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More than 50 years ago the electroweak (and colour) standard
model offered an elegant new step in understanding the
origin of fermions and bosons by postulating:

A.

▶ The existence of massless family members with the
charges in the fundamental representation of the groups -
o the coloured triplet quarks and colourless leptons,
o the left handed members as the weak charged doublets,
o the right handed weak chargeless members,
o the left handed quarks distinguishing in the hyper
charge from the left handed leptons,
o each right handed member having a different hyper
charge.

▶ The existence of massless families to each of a family
member.



▶

α hand- weak hyper colour elm
edness charge charge charge charge

name −4iS03S12 τ13 Y Q

uiL −1 1
2

1
6

colour triplet 2
3

diL −1 − 1
2

1
6

colour triplet − 1
3

ν iL −1 1
2

− 1
2

colourless 0

eiL −1 − 1
2

− 1
2

colourless −1

uiR 1 weakless 2
3

colour triplet 2
3

diR 1 weakless − 1
3

colour triplet − 1
3

ν iR 1 weakless 0 colourless 0

eiR 1 weakless −1 colourless −1

Members of each of the i = 1, 2, 3 families, i = 1, 2, 3 massless before the electroweak break. Each family

contains the left handed weak charged quarks and the right handed weak chargeless quarks, belonging to the

colour triplet (1/2, 1/(2
√
3)), (−1/2, 1/(2

√
3)), (0,−1/(

√
3)).

And the anti-fermions to each family and family member.



B.

▶ The existence of massless vector gauge fields to the
observed charges of the family members,
carrying charges in the adjoint representation of the
charge groups.

Masslessness needed for gauge invariance.



Gauge fields before the electroweak break

▶ Three massless vector fields, the gauge fields of the
three charges.

name hand- weak hyper colour elm
edness charge charge charge charge

hyper photon 0 0 0 colourless 0

weak bosons 0 triplet 0 colourless triplet

gluons 0 0 0 colour octet 0

They all are vectors in d = (3 + 1), in the adjoint
representations with respect to the weak, colour and
hyper charges.



C.

▶ The existence of a massive scalar field - the higgs,

o carrying the weak charge ±1
2 and the hyper charge ∓1

2 (as
it would be in the fundamental representation of the groups.)

o gaining at some step the imaginary mass and consequently
the constant value , breaking the weak and the hyper charge
and correspondingly breaking the mass protection.

▶ The existence of the Yukawa couplings, taking care of

o the properties of fermions and

o the masses of the heavy bosons.



▶ The Higgs’s field, the scalar in d = (3 + 1), a doublet
with respect to the weak charge.

▶

name hand- weak hyper colour elm
edness charge charge charge charge

0· Higgsu 0 1
2

1
2 colourless 1

< Higgsd > 0 − 1
2

1
2 colourless 0

▶

name hand- weak hyper colour elm
edness charge charge charge charge

< Higgsu > 0 1
2 − 1

2 colourless 0

0· Higgsd 0 − 1
2 − 1

2 colourless −1



D.

▶ There is the gravitational field in d=(3+1).



▶ The standard model assumptions have been confirmed
without offering surprises.

▶ The last unobserved field as a field, the Higgs’s scalar,
detected in June 2012, was confirmed in March 2013.

▶ The waves of the gravitational field were detected in
February 2016 and again 2017.



There remain not understood phenomena:

▶ The Standard model assumptions need explanation.

▶ There are several cosmological observations which do
not look to be explainable within the standard model, like

o The existence of the dark matter

o The matter/antimatter asymmetry in the universe

o The need for the dark energy

▶ the observed dimension of space time,

▶ the quantization of the gravitational field,

▶ · · ·



▶ The Standard model assumptions have in the literature
several explanations, but with many new not explained
assumptions.

▶ I am proposing the Spin-Charge-Family theory, which
offers the explanation for
i. all the assumptions of the standard model,
ii. for many observed phenomena:
ii.a. the dark matter,
ii.b. the matter-antimatter asymmetry,
ii.c. others observed phenomena,
iii. explaining the Dirac’s postulates for the second

quantized fermion and second quantized boson
fields,

iv. making several predictions.

Is the Spin-Charge-Family theory the right next step
beyond both standard models?



▶ Work done so far on the spin-charge-family theory is
promising.



** We try to understand:

▶ What are elementary constituents and interactions
among constituents in our Universe, in any universe?

▶ Can the elementary constituent be of only one kind?
Are the four observed interactions — gravitational,
elektromagnetic, weak and colour — of the common
origin?

▶ Can the postulated second quantized fermions and
second quantized bosons be understood trough the
algebra, like it is the quantization of the coordinates?
Can fermions and bosons be second quantized in an
equivalent way?

▶ Is the space-time (3 + 1)? If yes why (3+1)?

▶ If not (3 + 1) may it be that the space-time is infinite?

▶ How has the space-time of our universe started?

▶ What is the matter and what the anti-matter?



Obviously it is the time to make the next step beyond both
standard models.



What questions should one ask to be able to find next steps
beyond the standard models and to understand not yet
understood phenomena?

▶ o Where do family members originate?
o Where do charges of family members originate?
o Why are the charges of family members so different?
o Why have the left handed family members so different
charges from the right handed ones?

▶ o Where do families of family members originate?
o How many different families exist?
o Why do family members – quarks and leptons –
manifest so different properties if they all start as
massless?



▶ o How is the origin of the scalar field (the Higgs’s
scalar) and the Yukawa couplings connected with the
origin of families?
o How many scalar fields determine properties of the so
far (and others possibly be) observed fermions and masses
of weak bosons? (The Yukawa couplings certainly speak for
the existence of several scalar fields with the properties of
Higgs’s scalar.)

▶ Why is the Higgs’s scalar, or are all scalar fields, if there
are several, doublets with respect to the weak and the
hyper charge?

▶ Do exist also scalar fields with the colour charge in the
fundamental representation and where, if they are, do
they manifest?



▶ Where do the charges and correspondingly the so far (and
others possibly be) observed vector gauge fields originate?

▶ Where does the dark matter originate?

▶ Where does the ”ordinary” matter-antimatter asymmetry
originate?

▶ Where does the dark energy originate?

▶ What is the dimension of space? (3+ 1)?, ((d − 1) + 1)?, ∞?

▶ What is the role of the symmetries– discrete, continuous,
global and gauge – in our universe, in Nature?

▶ And many others.



My statement:

▶ An elegant trustworthy next step must offer answers to
several open questions, explaining:
o The origin of the family members and the charges.
o The origin of the families and their properties.
o The origin of the scalar fields and their properties.
o The origin of the vector fields and their properties.
o The origin of the internal space of fermions and
bosons and of their properties.
o The origin of the dark matter.
o The origin of the ”ordinary” matter-antimatter
asymmetry.



My statement continues:

▶ There exist not yet observed families, gauge vector and
gauge scalar fields.

▶ Dimension of space is larger than 4 (very probably infinite).

▶ Inventing a next step which covers one of the open
questions, might be of a help but can hardly show the
right next step in understanding nature.



In the literature NO explanation for the existence of the
families can be found, which would not just assume the
family groups.
Several extensions of the standard model are, however,
proposed, like:

▶ The SU(3) group is assumed to describe – not explain –
the existence of three families.
Like the Higgs’s scalar charges are in the fundamental
representations of the groups, also the Yukawas are
assumed to emerge from the scalar fields, in the
fundamental representation of the SU(3) group.



▶ SU(5) and SO(10) grand unified theories are proposed,
unifying all the charges. But the spin (the handedness) is
obviously connected with the (weak and the hyper) charges,
what these theories do ”by hand” as it does the standard
model, and the appearance of families is not explained.

▶ Supersymmetric theories, assuming the existence of
bosons with the charges of quarks and leptons and
fermions with the charges of the gauge vector fields,
although having several nice properties but not
explaining the appearance of families (except again by
assuming larger groups), are not, to my understanding,
the right next step beyond the standard model.



o The Spin-Charge-Family theory does offer the explanation
for all the assumptions of the standard model,

answering up to now several of the above cited open
questions!

o The more effort is put into this theory,
the more answers to the open questions in elementary
particle physics and cosmology is the theory offering.



o I shall first make a short introduction into the
Spin-Charge-Family theory.

o I shall report on how does the odd Clifford algebra explain
the second quantization postulates of Dirac.

Rev. article in JPPNP –2021 Progress in Particle and
Nuclear Physics http://doi.org/10.1016.j.ppnp.2021.103890

.
o I shall report on how does the even Clifford algebra explain
the second quantization of boson fields. [arXiv:2108.05718]

o I shall make an overview of achievements so far of the
Spin-Charge-Family theory.



▶ A brief introduction into the spin-charge-family theory.



▶ There are two kinds of the Clifford algebra objects
in any d . I recognized that in Grassmann space.

J. of Math. Phys. 34 (1993) 3731

θa’s and pθa ’s, p
θ
a = ∂

∂θa
with the property
(θa)† = ηaa ∂

∂θa
.

i. The Dirac γa (recognized 90 years ago in d = (3 + 1)).
ii. The second one: γ̃a,

γa = (θa − i pθa) , γ̃a = i (θa + i pθa) ,

References can be found in
Progress in Particle and Nuclear Physics,
http://doi.org/10.1016.j.ppnp.2021.103890 .



▶ The two kinds of the Clifford algebra objects
anticommute

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+,
{γa, γ̃b}+ = 0,

▶ the postulate

(γ̃aB = i(−)nBBγa ) |ψ0 >,

(B = a0 + aaγ
a + aabγ

aγb + · · ·+ aa1···adγ
a1 . . . γad )|ψo >,

with (−)nB = +1,−1, if B has a Clifford even or odd
character, respectively, |ψo > is a vacuum state on which the
operators γa apply, reduces the Clifford space for
fermions for the factor of two, while the operators
γ̃aγ̃b = −2i S̃ab define the family quantum numbers.



▶ It is convenient to write all the ”basis vectors” describing
the internal space of either fermion fields or boson fields
as products of nilpotents and projectors, which are
eigenvectors of the chosen Cartan subalgebra

S03,S12,S56, · · · ,Sd−1 d ,

S̃03, S̃12, S̃56, · · · , S̃d−1 d ,

Sab = Sab + S̃ab .

nilpotents

Sab 1

2
(γa +

ηaa

ik
γb) =

k

2

1

2
(γa +

ηaa

ik
γb) ,

ab

(k) :=
1

2
(γa +

ηaa

ik
γb) ,

projectors

Sab 1

2
(1 +

i

k
γaγb) =

k

2

1

2
(1 +

i

k
γaγb) ,

ab

[k] :=
1

2
(1+

i

k
γaγb) ,

(
ab

(k))2 = 0 , (
ab

[k])2 =
ab

[k] ,

ab

(k)

†

= ηaa
ab

(−k) ,
ab

[k]

†

=
ab

[k] .



Sab
ab

(k) =
k

2

ab

(k), Sab
ab

[k] =
k

2

ab

[k],

S̃ab
ab

(k) =
k

2

ab

(k), S̃ab
ab

[k] = −frack2
ab

[k] .

γa
ab

(k) = ηaa
ab

[−k] , γb
ab

(k) = −ik
ab

[−k] , γa
ab

[k] =
ab

(−k) , γb
ab

[k] = −ikηaa
ab

(−k) ,

γ̃a
ab

(k) = −iηaa
ab

[k] , γ̃b
ab

(k) = −k
ab

[k] , γ̃a
ab

[k] = i
ab

(k) , γ̃b
ab

[k] = −kηaa
ab

(k) ,
ab

(k)
ab

(−k) = ηaa
ab

[k] ,
ab

[k]
ab

(k) =
ab

(k) ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(−k) = 0 ,
ab

[k]
ab

[−k] = 0 ,
ab

(̃−k)
ab

(k) = −iηaa
ab

[k] ,
ab

[̃k]
ab

(k) =
ab

(k) ,
ab

(̃k)
ab

[k] = i
ab

(k) ,
ab

[̃−k]
ab

[k] =
ab

[k] ,
ab

(̃k)
ab

(k) = 0 ,
ab

[̃−k]
ab

(k) = 0 ,
ab

(̃k)
ab

[−k] = 0 ,
ab

[̃k]
ab

[k] = 0 .



▶ γa transforms
ab

(k) into
ab

[−k], never to
ab

[k].

▶ γ̃a transforms
ab

(k) into
ab

[k], never to
ab

[−k].

▶ There are the Clifford odd ”basis vector”, that is the
”basis vector” with an odd number of nilpotents, at
least one, the rest are projectors, such ”basis vectors”
anti commute among themselves.

▶ There are the Clifford even ”basis vector”, that is the
”basis vector” with an even number of nilpotents, the
rest are projectors, such ”basis vectors” commute
among themselves.



▶ Let us see how does one family of the Clifford odd
”basis vector” in d = (13 + 1) look like, if spins in
d = (13 + 1) are analysed with respect to the Standard
Model groups.

▶ One irreducible representation of one family contains

2
(13+1)

2
−1 = 64 members which include all the family

members, quarks and leptons with the right handed
neutrinos included, as well as all the antimembers,
antiquarks and antileptons, reachable by either Sab (or
by CN PN on a family member).

Jour. of High Energy Phys. 04 (2014) 165
J. of Math. Phys. 34, 3731 (1993),
Int. J. of Modern Phys. A 9, 1731 (1994),
J. of Math. Phys. 44 4817 (2003), hep-th/030322 .



Sab generate all the members of one family. The eightplet
(represent. of SO(7, 1)) of quarks of a particular colour charge.
All are Clifford odd ”basis vectors” .

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y τ4

Octet, Γ(7,1) = 1, Γ(6) = −1,
of quarks

1 uc1R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
1 0 1

2
2
3

1
6

2 uc1R

03
[−i ]

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
1 0 1

2
2
3

1
6

3 dc1R

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
1 0 − 1

2
− 1

3
1
6

4 dc1R

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
1 0 − 1

2
− 1

3
1
6

5 dc1L

03
[−i ]

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
-1 − 1

2
0 1

6
1
6

6 dc1L

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
-1 − 1

2
0 1

6
1
6

7 uc1L

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
-1 1

2
0 1

6
1
6

8 uc1L

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
-1 1

2
0 1

6
1
6

γ0γ7 and γ0γ8 transform uR of the 1st row into uL of the 7th row, and dR of the 4rd row into dL of the 6th row,

doing what the Higgs scalars and γ0 do in the standard model.



Sab generate all the members of one family with leptons
included. Here is The eightplet (represent. of SO(7, 1)) of
leptons colour chargeless. the SO(7, 1) part is identical with
the one of quarks.

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y Q

Octet, Γ(7,1) = 1, Γ(6) = −1,
of leptons

1 νR
03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
1 0 1

2
0 0

2 νR
03

[−i ]
12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
1 0 1

2
0 0

3 eR
03

(+i)
12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
1 0 − 1

2
−1 −1

4 eR
03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
1 0 − 1

2
−1 −1

5 eL
03

[−i ]
12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
-1 − 1

2
0 − 1

2
−1

6 eL
03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
-1 − 1

2
0 − 1

2
−1

7 νL
03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
-1 1

2
0 − 1

2
0

8 νL
03

(+i)
12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
-1 1

2
0 − 1

2
0

γ0γ7 and γ0γ8 transform νR of the 1st line into νL of the 7th line, and eR of the 4rd line into eL of the 6th line,

doing what the Higgs scalars and γ0 do in the standard model.



Sab generate also all the anti-eightplet (repres. of SO(7, 1)) of
anti-quarks of the anti-colour charge bellonging to the same
family of the Clifford odd basis vectors .

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y τ4

Antioctet, Γ(7,1) = −1, Γ(6) = 1,
of antiquarks

33 d̄c̄1L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
1 0 1

2
1
3

− 1
6

34 d̄ c̄1L

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 − 1

2
1 0 1

2
1
3

− 1
6

35 ūc̄1L

03
[−i ]

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
1 0 − 1

2
− 2

3
− 1

6

36 ūc̄1L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] - 1 − 1

2
1 0 − 1

2
− 2

3
− 1

6

37 d̄c̄1R

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
-1 1

2
0 − 1

6
− 1

6

38 d̄ c̄1R

03
[−i ]

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
-1 1

2
0 − 1

6
− 1

6

39 ūc̄1R

03
(+i)

12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
-1 − 1

2
0 − 1

6
− 1

6

40 ūc̄1R

03
[−i]

12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
-1 − 1

2
0 − 1

6
− 1

6

γ0γ7 and γ0γ8 transform d̄L of the 1st row into d̄R of the 5th row, and ūL of the 4rd row into ūR of the 8th row.



▶ We discuss so far the internal space of fermions
describing their internal space with Clifford odd ”basis
vectors”.

▶ Before we start to discuss Clifford even ”basis vectors”
describing the internal space of bosons let us write down
the action.

▶ Fermions and bosons can exist even if they do not
interact, at least mathematically.

▶ Describing their internal space we do not pay attention
on their interactions. We treat them as free fields.

▶ Describing the properties of fermions and bosons as we
observe, the interaction should be included: A simple
and elegant one (this is how I ”see nature”)
demonstrating at low energies all the observed
phenomena.



I use in the spin-charge-family theory a simple action.
Fermions carry in d = (13 + 1) only spins, two kinds of spins
(no charges) and interact with the gauge gravitational fields.

S =

∫
ddx E Lf +∫
ddx E (αR + α̃ R̃)

▶

Lf =
1

2
(ψ̄ γap0aψ) + h.c.

p0a = f αap0α +
1

2E
{pα,Ef αa}−

p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα



▶ The Einstein action for a free gravitational field is assumed to
be linear in the curvature

Lg = E (αR+ α̃R̃),

R = fα[afβb] (ωabα,β − ωcaαω
c
bβ),

R̃ = fα[afβb] (ω̃abα,β − ω̃caαω̃
c
bβ),

with E = det(eaα)
and f α[af βb] = f αaf βb − f αbf βa.

▶ I shall first treat ”basis vectors” and correspondingly the
creation operators for either the Clifford odd fermion
fields or for the Clifford even boson fields in the limit of
free fields.

▶ Let me discuss the Clifford even ”basis vectors”, offering
the description of the internal space of bosons within a
toy model in d = (5 + 1), pointing out the difference
between the ”basis vectors” of odd and ”basis vectors”
of even Clifford algebra elements.



▶ One can learn in Progress in Particle and Nuclear
Physics, http://doi.org/10.1016.j.ppnp.2021.103890 , Eq.
(14, 16, 28), that there are 2d Grassmann polynomials of
θa’s and 2d their Hermitian conjugated partners ∂

∂θa
,

(θa)† = ηaa ∂
∂θa

.

▶ One can also learn that there are 2d Clifford objects,
which are products of γa’s

γa = (θa + ∂
∂θa

) ,

half of them form Clifford odd ”basis vectors” , half of
them form Clifford even ”basis vectors” .

▶ There are 2
d
2
−1 Clifford odd family members, appearing

2
d
2
−1 irreducible representations, carrying family

quantum numbers.

And there are 2
d
2
−1× 2

d
2
−1 their Hermitian conjugated

partners. Together there are 2d−1 Clifford odd ”basis
vectors”.

▶ And there are 2d−1 Clifford even ”basis vectors”.



▶ Let us start now to learn about properties of ”basis
vectors” constituting the creation operators of boson
fields on the case of d = (5 + 1).

▶ In d = (5 + 1) there are 2
6
2
−1 members in each of 2

6
2
−1

families.

▶ Clifford odd ”basis vectors”, b̂m†
f , have their Hermitian

conjugated partners, b̂mf , in the separate group not
reachable either by Sab or by S̃ab . Due to

ab

(k)
†

= ηaa
ab

(−k) ,
ab

[k]
†

=
ab

[k] .

▶ Clifford even ”basis vectors”, I Âm†
f , have their Hermitian

conjugated partners, I Âm
f , within the same group

reachable by Sab or by S̃ab .



basis vect. m f = 1 f = 2 f = 3 f = 4

S̃03, S̃12, S̃56 → i
2
,− 1

2
,− 1

2
− i

2
,− 1

2
, 1
2

− i
2
, 1
2
,− 1

2
i
2
, 1
2
, 1
2

S03 S12 S56 Γ(5+1) Γ(3+1)

odd I b̂
m†
f

1
03

(+i)
12
[+]

56
[+]

03
[+i ]

12
[+]

56
(+)

03
[+i ]

12
(+)

56
[+]

03
(+i)

12
(+)

56
(+) i

2
1
2

1
2

1 1

2 [−i ](−)[+] (−i)(−)(+) (−i)[−][+] [−i ][−](+) − i
2

− 1
2

1
2

1 1

3 [−i ][+](−) (−i)[+][−] (−i)(+)(−) [−i ](+)[−] − i
2

1
2

− 1
2

1 −1

4 (+i)(−)(−) [+i ](−)[−] [+i ][−](−) (+i)[−][−] i
2

− 1
2

− 1
2

1 −1

S03, S12, S56 → − i
2
, 1
2
, 1
2

i
2
, 1
2
,− 1

2
i
2
,− 1

2
, 1
2

− i
2
,− 1

2
,− 1

2
S̃03 S̃12 S̃56 Γ(5+1) Γ̃(3+1)

03 12 56 03 12 56 03 12 56 03 12 56

odd II b̂mf 1 (−i)[+][+] [+i ][+](−) [+i ](−)[+] (−i)(−)(−) − i
2

− 1
2

− 1
2

−1 1

2 [−i ](+)[+] (+i)(+)(−) (+i)[−][+] [−i ][−](−) i
2

1
2

− 1
2

−1 1

3 [−i ][+](+) (+i)[+][−] (+i)(−)(+) [−i ](−)[−] i
2

− 1
2

1
2

−1 −1

4 (−i)(+)(+) [+i ](+)[−] [+i ][−](+) (−i)[−][−] − i
2

1
2

1
2

−1 −1

S̃03, S̃12, S̃56 → − i
2
, 1
2
, 1
2

i
2
,− 1

2
, 1
2

− i
2
,− 1

2
,− 1

2
i
2
, 1
2
,− 1

2
S03 S12 S56 Γ(5+1) Γ(3+1)

03 12 56 03 12 56 03 12 56 03 12 56

even I IAm
f 1 [+i ](+)(+) (+i)[+](+) [+i ][+][+] (+i)(+)[+] i

2
1
2

1
2

1 1

2 (−i)[−](+) [−i ](−)(+) (−i)(−)[+] [−i ][−][+] − i
2

− 1
2

1
2

1 1

3 (−i)(+)[−] [−i ][+][−] (−i)[+](−) [−i ](+)(−) − i
2

1
2

− 1
2

1 −1

4 [+i ][−][−] (+i)(−)[−] [+i ](−)(−) (+i)[−](−) i
2

− 1
2

− 1
2

1 −1

S̃03, S̃12, S̃56 → i
2
, 1
2
, 1
2

− i
2
,− 1

2
, 1
2

i
2
,− 1

2
,− 1

2
− i

2
, 1
2
,− 1

2
S03 S12 S56 Γ(5+1) Γ(3+1)

03 12 56 03 12 56 03 12 56 03 12 56

even II IIAm
f 1 [−i ](+)(+) (−i)[+](+) [−i ][+][+] (−i)(+)[+] − i

2
1
2

1
2

−1 −1

2 (+i)[−](+) [+i ](−)(+) (+i)(−)[+] [+i ][−][+] i
2

− 1
2

1
2

−1 −1

3 (+i)(+)[−] [+i ][+][−] (+i)[+](−) [+i ](+)(−) i
2

1
2

− 1
2

−1 1

4 [−i ][−][−] (−i)(−)[−] [−i ](−)(−) (−i)[−](−) − i
2

− 1
2

− 1
2

−1 1



▶ Clifford odd ”basis vectors” describing the internal space of
fermions in the case of d = (5 + 1) are presented in the

table as odd I b̂m†
f , having odd numbers of nilpotents

▶ b̂mf is presented in the same table as odd II b̂mf .
The two groups are not reachable by either Sab or by S̃ab.

▶ Clifford even ”basis vectors” describing the internal space
of bosons in the case of d = (5 + 1) are presented in the

table as even I , II I ,II Âm†
f , having an even numbers of

nilpotents.

▶ Their Hermitian conjugated partner appear within the
same group of ”basis vectors”, either I or II,
demonstrating correspondingly the properties of the
internal space of the gauge fields to the fermion ”basis
vectors”.



▶ Clifford odd ”basis vector” describing the internal space

of quark uc1†↑R , ⇔ b1†1 :=
03

(+i)
12

[+] |
56

[+]
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] ,
has the Hermitian conjugated partner equal to

uc1↑R⇔ (b1†1 )† =
13 14

[−]
11 12

[−]
9 10

(−) ||
78

(−)
56

[+] |
12

[+]
03

(−i), both with
an odd number of nilpotents,
both are the Clifford odd objects, belonging to two
group.

▶ Quarks ”basis vectors” contain b1†1 =
03

(+i)
12

[+] |
56

[+] from
d=(5+1).

▶ Clifford even ”basis vectors”, having an even number of
nilpotents, describe the internal space of the
corresponding boson field

IAm
f =

03

(+i)
12

(+) |
56

[+]
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] ,

▶ it contains IAm
f =

03

(+i)
12

(+) |
56

[+] from d=(5+1).



Anti-commutation relations for Clifford odd ”basis vectors”,
representing the internal space of fermion fields of
quarks and leptons (i = (uc,f ,↑,↓R,L , dc,f ,↑,↓

R,L , νf ,↑,↓R,L , ef ,↑,↓R,L )) ,
and anti-quarks and anti-leptons, with the family quantum

number f .

▶ {bmf ,b
k†
f‘ }∗A+|ψo > = δf f′ δ

mk |ψo > ,

▶ {bmf ,bkf‘}∗A+|ψo > = 0·|ψo > ,

▶ {bm†
f ,bk†f′ }∗A+|ψo > = 0·|ψo > ,

▶ bmf |ψo > = 0·|ψo > ,

▶ bm†
f |ψo > = |ψm

f > ,

|ψo > =
03

[−i]
12

[−]
56

[−] · · ·
13 14

[−] | 1 >
define the vacuum state for quarks and leptons and
antiquarks and antileptons of the family f .

[ arXiv:1802.05554v1], [arXiv:1802.05554v4], [arXiv:1902.10628]



Commutation relations for Clifford even ”basis vectors”,
representing the internal space of boson fields of two kinds,
iÂm†

f , i = (I , II ), which are the gauge fields of the fermion
fields

▶

iÂm†
f ∗A iÂm′†

f‘ →
{

iÂm†
f‘ ,

or 0 , i = (I, II) .

▶

IÂm†
f ∗A IIÂm†

f = 0 = IIÂm†
f ∗A IÂm†

f .

I shall demonstrate the properties of I Âm†
f as the gauge

fields of the corresponding b̂m†
f in what follows.



Let us come back to d=(5+1) case and to the properties of
the Clifford odd and the Clifford even ”basiss vectors”
Let us first treat the properties of the ”basis vectors” for
fermion fields in d = (5 + 1), then we shall treat properties of
the ”basis vectors” for boson fields in d = (5 + 1), as well as
their mutual interaction.

The ”basis vectors” for fermion fields in d = (5 + 1), appear
in four families, each family is identical with respect to
Sab = i

4(γ
aγb − γbγa), distinguishing only in

S̃ab = i
4(γ̃

aγ̃b − γ̃bγ̃a).
The nilpotents and projectors are chosen to be eigenstates of the
Cartan subalgebra of the Lorentz algebra

Sab
ab

(k) =
k

2

ab

(k), Sab
ab

[k] =
k

2

ab

[k],

S̃ab
ab

(k) =
k

2

ab

(k), S̃ab
ab

[k] = −k

2

ab

[k].

S̃01
03

(+i)
12

[+]
56

[+]= − i
2

03

[+i ]
12

(+)
56

[+] ,

and the b̂m†
f are eigenvectors of all the Cartan subalgebra members.



”Basis vectors” for fermions

f m b̂
m†
f

S03 S12 S56 Γ3+1 N3
L N3

R τ3 τ8 τ S̃03 S̃12 S̃56

I 1
03

(+i)
12
[+] |

56
[+] i

2
1
2

1
2

1 0 1
2

0 0 − 1
2

i
2

− 1
2

− 1
2

2
03

[−i ]
12
(−) |

56
[+] − i

2
− 1

2
1
2

1 0 − 1
2

0 − 1√
3

1
6

i
2

− 1
2

− 1
2

3
03

[−i ]
12
[+] |

56
(−) − i

2
1
2

− 1
2

−1 1
2

0 − 1
2

1
2
√

3
1
6

i
2

− 1
2

− 1
2

4
03

(+i)
12
(−) |

56
(−) i

2
− 1

2
− 1

2
−1 − 1

2
0 1

2
1

2
√

3
1
6

i
2

− 1
2

− 1
2

II 1
03
[+i ]

12
(+) |

56
[+] i

2
1
2

1
2

1 0 1
2

0 0 − 1
2

− i
2

1
2

− 1
2

2
03

(−i)
12
[−] |

56
[+] − i

2
− 1

2
1
2

1 0 − 1
2

0 − 1√
3

1
6

− i
2

1
2

− 1
2

3
03

(−i)
12
(+) |

56
(−) − i

2
1
2

− 1
2

−1 1
2

0 − 1
2

1
2
√

3
1
6

− i
2

1
2

− 1
2

4
03
[+i ]

12
[−] |

56
(−) i

2
− 1

2
− 1

2
−1 − 1

2
0 1

2
1

2
√

3
1
6

− i
2

1
2

− 1
2

III 1
03
[+i ]

12
[+] |

56
(+) i

2
1
2

1
2

1 0 1
2

0 0 − 1
2

− i
2

− 1
2

1
2

2
03

(−i)
12
(−) |

56
(+) − i

2
− 1

2
1
2

1 0 − 1
2

0 − 1√
3

1
6

− i
2

− 1
2

1
2

3
03

(−i)
12
[+] |

56
[−] − i

2
1
2

− 1
2

−1 1
2

0 − 1
2

1
2
√

3
1
6

− i
2

− 1
2

1
2

4
03
[+i ]

12
(−) |

56
[−] i

2
− 1

2
− 1

2
−1 − 1

2
0 1

2
1

2
√

3
1
6

− i
2

− 1
2

1
2

IV 1
03

(+i)
12
(+) |

56
(+) i

2
1
2

1
2

1 0 1
2

0 0 − 1
2

i
2

1
2

1
2

2
03

[−i ]
12
[−] |

56
(+) − i

2
− 1

2
1
2

1 0 − 1
2

0 − 1√
3

1
6

i
2

1
2

1
2

3
03

[−i ]
12
(+) |

56
[−] − i

2
1
2

− 1
2

−1 1
2

0 − 1
2

1
2
√

3
1
6

i
2

1
2

1
2

4
03

(+i)
12
[−] |

56
[−] i

2
− 1

2
− 1

2
−1 − 1

2
0 1

2
1

2
√

3
1
6

i
2

1
2

1
2



To demonstrate properties of the internal space of fermions
using the odd Clifford subalgebra let us use the superposition
of members of Cartan subalgebra for the subgroup
SO(3, 1)× U(1): (N3

± , τ)

N3
±(= N3

(L,R)) :=
1

2
(S12 ± iS03) , τ = S56 ,

what is meaningful if we understand S03 and S12 as spins of
fermions and S56 as their charge,

and for the subgroup SU(3) ×U(1): (τ ′, τ3, τ8)

τ3 :=
1

2
(−S1 2 − iS0 3) , τ8 =

1

2
√
3
(−iS0 3 + S1 2 − 2S5 6) ,

τ ′ = −1

3
(−iS0 3 + S1 2 + S5 6) ,

if we treat the colour properties for fermions to learn from
this toy model as much as we can. The number of
commuting operators is three in both cases.



We recognize twice 2 ”basis vectors” with charge ± 1
2 , and with

spins up and down.

-iS03

56S

S12

(1/2,-1/2,-1/2)

(-1/2,-1/2,1/2)

(1/2,1/2,1/2)

(-1/2,1/2,-1/2)

We recognize one colour triplet of ”basis vectors” with τ ′ = 1
6 and

one colour singlet with τ ′ = − 1
2 .

τ3

τ8

τ'

(1/2,1/2√3,1/6)

(0,0,-1/2)

(-1/2,1/2√3,1/6)

(0,-1/√3,1/6)



▶ Let us see the algebraic application, ∗A, of the Clifford
even ”basis vectors” I Âm†

f=3, m = (1, 2, 3, 4), presented in

the first table in the third column of even I , on b̂m=1†
f=1 ,

presented as the first Clifford odd I ”basis vector” on the
first and the second table.

▶ The algebraic application, ∗A, can easily be evaluated by
taking into account

ab

(k)
ab

(−k) = ηaa
ab

[k] ,
ab

[k]
ab

(k) =
ab

(k) ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(−k) = 0 ,
ab

[k]
ab

[−k] = 0 ,

for any m and f .



▶

IÂ1†
3 (≡

03

[+i ]
12

[+]
56

[+])∗Ab̂1†1 (≡
03

(+i)
12

[+]
56

[+]) → b̂1†1 , selfadjoint

IÂ2†
3 (≡

03

(−i)
12

(−)
56

[+])∗Ab̂1†1 → b̂2†1 (≡
03

[−i ]
12

(−)
56

[+]) ,

IÂ3†
3 (≡

03

(−i)
12

[+]
56

(−))∗Ab̂1†1 → b̂3†1 (≡
03

[−i ]
12

[+]
56

(−)) ,

IÂ4†
3 (≡

03

[+i ]
12

(−)
56

(−))∗Ab̂1†1 → b̂4†1 (≡
03

(+i)
12

(−)
56

(−)) .

Looking at the eigenvalues of the b̂m†
1 we see that I Âm†

3

obviously carry the integer eigenvalues of S03,S12,S56.



Let us look at the eigenvalues of (τ3, τ8, τ ′) of b̂m†
1 .

b̂1†1 has (τ3, τ8, τ ′) = (0, 0,−1
2),

b̂2†1 has (τ3, τ8, τ ′) = (0,− 1√
3
, 16),

b̂3†1 has (τ3, τ8, τ ′) = (−1
2 ,

1
2
√
3
, 16),

b̂4†1 has (τ3, τ8, τ ′) = (12 ,
1

2
√
3
, 16).

The eigenvalues of (τ3, τ8, τ ′) of I Â1†
3 are obviously

I Â1†
3 has (τ3, τ8, τ ′) = (0, 0, 0),

I Â2†
3 has (τ3, τ8, τ ′) = (0,− 1√

3
, 23),

I Â3†
3 has (τ3, τ8, τ ′) = (−1

2 ,
1

2
√
3
, 23),

I Â4†
3 has (τ3, τ8, τ ′) = (12 ,

1
2
√
3
, 23),

It can be concluded: Sab=Sab + S̃ab. Using this recognition
we find the properties of the Clifford even ”basis vectors”:



f m ∗ I Âm†
f

S03 S12 S56 N 3
L N 3

R τ3 τ8 τ ′

I 1 ⋆⋆
03
[+i]

12
(+)

56
(+) 0 1 1 1

2
1
2

− 1
2

− 1
2
√

3
− 2

3

2 △
03

(−i)
12
[−]

56
(+) −i 0 1 1

2
− 1

2
− 1

2
− 3

2
√

3
0

3 ‡
03

(−i)
12
(+)

56
[−] −i 1 0 1 0 −1 0 0

4 ⃝
03
[+i ]

12
[−]

56
[−] 0 0 0 0 0 0 0 0

II 1 •
03

(+i)
12
[+]

56
(+) i 0 1 − 1

2
1
2

1
2

− 1
2
√

3
− 2

3

2 ⊗
03

[−i ]
12
(−)

56
(+) 0 −1 1 − 1

2
− 1

2
1
2

− 3
2
√

3
0

3 ⃝
03

[−i ]
12
[+]

56
[−] 0 0 0 0 0 0 0 0

4 ‡
03

(+i)
12
(−)

56
[−] i −1 0 −1 0 1 0 0

III 1 ⃝
03
[+i ]

12
[+]

56
[+] 0 0 0 0 0 0 0 0

2 ⊙⊙
03

(−i)
12
(−)

56
[+] −i −1 0 0 −1 0 − 1√

3
2
3

3 •
03

(−i)
12
[+]

56
(−) −i 0 −1 1

2
− 1

2
− 1

2
1

2
√

3
2
3

4 ⋆⋆
03
[+i ]

12
(−)

56
(−) 0 −1 −1 − 1

2
− 1

2
1
2

1
2
√

3
2
3

IV 1 ⊙⊙
03

(+i)
12
(+)

56
[+] i 1 0 0 1 0 1√

3
− 2

3

2 ⃝
03

[−i ]
12
[−]

56
[+] 0 0 0 0 0 0 0 0

3 ⊗
03

[−i ]
12
(+)

56
(−) 0 1 −1 1

2
1
2

− 1
2

3
2
√

3
0

4 △
03

(+i)
12
[−]

56
(−) i 0 −1 − 1

2
1
2

1
2

3
2
√

3
0

Selfadjoint members are denoted by ⃝, Hermitian conjugated

partners are denoted by the same symbol.



Fig. analyses I Âm†
f with respect to Cartan subalgebra members

(τ 3, τ 8, τ ′).There are
one sextet with τ ′ = 0,

four singlets with (τ 3 = 0, τ 8 = 0, τ ′ = 0),
one triplet with τ ′ = 2

3 and one triplet with τ ′ = − 2
3 .

Families play NO role!

τ(1,0,0)(-1,0,0)

(1/2,√3/2,0)(-1/2,√3/2,0)

(-1/2,-√3/2,0)
(1/2,-√3/2,0)

(0,1/√3,-2/3)

(-1/2,-1/(2√3),-2/3)
(1/2,-1/(2√3),-2/3)

(1/2,1/(2√3),2/3)
(-1/2,1/(2√3),2/3)

(0,-1/√3,2/3)
τ

τ

3

8

'



We now know how to describe the internal space of bosons
with ”basis vectors” I Âm†

f and fermions with ”basis vectors”

b̂m
′†

f ′ .

And we know the action

A =

∫
ddx E Lf +

∫
ddx E (αR + α̃ R̃) ,

defining the interaction between fermions and bosons

Lf −
1

2
(ψ̄ γap0aψ) + h.c .p0a = f αap0α +

1

2E
{pα,Ef αa}−

p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα



▶ It is time now to relate the boson fields with the
fermion fields.

▶ It is time to relate the boson fields with the boson
fields.

▶ Let us point out that I Âm†
f concern only the internal

space of bosons, while in the action it appears beside
Sab, which apply on the fermion field , also ωabα which
have the vector index in addition.

o o To relate I Âm†
f with ωabα we must multiply I Âm†

f by
a vector ICm

f α .



▶ We treat fermion and bosons as free fields, that is as
plane waves. We can now relate the application of
I Âm†

f
ICm

f α and ωabα by applying both on
∑

m′ b̂
m′†
f ′ βm

′

{
∑
m,f

IÂm†
f Cmf

α }∗A {
∑
m′

b̂m
′†

f′ βm
′} = {

∑
ab

Sabωabα} {
∑
m′′

b̂m
′′†

f′ βm
′′}

for a chosen family f ′, the same in in {
∑

m′ b̂
m′†
f′ βm

′} and

in {
∑

m′′ b̂
m′′†
f′ βm

′′}.

▶ We relate (2
d
2
−1)2 of IÂm†

f with d(d−1)
2 of ωabα for a

particular α.



Let us check how it works for d = (3 + 1) with four {IÂm†
f

ICm
fα} and

with six {Sab ωabα}.
For IÂm†

f
ICmf

α we get from

{IÂ1†
1 (

03

[+i]
12

[+])IC1
1α+

IÂ2†
1 (

03

(−i)
12

(−)) IC2
1α+

IÂ1†
2

03

(+i)
12

(+))IC1
2α+

IÂ2†
2 (

03

[−i]
12

[−])IC2
2α}

{b̂1†1 β
1
1 + b̂2†1 β

2
1 + b̂3†1 β

3
1 + b̂4†1 β

4
1}

=
1

2

∑
ab

Sabωabα{b̂1†1 β
1
1 + b̂2†1 β

2
1 + b̂3†1 β

3
1 + b̂4†1 β

4
1} .

the expressions for four ICmf
α in terms of six ωabα.

IC1
1α =

1

2
(iω03α + ω12α) ,

IC2
2α = −1

2
(iω03α + ω12α)

IC1
2α = i

1

2
(ω01α − iω02α − ω31α + iω32α)

IC2
1α = i

1

2
(ω01α + iω02α + ω31α + iω32α)

. For d > (5 + 1) we get more ICm
fα, (2

d
2−1)2, than ωabα,

d
2 (d − 1).

But they are related.



Let us repeat some general properties of the Clifford even ”basis vector”
IÂm†

f when they apply on each other.

▶ Let us denote the self adjoint member in each group of ”basis
vectors” of particular f as IÂm0†

f . We easily see that

{IÂm†
f , IÂm′†

f ,}− = 0 , if (m,m′) ̸= m0 orm = m0 = m′ ,∀ f ,
IÂm†

f ∗AIÂm0†
f → IÂm†

f , ∀m , ∀ f .

▶ Two ”basis vectors” IÂm†
f and IÂm′†

f of the same f and of
(m,m′) ̸= m0 are orthogonal.

▶

IÂm†
f ∗A IÂm′†

f′ →
{

IÂm†
f ,

or zero .
.

Looking at the properties of free gravitational fields we can relate

also the interaction among I Âm†
f

ICm
fα and the interaction among

gravitational fields.



We can proceed in equivalent way also when looking for
relations between∑

ab S̃ab ω̃abα and
∑

mf
I ˆ̃A

m†
f

I C̃m
f α

We are then able to replace∑
ab Sab ωabα by

∑
mf

I Âm†
f

ICm
f α and∑

ab S̃ab ω̃abα by
∑

mf
I ˆ̃A

m†
f

I C̃m
f α

in a covariant derivative

Lf −
1

2
(ψ̄ γap0aψ) + h.c . withp0a = fαap0α +

1

2E
{pα,Ef αa}−

p0α = pα − 1

2

∑
ab

Sabωabα − 1

2

∑
ab

S̃abω̃abα

p0α = pα −
∑
mf

IÂm†
f

ICm
fα −

∑
mf

I ˆ̃A
m†
f

IC̃m
fα ,

provided that ICm
f α and I C̃m

f α fulfil also the application of both

operators on the fermion fields
∑

mf β
m b̂m†

f for any βm and
any f .



Although I almost ”see” (almost prove) the general relations
among

I ,II Âm†
f

I ,IICm
f α , I ,II ˆ̃A

m†
f

I ,II C̃m
f α

and
Sabωabα , S̃abω̃abα,

for any even d

it still remains to see what new, if any, this new way of
second quantization of fermions and bosons brings.



I hope I have convinced you that the Clifford algebra objects,
if used to describe the internal space — ”basis vectors” —
of fermion and boson fields, offer the explanation for the
postulates of the usual second quantization procedure.

▶ The internal space offers a finite number of degrees of
freedom for either fermion or boson fields.

It is the ordinary momentum or coordinate basis which
offers the continuously infinite basis.

Progress in Particle and Nuclear Physics,
http://doi.org/10.1016.j.ppnp.2021.103890

The second quantization of bosons is newer, partly
presented in Proceedings of the Bled workshop 2021,
[arXiv:2112.04378].



▶ Let me introduce the basis in momentum representation
{p̂i , p̂j}− = 0 , {x̂k , x̂ l}− = 0 , {p̂i , x̂ j}− = iηij .

|p⃗ > = b̂†p⃗ | 0p > , < p⃗ | =< 0p | b̂p⃗ ,

< p⃗ | p⃗′ > = δ(p⃗ − p⃗′) =< 0p |b̂p⃗ b̂†p⃗′ | 0p > ,< 0p | 0p >= 1 ,

leading to

b̂p⃗′ b̂
†
p⃗ = δ(p⃗′ − p⃗) ,

It follows

< p⃗ | x⃗ > = < 0p⃗ | b̂p⃗ b̂†x⃗ |0x⃗ >= (< 0x⃗ | b̂x⃗ b̂†p⃗ |0p⃗ >)†

{b̂†p⃗ , b̂
†
p⃗ ′}− = 0 , {b̂p⃗, b̂p⃗ ′}− = 0 , {b̂p⃗, b̂†p⃗ ′}− = 0 ,

{b̂†x⃗ , b̂
†
x⃗ ′}− = 0 , {b̂x⃗ , b̂x⃗ ′}− = 0 , {b̂x⃗ , b̂†x⃗ ′}− = 0 ,

while

{b̂p⃗, b̂†x⃗}− = e i p⃗·x⃗
1√

(2π)d−1
, {b̂x⃗ , b̂†p⃗}− = e−i p⃗·x⃗ 1√

(2π)d−1
,

p⃗ determines momentum in ordinary space, |ψo > ∗T |0p⃗ > is the
vacuum state for fermions (|ψo >= |ψoc >) or for bosons

(|ψo >= |ψob >) with the zero momentum, b̂†p⃗ pushes the
momentum by p⃗.



▶ For fermions we can write

{b̂s†f (p⃗) =
∑
m

csmf (p⃗) b̂
†
p⃗ ∗T b̂m†

f } |ψoc > ∗T |0p⃗ > ,

▶ For bosons we can write

{IÂs†
fα(p̃) =

∑
mf

Csm
fα (p̃) b̂

†
p̃ ∗T

IÂs†
f } |ϕob > ∗T |0p⃗ > .

boson fields need additional space index α, as we have
seen.



While the internal space of fermions if describable by the
finite number of the Clifford odd ”basis vectors” and the
internal space of bosons if describable by the finite of the
Clifford even ”basis vectors”, (for bosons and fermions it is
the ordinary space which brings the infinite number of
degrees of freedom) the usual second quantization
postulates the creation and annihilation operators,
anticommuting for fermions on the whole Hilbert space

{b̂s†f (p̃), b̂
s′†
f′ (p̃

′)}+H = 0 ,

{b̂s†f (p̃), b̂
s′†
f′ (p̃

′)}+H = 0 ,

{b̂s†f (p̃), b̂
s′†
f′ (p̃

′)}+H = δss
′
δff′δ(p⃗ − p⃗ ′)H ,

and commuting for bosons.

The Clifford algebra used in the spin-charge-family theory
explains the second postulates of fields.



We have treated so far free fermion fields and boson fields
in any even dimensional space. We describe the internal
space of fermion fields and boson fields with the odd and
even Clifford algebra elements, respectively.

▶ We learn that all the family members of fermions, they
are reachable by Sab, are equivalent, and all the families,
they are reachable by S̃ab, are equivalent. We learn that
the Hermitian conjugated partners of fermion fields
form their own group.

▶ We learn that the boson fields have their Hermitian
conjugated partners within the same group of Clifford
even members, and that families play no role for
bosons. Boson fields carry in addition the space index.



▶ The spin-charge-family theory assumes a simple starting
action for fermions and bosons in d ≥ (13 + 1), with the
gravity as the only gauge fields.

▶ It is the break of the starting symmetry which causes
that fermion fields and gravitational fields manifest in
d = (3 + 1) as all the observed quarks and leptons and
the corresponding vector and scalar gauge fields.

▶ Is the spin-charge-family theory following what nature
does while breaking starting symmetries?



▶ Spinors carry in d ≥ (13 + 1) two kinds of spin, no
charges, Phys. Rev. D 91 065004 (2015), J.of Mod. Physics
6 (2015) 2244, Rev. article in
JPPNPhttp://doi.org/10.1016.j.ppnp.2021.103890 .

o The Dirac spin (γa) in d = (13 + 1) describes in
d = (3 + 1) spin and ALL the charges of quarks and
leptons and anti-quarks and anti-leptons, left and right
handed, explaining all the assumptions about the
charges and the handedness of the Standard Model,
J. of Math. Phys. 34 (1993), 3731, J. of Math. Phys. 43,
5782 (2002) [hep-th/0111257].

o The second kind of spin (γ̃a) describes FAMILIES,
explaining the origin and number of families,
J. of Math. Phys. 44 4817 (2003) [hep-th/0303224].

o There is NO third kind of spin.

▶ C,P,T symmetries in d = (3 + 1) follow from the C,P,T
symmetry in d ≥ (13 + 1). (JHEP 04 (2014) 165)



▶ All vector and scalar gauge fields origin in gravity,
explaining the origin of the vector and scalar gauge
fields, which in the Standard model are assumed,
Eur. Phys. J. C 77 (2017) 231:

o Vector and scalar gauge fields origin in two spin
connection fields, the gauge fields of γaγb and γ̃aγ̃b, and in

o vielbeins, the gauge fields of momenta
Eur. Phys. J. C 77 (2017) 231, [arXiv:1604.00675]

▶ If there are no spinor sources present, then either vector
(A⃗A

m, m = 0, 1, 2, 3) or scalar (A⃗A
s , s = 5, 6, .., d) gauge

fields are determined by vielbeins uniquely.



▶ Spinors (fermions) interact correspondingly with
o the vielbeins and
o the two kinds of the spin connection fields, Eur. Phys.
J. C 77 (2017) 231.

▶ In d = (3 + 1) the spin-connection fields,
together with the vielbeins,
manifest either as
o vector gauge fields with all the charges in the adjoint
representations or as
o scalar gauge fields with the charges with respect to the
space index in the ”fundamental” representations and all
the other charges in the adjoint representations or as
o tensor gravitational field.

▶ I shall discuss the internal space of fermions and bosons
using the Clifford algebra objects, the Clifford odd
algebra to describe internal space of fermions and
Clifford even algebra to describe the internal space of
bosons, what explains the second quantization
postulates for fermions and for bosons.



There are two kinds of scalar fields with respect to the space
index s — this is with respect to d = (3 + 1):

▶ Those with (s = 5, 6, 7, 8) (they carry zero ”spinor charge”)
are doublets with respect to the SU(2)I (the weak) charge
and the second SU(2)II charge (determining the hyper
charge). They are in the adjoint representations with
respect to the family and the family members charges.

o These scalars explain the Higgs’s scalar and the
Yukawa couplings.

Phys. Rev. D 91 (2015) 6, 065004



▶ Those with the ”spinor charge” of a quark and
(s = 9, 10, ..d) are colour triplets. Also they are in the
adjoint representations with respect to the family and the
family members charges.

o These scalars transform antileptons into quarks, and
antiquarks into quarks and back and correspondingly
contribute to matter-antimatter asymmetry of our
universe and to proton decay.

▶ There are no additional scalar fields in the
spin-charge-family theory, if d = (13 + 1).

Phys. Rev. D 91 (2015) 6, 065004
J. of Mod. Phys. 6 (2015) 2244



Breaking symmetry from M13+1 into M7+1 ×M6

▶ We start with the massless solutions of the Weyl
equation in d = (13 + 1) with the ”basis vectors”,
described by the odd Clifford algebra objects,
determining the internal space of fermions.

▶ With the spin (or the total angular momentum) in extra
dimensions, d > (7 + 1), determining the charge in
d = (7 + 1).

▶ Also all the boson fields are in d = (13+ 1) massless free
fields with the ”basis vectors”, described by the even
Clifford algebra objects, determining the internal space
of bosons.



▶ We then let the M13+1 manifold to break into M7+1 × an
almost S6 sphere.

▶ The Weyl equation, m = (0, 1, 2, 3, 5, 6, 7, 8) and
s = 9, 10, . . . 13, 14 is

(γmpm + γsp0s)ψ = 0 ,

p0s = f σs (pσ − 1

2
Sabωabσ − 1

2
S̃abω̃abσ) +

1

2E
{pσ, f σs E}− .



▶ With the choice of the vielbein fields and the spin
spinconnection fields of both kinds one can achieve that the
infinite surface d = (9, 10, 11, . . . , 13, 14) curls into an almost
S6 (with one hole with the substructure of SU(3)× U(1))
with massless fermions in d = (7 + 1).

▶ This is the project, not yet done. The simpler problem with
breaking M5+1 manifold into M3+1 × an almost S2 sphere
with one hole is done, without taking into account families
and with families included.

New J. Phys. 13:103027, 2011.
J. Phys. A: Math. Theor. 45:465401, 2012.



Condensate

▶ The (assumed so far, waiting to be derived how does this
spontaneously appear) scalar condensate of two right
handed neutrinos with the family quantum numbers of
the upper four families (there are two four family groups
in the theory), appearing ≈ 1016 GeV or higher,

o breaks the CP symmetry, causing the
matter-antimatter asymmetry and the proton decay,

o couples to all the scalar fields, making them massive,

o couples to all the phenomenologically unobserved
vector gauge fields, making them massive.

o Before the electroweak break all the so far observed
vector gauge fields are massless.

Phys. Rev. D 91 (2015) 6, 065004,
J. of Mod. Phys. 6 (2015) 2244,
J. Phys.: Conf.Ser. 845 01, IARD 2017



▶ The vector fields, which do not couple to the condensate
and remain massless, are:

o the hyper charge vector field.

o the weak vector fields,

o the colour vector fields,

o the gravity fields.

The SU(2)II symmetry breaks due to the condensate, leaving
the hyper charge unbroken.



Nonzero vacuum expectation values of scalars
— waiting to be shown how does such an event, making the
masses of the scalar gauge fields imaginary, appear in the

spin-charge-family spontaneously.

▶ The scalar fields with the space index (7, 8), gaining
nonzero vacuum expectation values, a constant values,
cause the electroweak break,

o breaking the weak and the hyper charge,

o changing their own masses,

o bringing masses to the weak bosons,

o bringing masses to the families of quarks and leptons.

Phys. Rev. D 91 (2015) 6, 065004,
J. Phys.: Conf.Ser. 845 01 IARD 2017,
Eur. Phys. J.C. 77 (2017) 231 [arXiv:1604.00675],
J. of Mod. Phys. 6 (2015) 2244, [arXiv:1502.06786,
arXiv:1409.4981]



▶ The only gauge fields which do not couple to these
scalars and remain massless are

o electromagnetic,

o colour vector gauge fields,

o gravity.

▶ There are two times four decoupled massive families of
quarks and leptons after the electroweak break:

o There are the observed three families among the lower
four, the fourth to be observed.

o The stable among the upper four families form the
dark matter.

Phys. Rev. D 80, 083534 (2009),
Phys. Rev. D 91 (2015) 6, 065004,
J. Phys.: Conf.Ser. 845 01, IARD 2017



▶ It is extremely encouraging for the spin-charge-family
theory, that a simple starting action contains all the
degrees of freedom observed at low energies, directly or
indirectly, and that only

o the break of manifold M(13,1) to M(7,1) ×M(6) is needed
so that the manifold M(6) makes an almost Sn sphere.

o the condensate and

o constant values of all the scalar fields with s = (7, 8)

are needed that the theory explains

o all the assumptions of the standard model, with the
gauge fields, scalar fields, families of fermions, masses of
fermions and of bosons included,

o explaining also the dark matter,

o the matter/antimatter asymmetry,

o the triangle anomalies cancellation in the standard
model (Forts. der Physik, Prog.of Phys.) (2017) 1700046)
and...



**
Variation of the action brings for ωabα

ωabα = − 1

2E

{
eeαebγ ∂β(Ef

γ[e f βa]) + eeαeaγ ∂β(Ef
γ
[bf

βe])

− eeαe
e
γ ∂β

(
Ef γ [af

β
b]

)}
− eeα

4

{
Ψ̄

(
γeSab +

3i

2
(δebγa − δeaγb)

)
Ψ

}
− 1

d − 2

{
eaα

[
1

E
edγ∂β

(
Ef γ [d f

β
b]

)
+

1

2
Ψ̄γdSdbΨ

]
− ebα

[
1

E
edγ∂β

(
Ef γ [d f

β
a]

)
+

1

2
Ψ̄γdSdaΨ

}]
IARD, J. Phys.: Conf. Ser. 845 012017 and the refs. therein



**
and for ω̃abα ,

ω̃abα = − 1

2E

{
eeαebγ ∂β(Ef

γ[e f βa]) + eeαeaγ ∂β(Ef
γ
[bf

βe])

− eeαe
e
γ ∂β

(
Ef γ [af

β
b]

)}
− eeα

4

{
Ψ̄

(
γe S̃ab +

3i

2
(δebγa − δeaγb)

)
Ψ

}
− 1

d − 2

{
eaα

[
1

E
edγ∂β

(
Ef γ [d f

β
b]

)
+

1

2
Ψ̄γd S̃dbΨ

]
− ebα

[
1

E
edγ∂β

(
Ef γ [d f

β
a]

)
+

1

2
Ψ̄γd S̃daΨ

}]
Eur. Phys. J. C, 77 (2017) 231 and the refs. therein.
If there are no spinors present, the two spin connections are
uniquely described by vielbeins f αa.



Fermions

▶ The action for spinors ”seen” from d = (3 + 1) and
analyzed with respect to the standard model groups as
subgroups of SO(13 + 1):

Lf = ψ̄γm(pm −
∑
A,i

gAτAiAAi
m )ψ +

{
∑

s=[7],[8]

ψ̄γsp0s ψ}+

{
∑

s=[5],[6]

ψ̄γsp0s ψ +

∑
t=[9],...[14]

ψ̄γtp0t ψ} .

+the rest , ,

J. of Mod. Phys. 4 (2013) 823



Covariant momenta

p0m = {pm −
∑
A

gA τ⃗A A⃗A
m}

m n (0, 1, 2, 3) ,

p0s = f σs [pσ −
∑
A

gA τ⃗A A⃗A
σ −

∑
A

g̃A ⃗̃τA ⃗̃AA
σ ] ,

s ∈ (7, 8) ,

p0s = f σs [pσ −
∑
A

gA τ⃗A A⃗A
σ −

∑
A

g̃A ⃗̃τA ⃗̃AA
σ ] ,

s ∈ (5, 6) ,

p0t = f σ
′

t (pσ′ −
∑
A

gA τ⃗A A⃗A
σ′ −

∑
A

g̃A ⃗̃τA ⃗̃AA
σ′) ,

t ∈ (9, 10, 11, . . . , 14) ,



AAi
s =

∑
a,b

cAiab ωabs ,

AAi
t =

∑
a,b

cAiab ωabt ,

ÃAi
s =

∑
a,b

c̃Aiab ω̃abs ,

ÃAi
t =

∑
a,b

c̃Aiab ω̃abt .



τAi =
∑
a,b

cAi ab Sab ,

τ̃Ai =
∑
a,b

c̃Ai ab S̃ab ,

{τAi, τBj}− = iδAB f AijkτAk ,

{τ̃Ai, τ̃Bj}− = iδAB f Aijk τ̃Ak ,

{τAi, τ̃Bj}− = 0 .

▶ o τAi represent the standard model charge groups
— SU(3)c ,SU(2)w — the second SU(2)II , the ”spinor”
charge U(1), taking care of the hyper charge Y ,

▶ o τ̃Ai denote the family quantum numbers.



Ni
(L,R) : =

1

2
(S23 ± iS01, S31 ± iS02,S12 ± iS03) ,

τ i(1,2) : =
1

2
(S58 ∓ S67, S57 ± S68, S56 ∓ S78) ,

τ i3 :=
1

2
{S9 12 − S10 11 ,S9 11 + S10 12, S9 10 − S11 12,

S9 14 − S10 13, S9 13 + S10 14 , S11 14 − S12 13 ,

S11 13 + S12 14,
1√
3
(S9 10 + S11 12 − 2S13 14)} ,

τ4 := −1

3
(S9 10 + S11 12 + S13 14) ,

Y := τ4 + τ23 ,

Y′ := −τ4 tan2 ϑ2 + τ23 ,

Q := τ13 + Y ,

Q′ := −Y tan2 ϑ1 + τ13 ,

and equivalently for family groups S̃ab .



Breaks of symmetries
after starting with

o massless spinors (fermions) ,

o massles vielbeins and two kinds of the spin connection
fields

We prove for a toy model that breaking symmetry in
Kaluza-Klein theories can lead to massless fermions.

New J. Phys. 13, 103027, 2011.
J. Phys. A. Math. Theor. 45, 465401, 2012.
[arXiv:1205.1714], [arXiv:1312.541], [arXiv:hep-ph/0412208
p.64-84].
[arXiv:1302.4305], p. 157-166.



SO(1, 13)× ˜SO(1, 13)

BREAK I

at E ≥ 1016GeV

↓

SO(1, 7)× U(1)× SU(3)

× ˜SO(1, 7)
↙ ↘

eight massless families

SO(1, 3)×SO(4)×U(1)× (S̃U(2)I
S̃O(1,3)

×S̃U(2)I
S̃O(4)

)× (S̃U(2)II
S̃O(1,3)

×S̃U(2)II
S̃O(4)

)× SU(3)

(devided into two groups)

BREAK II

︸ ︷︷ ︸
↓

The Standard Model like way of breaking
↓

SO(1, 3) × U(1) × SU(3)
×(two groups of four massive families)



▶ Both breaks, the one from SO(13, 1) to SO(7, 1)× SO(6)
and the appearance of the condensate, leave eight
families (28/2−1 = 8, determined by the symmetry of

S̃O(1, 7)) massless. All the families are S̃U(3) chargeless.
Phys. Rev. D, 80.083534 (2009)

▶ The appearance of the condensate of the two right
handed neutrinos, coupled to spin 0, makes the boson
gauge fields, with which the condensate interacts,
massive. These gauge fields are:

o All the scalar gauge fields with the space index s ≥ 5.

o The vector (m ≤ 3) gauge fields with the Y ′ charges
— the superposition of SU(2)II and U(1)II charges.
J. Phys.: Conf. Ser. 845 (2017) 012017



The condensate has spin S12 = 0, S03 = 0,
weak charge τ⃗1 = 0, and

⃗̃τ1 = 0, Ỹ = 0, Q̃ = 0, ⃗̃NL = 0.

state τ23 τ4 Y Q τ̃23 Ñ3
R τ̃4

|νVIII1R >1 |νVIII2R >2 1 −1 0 0 1 1 −1

|νVIII1R >1 |eVIII2R >2 0 −1 −1 −1 1 1 −1
|eVIII1R >1 |eVIII2R >2 −1 −1 −2 −2 1 1 −1



Let us look at boson ”basis vectors” as presented in already
shown figure, which analyses I Âm†

f with respect to Cartan
subalgebra members (τ3, τ8, τ ′).

There are
one sextet with τ ′ = 0,

four singlets with (τ3 = 0, τ8 = 0, τ ′ = 0),
one triplet with τ ′ = 2

3 and one triplet with τ ′ = −2
3 .

The only I Âm†
f which couple to condensate are the two

triplets with non zero τ ′ = ±2
3 , which transform leptons into

quarks. They become massive.

τ(1,0,0)(-1,0,0)

(1/2,√3/2,0)(-1/2,√3/2,0)

(-1/2,-√3/2,0)
(1/2,-√3/2,0)

(0,1/√3,-2/3)

(-1/2,-1/(2√3),-2/3)
(1/2,-1/(2√3),-2/3)

(1/2,1/(2√3),2/3)
(-1/2,1/(2√3),2/3)

(0,-1/√3,2/3)
τ

τ

3

8

'



▶ The colour, elm, weak and hyper vector gauge fields do
not interact with the condensate and remain massless.
J. of Mod. Physics 6 (2015) 2244



▶ At the electroweak break from
SO(1, 3)× SU(2)I × U(1)I × SU(3) to
SO(1, 3)× U(1)× SU(3)
o scalar fields with the space index s = (7, 8) obtain
constant values and imaginary masses (nonzero vacuum
expectation values),
o break correspondingly the weak and the hyper charge
and change their own masses.
o They leave massless only the colour, elm and gravity
gauge fields.

▶ All the eight massless families gain masses.

Also these is so far just assumed, waiting to be proven
that scalar fields, together with boundary conditions, are

spontaneously causing also this last breaks.
However, all the needed vector and scalar gauge fields,
the fermion fields with all the observed properties, are

already in the simple starting action, making the
spin-charge-family theory (at least so far) very promising.



▶ To the electroweak break several scalar fields, the gauge
fields of twice S̃U(2)× S̃U(2) and three ×U(1) ,
contribute, all with the weak and the hyper charge of
the standard model Higgs.

▶ They carry besides the weak and the hyper charge either
o the family members quantum numbers
originating in (Q,Q’,Y’) or
o the family quantum numbers
originating in twice S̃U(2)× S̃U(2).

J. of Mod. Physics 6 (2015) 2244.



▶ The mass matrices of each family member manifest the
S̃U(2)× S̃U(2)× U(1) symmetry, which remains
unchanged in all loop corrections.

[arXiv:1902.02691, arXiv:1902.10628]



▶ We studied on a toy model of d = (1 + 5) conditions which
lead after breaking symmetries to massless spinors chirally
coupled to the Kaluza-Klein-like gauge field.,

New J. Phys. 13 (2011) 103027, 1-25,
Int. J Mod. Phys. A 29, 1450124 (2014), 21 pages.



**

=
>d  1+13

d=1+3

and the fourth
  family

  family
and the fifth

the dark matter



The theory explains:

▶ The appearance of the finite number of the internal
space ”basis vectors” of fermions, b̂m†

f .
The appearance of the finite number of the internal
space ”basis vectors” of bosons, IAm†

f
ICm

f α.

▶ The anticommutation relations among the creation and
annihilation operators, creating the anticommuting
single fermion states.
The commutation relations among the creation and
annihilation operators, creating the commuting single
boson states.

▶ The continuously infinite number of creation operators
due to infinite dimensional ordinary space for fermions
and bosons.

▶ The tensor products of the Clifford odd creation
operators explain the Hilbert space of the second
quantized fermions.



▶ It is worthwhile to notice that ”nature could make a
choice” of Grassmann rather than Clifford space:
o Also in Grassmann space, namely, one finds the
anticommutation relations needed for a fermion field.
o But in this case spinors would have spins and
charges in adjoint representations with respect to
particular subgroups.
o And no families would appear.



Vector gauge fields origin in gravity,
in vielbeins f aα and two kinds of the spin connection fields,

ωabα, ω̃abα,
the gauge fields of Sab and S̃ab. I showed above that both

are expressible by IAm†
f

ICm
f αand

I Ãm†
f

I C̃m
f α.



**

▶ All the vector gauge fields, AAi
m , (m, n) = (0, 1, 2, 3) of the

observed charges τAi =
∑

s,t c
Ai

st S
st , manifesting at the

observable energies, have all the properties as assumed
by the standard model.

▶ They carry with respect to the space index m ∈ (0, 1, 2, 3)
the vector degrees of freedom, while they have
additional internal degrees of freedom (τAi ) in the
adjoint representations.

▶ They origin as spin conection gauge fields of Sab:
AAi
m=

∑
s,t c

Aist ωstm.

▶ Sab applies on indexes (s, t,m) as follows

Sab ωstm...g = i (δas ω
b
tm...g − δbs ω

a
tm...g ) .



**

The action for vectors with respect to the space index
m = (0, 1, 2, 3) origin in gravity

∫
Ed4x d(d−4)xαR(d) =

∫
d4x {−1

4
FAi

mn F
Aimn },

AAi
m =

∑
s,t

cAist ωstm .

Eur. Phys. J. C. 77 (2017) 231,



*

Also scalar fields
(there are doublets and triplets)

origin in gravity fields — they are spin connections and
vielbeins —

with the space index s ≥ 5, I showed above that also scalar
fields are expressible by IAm†

f
ICm

f αand
I Ãm†

f
I C̃m

f α.

Eur. Phys. J. C. 77 (2017) 231 ,
Phys. Rev. D 91 (2015) 6, 065004,
J. of Mod. Physics 6 (2015) 2244.



▶ There are several scalar gauge fields with the space
index (s,t,s’) = (7,8), all origin in the spin connection
fields, either ω̃abs or ωs′ts :
o Twice two triplets, the scalar gauge fields with the
family quantum numbers (τ̃Ai =

∑
a,b c̃

Ai
ab S̃ab) and

o three singlets with the family members quantum
numbers (Q,Q’,Y’), the gauge fields of S st .

▶ They are all doublets with respect to the space index
(5,6,7,8).

▶ They have all the rest quantum numbers determined by
the adjoint representations.

▶ They explain at the so far observable energies the
Higgs’s scalar and the Yukawa couplings.



The two doublets, determining the properties of the Higgs’s
scalar and the Yukawa couplings, are:

▶

state τ13 τ23 = Y spin τ4 Q

AAi
78
(−)

AAi
7 + iAAi

8 + 1
2

− 1
2

0 0 0

AAi
56
(−)

AAi
5 + iAAi

6 − 1
2

− 1
2

0 0 -1

AAi
78
(+)

AAi
7 − iAAi

8 − 1
2

+ 1
2

0 0 0

AAi
56
(+)

AAi
5 − iAAi

6 + 1
2

+ 1
2

0 0 +1

There are AAi
78
(−)

and AAi
78
(+)

which gain nonzero vacuum

expectation values at the electroweak break.

Index Ai determines the family (τ̃Ai) quantum numbers and
the family members (Q,Q’,Y’) quantum numbers, both are in
adjoint representations.



▶ There are besides doublets, with the space index
s = (5, 6, 7, 8), as well triplets and anti-triplets, with
respect to the space index s = (9, . . . , 14).

▶ There are no additional scalars in the theory for
d=(13+1).

▶ All are massless.

▶ All the scalars have the family and the family members
quantum numbers in the adjoint representations.

▶ The properties of scalars are to be analyzed with respect to
the generators of the corresponding subgroups, expressible
with Sab, as it is the case of the vector gauge fields.

▶ It is the (so far assumed) condensate, which makes those
gauge fields, with which it interacts, massive.
o The condensate breaks the CP symmetry.



▶ The scalar condensate of two right handed neutrinos
couple to
o all the scalar and vector gauge fields, making them
massive,
o It does not interact with the weak charge SU(2)I , the
hyper charge U(1), and the colour SU(3) charge gauge
fields, as well as the gravity,
leaving them massless.

J. of Mod.Phys.4 (2013) 823-847,
J. of Mod.Phys. 6 (2015) 2244-2247,
Phys Rev.D 91(2015)6,065004.



Scalars with s=( 7,8), which gain nonzero vacuum
expectation values, break the weak and the hyper symmetry,
while conserving the electromagnetic and colour charge:

AAi
s ⊃ (AQ

s ,A
Q′
s ,AY′

s , ˜̃A1̃
s ,

˜̃A
ÑL̃
s , ˜̃A2̃

s ,
˜̃A
ÑR̃
s ) ,

τAi ⊃ ( Q, Q′, Y′, ˜̃τ1, ˜̃NL, ˜̃τ2, ˜̃NR) ,

s = (7, 8) .

Ai denotes:
o family quantum numbers

(˜̃τ1, ˜̃NL) quantum numbers of the first group of four families
and
(˜̃τ2, ˜̃NR)) quantum numbers of the second group of four
families.
o And family members quantum numbers (Q,Q ′,Y ′)



AAi
s are expressible with either ωsts′ or ω̃abs′.

⃗̃A1
s = (ω̃58s − ω̃67s , ω̃57s + ω̃68s , ω̃56s − ω̃78s) ,

⃗̃A2
s = (ω̃58s + ω̃67s , ω̃57s − ω̃68s , ω̃56s + ω̃78s) ,

⃗̃AN
Ls = (ω̃23s + i ω̃01s , ω̃31s + i ω̃02s , ω̃12s + ω̃03s) ,

⃗̃AN
Rs = (ω̃23s − i ω̃01s , ω̃31s − i ω̃02s , ω̃12s − i ω̃03s) ,

AQ
s = ω56s − (ω9 10s + ω11 12s + ω13 14s) ,

AY
s = (ω56s + ω78s)− (ω9 10s + ω11 12s + ω13 14s)

A4
s = −(ω9 10s + ω11 12s + ω13 14s) .



The mass term, appearing in the starting action,
is (ps , when treating the lowest energy solutions, is left out)

LM =
∑

s=(7,8),Ai

ψ̄ γs (−τAi AAi
s )ψ =

−ψ̄ {
78

(+) τAi (AAi
7 − i AAi

8 ) +
78

(−) τAi (AAi
7 + i AAi

8 ) }ψ ,

78

(±) =
1

2
(γ7 ± i γ8 ) , AAi

78
(±)

:= (AAi
7 ∓ i AAi

8 ) .



Operators Y , Q and τ13, applied on (AAi
7 ∓ i AAi

8 )

τ13 (AAi
7 ∓ i AAi

8 ) = ± 1

2
(AAi

7 ∓ i AAi
8 ) ,

Y (AAi
7 ∓ i AAi

8 ) = ∓ 1

2
(AAi

7 ∓ i AAi
8 ) ,

Q (AAi
7 ∓ i AAi

8 ) = 0 ,

manifest that all (AAi
7 ∓ i AAi

8 ) have quantum numbers of the
Higgs’s scalar of the standard model, ”dressing”, after gaining
nonzero expectation values, the right handed members of a
family with appropriate charges, so that they gain charges of the
left handed partners:
(AAi

7 + iAAi
8 ) ”dresses” uR , νR and (AAi

7 − iAAi
8 ) ”dresses”

dR , eR , with quantum numbers of their left handed partners, just
as required by the ”standard model”.



Ai determines:

either
o the Q,Q’,Y’ charges of the family members

or

o family charges (⃗̃τ 1̃, ⃗̃NL), transforming a family member of
one family into the same family member of another family,

manifesting in each group of four families the
S̃U(2)× S̃U(2)× U(1)

symmetry.



** Eight families of uR (spin 1/2, colour ( 1
2
, 1
2
√

3
)) and of colourless νR (spin 1/2). All have ”tilde spinor

charge” τ̃4 = − 1
2
, the weak charge τ13 = 0, τ23 = 1

2
. Quarks have ”spinor” q.no. τ4 = 1

6
and leptons

τ4 = − 1
2
. The first four families have τ̃23 = 0, Ñ3

R = 0, the second four families have τ̃13 = 0, Ñ3
L = 0.

Ñ3
R = 0, τ̃23 = 0 Ñ3

R = 0, τ̃23 = 0 τ̃13 Ñ3
L

uc1R 1

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] νR 1

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) − 1

2
− 1

2

uc1R 2

03
[+i ]

12
(+) |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] νR 2

03
[+i ]

12
(+) |

56
[+]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) − 1

2
1
2

uc1R 3

03
(+i)

12
[+] |

56
(+)

78
[+] ||

9 10
(+)

11 12
[−]

13 14
[−] νR 3

03
(+i)

12
[+] |

56
(+)

78
[+] ||

9 10
(+)

11 12
(+)

13 14
(+) 1

2
- 1
2

uc1R 4

03
[+i ]

12
(+) |

56
(+)

78
[+] ||

9 10
(+)

11 12
[−]

13 14
[−] νR 4

03
[+i ]

12
(+) |

56
(+)

78
[+] ||

9 10
(+)

11 12
(+)

13 14
(+) 1

2
1
2

Ñ3
L = 0, τ̃13 = 0 Ñ3

L = 0, τ̃13 = 0 τ̃23 Ñ3
R

uc1R 5

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] νR 5

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) − 1

2
- 1
2

uc1R 6

03
(+i)

12
(+) |

56
[+]

78
[+] ||

9 10
(+)

11 12
[−]

13 14
[−] νR 6

03
(+i)

12
(+) |

56
[+]

78
[+] ||

9 10
(+)

11 12
(+)

13 14
(+) − 1

2
1
2

uc1R 7

03
[+i ]

12
[+] |

56
(+)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] νR 7

03
[+i ]

12
[+] |

56
(+)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) 1

2
- 1
2

uc1R 8

03
[+i ]

12
[+] |

56
[+]

78
[+] ||

9 10
(+)

11 12
[−]

13 14
[−] νR 8

03
[+i ]

12
[+] |

56
[+]

78
[+] ||

9 10
(+)

11 12
(+)

13 14
(+) 1

2
1
2

Before the electroweak break all the families are mass protected and correspondingly massless.



▶ Scalars with the weak and the hyper charge (∓1
2 ,±

1
2)

determine masses of all the family members α of the lower
four families, νR of the lower four families have nonzero
Y ′ := −τ4 + τ23 and interact with the scalar field

(AY ′

(±),
⃗̃A1̃
(±),

⃗̃AÑL

(±)).

▶ The group of the lower four families manifest the
S̃U(2)

S̃O(1,3)
× S̃U(2)

S̃O(4)
× U(1) symmetry (also after all

loop corrections).

Mα =


−a1 − a e d b

e∗ −a2 − a b d
d∗ b∗ a2 − a e
b∗ d∗ e∗ a1 − a


α

.

[arXiv:1412.5866], [arXiv:1902.02691], [arXiv:1902.10628]



We made calculations, treating quarks and leptons in
equivalent way, as required by the ”spin-charge-family”
theory. Although

▶ any (n-1)x (n-1) submatrix of an unitary n x n matrix
determines the nxn matrix for n ≥ 4 uniquely,

▶ the measured mixing matrix elements of the 3 x 3
submatrix are not yet accurate enough even for quarks to
predict the masses m4 of the fourth family members.
o We can say, taking into account the data for the
mixing matrices and masses, that m4 quark masses
might be any in the interval (300 < m4 < 1000) GeV or
even above. Other experiments require that m4 are above
1000 GeV.

▶ Assuming masses m4 we can predict mixing matrices.



Results are presented for two choices of mu4 = md4 ,
[arxiv:1412.5866]:
▶ 1. mu4 = 700 GeV, md4 = 700 GeV.....new1

▶ 2. mu4 = 1200 GeV, md4 = 1 200 GeV.....new2

|V(ud)| =



expn 0.97425 ± 0.00022 0.2253 ± 0.0008 0.00413 ± 0.00049
new1 0.97423(4) 0.22539(7) 0.00299 0.00776(1)
new2 0.97423[5] 0.22538[42] 0.00299 0.00793[466]
expn 0.225 ± 0.008 0.986 ± 0.016 0.0411 ± 0.0013
new1 0.22534(3) 0.97335 0.04245(6) 0.00349(60)
new2 0.22531[5] 0.97336[5] 0.04248 0.00002[216]
expn 0.0084 ± 0.0006 0.0400 ± 0.0027 1.021 ± 0.032
new1 0.00667(6) 0.04203(4) 0.99909 0.00038
new2 0.00667 0.04206[5] 0.99909 0.00024[21]
new1 0.00677(60) 0.00517(26) 0.00020 0.99996
new2 0.00773 0.00178 0.00022 0.99997[9]


.

One can see what
B. Belfatto, R. Beradze, Z. Berezhiani, required in
[arXiv:1906.02714v1], that
Vu1d4 > Vu1d3 , Vu2d4 < Vu1d4 , and Vu3d4 < Vu1d4 , ,
what is just happening in my theory.
The newest experimental data, PDG, (P A Zyla at al, Prog.
Theor. and Exp. Phys., Vol. 2020, Issue 8, Aug. 2020, 083C01)
have not yet been used to fit mass matrix of Eq. (1).



▶ o The matrix elements VCKM depend strongly on the
accuracy of the experimental 3 x 3 submatrix.
o Calculated 3 x 3 submatrix of 4 x 4 VCKM depends on
the m4th family masses, but not much.
o Vuid4 , Vdiu4 do not depend strongly on the m4th family
masses and are obviously very small.

▶ The higher are the fourth family members masses, the
closer are the mass matrices to the democratic matrices
for either quarks or leptons, as expected.

▶ The higher are the fourth family members masses, the
better are conditions
Vu1d4 > Vu1d3 ,
Vu2d4 < Vu1d4 , and
Vu3d4 < Vu1d4

fulfilled.



▶ The stable family of the upper four families group is the
candidate to form the Dark Matter.

▶ Masses of the upper four families are influenced :
o by the S̃U(2)

II S̃O(3,1)
× S̃U(2)

II S̃O(4)
scalar fields with

the corresponding family quantum numbers,
o by the scalars (AQ

78
(∓)

, AQ′

78
(∓)

, AY ′
78
(∓)

), and

o by the condensate of the two νR of the upper four
families.



Matter-antimatter asymmetry



There are also triplet and anti-triplet scalars, s = (9, .., d):,

▶

state τ33 τ38 spin τ4 Q

AAi
9 10
(+)

AAi
9 − iAAi

10 + 1
2

1
2
√

3
0 − 1

3
− 1

3

AAi
11 12
(+)

AAi
11 − iAAi

12 − 1
2

1
2
√

3
0 − 1

3
− 1

3

AAi
13 14
(+)

AAi
13 − iAAi

14 0 − 1√
3

0 − 1
3

− 1
3

AAi
9 10
(−)

AAi
9 + iAAi

10 − 1
2

− 1
2
√

3
0 + 1

3
+ 1

3

AAi
11 12
(−)

AAi
11 + iAAi

12
1
2

− 1
2
√

3
0 + 1

3
+ 1

3

AAi
13 14
(−)

AAi
13 + iAAi

14 0 1√
3

0 + 1
3

+ 1
3

They cause transitions from anti-leptons into quarks and
anti-quarks into quarks and back, transforming matter into
antimatter and back. The condensate breaks CP symmetry,
offering the explanation for the matter-antimatter
asymmetry in the universe.



Let us look at scalar triplets, causing the birth of a proton
from the left handed positron, antiquark and quark:

uc2R

τ4= 1
6
,τ13=0,τ23= 1

2

(τ33,τ38)=(− 1
2
, 1
2
√

3
)

Y= 2
3
,Q= 2

3

uc2R

ūc̄2L

τ4=− 1
6
,τ13=0,τ23=− 1

2

(τ33,τ38)=( 1
2
,− 1

2
√

3
)

Y=− 2
3
,Q=− 2

3

uc3R

τ4= 1
6
,τ13=0,τ23= 1

2

(τ33,τ38)=(0,− 1√
3
)

Y= 1
6
,Q= 2

3

ē+
L

τ4= 1
2
,τ13=0,τ23= 1

2

(τ33,τ38)=(0,0)
Y=1,Q=1

dc1R

τ4= 1
6
,τ13=0,τ23=− 1

2

(τ33,τ38)=( 1
2
, 1
2
√

3
)

Y=− 1
3
,Q=− 1

3

•

A2⊟
9 10
(+)

,

τ4=2×(− 1
6
),τ13=0,τ23=−1

(τ33,τ38)=( 1
2
, 1
2
√

3
)

Y=− 4
3
,Q=− 4

3

•



These two quarks, dc1
R and uc3R can bind (at low enough energy)

together with uc2R into the colour chargeless baryon - a proton.

After the appearance of the condensate the CP is broken.

In the expanding universe, fulfilling the Sakharov request for
appropriate non-thermal equilibrium, these triplet scalars have a
chance to explain the matter-antimatter asymmetry.

The opposite transition makes the proton decay.
These processes seems to explain the lepton number non
conservation.



Dark matter

d → (d − 4) + (3 + 1) before (or at least at) the electroweak
break.



▶ We follow the evolution of the universe, in particular the
abundance of the fifth family members - the candidates
for the dark matter in the universe.

▶ We estimate the behaviour of our stable heavy family
quarks and anti-quarks in the expanding universe by
solving the system of Boltzmann equations.

▶ We follow the clustering of the fifth family quarks and
antiquarks into the fifth family baryons through the
colour phase transition.

▶ The mass of the fifth family members is determined
from the today dark matter density.

Phys. Rev. D (2009) 80.083534



Figure: The dependence of the two number densities nq5 (of the fifth family quarks) and nc5 (of the fifth

family clusters) as the function of
mq5

c2

Tkb
is presented for the values mq5

c2 = 71 TeV, ηc5 = 1
50

and

η(qq̄)b
= 1. We take g∗ = 91.5.



We estimated from following the fifth family members in the
expanding universe:

▶

10 TeV < mq5 c
2 < 4 · 102TeV .

▶

10−8fm2 < σc5 < 10−6fm2 .

(It is at least 10−6× smaller than the cross section for the first
family neutrons.)



We estimate from the scattering of the fifth family members
on the ordinary matter on our Earth, on the direct
measurements - DAMA, CDMS,..- ...

▶

200TeV < mq5c
2 < 105TeV .



▶ In the standard model the family members with all their
properties, the families, the gauge vector fields, the scalar
Higgs, the Yukawa couplings, exist by the assumption.

▶ ** In the spin-charge-family theory the appearance
and all the properties of all these fields follow from the
simple starting action with two kinds of spins and with the
gravity only .

** The theory offers the explanation for the dark matter.

** The theory offers the explanation for the
matter-antimatter asymmetry.

** All the scalar and all the vector gauge fields are
directly or indirectly observable.

▶ ** The spin-charge-family theory even offers the
creation and annihilation operators without postulation.



The spin-charge-family theory explains also many other
properties, which are not explainable in the standard model,

like ”miraculous” non-anomalous triangle Feynman diagrams.

The more work is put into the spin-charge-family theory the
more explanations for the phenomena follow.



Concrete predictions:

▶ There are several scalar fields;
o two triplets , o three singlets ,
explaining higgss and Yukawa couplings,
some of them will be observed at the LHC, JMP 6
(2015) 2244,
Phys. Rev. D 91 (2015) 6, 065004.

▶ There is the fourth family, (weakly) coupled to the
observed three, which will be observed at the LHC,
New J. of Phys. 10 (2008) 093002.

▶ There is the dark matter with the predicted properties,
Phys. Rev. D (2009) 80.083534.

▶ There is the ordinary matter/antimatter asymmetry
explained and the proton decay predicted and explained,
Phys. Rev. D 91 (2015) 6, 065004.



We recognize that:

▶ The last data for mixing matrix of quarks are in better
agreement with our prediction for the 3× 3 submatrix
elements of the 4× 4 mixing matrix than the previous
ones.

▶ Our fit to the last data predicts how will the 3× 3
submatrix elements change in the next more accurate
measurements.

▶ Masses of the fourth family lie much above the known
three, masses of quarks are close to each other.

▶ The1larger are masses of the fourth family the larger are
Vu1d4 in comparison with Vu1d3 and the more is valid that
Vu2d4 < Vu1d4, Vu3d4 < Vu1d4.
The flavour changing neutral currents are correspondingly
weaker.



▶ Masses of the fifth family lie much above the known
three and the predicted fourth family masses.

▶ Although the upper four families carry the weak (of two
kinds) and the colour charge, these group of four
families are completely decoupled from the lower four
families up to the < 1016 GeV, unless the breaks of
symmetries recover.

▶ Baryons of the fifth family are heavy, forming small
enough clusters with small enough scattering amplitude
among themselves and with the ordinary matter to be
the candidate for the dark matter.

▶ The ”nuclear” force among them is different from the
force among ordinary nucleons.



▶ The spin-charge-family theory is offering an explanation
for the hierarchy problem:
The mass matrices of the two four families groups are
almost democratic, causing spreading of the fermion
masses from 1016 GeV to 10−8 MeV.

▶ Using odd and even Clifford algebra objects the
spin-charge-family theory is offering an explanation for
the second quantization postulates for fermions and
bosons, while describing the internal space of fermions
with the Clifford odd anti-commuting ”basis vectors”
and the internal space of bosons with the Clifford even
commuting ”basis vectors” .

▶ When all the properties of b̂m†
f , and their Hermitian

conjugated partners, b̂mf , as well as of IÂm†
f

ICm
fα will be

understood we very probably will understood nature in
d = (3 + 1) much better.



To summarize:

▶ I hope that I managed to convince you that I can answer
many open questions of particle physics and cosmology.
The more work is put into this theory the more observed
phenomenas I can explain and the predictions offer.

▶ The collaborators are very welcome!

▶ There are namely a lot of properties to derive.



▶ Might it be that I could make consistent theory without
fermions?
That is: Could one relate IAm†

f
ICm

f α and ωab
α without

fermions?.
Yes, I can relate IAm†

f
ICm

f α, if I apply Sab on IAm†
f

ICm
f α

and on (αcdωcd
α + αef ωef

α + αghωgh
α + · · · )

▶ But there are in Clifford algebra Clifford odd and
Clifford even ”basis vectors”. Then I should explain why
nature uses only Clifford even ”basis vectors”. Why not
Clifford odd ”basis vectors?

▶ Nature uses obviously both, odd and even.
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Let us compare the above second quantization procedure,
describing internal space of fermions with the odd Clifford
algebra objects, with the second quantization procedure
proposed by Dirac, where he creation operators and
correspondingly their Hermitian conjugate operators

are assumed.

ψi(t, x̃) =
∑

p,i â
†(p, i) v(p̃, i) e−paxa).

v(p⃗, i) determine solutions of equations of motion for a particular
e−paxa .

â†(p, i) is just assumed, together with the (assumed)
Hermitian conjugate operator, to fill the anticommutation

relation.

In the spin-charge-family theory the creation operators
appear from the odd Clifford objects, representing fermion

states, applying on the vacuum state, in internal space.



▶ The anticommutation relations for creation operators
and their Hermitian conjugated partners in the Dirac
case in d = (3 + 1) for spin (↑, ↓) and right and left
handedness (±1, respectively)

{â†i (p⃗), â
†
j (p⃗

′)}+ = 0 = {âi (p⃗), âj(p⃗′)}+ ,

{âi (p⃗), â†j (p⃗′)}+ = δij δ(p⃗ − p⃗′) ,

in the case of massless fermions.

▶ To be able to compare the spin-charge-family theory creation
operators for this particular case of d = (3 + 1), we make a
choice of the creation operators representing
spin ↑ and right handedness,

b̂†1 :=
03

[+i ]
12

(+),
and spin ↓ and right handedness,

b̂†2 :=
03

(−i)
12

[−],
and shall not pay attention on charges (which in
spin-charge-family theory originate in d ≥ 5) and families.



▶ In the spin-charge-family case the creation operators
b̂†i , i = (1, 2) originate in ”basis vectors” determining the
internal space of fermions.

▶ Solutions of the Weyl equation – the Dirac equation for
massless fermions – are superposition of both ”basis vectors”
for particular p⃗, p0 = |p⃗|
b̂s†(p⃗) =

∑
i c

is (p⃗) b̂†p⃗ ∗T b̂i† i = (1, 2) .

▶ Let us write down both kinds of creation operators, the Dirac
one and ours, both for the right handed case, leaving out
therefore the index describing handedness h in the Dirac case
and f , describing family, in our case

âs†(p⃗)
def
=

∑
i

âs†i (p⃗) usi (p⃗) , b̂s†(p⃗) =
∑
i

c is(p⃗) b̂i† b̂p⃗ ,

what is my redefinition of Dirac’s operators.



▶ The creation operator of Dirac
âs†(p⃗) =

∑
i u

s
i (p⃗) â

s†
i (p⃗) , v si (p⃗, x⃗) = usi (p⃗) e i p⃗· x⃗ ,

has to be related to
b̂s† =

∑
i c

is(p⃗) b̂i b̂p⃗.

âs†(p⃗) =
∑
i

âs†i (p⃗) usi (p⃗) to be related to b̂s†(p⃗) =
∑
i

c is(p⃗) b̂i b̂p⃗ .

Both creation operators, âs†(p⃗) and b̂s†(p⃗), fulfill the same
anticommutation relations,
âs†(p⃗) fulfill also the anticommutation relations of Dirac.



▶ Dirac equipped the creation operators (and correspondingly
also the annihilation operators) with the quantum numbers
(s, i) and with p⃗. He postulated for such creation and
annihilation operators anticommutation relations.

▶ Our creation and annihilation operators, b̂s†(p⃗) and b̂s(p⃗),
have anticommuting properties due to the anticommutativity
of b̂i† and b̂i , which are Clifford odd objects.

The odd Clifford algebra offers the explanation for the
Dirac’s postulates for the second quantized fermions.



▶ ψs(x⃗) =
∫ +∞
−∞ d3p b̂s†(p̃) e−i(p0x0−p⃗k ·x⃗)

to be related to

ψs(x⃗) =
∫ +∞
−∞ d3p âs†(p̃) e−i(p0x0−p⃗k ·x⃗).
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