d lnZ(α0, Λ/µ)

d lnµ

∣∣∣
α0=const

. (21.8)

The former RGFs are independent of a renormalization prescription if a regular-
ization is fixed, although they certainly depend on a regularization. The latter

1 So far we again do not specify the definitions of RGFs.
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(standard) RGFs depend both on a regularization and on a renormalization pre-
scription. However, both definitions of RGFs up to a formal replacement of the
argument coincide in the so-called HD+MSL renormalization scheme [38, 39],

β̃(α)
∣∣∣

HD+MSL
= β(α0 → α); γ̃(α)

∣∣∣
HD+MSL

= γ(α0 → α). (21.9)

This implies that a theory is regularized by higher derivatives and only powers
of lnΛ/µ are included into the renormalization constants. (Because this way of
removing divergences is very similar to minimal subtraction in the case of using
the dimensional technique, it is called minimal subtractions of logarithms.)

21.2.2 The three-loop β-function with the higher derivative regularization

The first calculations of the lowest quantum corrections for N = 1 SQED regu-
larized by higher derivatives revealed that with this regularization the integrals
giving the β-function defined in terms of the bare coupling constant are integrals
of total derivatives [40] and even double total derivatives [41] with respect to the
momentum of the matter loop. The result for the three-loop β-function in this
form can be found, e.g., in [42, 43]. Note that such integrals do not vanish due to
singularities of the integrands,∫

d4Q

(2π)4
∂

∂Qµ

∂

∂Qµ

(f(Q2)

Q2

)
=

1

4π2
f(0) ̸= 0, (21.10)

where we assume that f(Q2) is a non-singular function rapidly decreasing at
infinity. Using equations similar to (21.10) it is possible to reduce a number of loop
integrations by 1. A detailed analyses revealed that this leads to the following
simple graphical interpretation of the Abelian NSVZ equation [41]. If one considers
a vacuum supergraph, then a certain set of superdiagrams contributing to the
β-function is produced by attaching two external gauge lines in all possible ways.
From the other side, cuts of matter lines in the original vacuum supergraph give a
set of two-point superdiagrams contributing to the anomalous dimension of the
matter superfields, in which a number of loops is less by 1. The equation (21.4)
relates these two contributions. At the three-loop level a detailed check of this
graphical interpretation has been done in [44]. In particular, it turned out that for
theories regularized by higher derivatives the NSVZ equation holds even at the
level of loop integrals provided RGFs are defined in terms of the bare coupling
constant. The explicit expressions for these RGFs found in [45] for an arbitrary
function R(x) are written as

β(α0)

α2
0

=
Nf

π
+
α0Nf

π2
−
α2
0Nf

π3

(
Nf lna+Nf +

NfA

2
+
1

2

)
+O(α3

0);

γ(α0) = −
α0

π
+
α2
0

π2

(
Nf lna+Nf +

NfA

2
+
1

2

)
+O(α3

0), (21.11)

where
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A ≡
∞∫
0

dx ln x
d

dx

1

R(x)
; a =

M

Λ
. (21.12)

We see that they do not depend on the parameters fixing a subtraction scheme, but
depend on the regularization parameters A and a. However, for all their values
the NSVZ equation is valid.
RGFs defined in terms of the renormalized coupling constant do not in general
satisfy the NSVZ equation,

β̃(α)

α2
=
Nf

π
+
αNf

π2
−
α2Nf

2π3
−
α2N2

f

π3

(
lna+ 1+

A

2
+ b2 − b1

)
+O(α3)

γ̃(α) = −
α

π
+
α2

2π2
+
α2Nf

π2

(
lna+ 1+

A

2
− b1 + g1

)
+O(α3), (21.13)

and depend on the finite constants bi and gi fixing the renormalization prescrip-
tion. These constants are defined by the equations

1

α0
=
1

α
−
Nf

π

(
ln
Λ

µ
+ b1

)
−
αNf

π2

(
ln
Λ

µ
+ b2

)
+O(α2).

Z = 1+
α

π

(
ln
Λ

µ
+ g1

)
+O(α2). (21.14)

In the HD+MSL scheme they vanish

g1 = b1 = b2 = 0, (21.15)

and both definition of RGFs give the same functions up to the formal replacement
of arguments. Evidently, in this case the NSVZ equation holds, although the
scheme dependence is already essential.
The three-loop β-function and the two-loop anomalous dimension of the matter
superfields in the DR and MOM schemes can be found in [22, 46, 47]. In these
schemes the NSVZ equation relating these RGFs does not hold.

21.2.3 The all-loop results

In [42] the all-loop expression for the β-function of N = 1 SQED (defined in
terms of the bare coupling constant in the case of using the higher derivative
regularization) was presented in the form of a functional integral over the gauge
superfield V , which is an integral of double total derivatives in the momentum
space. Certainly, this integral of double total derivatives is reduced to the sum of
singular contributions with the help of equations similar to (21.10). The all-loop
sum of the singularities which has also been calculated in [42] gives the exact
NSVZ β-functions for RGFs defined in terms of the bare couplings,

β(α0)

α2
0

=
Nf

π

(
1− γ(α0)

)
. (21.16)
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Thus, if N = 1 SQED is regularized by higher derivatives, then RGFs defined in
terms of the bare coupling constant satisfy the NSVZ equation in all orders for
an arbitrary renormalization prescription. (Note that both sides of this equation
do not depend on the parameter ξ0 in the gauge fixing term, so that this result is
valid for an arbitrary ξ-gauge.) Analogous result has been obtained in [48] with
the help of a different method.
Consequently, some NSVZ schemes for RGFs defined in terms of the renormalized
coupling constant are given by the HD+MSL prescription. Note that they constitute
a certain subclass in the continuous set of the NSVZ schemes described in [49].
Really, minimal subtractions of logarithms can supplement various versions of
the higher derivative regularization, which can differ in the form of the higher
derivative regulator R(x) and the constant a defined by the equation (21.12). Note
that the class of NSVZ schemes also includes the on-shell scheme, which is another
all-loop NSVZ renormalization prescription [50].

21.3 Non-Abelian supersymmetric gauge theories regularized by
higher derivatives

Below we will describe the derivation of the NSVZ equation and NSVZ schemes
for renormalizable non-Abelian N = 1 supersymmetric gauge theories. In the
massless limit they are described by the classical action

S =
1

2e20
Re tr

∫
d4xd2θWaWa +

1

4

∫
d4xd4θϕ∗i(e2V)i

jϕj

+
(1
6
λijk0

∫
d4xd2θϕiϕjϕk + c.c.

)
, (21.17)

which is written in a manifestly supersymmetric form with the help of N = 1

superspace. Below we will assume that the gauge group G is simple, and the
chiral matter superfields ϕi transform under its representation R. The classi-
cal non-Abelian expression for the supersymmetric gauge superfield strength
isWa = D̄2(e−2VDae

2V)/8. Also the bare Yukawa couplings λijk0 should satisfy
the condition

λijm0 (TA)m
k + λimk

0 (TA)m
j + λmjk

0 (TA)m
i = 0, (21.18)

which provides the gauge invariance of the cubic interaction term.
Quantizing the theory we use the background field method realized by the replace-
ment e2V → e2F(V)e2V , where in the right hand side V and V are the background
and quantum gauge superfields, respectively. The function F(V) is needed for
describing the nonlinear renormalization of the quantum gauge superfield [51–53]
and includes an infinite set of parameters analogous to the parameter in the gauge
fixing term. Explicit calculations [54, 55] demonstrated that this function is re-
ally different from V . Moreover, the renormalization group equations cannot be
satisfied without taking the nonlinear terms into account [56].
Following [57,58], to introduce the regularization, we modify the action by adding
terms with higher powers of the covariant derivatives
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∇a = Da; ∇̄ȧ = e2F(V)e2VD̄ȧe
−2Ve−2F(V), (21.19)

after which the regularized action takes the form

Sreg =
1

2e20
Re tr

∫
d4xd2θWa

(
e−2Ve−2F(V)

)
Adj

R
(
−

∇̄2∇2

16Λ2

)
Adj

×
(
e2F(V)e2V

)
Adj

Wa +
1

4

∫
d4xd4θϕ∗i

[
F
(
−

∇̄2∇2

16Λ2

)
e2F(V)e2V

]
i

jϕj

+
(1
6
λijk0

∫
d4xd2θϕiϕjϕk

)
+ c.c.

)
(21.20)

and will contain the regulator functions R(x) and F(x). It is reasonable to choose the
gauge fixing term which does not break the background gauge invariance and is
analogous to the ξ-gauge fixing term in the usual Yang–Mills theory, although now
it should contain one more regulator function K(x). Certainly, the Faddeev-Popov
and Nielsen–Kalosh ghosts must also be introduced according to the standard
procedure.
The residual one-loop divergences are removed by inserting into the generating
functional the Pauli–Villars determinants [32]. In the considered supersymmetric
case one needs two such determinants [57, 58],

Z =

∫
DµDet(PV,Mφ)

−1Det(PV,M)T(R)/T(RPV)

× exp
{
i
(
Sreg + Sgf + SFP + SNK + Ssources

)}
, (21.21)

where the masses of the Pauli–Villars superfields φ1,2,3 in the adjoint representa-
tion andΦi in a representation RPV areMφ = aφΛ andM = aΛ, respectively, and
the coefficients aφ and a do not depend on couplings.

21.4 The all-loop derivation of the NSVZ equation: the main
steps

21.4.1 The ultraviolet finiteness of the triple gauge-ghost vertices

The first step needed for proving the non-Abelian NSVZ relation is the nonrenor-
malization theorem for the three-point vertices with two external lines of the
Faddeev–Popov ghosts and one external line of the quantum gauge superfield [27]
(see also [59] for the generalization to the case of theories with multiple gauge
couplings). According to this nonrenormalization theorem the triple gauge-ghost
vertices are finite in all orders.2 The all-loop proof of this statement in the gen-
eral ξ-gauge is based on the superfield Feynman rules and the Slavnov–Taylor

2 Similar statements in the Landau gauge were also proved for some theories formulated
in terms of usual fields [60, 61].
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identities. The one- and two-loop checks of it have been done in [27] and [62, 63],
respectively.
There are 4 vertices of the considered structure with the external lines corre-
sponding to the superfields c̄ Vc, c̄+Vc, c̄ Vc+, and c̄+Vc+, where c̄ and c are the
Faddeev–Popov antighost and ghost, respectively. The renormalization constants
for all these vertices coincide and are equal to Z−1/2

α ZcZV , where

1

α0
=
Zα

α
; V = ZVZ

−1/2
α VR; c̄c = ZcZ

−1
α c̄RcR, (21.22)

so that the nonrenormalization theorem can be expressed by the equation

d

d lnΛ
(Z−1/2

α ZcZV) = 0. (21.23)

21.4.2 An equivalent form of the NSVZ equation

The next step of the derivation is to rewrite the NSVZ relation in an equivalent
form [27]. For this purpose the non-Abelian NSVZ equation for RGFs defined in
terms of the bare couplings is presented as

β(α0, λ0)

α2
0

= −
3C2 − T(R) + C(R)i

j(γϕ)j
i(α0, λ0)/r

2π
+
C2

2π
· β(α0, λ0)

α0
. (21.24)

The β-function in the right hand side is expressed in terms of the anomalous
dimensions γc(α0, λ0) and γV(α0, λ0) (of the ghosts and of the quantum gauge
superfield, respectively) with the help of the equation (21.23),

β(α0, λ0) =
dα0(α, λ,Λ/µ)

d lnΛ

∣∣∣
α,λ=const

= −α0
d lnZα

d lnΛ

∣∣∣
α,λ=const

= −2α0
d ln(ZcZV)

d lnΛ

∣∣∣
α,λ=const

= 2α0

(
γc(α0, λ0) + γV(α0, λ0)

)
. (21.25)

Substituting this expression into the the right hand side of (21.24) we obtain the
equation

β(α0, λ0)

α2
0

= −
1

2π

(
3C2 − T(R) − 2C2γc(α0, λ0)

−2C2γV(α0, λ0) + C(R)i
j(γϕ)j

i(α0, λ0)/r
)

(21.26)

relating the β-function to the anomalous dimensions of the quantum superfields.
Note that the β-function in a certain loop is now expressed in terms of the anoma-
lous dimensions only in the previous loop, while the original NSVZ equation
relates the β-function only to the anomalous dimension of the matter superfields,
but in all previous loops. That is why the NSVZ equation in the form (21.26) has a
graphical interpretation analogous to the Abelian case. Namely, if one considers
a supergraph without external lines, then attaching two legs of the background
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gauge superfield in all possible ways gives a contribution to β(α0, λ0), while vari-
ous cuts of internal lines in the original vacuum supergraphs give contributions
to the anomalous dimensions of the quantum superfields. The equation (21.26)
relates all these contributions.

21.4.3 The β-function and integrals of double total derivatives

Next, it is necessary to prove that in supersymmetric theories regularized by
higher covariant derivatives the β-function defined in terms of the bare couplings
is given by integrals of double total derivatives with respect to the loop momenta.3

This fact was observed in a large number of explicit calculations, see, e.g., [65–
68]. Its all-loop proof in the non-Abelian case has been done in [28]. With the
help of a rather complicated technique it was demonstrated that the β-function
is determined by an expression which formally vanishes due to the Slavnov–
Taylor identity corresponding to the background gauge invariance. Analyzing the
Feynman rules it was demonstrated that that this expression is a sum of integrals
of double total derivatives which are in fact nontrivial due to singularities of
the integrands. Moreover, considering this formally vanishing expression as a
starting point, one can construct a method for obtaining the β-function in N = 1

supersymmetric theories regularized by higher covariant derivatives in N = 1

superspace [28, 69, 70]. This method requires to calculate only (specially modified)
vacuum supergraphs and produces the result for a contribution to the β-function
which comes from all superdiagrams obtained from them by attaching two external
lines of the background gauge superfield. Note that this result is automatically
obtained in the form of an integral of double total derivatives with respect to loop
momenta.
The correctness of the method for calculating the β-function has been confirmed
by a certain number of (very nontrivial) explicit calculations. For instance, using
this method the two-loop β-function of N = 1 supersymmetric Yang–Mills theory
with matter superfields in an arbitrary ξ-gauge has been reproduced in [69]. In
particular, it turned out that the NSVZ equations (21.1) and (21.26) are satisfied
even at the level of loop integrals. However, in this approximation the NSVZ
relations are scheme independent, so that it is desirable to consider the next order
of the perturbation theory.
The explicit three-loop calculation is very complicated and (with the higher co-
variant derivative regularization) has not yet completely been done. However, a
part of the three-loop β-function depending on the Yukawa couplings was found
in [67, 68] with the help of the standard technique. Subsequently the same part
of the β-function was obtained in [28] with the help of the new technique which
requires calculating only specially modified vacuum supergraphs. The results
produced by both methods coincided. This means that the new method really
works correctly.

3 This is not true for theories regularized by dimensional reduction due to a different
structure of loop integrals [64].
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21.4.4 Summation of singular contributions

The method for constructing integrals of double total derivatives described above
can be used for deriving the exact NSVZβ-function in all orders of the perturbation
theory. The main idea is that the integrals of double total derivatives can be taken
with the help of equations similar to (21.10). Then they are reduced to the sums
of singularities which correspond to various cuts of internal lines in vacuum
supergraphs. These sums were calculated in all orders in [29] (see also [71]). The
result can be presented in the following form:

β(α0, λ0)

α2
0

−
β1-loop(α0)

α2
0

(21.27)

=
1

π
C2γV(α0, λ0) +

1

π
C2γc(α0, λ0) −

1

2πr
C(R)i

j(γϕ)j
i(α0, λ0).

6 6 6

gauge propagators
Faddeev–Popov ghost propagators

matter propagators

We see that the sums of singularities corresponding to cuts of the gauge, ghost,
and matter propagators produce the corresponding anomalous dimensions in the
NSVZ equation written in the form (21.26). Substituting the one-loop expression
for the β-function4 we obtain the NSVZ equation for RGFs defined in terms of the
bare couplings. Note that a renormalization prescription in this case is not fixed,
but using of the higher covariant derivative regularization is highly essential.
Thus, we obtain the main result: the NSVZ relations (21.1) and (21.26) for RGFs
defined in terms of the bare couplings are valid in all orders of the perturbation
theory for RGFs defined in terms of the bare couplings if a theory is regularized
by higher covariant derivatives. Note that these RGFs are scheme-independent
for a fixed regularization, so that this result holds for any subtraction scheme
supplementing the higher covariant derivative regularization.

21.4.5 HD+MSL as an all-loop prescription giving some NSVZ schemes

In the HD+MSL scheme RGFs defined in terms of the renormalized couplings
coincide with the ones defined in terms of the bare couplings. Therefore, from
the above statement we obtain that the NSVZ equation (in both forms) for RGFs
defined in terms of the renormalized couplings holds under the HD+MSL renor-
malization prescription in all orders of the perturbation theory. Note that this
prescription gives a certain class of the NSVZ schemes,5 because minimal sub-
tractions of logarithms can supplement various versions of the higher covariant
derivative regularization.

4 With the higher covariant derivative regularization it has been calculated in [57].
5 A continuous set of NSVZ schemes was described in [59, 72, 73].
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21.5 Three-loop β-function for theories regularized by higher
derivatives

Now we know a renormalization prescription under which the NSVZ equation
holds. This allows to obtain a β-function in a certain loop by calculating the anoma-
lous dimension of the matter superfields in the previous loops. For instance, the
three-loop β-function for a general renormalizable N = 1 supersymmetric theory
has been constructed in [45] with the help of the NSVZ equation and the expres-
sion for the two-loop anomalous dimension obtained with this regularization.
Note that the NSVZ equation was used for RGFs defined in terms of the bare
couplings, while the standard RGFs (also obtained in [45]) do not in general satisfy
it. However, there is a certain particular case, for which the NSVZ equation in this
order holds for an arbitrary renormalization prescription. This is theories finite in
the one-loop approximation [9] (see also [74] for a recent review), which satisfy
the conditions

T(R) = 3C2; λ∗imnλ
jmn = 4παC(R)i

j. (21.28)

Really, according to [45], in this case the two-loop anomalous dimension of the mat-
ter superfields and the three-loop β-function defined in terms of the renormalized
couplings have the form

(γ̃ϕ,2−loop)i
j(α, λ) = −

3α2

2π2
C2C(R)i

j
(

ln
aφ

a
− b11 + b12

)
−

α

4π2

( 1
π
λ∗imn

×λjmlC(R)l
n + 2α

[
C(R)2

]
i
j
)(
A− B− 2g12 + 2g11

)
; (21.29)

β̃3−loop(α, λ)

α2
=
3α2

4π3r
C2 tr

[
C(R)2

] (
ln
aφ

a
− b11 + b12

)
+

α

8π3r

( 1
π
C(R)j

i

×C(R)lnλ∗imnλ
jml + 2α tr

[
C(R)3

] )(
A− B− 2g12 + 2g11

)
, (21.30)

where

A =

∞∫
0

dx ln x
d

dx

1

R(x)
; B =

∞∫
0

dx ln x
d

dx

1

F2(x)
a =

M

Λ
; aφ =

Mφ

Λ
,

(21.31)
and bi and gi are finite constants which fix a subtraction scheme in the lowest
approximations. From the equations (21.29) and (21.30) we see that for one-loop fi-
nite theories the NSVZ equation is satisfied in the lowest nontrivial approximation
for an arbitrary renormalization prescription,

β3−loop(α, λ)

α2
= −

1

2πr
C(R)i

j(γϕ,2−loop)j
i(α, λ). (21.32)

This result can be generalized. It is known that for N = 1 supersymmetric theories
finite in the one-loop approximation one can tune a subtraction scheme so that the
theory will be all-loop finite [10–13]. If a subtraction scheme is tuned in such a way
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that the β-function vanishes in the first L loops and the anomalous dimension of
the matter superfields vanishes in the first (L− 1) loops, then [75] for an arbitrary
renormalization prescription the (L+1)-loop gauge β-function satisfies the relation

βL+1(α, λ)

α2
= −

1

2πr
C(R)i

j(γϕ,L)j
i(α, λ). (21.33)

This implies that if a theory is finite in a certain approximation, then its β-function
vanishes in the next order in exact agreement with the earlier known result of
[76, 77].

21.6 Conclusion

Using the regularization by higher covariant derivatives, it is possible to reveal a
number of interesting quantum features in supersymmetric theories. In particular,
it is possible to construct an all-loop perturbative proof of the NSVZ equation and
formulate simple renormalization prescriptions under which it is valid. Namely, it
is valid for RGFs defined in terms of the bare couplings for any subtraction scheme
supplementing this regularization. This fact has a simple graphical interpretation
and follows from the factorization of loop integrals giving the β-function into
integrals of double total derivatives, which takes place with the higher covariant
derivative regularization. (Also the proof involves the nonrenormalization of triple
gauge-ghost vertices, which is another interesting feature of quantum corrections
in supersymmetric theories.) The usual RGFs (defined in terms of the renormalized
couplings) satisfy the NSVZ equation in the HD+MSL scheme, when in theories
regularized by higher covariant derivatives minimal subtractions of logarithms
are used for removing divergences. This statement sheds light on the question
of how one should calculate quantum corrections to obtain some exact result in
various supersymmetric theories.
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Institute of Astroparticle Physics (CosmoVia)

The Virtual Institute of Astroparticle Physics (VIA) which operates on website
http://viavca.in2p3.fr/site.html, has provided the platform for our online virtual
meetings.
Since 2014 VIA online lectures combined with individual work on Forum acquired
the form of Open Online Courses. Aimed to individual work with students the
Course is not Massive, but the account for the number of visits to VIA site converts
VIA in a specific tool for MOOC activity.
VIA sessions, being a traditional part of Bled Workshops’ program, have con-
verted at XXIV Bled Workshop ”What comes beyond the Standard models?” into
the only format, challenging to preserve the creative nonformal atmosphere of
meetings in Bled, Slovenia. We openly discuss the state of art of VIA platform:
http://bsm.fmf.uni-lj.si/bled2021bsm/presentations.html
https://bit.ly/bled2021bsm.
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22 Challenging BSM physics and cosmology on the
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Abstract. Under the conditions of pandemia the unique multi-functional complex of Virtual
Institute of Astroparticle Physics (VIA) operating on website http://viavca.in2p3.fr/site.html,
has provided the platform for online virtual meetings. We review VIA experience in pre-
sentation online for the most interesting theoretical and experimental results, participation
online in conferences and meetings, various forms of collaborative scientific work as well
as programs of education at distance, combining online videoconferences with extensive
library of records of previous meetings and Discussions on Forum. Since 2014 VIA online
lectures combined with individual work on Forum acquired the form of Open Online
Courses. Aimed to individual work with students the Course is not Massive, but the ac-
count for the number of visits to VIA site converts VIA in a specific tool for MOOC activity.
VIA sessions, being a traditional part of Bled Workshops’ program, have converted at
XXIV Bled Workshop ”What comes beyond the Standard models?” into the only format,
challenging to preserve the creative nonformal atmosphere of meetings in Bled, Slovenia.
We openly discuss the state of art of VIA platform.

Povzetek: V času pandemije je večnamenski kompleks Virtualnega inštituta za fiziko
astrodelcev (VIA), ki je dostopen na spletnem naslovu http://viavca.in2p3.fr/site.html,
zagotovil platformo za spletna virtualna srečanja. V prispevku predstavlja avtor izkušnje
VIA na področjih spletnih predstavitev najbolj zanimivih teoretičnih in eksperimentalnih
rezultatov, na področju spletnih konferenc in srečanj, pri različnih oblikah znanstvenega
sodelovanja ter pri izobraževanjih na daljavo. VIA združuje spletne videokonference z
obsežno knjižnico zapisov prejšnjih srečanj in razprav na forumu.
Od leta 2014 so VIA spletna predavanja v kombinaciji z individualnim delom na Forumu
pridobila obliko odprtih spletnih tečajev. Ker je VIA v osnovi namenjena individualnemu
delu s študenti, ni prilagojena velikemu številu sodelujočih. Pri večjem številu sodelujočih
deluje VIA kot posebno orodje za dejavnost množičnih odprtih spletnih tečajev (MOOC -
massive open online courses ). Seje VIA so tradicionalni del delavnic z naslovom “What
comes beyond the Standard models?”, ki potekajo vsako leto na Bledu. Na že XXIV delavnici
se je VIA preoblikovala v edinstven format, ki omogoča ustvarjalno neformalno vzdušje
srečanj na Bledu v Sloveniji. V prispevku predstavljamo razpravo o stanju tehnologije
platforme VIA.
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22.1 Introduction

Studies in astroparticle physics link astrophysics, cosmology, particle and nuclear
physics and involve hundreds of scientific groups linked by regional networks
(like ASPERA/ApPEC [1, 2]) and national centers. The exciting progress in these
studies will have impact on the knowledge on the structure of microworld and
Universe in their fundamental relationship and on the basic, still unknown, physi-
cal laws of Nature (see e.g. [3, 4] for review). The progress of precision cosmology
and experimental probes of the new physics at the LHC and in nonaccelerator
experiments, as well as the extension of various indirect studies of physics beyond
the Standard model involve with necessity their nontrivial links. Virtual Institute
of Astroparticle Physics (VIA) [5] was organized with the aim to play the role of
an unifying and coordinating platform for such studies.
Starting from the January of 2008 the activity of the Institute took place on its web-
site [6] in a form of regular weekly videoconferences with VIA lectures, covering
all the theoretical and experimental activities in astroparticle physics and related
topics. The library of records of these lectures, talks and their presentations was
accomplished by multi-lingual Forum. Since 2008 there were 220 VIA online lec-
tures, VIA has supported distant presentations of 192 speakers at 32 Conferences
and provided transmission of talks at 78 APC Colloquiums.
In 2008 VIA complex was effectively used for the first time for participation
at distance in XI Bled Workshop [7]. Since then VIA videoconferences became a
natural part of Bled Workshops’ programs, opening the virtual room of discussions
to the world-wide audience. Its progress was presented in [8–19].
Here the current state-of-art of VIA complex, integrated since 2009 in the structure
of APC Laboratory, is presented in order to clarify the way in which discussion
of open questions beyond the standard models of both particle physics and cos-
mology were presented at the virtual XXIV Bled Workshop on the platform of
VIA facility. In the conditions of pandemia, when all the offline meetings were
forbidden, VIA videoconferencing became the only possibility to continue in 2021
traditions of open discussions at Bled meetings.

22.2 VIA structure and activity

22.2.1 The problem of VIA site

The structure of the VIA site was based on Flash and is virtually ruined now in
the lack of Flash support. This original structure is illustrated by the Fig. 22.1. The
home page, presented on this figure, contained the information on the coming and
records of the latest VIA events. The upper line of menu included links to directo-
ries (from left to right): with general information on VIA (About VIA); entrance to
VIA virtual rooms (Rooms); the library of records and presentations (Previous),
which contained records of VIA Lectures (Previous → Lectures), records of online
transmissions of Conferences (Previous → Conferences), APC Colloquiums (Previ-
ous → APC Colloquiums), APC Seminars (Previous → APC Seminars) and Events
(Previous → Events); Calendar of the past and future VIA events (All events) and
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Fig. 22.1: The original home page of VIA site
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VIA Forum (Forum). In the upper right angle there were links to Google search
engine (Search in site) and to contact information (Contacts). The announcement
of the next VIA lecture and VIA online transmission of APC Colloquium occupied
the main part of the homepage with the record of the most recent VIA events below.
In the announced time of the event (VIA lecture or transmitted APC Colloquium)
it was sufficient to click on ”to participate” on the announcement and to Enter
as Guest (printing your name) in the corresponding Virtual room. The Calendar
showed the program of future VIA lectures and events. The right column on the
VIA homepage listed the announcements of the regularly up-dated hot news of
Astroparticle physics and related areas.
In the lack of Flash support this system of links is ruined, but fortunately, they
continue to operate separately and it makes possible to use VIA Forum, by direct
link to it, as well as direct inks to virtual room of adobeConnect used for regular
Laboratory meetings and Seminar and to Zoom (see Fig 22.2). The necessity to
restore all the links within VIA complex is a very important task to revive the
full scale of VIA activity. Another problem is the necessity to convert .flv files of
records in mp4 format.

22.2.2 VIA activity

In 2010 special COSMOVIA tours were undertaken in Switzerland (Geneva),
Belgium (Brussels, Liege) and Italy (Turin, Pisa, Bari, Lecce) in order to test stability
of VIA online transmissions from different parts of Europe. Positive results of these
tests have proved the stability of VIA system and stimulated this practice at XIII
Bled Workshop. The records of the videoconferences at the XIII Bled Workshop
were put on VIA site [20].
Since 2011 VIA facility was used for the tasks of the Paris Center of Cosmological
Physics (PCCP), chaired by G. Smoot, for the public program ”The two infinities”
conveyed by J.L.Robert and for effective support a participation at distance at
meetings of the Double Chooz collaboration. In the latter case, the experimentalists,
being at shift, took part in the collaboration meeting in such a virtual way.
The simplicity of VIA facility for ordinary users was demonstrated at XIV Bled
Workshop in 2011. Videoconferences at this Workshop had no special technical
support except for WiFi Internet connection and ordinary laptops with their
internal webcams and microphones. This test has proved the ability to use VIA
facility at any place with at least decent Internet connection. Of course the quality
of records is not as good in this case as with the use of special equipment, but still
it is sufficient to support fruitful scientific discussion as can be illustrated by the
record of VIA presentation ”New physics and its experimental probes” given by
John Ellis from his office in CERN (see the records in [21]).
In 2012 VIA facility, regularly used for programs of VIA lectures and transmission
of APC Colloquiums, has extended its applications to support M.Khlopov’s talk at
distance at Astrophysics seminar in Moscow, videoconference in PCCP, participa-
tion at distance in APC-Hamburg-Oxford network meeting as well as to provide
online transmissions from the lectures at Science Festival 2012 in University Paris7.
VIA communication has effectively resolved the problem of referee’s attendance
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Fig. 22.2: The current home page of VIA site
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at the defence of PhD thesis by Mariana Vargas in APC. The referees made their
reports and participated in discussion in the regime of VIA videoconference. In
2012 VIA facility was first used for online transmissions from the Science Festival
in the University Paris 7. This tradition was continued in 2013, when the transmis-
sions of meetings at Journées nationales du Développement Logiciel (JDEV2013)
at Ecole Politechnique (Paris) were organized [23].
In 2013 VIA lecture by Prof. Martin Pohl was one of the first places at which the
first hand information on the first results of AMS02 experiment was presented [22].
In 2014 the 100th anniversary of one of the foundators of Cosmoparticle physics, Ya.
B. Zeldovich, was celebrated. With the use of VIA M.Khlopov could contribute the
programme of the ”Subatomic particles, Nucleons, Atoms, Universe: Processes and
Structure International conference in honor of Ya. B. Zeldovich 100th Anniversary”
(Minsk, Belarus) by his talk ”Cosmoparticle physics: the Universe as a laboratory of
elementary particles” [24] and the programme of ”Conference YaB-100, dedicated
to 100 Anniversary of Yakov Borisovich Zeldovich” (Moscow, Russia) by his talk
”Cosmology and particle physics”.
In 2015 VIA facility supported the talk at distance at All Moscow Astrophysical
seminar ”Cosmoparticle physics of dark matter and structures in the Universe”
by Maxim Yu. Khlopov and the work of the Section ”Dark matter” of the Interna-
tional Conference on Particle Physics and Astrophysics (Moscow, 5-10 October
2015). Though the conference room was situated in Milan Hotel in Moscow all
the presentations at this Section were given at distance (by Rita Bernabei from
Rome, Italy; by Juan Jose Gomez-Cadenas, Paterna, University of Valencia, Spain
and by Dmitri Semikoz, Martin Bucher and Maxim Khlopov from Paris) and its
proceeding was chaired by M.Khlopov from Paris. In the end of 2015 M. Khlopov
gave his distant talk ”Dark atoms of dark matter” at the Conference ”Progress of
Russian Astronomy in 2015”, held in Sternberg Astronomical Institute of Moscow
State University.
In 2016 distant online talks at St. Petersburg Workshop ”Dark Ages and White
Nights (Spectroscopy of the CMB)” by Khatri Rishi (TIFR, India) ”The information
hidden in the CMB spectral distortions in Planck data and beyond”, E. Kholupenko
(Ioffe Institute, Russia) ”On recombination dynamics of hydrogen and helium”,
Jens Chluba (Jodrell Bank Centre for Astrophysics, UK) ”Primordial recombination
lines of hydrogen and helium”, M. Yu. Khlopov (APC and MEPHI, France and
Russia)”Nonstandard cosmological scenarios” and P. de Bernardis (La Sapiensa
University, Italy) ”Balloon techniques for CMB spectrum research” were given
with the use of VIA system. At the defense of PhD thesis by F. Gregis VIA facility
made possible for his referee in California not only to attend at distance at the
presentation of the thesis but also to take part in its successive jury evaluation.
Since 2018 VIA facility is used for collaborative work on studies of various forms
of dark matter in the framework of the project of Russian Science Foundation
based on Southern Federal University, Russia (Rostov on Don). In September 2018
VIA supported online transmission of 17 presentations at the Commemoration
day for Patrick Fleury, held in APC.
The discussion of questions that were put forward in the interactive VIA events
is continued and extended on VIA Forum. Presently activated in English,French
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and Russian with trivial extension to other languages, the Forum represents a
first step on the way to multi-lingual character of VIA complex and its activity.
Discussions in English on Forum are arranged along the following directions:
beyond the standard model, astroparticle physics, cosmology, gravitational wave
experiments, astrophysics, neutrinos. After each VIA lecture its pdf presentation
together with link to its record and information on the discussion during it are
put in the corresponding post, which offers a platform to continue discussion in
replies to this post.

22.2.3 VIA e-learning, OOC and MOOC

One of the interesting forms of VIA activity is the educational work at distance. For
the last eleven years M.Khlopov’s course ”Introduction to cosmoparticle physics”
is given in the form of VIA videoconferences and the records of these lectures and
their ppt presentations are put in the corresponding directory of the Forum [25].
Having attended the VIA course of lectures in order to be admitted to exam
students should put on Forum a post with their small thesis. In this thesis students
are proposed to chose some BSM model and to study the cosmological scenario
based on this chosen model. The list of possible topics for such thesis is proposed
to students, but they are also invited to chose themselves any topic of their own on
possible links between cosmology and particle physics. Professor’s comments and
proposed corrections are put in a Post reply so that students should continuously
present on Forum improved versions of work until it is accepted as admission for
student to pass exam. The record of videoconference with the oral exam is also
put in the corresponding directory of Forum. Such procedure provides completely
transparent way of evaluation of students’ knowledge at distance.
In 2018 the test has started for possible application of VIA facility to remote
supervision of student’s scientific practice. The formulation of task and discussion
of progress on work are recorded and put in the corresponding directory on Forum
together with the versions of student’s report on the work progress.
Since 2014 the second semester of the course on Cosmoparticle physics is given in
English and converted in an Open Online Course. It was aimed to develop VIA
system as a possible accomplishment for Massive Online Open Courses (MOOC)
activity [26]. In 2016 not only students from Moscow, but also from France and Sri
Lanka attended this course. In 2017 students from Moscow were accompanied by
participants from France, Italy, Sri Lanka and India [27]. The students pretending
to evaluation of their knowledge must write their small thesis, present it and, being
admitted to exam, pass it in English. The restricted number of online connections
to videoconferences with VIA lectures is compensated by the wide-world access
to their records on VIA Forum and in the context of MOOC VIA Forum and
videoconferencing system can be used for individual online work with advanced
participants. Indeed Google Analytics shows that since 2008 VIA site was visited
by more than 250 thousand visitors from 155 countries, covering all the continents
by its geography (Fig. 22.3). According to this statistics more than half of these
visitors continued to enter VIA site after the first visit. Still the form of individual
educational work makes VIA facility most appropriate for PhD courses and it
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Fig. 22.3: Geography of VIA site visits according to Google Analytics

could be involved in the International PhD program on Fundamental Physics,
which was planned to be started on the basis of Russian-French collaborative
agreement. In 2017 the test for the ability of VIA to support fully distant education
and evaluation of students (as well as for work on PhD thesis and its distant
defense) was undertaken. Steve Branchu from France, who attended the Open
Online Course and presented on Forum his small thesis has passed exam at
distance. The whole procedure, starting from a stochastic choice of number of
examination ticket, answers to ticket questions, discussion by professors in the
absence of student and announcement of result of exam to him was recorded and
put on VIA Forum [28].
In 2019 in addition to individual supervisory work with students the regular
scientific and creative VIA seminar is in operation aimed to discuss the progress
and strategy of students scientific work in the field of cosmoparticle physics.
In 2020 the regular course now for M2 students continued, but the problems
of adobe Connect, related with the lack of its support for Flash in 2021 made
necessary to use the platform of Zoom, This platform is rather easy to use and
provides records, as well as whiteboard tools for discussions online can be solved
by accomplishments of laptops by graphic tabloids.

22.2.4 Organisation of VIA events and meetings

First tests of VIA system, described in [5, 7–9], involved various systems of video-
conferencing. They included skype, VRVS, EVO, WEBEX, marratech and adobe
Connect. In the result of these tests the adobe Connect system was chosen and
properly acquired. Its advantages were: relatively easy use for participants, a pos-
sibility to make presentation in a video contact between presenter and audience, a
possibility to make high quality records, to use a whiteboard tools for discussions,
the option to open desktop and to work online with texts in any format. This choice
however should be reconsidered in future or at least accomplished by Zoom in
view of the lack of support for Flash on which VIA site is based.
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Initially the amount of connections to the virtual room at VIA lectures and discus-
sions usually didn’t exceed 20. However, the sensational character of the exciting
news on superluminal propagation of neutrinos acquired the number of partic-
ipants, exceeding this allowed upper limit at the talk ”OPERA versus Maxwell
and Einstein” given by John Ellis from CERN. The complete record of this talk
and is available on VIA website [29]. For the first time the problem of necessity
in extension of this limit was put forward and it was resolved by creation of a
virtual ”infinity room”, which can host any reasonable amount of participants.
Starting from 2013 this room became the only main virtual VIA room, but for
specific events, like Collaboration meetings or transmissions from science festivals,
special virtual rooms can be created. This solution strongly reduced the price of the
licence for the use of the adobeConnect videoconferencing, retaining a possibility
for creation of new rooms with the only limit to one administrating Host for all of
them.
The ppt or pdf file of presentation is uploaded in the system in advance and then
demonstrated in the central window. Video images of presenter and participants
appear in the right window, while in the lower left window the list of all the
attendees is given. To protect the quality of sound and record, the participants
are required to switch out their microphones during presentation and to use the
upper left Chat window for immediate comments and urgent questions. The Chat
window can be also used by participants, having no microphone, for questions
and comments during Discussion. The interactive form of VIA lectures provides
oral discussion, comments and questions during the lecture. Participant should
use in this case a ”raise hand” option, so that presenter gets signal to switch out his
microphone and let the participant to speak. In the end of presentation the central
window can be used for a whiteboard utility as well as the whole structure of
windows can be changed, e.g. by making full screen the window with the images
of participants of discussion.
Regular activity of VIA as a part of APC included online transmissions of all the
APC Colloquiums and of some topical APC Seminars, which may be of interest
for a wide audience. Online transmissions were arranged in the manner, most
convenient for presenters, prepared to give their talk in the conference room in a
normal way, projecting slides from their laptop on the screen. Having uploaded
in advance these slides in the VIA system, VIA operator, sitting in the conference
room, changed them following presenter, directing simultaneously webcam on
the presenter and the audience. If the advanced uploading was not possible, VIA
streaming was used - external webcam and microphone are directed to presenter
and screen and support online streaming. This experience will find proper place,
when, hopefully, pandemia ends and regular meetings in real can become possible.

22.2.5 VIA activity in the conditions of pandemia

The lack of usual offline connections and meetings in the conditions of pandemia
made the use of VIA facility especially timely and important. This facility supports
regular weekly meetings of the Laboratory of cosmoparticle studies of the structure
and dynamics of Galaxy in Institute of Physics of Southern Federal University,
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Russia (Rostov on Don, Russia) and M.Khlopov’s scientific - creative seminar and
their announcements occupied their permanent position on VIA homepage (Fig.
22.2), while their records were put in respective place of VIA forum, like [30] for
Laboratory meetings.
The platform of VIA facility was used for regular Khlopov’s course ”Introduction
to Cosmoparticle physics” for M2 students of MEPHI (in Russian) and in 2020
supported regular seminars of Theory group of APC.
The programme of VIA lectures continued to present hot news of astroparticle
physics and cosmology, like talk by Zhen Cao from China on the progress of
LHAASO experiment or lecture by Sunny Vagnozzi from UK on the problem of
consistency of different measurements of the Hubble constant.
The results of this activity inspired the decision to hold in 2020 XXIII Bled Work-
shop online on the platform of VIA [19].
The conditions of pandemia continued in 2021 and VIA facility was successfully
used to provide the platform for various online meetings. 2021 was announced
by UNESCO as A.D.Sakharov year in the occasion of his 100th anniversary VIA
offered its platform for various events commemorating A.D.Sakharov’s legacy in
cosmoparticle physics. In the framework of 1 Electronic Conference on Universe
ECU2021), organized by the MDPI journal ”Universe” VIA provided the platform
for online satellite Workshop ”Developing A.D.Sakharov legacy in cosmoparticle
physics” [31].

Fig. 22.4: M.Khlopov’s talk ”Multimessenger probes for new physics in the light of
A.D.Sakharov legacy in cosmoparticle physics” at the satellite Workshop ”Devel-
oping A.D.Sakharov legacy in cosmoparticle physics” of ECU2021.
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22.3 VIA platform for virtual XXIV Bled Workshop

VIA sessions at Bled Workshops continued the tradition coming back to the first
experience at XI Bled Workshop [7] and developed at XII, XIII, XIV, XV, XVI, XVII,
XVIII, XIX, XX, XXI and XXII Bled Workshops [8–18]. They became a regular
but supplementary part of the Bled Workshop’s program. In the conditions of
pandemia it became the only form of Workshop activity in 2020 [19] and continued
to be so in 2021.
During the XXIV Bled Workshop the announcement of VIA sessions was put on
VIA home page, giving an open access to the videoconferences at the Workshop
sessions. The preliminary program as well as the corrected program for each day
were continuously put on Forum [32] with the slides and records of all the talks
and discussions [32].
VIA facility tried to preserve the creative atmosphere of Bled discussions. All the
talks in the program of XXIV Bled Workshop were given in the format videoconfer-
ences as the talks ”How far has so far the Spin-Charge-Family theory succeeded to
offer the explanation for the observed phenomena:...” by Norma Mankoc-Borstnik
from Ljubljana, Slovenia (Fig. 22.5) or ”Mirror dark matter in laboratory and sky”
by A. Addazi, (Fig. 22.6), from Sichuan University, China (see records in [32]).

Fig. 22.5: The talk ”How far has so far the Spin-Charge-Family theory succeeded to
offer the explanation for the observed phenomena:...” by Norma Mankoc-Borstnik
at XXIV Bled Workshop

During the Workshop the VIA virtual room was open, inviting distant participants
to join the discussion and extending the creative atmosphere of these discussions to
the world-wide audience. The participants joined these discussions from different
parts of world: L.Bonora from Italy (Fig. 22.7), R.Mohapatra (Fig.22.8) and Q.Shafi
(Fig.22.9) from US, E.Kiritsis (Fig.22.10) from Crete and I.Antoniadis (Fig.22.11)
from Paris.
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Fig. 22.6: VIA talk ”Mirror dark matter in laboratory and sky” by A. Addazi from
Chengdu, China at XXIV Bled Workshop

Fig. 22.7: VIA talk ”A YM-like theory with infinite many fields” by Loriano Bonora
at XXIV Bled Workshop

These talks highly enriched the program and their records, as well as records of
all the talks and discussions can be found on VIA Forum [32]. The online format
of Workshop provided remote presentation of students’ scientific debuts in BSM
physics and cosmology.
Though the technical conditions didn’t make possible nonformal private discus-
sions of participants, still VIA facility has managed to join scientists from Mexico,
USA, France, Italy, Russia, Slovenia, Denmark, India, China and many other
countries in discussion of open problems of physics and cosmology beyond the
Standard models.
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Fig. 22.8: VIA talk ”B-L: the next symmetry of Nature” by Rabindra Mohapatra at
XXIV Bled Workshop

Fig. 22.9: VIA talk ”Topological structures in the Unified Theory” by Qaisar Shafi
at XXIV Bled Workshop

22.4 Conclusions

The Scientific-Educational complex of Virtual Institute of Astroparticle physics
provides regular communication between different groups and scientists, working
in different scientific fields and parts of the world, the first-hand information
on the newest scientific results, as well as support for various educational pro-
grams at distance. This activity would easily allow finding mutual interest and
organizing task forces for different scientific topics of cosmology, particle physics,
astroparticle physics and related topics. It can help in the elaboration of strategy of
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Fig. 22.10: VIA talk ”QFTs on De Sitter, holography and Coleman - de Lucia
transitions ” by Elias Kiritsis at XXIV Bled Workshop

Fig. 22.11: VIA talk ”The cosmological constant in supergravity and string theory”
by Ignatios Antoniadis at XXIV Bled Workshop

experimental particle, nuclear, astrophysical and cosmological studies as well as in
proper analysis of experimental data. It can provide young talented people from
all over the world to get the highest level education, come in direct interactive
contact with the world known scientists and to find their place in the fundamental
research. These educational aspects of VIA activity can evolve in a specific tool for
International PhD program for Fundamental physics. Involvement of young scien-
tists in creative discussions was an important aspect of VIA activity at XXIII Bled
Workshop. VIA applications can go far beyond the particular tasks of astroparticle
physics and give rise to an interactive system of mass media communications.
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VIA sessions, which became a natural part of a program of Bled Workshops,
maintained in 2020 the platform for online discussions of physics beyond the
Standard Model for distant participants from all the world in the lack of possibility
of offline meetings. This discussion can continue in posts and post replies on VIA
Forum. The experience of VIA applications at Bled Workshops plays important role
in the development of VIA facility as an effective tool of e-science and e-learning.
One can summarize the advantages and flaws of online format of Bled Workshop.
It makes possible to involve in the discussions scientists from all the world (young
scientists, especially) free of the expenses related with meetings in real (voyage,
accommodation, ...), but loses the advantage of nonformal discussions at walks
along the beautiful surrounding of the Bled lake and other places of interest. The
improvement of VIA technical support by involvement of Zoom provided better
platform for nonformal online discussions, but in no case can be the substitute for
Bled meetings and its creative atmosphere in real. One can summarize that VIA
sessions should remain a useful but still supplementary tool of Bled Workshop
meetings in real, provided that such real meetings are possible.
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Postscriptum

In Memory of Mag. Dragan Lukman, 11 March 1962 - 19 July 2021

Words do not obey thoughts and feelings when writing in memory of someone
who has been a collaborator for many years, a friend I talked to over short coffees
about all open questions of our world: in physics, cosmology, mathematics, about
society, human life, about values; we just never talked about personal life.
Dragan Lukman joined us in Koper on my Project on elementary fermion and
boson fields (the project at the Department of Physics, Faculty of Mathematics
and Physics, University of Ljubljana), when I managed to establish the Institute of
Technical and Natural Sciences in Koper (PINT). He also was involved in common
projects with industry.
At that time, the Bled workshop was held for the second year. Dragan took over
the technical side of editing workshops and proceedings of the workshops up to
this year 2021, the 24thworkshop. He was all the time an excellent helper and a
good friend to all.
The first research in the field of physics of elementary fermionic and bosonic fields,
in which Dragan participated, were at first published in the proceedings of the
workshops ”What comes beyond the standard models”. They belong to a project
entitled spin-charge-family theory, which I am developing since 1992, also together
with colleagues and students. There are still some articles that are not yet prepared
for publication in international journals in which Dragan participated.
An overview of all proceedings can be found on the home page of the Bled
Workshops
http: //bsm.fmf.uni-lj.si/bled2021bsm/presentations.html,
after 2008 also on the Cosmovia forum: https://bit.ly/bled2021bsm.
Proceedings are cited in articles published also in international journals in this
field, among them those coauthored with Dragan.
A song can say a lot and Astri Kleppe on behalf of all of us, who appreciated
Dragan and liked him, wrote the poem, appearing in this Proceedings.

Norma Susana Mankoč Borštnik
norma.mankoc@fmf.uni-lj.si
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Dragan Lukman was introduced into the research work in the midle of eighties
of previous century when Slovenia started with the ”1000 Young Researchers
Project”. After finishing his diploma work at the Department of Physics Dragan
decided to expand his field of interest to the field of mathematics. He enrolled
the postgraduate course at the Department of Mathematics and simultaneously
he participated in the research work at the National Institute of Chemistry as a
member of the Laboratory for Molecular Modelling. In due course he accomplished
all the necessary steps to attain the degree of master of mathematical sciences. His
participation in the scientific work resulted in ten publications in international
scientific journals. Dragan was able to cope with the research work in quite diverse
fields such as strict statistical mechanics, the application of molecular dynamics
simulation of biological systems and even technologically oriented studies of
mechanical properties of fullerenes.

Prof. dr. Branko Borštnik,
The head of The Laboratory for Molecular Modelling at the National Institute for
Chemistry Ljubljana, Slovenia in the period when Dragan Lukman was member
of the group

Mag. Dragan Lukman, holding Master of Science degree in Mathematics and Bach-
elor degree in Physics, both degrees received from University of Ljubljana, has
approached me, after important recommendations from Prof.dr. Norma Mankoč
Borštnik, in May 2019 with an interest to apply for a research position in my
research project Quantum Localization in Chaotic Systems being carried out at
CAMTP - Center for Applied Mathematics and Theoretical Physics of the Uni-
versity of Maribor, funded by the Slovenian Research Agency ARRS. In our first
interview with him it was immediately obvious that he has quite wide experi-
ence in working with various research groups in Slovenia, predominantly with
Norma Mankoč and her coworkers, but also with others, with broad knowledge
in physics and mathematics, and in computational physics. Therefore my decision
to offer him the job was easy. Thus he has joined my core research group, a part of
CAMTP, whose members also are dr. Qian Wang, dr. Črt Lozej (my PhD student
at the time) and dr. Benjamin Batistić (also my former PhD student, 2015, now
postdoc). We started to work together with Dragan on 1 June 2019. Our main
object of study was the phenomenon of quantum or dynamical localization in
classically chaotic systems, one of the central issues in the domain of quantum
chaos. More precisely, we have been studying very extensively and deeply the
localization phenomena in the so called lemon billiards, a special family of two
dimensional billiards with extremely rich behaviour both classically and quantaly.
They are important paradigmatic model systems. The selection of billiards was
made possible only thanks to the extensive calculations by Črt Lozej in the course
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of his PhD thesis. Dragan started his work quite enthusiastically, and was using
mainly the software codes developed over the many years by Benjamin Batistić
and recently very drastically improved and expanded by Črt Lozej. In doing so we
were discovering very many exciting results which emerged by our heavy compu-
tations, and Dragan was always very careful, fast, responsive and reliable, with
good physical insight, presenting the results in a shortest possible time, working
every day from early morning until the late afternoon, and even on weekends
at home. Based on the results under his cooperation four important papers have
been produced, 3 of them already published in excellent journals (Physical Review
E, Physics MDPI, Nonlinear Phenomena in Complex Systems), the fourth one just
in the progress of writing. Therefore Dragan’s contribution to our results is quite
essential and appreciated.
Dragan was a very pleasant personality, highly modest and quiet person, always
helpful, never complaining, and deeply dedicated to his work, not only at our
institute, but also in other groups. We did not know much about his personal life,
as he was a very shy person and did not show emotions, but this does not mean
that he was not sensible and empathic. The tragic news about his sudden death
on his way to work in the early morning on Monday 19 July 2021 was a great
shock for all of us. We shall remember him as a wonderful fellow and a very good
researcher. Our papers with him are a long lasting remembrance of him.

Prof.dr. Marko Robnik, member of EASA
Founder and Director of CAMTP - Center for Applied Mathematics and Theoreti-
cal Physics, University of Maribor
Robnik@uni-mb.si
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Draganu Lukmanu v spomin in zahvalo, 11. marec 1962 - 19. julij 2021

Prave besede kar ne stečejo v zapis v spomin nekomu, ki je bil dolga leta sodelavec,
prijatelj in s katerim sva ob kratkih kavicah prediskutirala vsa odprta vprašanja
tega sveta, v fiziki, v kozmologiji, v matematiki, v družbi, v človekovem življenju,
o vrednotah, le o osebnem življenju nisva govorila nikoli.
Dragan Lukman se mi je pridružil v Kopru na projektu Fizike osnovih delcev in
polj, Oddelka za fiziko Fakultete za matematiko in fiziko Univerze v Ljubljani, ko
mi je uspelo ustanoviti Primorski inštitut za naravoslovne in tehnične vede Koper.
Sodeloval je tudi na projektih, ki smo jih razvili z gospodarstvom.
Tedaj je Blejska delavnica tekla že drugo leto. Prevzel je tehnično plat urejanja
delavnice in zbornika delavnice vse do letošnje 24. delavnice. Bil je vseskozi
izvrsten pomočnik in dober prijatelj vsem.
Prve raziskave na področju fizike osnovnih fermionskih in bozonskih polj, pri
katerih je Dragan sodeloval, so bile najprej objavljene v zbornikih delavnic ”What
comes beyond the standard models”. Sodijo v projekt z naslovom spin-charge-
family theory, ki ga razvijam, tudi skupaj s sodelavci in študenti, že od leta 1992.
Je še nekaj prispevkov, ki še niso dozoreli za objavo v mednarodnih revijah, pri
katerih je Dragan sodeloval.
Pregled vseh zbornikov je najti na domači strani Blejskih delavnic
http://bsm.fmf.uni-lj.si/bled2021bsm/presentations.html,
po letu 2008 pa tudi na Cosmovia forum: https://bit.ly/bled2021bsm .
V prispevkih zbornikov so citirani članki, ki so, potem ko so dozoreli, objavljeni v
mednarodnih revijah s tega področja, tudi tisti v soavtorstvu z Draganom.
Pesem pove lahko zelo veliko in Astri Kleppe je v imenu vseh nas, ki smo Dragana
cenili in imeli radi, napisala pesem, ki jo objavljamo v tem zborniku.

Norma Susana Mankoč Borštnik
norma.mankoc@fmf.uni-lj.si

Dragan Lukman se je pridružil moji raziskovalni skupini v Laboratoriju za moleku-
larno modeliranje na Nacionalnem Kemijskem inštitu sredi osemdesetih let prejšnjega
stoletja, ko je Slovenija odprla projekt ”1000 mladih raziskovalcev”, ki je omogočil
vključitev podiplomskih študentov v raziskovalno delo. Po diplomi na Oddelku za
fiziko, Fakultete za matematiko in fiziko, Univerze v Ljubljani se je Dragan odločil
za magistrski študij na Oddelku za matematiko, raziskovalno delo pa je nadaljeval
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na Kemijskem inštitutu v moji skupini. Pravočasno je opravil vse potrebno za
pridobitev stopnje magistra matematičnih znanosti. Sodeloval je pri znanstvenem
delu, ki je bilo objavljeno v desetih člankih v mednarodnih znanstvenih revijah.
Dragan je sodeloval pri raziskavah na precej raznolikih področjih, kot so stroga
statistična mehanika, uporaba molekularne dinamike za simulacijo bioloških siste-
mov in celo pri tehnološko usmerjenem študiju mehanskih lastnosti fulerenov.

prof. dr. Branko Borštnik,
dolgoletni vodja laboratorija za molekularno modeliranje na Kemijskem inštitutu
v Ljubljani
branko.borstnik@ki.si

Mag. Dragan Lukman, ki je imel magisterij iz matematike ter diplomo iz fizike z
Univerze v Ljubljani, me je kontaktiral, na osnovi pomembnih priporočil Prof.dr.
Norme Mankoč Borštnik, v maju 2019, z zanimanjem za delovno mesto razisko-
valca na mojem raziskovalnem projektu Kvantna lokalizacija v kaotičnih sistemih,
ki je bil izvajan na CAMTP - Centru za uporabno matematiko in teoretično fiziko
Univerze v Mariboru, in je bil financiran s strani ARRS. Že ob prvem intervjuju je
postalo nemudoma jasno, da ima kar široke izkušnje v sodelovanju z različnimi
raziskovalnimi skupinami v Sloveniji, predvsem z Normo Mankoč Borštnik in
njenimi sodelavci, a tudi z drugimi, s širokim znanjem v fiziki in matematiki
ter v računski teoretični fiziki. Zato je bila lahka moja odločitev, da mu ponudim
zaposlitev. Tako se je pridružil moji jedrni raziskovalni skupini, ki je del CAMTP in
katere člani so tudi dr. Qian Wang, dr. Črt Lozej (moj tedanji doktorand) in dr. Ben-
jamin Batistić (tudi moj nekdanji doktorand, 2015, sedaj podoktorski sodelavec).
Naše sodelovanje z Draganom se je pričelo 1. junija 2019. Naš glavni predmet
raziskav je bil pojav kvantne ali dinamične lokalizacije v klasičnih kaotičnih sis-
temih, ena glavnih tem na področju kvantnega kaosa. Natančneje, obširno in
poglobljeno smo proučevali lokalizacijske pojave v tako imenovanih limonastih
biljardih, ki so posebna družina dvo-dimenzionalnih biljardov z izjemno bogatim
vedenjem tako klasično kot kvantno. Le-ti so pomembni paradigmatični mod-
elski sistemi. Izbor teh biljardov je bil omogočen zahvaljujoč obširnim računom
Črta Lozeja v teku njegove doktorske disertacije. Dragan je pričel z delom dokaj
navdušeno, in je uporabljal v glavnem softverske programe, ki jih je v dolgih
letih razvijal in razvil Benjamin Batistić, in ki jih je v zadnjem času zelo korenito
izboljšal in razširil Črt Lozej. Na tej poti smo odkrili veliko novih vznemirljivih
rezultatov, ki so izšli iz naših masivnih računov, in Dragan je bil vselej zelo skrben,
hiter, odziven in zanesljiv, z dobrim fizikalnim vpogledom. Rezultate je predstavil
v kar najkrajšem možnem času, pri čemer je delal vsak dan od zgodnjega jutra
do poznega popoldneva, pa tudi čez vikend od doma. Na osnovi rezultatov v
okviru sodelovanja z njim smo pripravili štiri pomembne članke, trije od njih
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so že objavljeni v odličnih revijah (Physical Review E, Physics MDPI, Nonlinear
Phenomena in Complex Systems), četrti pa je v procesu pisanja. Zato je Draganov
prispevek k našim rezultatom bistven in cenjen.
Dragan je bil prijazna osebnost, zelo skromen in tih, zmerom v pomoč, nikoli se ni
pritoževal, ter predan svojemu delu, ne samo na našem institutu, temveč tudi v
drugih skupinah. O njegovem zasebnem življenju nismo vedeli veliko, saj je bil
zelo plah, in ni kazal čustev, kar pa ne pomeni, da ni bil senzibilen in empatičen.
Tragična novica o njegovi nenadni smrti na njegovi poti na delo zgodaj zjutraj
v ponedeljek 19. julija 2021 je bila velik šok za vse nas. Spominjali se ga bomo
kot čudovitega kolega in zelo dobrega raziskovalca. Naši skupni članki z njim so
trajen spomin nanj.
Prof. dr. Marko Robnik, član EASA
Ustanovitelj in direktor CAMTP - Centra za uporabno matematiko in teoretično
fiziko Univerze v Mariboru
Robnik@uni-mb.si
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To Dragan, in grateful memory

A man of great integrity
A private man,
who shyly would inform you
about things misunderstood, and facts
about cosmology, computers
or Slovenia.
His land.

He was a helper, much too humble,
and so gentle
that we sometimes did not see him.
And suddenly he’s gone.
A summer day, the brightest day
in early afternoon,
the coffee cup half full, and children
laughing in the park nearby
When suddenly a wind
as light
as butterfly
came by
and brought him
to the other side,

and left us here
in our confusion, our never ending
search for understanding
All our reasoning, our turning
every stone
in this chaotic pain
and beauty
where our lives take place.
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Uredili Norma Susana Mankoč Borštnik, Holger Bech Nielsen, Dragan Lukman
and Astri Kleppe
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