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Many years ago (in 1990) I recognized that the Grassmann
algebra offers the description of the internal spaces of

fermions, and the internal spaces of bosons.

I also recognized in that time that the Grassmann algebra
suggests two Clifford sub algebras which are appropriate to

describe the internal spaces of fermions.

In the meantime, I worked on, together with the
collaborators, mainly on the problem

what solutions does the Clifford algebra offer in physics of
elementary fields and cosmology in even dimensional space, if
in a simple action in d = (13 + 1) fermions carry only spins

and interact with gravity only.



In the last year and a half I started to prove that in
even-dimensional spaces the Clifford odd algebra describes

the internal space of fermions,
the Clifford even algebra describes the internal spaces of their

corresponding gauge fields.

In the last half of the year I recognized that in
odd-dimensional spaces both algebras, even and odd, gain
the properties of the Fadeev-Popov ghost fields, introduced

into gauge quantum field theories to maintain the
consistency of the path integral formulation.

(To make the contribution of the Feynman diagrams finite.)



I shall first explain the description of the internal spaces of
fermion and boson fields,

comparing the way used in the standard model and in my
spin-charge-family theory,

and then, very shortly, the achievements of the
spin-charge-family theory so far .



All elementary particles and fields have their internal spaces.

We call them spins and charges.

I am pointing out my way and usual way of presenting the
internal spaces of fields.

The achievements of my spin-charge-family theory, for which
I predict that it is the next step beyond both standard
models, electroweak and cosmological, are built on the

description of the internal spaces of fermion and boson fields
with the odd and even Clifford algebra,

enabling to describe all the properties of quarks and leptons
and antiquarks and antileptons and their interaction fields in

an unique, elegant and simple, way.



The more work is put into my project named the
spin-charge-family theory, the more answers to the open
questions in elementary fermion and boson fields and in

cosmology the project offers.

Let us start with presenting my way of describing internal
spaces of fermion and boson fields

offering the anti-commutation relations which explain the
second quantization for fermion and boson fields, proposed

by Dirac.

{ψ(x⃗) , ψ†(x⃗ ′)}+ = δ(x⃗ − x⃗ ′) , fermions ,

{Ȧα(x⃗) , Aβ(x⃗ ′)}− = iηαβδ(x⃗ − x⃗ ′) , bosons ,



In the literature the groups are used to describe spins and
charges.

Either internal or ordinary spaces are assumed to be invariant
under Lorentz transformations. This is true also for my way

of presenting the internal degrees of freedom.

{Mab,Mcd}− = i{Madηbc +Mbcηad −Macηbd −Mbdηac} ,
{Mab, pc}− = −iηacpb + iηcbpa ,

{Mab,Scd}− = i{Sadηbc + Sad − Sacηbd − Sbdηac} ,
Mab = Lab + Sab , Lab = xapb − xbpa ,

There are d
2 if d is even, and d−1

2 if d is odd of commuting
Mab – Cartan sub algebra.
Commutation relations are valid for either Lab or Sab in any
dimension of space-time, {Lab, Scd}− = 0, whatever the dimension
of space-time is.
ηab = diag(1,−1,−1, . . . ,−1,−1) for a = (0, 1, 2, 3, 5, . . . , d).



The usual way of presenting the internal space representing
spins of fermions, say, of quarks and leptons, is as follows:
The choice of the Cartan sub algebra — of the commuting
operators of Mab — in d = 3 + 1 is

M03,M12,

in internal space
S03,S12 .

One tells the eigenstates of products of S03S12, called handedness,
and the spin, the eigenstates of S12. For each of the two
handedness we have for the eigenvalue of S12 two possibilities:
There are right-handed and left-handed vectors(

1
0

)
R,L

,

(
0
1

)
R,L

.

The Pauli matrices are used to rotate one spin state into other:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, σ0 =

(
1 0
0 1

)
.



My way of describing the internal spacesof fermions and
bosons is different.

▶ I recognized in Grassmann d-dimensional space

J. of Math. Phys. 34 (1993) 3731

that there are 2d anti-commuting operators θa’s and 2d

anti-commuting derivatives ∂
∂θa

,

with the property
(θa)† = ηaa ∂

∂θa

offering 2× 2d Clifford algebra objects

i. The Dirac γa (recognized 90 years ago in d = (3 + 1)).
ii. The second one: γ̃a,

γa = (θa − i pθa) , γ̃a = i (θa + i pθa) ,

References can be found in
Progress in Particle and Nuclear Physics,
http://doi.org/10.1016.j.ppnp.2021.103890 .



▶ The two kinds of the Clifford algebra objects
anti-commute

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+,
{γa, γ̃b}+ = 0,

▶ There are only ONE kind of fermions and ONE kind of
their gauge fields observed.

▶ And there are FAMILIES of fermions observed.
▶ The postulate

(γ̃aB = i(−)nBBγa ) |ψ0 >,

(B = a0 + aaγ
a + aabγ

aγb + · · ·+ aa1···adγ
a1 . . . γad )|ψo >

with (−)nB = +1,−1, if B has a Clifford even or odd
character, respectively, and |ψo > is a vacuum state on which
the operators γa apply,
REDUCES the Clifford space for fermions for the factor
of two,
while the operators γ̃aγ̃b = −2i S̃ab define the family
quantum numbers for the irreducible representations of
fermions.



▶ I arranged superposition of products of γa to be
eigenvectors of the commuting Sab. The graphics
notation was done together with H.B.Nielsen.

Cartan... S03, S12, S56, · · · ,Sd−1 d ,

▶ nilpotents

Sab 1

2
(γa +

ηaa

ik
γb) =

k

2

1

2
(γa +

ηaa

ik
γb) ,

ab

(k) :=
1

2
(γa +

ηaa

ik
γb) ,

projectors

Sab 1

2
(1 +

i

k
γaγb) =

k

2

1

2
(1 +

i

k
γaγb) ,

ab

[k] :=
1

2
(1+

i

k
γaγb) ,

(
ab

(k))2 = 0 , (
ab

[k])2 =
ab

[k] ,

ab

(k)
†

= ηaa
ab

(−k) ,
ab

[k]
†

=
ab

[k] .



With properties

Sab
ab

(k) =
k

2

ab

(k), Sab
ab

[k] =
k

2

ab

[k],

S̃ab
ab

(k) =
k

2

ab

(k), S̃ab
ab

[k] = −k

2

ab

[k] .

γa
ab

(k) = ηaa
ab

[−k] , γb
ab

(k) = −ik
ab

[−k] , γa
ab

[k] =
ab

(−k) , γb
ab

[k] = −ikηaa
ab

(−k) ,

γ̃a
ab

(k) = −iηaa
ab

[k] , γ̃b
ab

(k) = −k
ab

[k] , γ̃a
ab

[k] = i
ab

(k) , γ̃b
ab

[k] = −kηaa
ab

(k) ,
ab

(k)
ab

(−k) = ηaa
ab

[k] ,
ab

[k]
ab

(k) =
ab

(k) ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(−k) = 0 ,
ab

[k]
ab

[−k] = 0 ,
ab

(̃−k)
ab

(k) = −iηaa
ab

[k] ,
ab

[̃k]
ab

(k) =
ab

(k) ,
ab

(̃k)
ab

[k] = i
ab

(k) ,
ab

[̃−k]
ab

[k] =
ab

[k] ,
ab

(̃k)
ab

(k) = 0 ,
ab

[̃−k]
ab

(k) = 0 ,
ab

(̃k)
ab

[−k] = 0 ,
ab

[̃k]
ab

[k] = 0 .



▶ Let the internal space of fermions and bosons, described
by the Clifford algebra objects, be called “basis vectors”,
arranged as products of nilpotents and projectors, so
that “basis vectors” are eigenstate of all the Cartan
members S03,S12,S56, Sd−1 d in even dimensional spaces.

▶ ”Basis vectors”, describing fermions have odd number of
nilpotents, the rest of projectors. They are Clifford odd
“basis vectors”.

▶ ”Basis vectors”, describing bosons have even number of
nilpotents, the rest of projectors. They are Clifford even
“basis vectors”.



”Basis vectors”, describing fermions, b̂m†
f , appear in 2

d
2
−1

families, each family with 2
d
2
−1 members.

o Usual description of quarks and leptons requires to
postulate additional group to represent families!

My Clifford odd ”basis vectors”, b̂m†
f . have their Hermitian

conjugated partners , b̂mf , in another group.

Since Clifford odd “basis vectors” are the superposition of
odd products of γa’s they anti-commute as they do their

Hermitian conjugated partners.

{b̂mf , b̂
m′†
f ′ }∗A+ |ψoc > = δmm′

δff ′ |ψoc > ,

{b̂mf , b̂m
′

f ′ }∗A+ |ψoc > = 0 · |ψoc > ,

{b̂m†
f , b̂m

′†
f ′ }∗A+ |ψoc > = 0 · |ψoc > ,

b̂m†
f ∗A

|ψoc > = |ψm
f > ,

b̂mf ∗A|ψoc > = 0 · |ψoc > ,

with (m,m′) denoting the ”family” members and (f , f ′) ”families”.



o In USUAL description of quarks and leptons, the
corresponding vectors (10), (

0
1) commute as numbers.

▶ “Basis vectors”, describing bosons in my formulation of

the internal space appear in two groups with 2
d
2
−1 × 2

d
2
−1

members. They have NO families.

They have their Hermitian conjugated partners within
the same group.

o In USUAL description of boson fields, the corresponding
vectors are triplets and just commute – as numbers.

▶ In my case the Clifford odd “basis vectors” have
properties of second quantized fermion fields, transfering
anti-commutativity to the creation and annihilation
operators.

▶ In my case Clifford even “basis vectors” have properties
of second quantized boson fields, transferring their
commutativity to creation and annihilation operators.



Let us comment the case d=(3+1).

▶ Clifford odd ”basis vectors” appear in two families

(2
d
2
−1), each family has two members (2

d
2
−1).

b̂1†1 =
03

(+i)
12

[+] , b̂1†2 =
03

[+i]
12

(+) ,

(
1
0

)
R

, S12 =
1

2
,

b̂2†1 =
03

[−i]
12

(−) , b̂2†2 =
03

(−i)
12

[−] ,

(
0
1

)
R

, S12 = −1

2
,

(in my case S01,S02,S31,S32 rotate b̂m†
f into b̂m

′†
f ‘ , in the

Dirac’s case σ matrices rotate),

and their Hermitian conjugated partners

b̂11 =
03

(−i)
12

[+] , b̂1†2 =
03

[+i]
12

(−) , (1 0)

b̂21 =
03

[−i]
12

(+) , b̂22 =
03

(+i)
12

[−] , (0 1)

There are only right handed or only left handed Clifford
odd “basis vectors” ,



▶ Clifford even ”basis vectors” with even number of
nilpotents appear in two groups of (2

d
2
−1 × 2

d
2
−1)

members, with their Hermitian conjugated partners
within the same group.

Group IAm†
f

S03 S12 S03 S12

IA1†
1 =

03

[+i]
12

[+] 0 0 , IA1†
2 =

03

(+i)
12

(+) i 1

IA2†
1 =

03

(−i)
12

(−) −i −1 , IA2†
2 =

03

[−i]
12

[−] 0 0 ,

Group IIAm†
f

S03 S12 S03 S12

IIA1†
1 =

03

[+i]
12

[−] 0 0 , IIA1†
2 =

03

(+i)
12

(−) i 1

IIA2†
1 =

03

(−i)
12

(+) −i 1 , IIA2†
2 =

03

[−i]
12

[+] 0 0 ,



In my case there is additional way to “rotate” Clifford odd
“basis vectors”, describing fermions.

Besides by rotating with S01, S02, S31,S32

the same can be achieved as well by the application of IAm†
f .

▶ IA2†
1 (=

03

(−i)
12

(−)) ∗A b̂1†1 (=
03

(+i)
12

[+]) = b̂2†1 (=
03

[−i]
12

(−)) .

This means that the Clifford even ‘’basis vector” IAm†
f

brings to the Clifford odd ‘’basis vector” the integer spin
(0,±1).

IAm†
f manifest the properties of the gauge fields to the

corresponding b̂m
′†

f ‘ fermion fields.

▶ IAm†
f have properties of the second quantized boson

fields.

iÂm†
f ∗A iÂm′†

f‘ →
{

iÂm†
f‘ ,

or 0 , i = (I, II) .



Let us see how does in my way look one family of quarks and
leptons and antiquarks and anileptons.
Sab generate all the members of one family. All are Clifford
odd ”basis vectors” .

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y τ4

Octet, Γ(7,1) = 1, Γ(6) = −1,
of quarks

1 uc1R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
1 0 1

2
2
3

1
6

2 uc1R

03
[−i ]

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
1 0 1

2
2
3

1
6

3 dc1R

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
1 0 − 1

2
− 1

3
1
6

4 dc1R

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
1 0 − 1

2
− 1

3
1
6

5 dc1L

03
[−i ]

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
-1 − 1

2
0 1

6
1
6

6 dc1L

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
-1 − 1

2
0 1

6
1
6

7 uc1L

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
-1 1

2
0 1

6
1
6

8 uc1L

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
-1 1

2
0 1

6
1
6

γ0γ7 and γ0γ8 transform uR of the 1st row into uL of the 7th row, and dR of the 4rd row into dL of the 6th row,

doing what the Higgs scalars and γ0 do in the standard model.



The eightplet — SO(7, 1), — part is identical for quarks and
leptons and separately for antiquarks and antileptons. They
distinguish only in SU(3)× U(1) part — in τ33, τ38, τ41.

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y Q

Octet, Γ(7,1) = 1, Γ(6) = −1,
of leptons

25 νR
03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
1 0 1

2
0 0

26 νR
03

[−i ]
12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
1 0 1

2
0 0

27 eR
03

(+i)
12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
1 0 − 1

2
−1 −1

28 eR
03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
1 0 − 1

2
−1 −1

29 eL
03

[−i ]
12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
-1 − 1

2
0 − 1

2
−1

30 eL
03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
-1 − 1

2
0 − 1

2
−1

31 νL
03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
-1 1

2
0 − 1

2
0

32 νL
03

(+i)
12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
-1 1

2
0 − 1

2
0

γ0γ7 and γ0γ8 transform νR of the 1st line into νL of the 7th line, and eR of the 4rd line into eL of the 6th line,

doing what the Higgs scalars and γ0 do in the standard model.



Sab generate also quarks of the two additional colours and
colourless leptons, and the corresponding antiquarks and
antileptons, presented below.
Quarks and leptons, and anti quarks and antileptons have all
the properties assumed by the standard model.

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y τ4

Antioctet, Γ(7,1) = −1, Γ(6) = 1,
of antiquarks

33 d̄c̄1L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
1 0 1

2
1
3

− 1
6

34 d̄ c̄1L

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 − 1

2
1 0 1

2
1
3

− 1
6

35 ūc̄1L

03
[−i ]

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
1 0 − 1

2
− 2

3
− 1

6

36 ūc̄1L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] - 1 − 1

2
1 0 − 1

2
− 2

3
− 1

6

37 d̄c̄1R

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
-1 1

2
0 − 1

6
− 1

6

38 d̄ c̄1R

03
[−i ]

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
-1 1

2
0 − 1

6
− 1

6

39 ūc̄1R

03
(+i)

12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
-1 − 1

2
0 − 1

6
− 1

6

40 ūc̄1R

03
[−i]

12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
-1 − 1

2
0 − 1

6
− 1

6

γ0γ7 and γ0γ8 transform d̄L of the 1st row into d̄R of the 5th row, and ūL of the 4rd row into ūR of the 8th row.



All quarks and leptons and antiquarks and antileptons,
the “basis vectors” of which are presented in the last three

tables,
fulfil the anti-commutation relations required by the second

quantization postulates,
therefore, explaining the second quantization postulates,

since the Clifford odd “basis vectors” transfer the
anti-commutativity to the creation and their Hermitian

conjugated partners annihilation operators.
The basis in ordinary space, namely, commute.



Let us introduce the momentum basis in ordinary space

|p⃗ > = b̂†p⃗ | 0p > , < p⃗ | =< 0p | b̂p⃗ ,

< p⃗ | p⃗′ > = δ(p⃗ − p⃗′) =< 0p |b̂p⃗ b̂†p⃗′ | 0p > ,

b̂p⃗ b̂
†
p⃗′ = δ(p⃗ − p⃗′) , < 0p | 0p >= 1 .

Then the creation operators can be written in a tensor
product, ∗T :
▶ for quarks and leptons and antiquarks and antileptons

we can write

{b̂s†f (p⃗) =
∑
m

csmf (p⃗) b̂
†
p⃗ ∗T b̂m†

f } |ψoc > ∗T |0p⃗ > ,

▶ for bosons, the gauge fields of quarks and leptons and
antiquarks and antileptons, we can write

{IÂs†
α (p̃) =

∑
mf

Csm
fα (p̃) b̂

†
p̃ ∗T

IÂs†
f } |ϕob > ∗T |0p⃗ > .

boson fields need additional space index Csm
f α .



A simple starting action used in the spin-charge-family
theory.

Fermions carry in d = (13 + 1) only spins, two kinds of spins
(no charges) and interact with only the

gauge gravitational fields.

S =

∫
ddx E Lf +∫
ddx E (αR + α̃ R̃)

▶ with vielbeins and the two kinds of spin connection fields

Lf =
1

2
(ψ̄ γap0aψ) + h.c.

p0a = f αap0α +
1

2E
{pα,Ef αa}−

p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα



What new will come when replacing ωabα with I Âm†
f ?

p0α = pα −
∑
ab

1

2
Sabωabα −

∑
ab

1

2
S̃abω̃abα

into

p0α = pα −
∑
mf

Cm
fα

IÂm†
f −

∑
mf

C̃m
fα

I ˆ̃A
m†
f



▶ The Einstein action for a free gravitational field is
assumed to be linear in the curvature

Lg = E (αR+ α̃R̃),

R = fα[afβb] (ωabα,β − ωcaαω
c
bβ),

R̃ = fα[afβb] (ω̃abα,β − ω̃caαω̃
c
bβ),

with E = det(eaα)
and f α[af βb] = f αaf βb − f αbf βa.



Fermions with only spin in d = (13 + 1)
are observed in d = (3 + 1) as:

o if carrying ordinary spin, having no weak charge and
carrying additional SU(2) charge:

as right handed quarks and leptons,
or as left handed antiquarks and antileptons,

o if carrying ordinary spin, weak charge different from zero
and additional SU(2) charge equal zero ,

as left handed quarks and leptons,
or as right handed antiquarks and antileptons.

Leptons are colourless and quarks coloured.
Antileptons are anticolourless and antiquarks are

anticoloured.

o SM The electroweak (and colour) standard model assumes
NO additional SU(2) charge .



o SM Let us present the electroweak (and colour) standard
model , postulated more than 50 years ago, offering an elegant
new step in understanding the origin of fermions and bosons

in that time
by postulating:

A.
▶ The existence of massless family members with the

charges in the fundamental representation of the groups -
o the coloured triplet quarks and colourless leptons,
o the left handed members as the weak charged doublets,
o the right handed weak chargeless members,
o the left handed quarks distinguishing in the hyper
charge from the left handed leptons,
o each right handed member having a different hyper
charge.

▶ The existence of massless families to each of a family
member.

▶ The second quantization postulates of fermion fields.



▶ o SM
α hand- weak hyper colour elm

edness charge charge charge charge

name −4iS03S12 τ13 Y Q

uiL −1 1
2

1
6

colour triplet 2
3

diL −1 − 1
2

1
6

colour triplet − 1
3

ν iL −1 1
2

− 1
2

colourless 0

eiL −1 − 1
2

− 1
2

colourless −1

uiR 1 weakless 2
3

colour triplet 2
3

diR 1 weakless − 1
3

colour triplet − 1
3

[ν iR] 1 weakless 0 colourless 0

eiR 1 weakless −1 colourless −1

Members of each of i = 1, 2, 3 families are massless before the

electroweak break. Each family contains the left handed weak

charged quarks and the right handed weak chargeless quarks,

belonging to the colour triplet (1/2, 1/(2
√
3)), (−1/2, 1/(2

√
3)),

(0,−1/(
√
3)), And the anti-fermions to each family and family

member.



I postulate only that the internal spaces of fermions are
described by the Clifford odd “basis vectors”;

and all the quantum numbers for quarks and leptons and
antiquark and antileptons appear by themselves,
the ones assumed by the standard model before the

electroweak break.
Since in my case an additional SU(2) charge to the weak

charge appears, I do have the right handed neutrino and left
handed antineutrino and the standard model does NOT have

them.
I do have families without postulated them,

and my quarks and leptons and antiquarks and antileptons
have properties of the second quantized fermion fields,

without postulating.
There are anti-commuting properties of the Clifford odd

“basis vectors”, which transfer their anti-commutativity to
the creation operators.



o SM

B. The postulates of the standard model continue

▶ The existence of massless vector gauge fields to the
observed charges of the family members,
carrying charges in the adjoint representation of the
charge groups.

Masslessness was needed for the gauge invariance.



o SM
Gauge fields before the electroweak break

▶ Three massless vector fields, the gauge fields of the
U(1), SU(2),SU(3) charges of quarks and leptons.

name hand- weak hyper colour elm
edness charge charge charge charge

hyper photon 0 0 0 colourless 0

weak bosons 0 triplet 0 colourless triplet

gluons 0 0 0 colour octet 0

They are vectors, with the space index (0,1,2,3) in
d = (3 + 1), in the adjoint representations with respect
to the weak, colour and hyper charges.



o SM
C.

▶ The existence of a massive scalar field - the higgs,

o carrying the weak charge ±1
2 and the hyper charge ∓1

2 (as
it would be in the fundamental representation of the groups.)

o gaining at some step the imaginary mass and consequently
the constant value , breaking the weak and the hyper charge
and correspondingly breaking the mass protection.

▶ The existence of the Yukawa couplings, taking care of

o the properties of fermions and

o the masses of the heavy bosons.



o SM

▶ The Higgs’s field, the scalar in d = (3 + 1), a doublet
with respect to the weak charge.

▶

name hand- weak hyper colour elm
edness charge charge charge charge

0· Higgsu 0 1
2

1
2 colourless 1

< Higgsd > 0 − 1
2

1
2 colourless 0

▶

name hand- weak hyper colour elm
edness charge charge charge charge

< Higgsu > 0 1
2 − 1

2 colourless 0

0· Higgsd 0 − 1
2 − 1

2 colourless −1



o SM

D.

▶ There is the gravitational field in d=(3+1).



▶ In the spin-charge-family theory, all vector and scalar
gauge fields origin in gravity, explaining the origin of the
vector and scalar gauge field, which in the standard
model are assumed,
Eur. Phys. J. C 77 (2017) 231:

o Vector gauge fields carry space index (0, 1, 2, 3), and
scalar gauge fields, higgs, carry space index (7, 8). Both
origin in two spin connection fields, the gauge fields of
γaγb and γ̃aγ̃b, and in

o vielbeins, the gauge fields of momenta,
Eur. Phys. J. C 77 (2017) 231, [arXiv:1604.00675].

▶ There are additional scalar fields, explaining the matter
anti-matter asymmetry in the universe, carrying space
index (9, 10, dots, 14).



S =

∫
ddx E Lf +∫
ddx E (αR + α̃ R̃)

Lf =
1

2
(ψ̄ γap0aψ) + h.c .

p0a = f αap0α +
1

2E
{pα,Ef αa}−

p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα



▶ Looking for understanding nature with the Clifford odd
and even “basis vectors”,

I recognized that the internal spaces of the observed
fermions can be described by the Clifford odd “basis

vectors”,
and the internal spaces of the observed bosons can be

described by the Clifford even “basis vectors”.

▶ Let us illustrate this recognition on a special case of
d = (5 + 1) ,
looking at the SU(3)× U(1) sub-groups of the SO(5, 1) group
(with the commuting operators S03,S12,S56):

τ 3 :=
1

2
(−S1 2 − iS0 3) , τ 8 =

1

2
√
3
(−iS0 3 + S1 2 − 2S5 6) ,

τ ′ = −1

3
(−iS0 3 + S1 2 + S5 6) .



▶ In the Clifford odd part we find one colour triplet of ”basis
vectors” with τ ′ = 1

6 and
one colour singlet with τ ′ = − 1

2 ,

(representing, let say, only the colour part of quarks and of

the colourless leptons of one family).

τ3

τ8

τ'

(1/2,1/2√3,1/6)

(0,0,-1/2)

(-1/2,1/2√3,1/6)

(0,-1/√3,1/6)



▶ The Clifford even “basis vectors” demonstrate: one sextet
with τ ′ = 0, four singlets with (τ 3 = 0, τ 8 = 0, τ ′ = 0),
one triplet with τ ′ = 2

3 and one triplet with τ ′ = − 2
3 .

τ(1,0,0)(-1,0,0)

(1/2,√3/2,0)(-1/2,√3/2,0)

(-1/2,-√3/2,0)
(1/2,-√3/2,0)

(0,1/√3,-2/3)

(-1/2,-1/(2√3),-2/3)
(1/2,-1/(2√3),-2/3)

(1/2,1/(2√3),2/3)
(-1/2,1/(2√3),2/3)

(0,-1/√3,2/3)
τ

τ

3

8

'

If I Âm
f , ⊙⊙, with (τ 3 = 0, τ 8 = − 1√

3
, τ ′ = 2

3 ), applies on the Clifford

odd ”basis vector” with (τ 3 = 0, τ 8 = 0, τ ′ = − 1
2 ), 2, a singlet,

transforms this singlet into Clifford odd “basis vector” with

(τ 3 = 0, τ 8 = − 1√
3
, τ ′ = 1

6 ).



o SM

▶ The standard model assumptions have been confirmed
without offering surprises.

▶ The last unobserved field as a field, the Higgs’s scalar,
detected in June 2012, was confirmed in March 2013.

▶ The waves of the gravitational field were detected in
February 2016 and again 2017. o SM



There remain not understood phenomena within
o SM

▶ The Standard model assumptions need explanation, need
next step.

▶ There are several cosmological observations which do not
look to be explainable within the standard model, like

o The existence of the dark matter

o The matter/antimatter asymmetry in the universe

o The need for the dark energy

▶ the observed dimension of space time,

▶ the quantization of the gravitational field since all
systems are to my understanding second quantized,

▶ · · ·



▶ o SM The Standard model assumptions have in the
literature several explanations, but with many new not
explained assumptions.

▶ The Spin-Charge-Family theory offers the explanation for
i. all the assumptions of the standard model,
ii. for many observed phenomena:
ii.a. the dark matter,
ii.b. the matter-antimatter asymmetry,
ii.c. others observed phenomena,
iii. explaining the Dirac’s postulates for the second

quantized fermion and second quantized boson
fields,

iv. making several predictions.

Is the Spin-Charge-Family theory the right next step
beyond both standard models?



In the literature all the internal spaces are described by using
groups.

▶ Quarks and leptons and antiquarks and antileptons are
postulated separately.

▶ NO explanation for the existence of the families of
quarks and leptons can be found, which would not just
assume the family groups.

▶ Several extensions of the standard model are, however,
proposed, like:

0 The SU(3) group is assumed to describe, not to
explain, the existence of three families.

0 Like the Higgs’s scalar charges are in the fundamental
representations of the groups.



▶ The most popular are the SU(5) and SO(10) grand
unified theories unifying all the charges.

o But the spin (the handedness) is obviously connected
with the (weak and the hyper) charges, what these
theories do ”by hand” as it does the standard model,
and the appearance of families is not explained.

▶ Supersymmetric theories, assuming the existence of
bosons with the charges of quarks and leptons and
fermions with the charges of the gauge vector fields,

although having several nice properties but not
explaining the appearance of families (except again by
assuming larger groups), are not, to my understanding,
the right next step beyond the standard model.



o The Spin-Charge-Family theory does offer the explanation
for all the assumptions of the standard model,

o For the observed properties of quarks and leptons and
antiquarks and antileptons ,

o For the vector and scalar gauge fields ,
o explaining the second quantization postulates for fermions

and bosons.

o Let us see how does the break of the starting symmetry
SO(13, 1), leading to the observed properties of quarks and
leptons and antiquarks and antileptons and to observed

vector and scalars , go.
o Let me tell the concrete predictions so far made.



Breaking symmetry from M13+1 into M7+1 ×M6

▶ We start with the massless solutions of the Weyl
equation in d = (13 + 1) with the ”basis vectors”,
described by the odd Clifford algebra objects,
determining the internal space of fermions.

▶ With the spin (or the total angular momentum) in extra
dimensions, d > (7 + 1), determining the colour SU(3)
and the “fermion charge” τ in d = (7 + 1).

▶ Also all the boson fields are in d = (13+ 1) massless free
fields with the ”basis vectors”, described by the even
Clifford algebra objects, determining the internal space
of bosons.



Condensate

▶ The (assumed so far, waiting to be derived how does this
spontaneously appear) scalar condensate of two right
handed neutrinos with the family quantum numbers of
the upper four families (there are two four family groups
in the theory), appearing ≈ 1016 GeV or higher,

o breaks the CP symmetry, causing the
matter-antimatter asymmetry and the proton decay,

o couples to all the scalar fields, making them massive,

o couples to all the phenomenologically unobserved
vector gauge fields, making them massive.

o Before the electroweak break all the so far observed
vector gauge fields are massless.

Phys. Rev. D 91 (2015) 6, 065004,
J. of Mod. Phys. 6 (2015) 2244,
J. Phys.: Conf.Ser. 845 01, IARD 2017



The condensate has spin S12 = 0, S03 = 0,
weak charge τ⃗1 = 0, and

⃗̃τ1 = 0, Ỹ = 0, Q̃ = 0, ⃗̃NL = 0.

state τ23 τ4 Y Q τ̃23 Ñ3
R τ̃4

|νVIII1R >1 |νVIII2R >2 1 −1 0 0 1 1 −1

|νVIII1R >1 |eVIII2R >2 0 −1 −1 −1 1 1 −1
|eVIII1R >1 |eVIII2R >2 −1 −1 −2 −2 1 1 −1



▶ The vector fields, which do not couple to the condensate
and remain massless, are:

o the hyper charge vector field.

o the weak vector fields,

o the colour vector fields,

o the gravity fields.

The SU(2)II symmetry breaks due to the condensate, leaving
the hyper charge unbroken.



Sab generate all the 64 members of one family. The eightplet
(represent. of SO(7, 1)) of quarks of a particular colour charge.
All are Clifford odd ”basis vectors” .

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y τ4

Octet, Γ(7,1) = 1, Γ(6) = −1,
of quarks

1 uc1R

03
(+i)

12
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(+)
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9 10
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11 12
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13 14
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1
6
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03
[−i ]

12
[−] |

56
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1
6

3 dc1R
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12
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Nonzero vacuum expectation values of scalars
— waiting to be shown how does such an event, making the
masses of the scalar gauge fields imaginary, appear in the

spin-charge-family spontaneously.

▶ The scalar fields with the space index (7, 8), gaining
nonzero vacuum expectation values, a constant values,
cause the electroweak break,

o breaking the weak and the hyper charge,

o changing their own masses,

o bringing masses to the weak bosons,

o bringing masses to the families of quarks and leptons.

Phys. Rev. D 91 (2015) 6, 065004,
J. Phys.: Conf.Ser. 845 01 IARD 2017,
Eur. Phys. J.C. 77 (2017) 231 [arXiv:1604.00675],
J. of Mod. Phys. 6 (2015) 2244, [arXiv:1502.06786,
arXiv:1409.4981]



▶ The only gauge fields which do not couple to these
scalars and remain massless are

o electromagnetic,

o colour vector gauge fields,

o gravity.

▶ There are two times four decoupled massive families of
quarks and leptons after the electroweak break:

o There are the observed three families among the lower
four, the fourth to be observed.

o The stable among the upper four families form the
dark matter.

Phys. Rev. D 80, 083534 (2009),
Phys. Rev. D 91 (2015) 6, 065004,
J. Phys.: Conf.Ser. 845 01, IARD 2017



SO(1, 13)× ˜SO(1, 13)

BREAK I

at E ≥ 1016GeV

↓

SO(1, 7)× U(1)× SU(3)

× ˜SO(1, 7)
↙ ↘

eight massless families

SO(1, 3)×SO(4)×U(1)× (S̃U(2)I
S̃O(1,3)

×S̃U(2)I
S̃O(4)

)× (S̃U(2)II
S̃O(1,3)

×S̃U(2)II
S̃O(4)

)× SU(3)

(devided into two groups)

BREAK II

︸ ︷︷ ︸
↓

The Standard Model like way of breaking
↓

SO(1, 3) × U(1) × SU(3)
×(two groups of four massive families)



▶ It is really encouraging for the spin-charge-family theory,
that a simple starting action contains all the fermions,
all the corresponding vector gauge fields and all the
scalar fields observed at low energies.

▶ There are two breaks of the manifold M(13,1) needed:

o At high energies — ≥ 1016 GeV — from M(13,1) to
M(7,1) ×M(6). The condensate of two right handed
neutrinos with the weak charge zero, the second SU(2)
charge equal to 1, with the“fermion charge” −1, τ̃13 = 1,
τ̃4 = −1, Ñ3

R = 1) can do this break, making all the
boson fields not observed at low energies very heavy.

o At the electroweak break scalar fields with the space
index (7, 8) give masses to twice four families of quarks
and leptons and anti-quarks and anti-leptons and to
weak bosons.



The Spin-Charge-Family theory explains

o all the assumptions of the standard model, with the gauge
fields, scalar fields, families of fermions, masses of fermions
and of bosons included,
o explaining also the dark matter, Phys. Rev. D 80, 083534
(2009), 1-16,
o the matter/antimatter asymmetry, Phys. Rev. D 91 (2015)
065004
o the triangle anomalies cancellation in the standard model
(Forts. der Physik, Prog.of Phys.) (2017) 1700046)
and...



Fermions

▶ The action for spinors ”seen” from d = (3 + 1) and
analyzed with respect to the standard model groups as
subgroups of SO(13 + 1):

Lf = ψ̄γm(pm −
∑
A,i

gAτAiAAi
m )ψ + (m = 0, 1, 2, 3)

{
∑

s=[7],[8]

ψ̄γsp0s ψ}+ (mass byHiggs τ13 = ±1

2
,Y = ∓1

2
)

{
∑

s=[5],[6]

ψ̄γsp0s ψ + (scalar doublets)

∑
t=[9],...[14]

ψ̄γtp0t ψ} (scalar triplets)

+the rest , ,

J. of Mod. Phys. 4 (2013) 823



Covariant momenta and bosons

p0m = {pm −
∑
A

gA τ⃗A ÃA
m} , AAi

m =
∑
a,b

cAiab ωabm ,

m ∈ (0, 1, 2, 3) ,

p0s = f σs [pσ −
∑
A

gA τ⃗A ÃA
σ −

∑
A

g̃A ⃗̃τA ˜̃AA
σ ] ,

s ∈ (7, 8) ,

p0s = f σs [pσ −
∑
A

gA τ⃗A ÃA
σ −

∑
A

g̃A ⃗̃τA ˜̃AA
σ ] ,

s ∈ (5, 6) ,

p0t = f σ
′

t (pσ′ −
∑
A

gA τ⃗A ÃA
σ′ −

∑
A

g̃A ⃗̃τA ˜̃AA
σ′) ,

t ∈ (9, 10, 11, . . . , 14) ,

AAi
σ =

∑
a,b

cAi ab ωabσ , ÃAi
σ =

∑
a,b

c̃Ai ab ω̃abσ ,



τAi =
∑
a,b

cAi ab Sab ,

τ̃Ai =
∑
a,b

c̃Ai ab S̃ab ,

{τAi, τBj}− = iδAB f AijkτAk ,

{τ̃Ai, τ̃Bj}− = iδAB f Aijk τ̃Ak ,

{τAi, τ̃Bj}− = 0 .

▶ τAi represent the charge groups, following from SO(13, 1)
— SU(3)c ,SU(2)w as in the standard model — the second
SU(2)II , the ”spinor” charge U(1), taking care of the hyper
charge of the standard model Y = τ 23 + τ 4,

▶ τ̃Ai denote the family quantum numbers.

New J. Phys. 13, 103027, 2011.
J. Phys. A. Math. Theor. 45, 465401, 2012.



▶ The break from SO(13, 1) to SO(7, 1)× SO(6), made by
the appearance of the condensate, leaves eight massless
families of quarks and leptons and antiquarks and
antileptons,

▶ Makes the boson gauge fields, with which the
condensate interacts, massive. These gauge fields are:

o All the scalar gauge fields which couple to the
condensate.

o The vector (m ≤ 3) gauge fields with the Y ′ charges
— the superposition of SU(2)II and U(1)II charges.

J. Phys.: Conf. Ser. 845 (2017) 012017



Let us look at boson ”basis vectors” presented in a toy
model, which analyses I Âm†

f with respect to Cartan
subalgebra members (τ3, τ8, τ ′).

There are
one sextet with τ ′ = 0,

four singlets with (τ3 = 0, τ8 = 0, τ ′ = 0),
one triplet with τ ′ = 2

3 and one triplet with τ ′ = −2
3 .

The only I Âm†
f which couple to condensate in this toy model

are the two triplets with τ ′ = ±2
3 , transforming leptons into

quarks. These two triplests become massive.

τ(1,0,0)(-1,0,0)

(1/2,√3/2,0)(-1/2,√3/2,0)

(-1/2,-√3/2,0)
(1/2,-√3/2,0)

(0,1/√3,-2/3)

(-1/2,-1/(2√3),-2/3)
(1/2,-1/(2√3),-2/3)

(1/2,1/(2√3),2/3)
(-1/2,1/(2√3),2/3)

(0,-1/√3,2/3)
τ

τ

3

8

'



▶ The colour, elm, weak and hyper vector gauge fields do
not interact with the condensate and remain massless.
J. of Mod. Physics 6 (2015) 2244



At the electroweak break (caused by the scalar fields)

SO(1, 3)× SU(2)I × U(1)I × SU(3)
break to

SO(1, 3)× U(1)× SU(3)

o Scalar fields, higgses with the space index s = (7, 8)
manifesting the symmetry of either

S̃U(2)L × S̃U(2)I × U(1)

or S̃U(2)R × S̃U(2)II × U(1)
obtain constant values and imaginary masses (nonzero vacuum

expectation values),
o breaking correspondingly the weak and the hyper charge Y ,

and changing their own masses.

o They leave massless only the colour, elm and gravity gauge
fields.

Twice four massless families of quarks and leptons and
antiquarks and antileptons gain masses.



▶ Several scalar fields carry the weak and the hyper charge
of the standard model higgs.

▶ They carry besides the weak and the hyper charge either

o the family members quantum numbers
originating in (Q,Q’,Y’) or

o the family quantum numbers
originating in S̃U(2)L × S̃U(2)I or

S̃U(2)R × S̃U(2)II .

J. of Mod. Physics 6 (2015) 2244.

▶ The mass matrices of each family member manifest the
S̃U(2)L,R × S̃U(2)I ,II × U(1) symmetry.

[arXiv:1902.02691, arXiv:1902.10628]



▶ Several scalar gauge fields with the space index (s,t,s’)
= (7,8), origin in the spin connection fields, either ω̃abs

or ωs′ts :
o There are twice two triplets, the scalar gauge fields
with the family quantum numbers (τ̃Ai =

∑
a,b c̃

Ai
ab S̃ab)

and
o three singlets with the family members quantum
numbers (Q,Q’,Y’), the gauge fields of S st .

▶ They are all doublets with respect to the space index
(5,6,7,8).

▶ They have all the rest quantum numbers determined by
the adjoint representations.

▶ They explain at the so far observable energies the
Higgs’s scalar and the Yukawa couplings.

J. of Mod. Physics 6 (2015) 2244. [arXiv:1902.02691,
arXiv:1902.10628]



The two doublets, determining the properties of the Higgs’s
scalar and the Yukawa couplings, are:

▶

state τ13 τ23 = Y spin τ4 Q

AAi
78
(−)

AAi
7 + iAAi

8 + 1
2

− 1
2

0 0 0

AAi
56
(−)

AAi
5 + iAAi

6 − 1
2

− 1
2

0 0 -1

AAi
78
(+)

AAi
7 − iAAi

8 − 1
2

+ 1
2

0 0 0

AAi
56
(+)

AAi
5 − iAAi

6 + 1
2

+ 1
2

0 0 +1

There are AAi
78
(−)

and AAi
78
(+)

which gain nonzero vacuum

expectation values at the electroweak break.

Index Ai determines the family (τ̃Ai) quantum numbers and
the family members (Q,Q’,Y’) quantum numbers, both are in
adjoint representations.



Scalars with s=( 7,8), which gain nonzero vacuum
expectation values, break the weak and the hyper symmetry,
while conserving the electromagnetic and colour charge:

AAi
s ⊃ (AQ

s ,A
Q′
s ,AY′

s , ˜̃A1̃
s ,

˜̃A
ÑL̃
s , ˜̃A2̃

s ,
˜̃A
ÑR̃
s ) ,

τAi ⊃ ( Q, Q′, Y′, ˜̃τ1, ˜̃NL, ˜̃τ2, ˜̃NR) ,

s = (7, 8) .

Ai denotes:
o family quantum numbers

(˜̃τ1, ˜̃NL) quantum numbers of the first group of four families
and
(˜̃τ2, ˜̃NR)) quantum numbers of the second group of four
families.
o And family members quantum numbers (Q,Q ′,Y ′)



AAi
s are expressible with either ωsts′ or ω̃abs′.

˜̃A1
s = (ω̃58s − ω̃67s, ω̃57s + ω̃68s, ω̃56s − ω̃78s) ,

˜̃A2
s = (ω̃58s + ω̃67s, ω̃57s − ω̃68s, ω̃56s + ω̃78s) ,

˜̃AN
Ls = (ω̃23s + iω̃01s, ω̃31s + iω̃02s, ω̃12s+ ω̃03s) ,

˜̃AN
Rs = (ω̃23s − iω̃01s, ω̃31s − iω̃02s, ω̃12s− iω̃03s) ,

AQ
s = ω56s − (ω9 10s + ω11 12s + ω13 14s) ,

AY
s = (ω56s + ω78s)− (ω9 10s + ω11 12s + ω13 14s)

A4
s = −(ω9 10s + ω11 12s + ω13 14s) .



The mass term, appearing in the starting action,
is (ps , when treating the lowest energy solutions, is left out)

LM =
∑

s=(7,8),Ai

ψ̄ γs (−τAi AAi
s )ψ =

−ψ̄ {
78

(+) τAi (AAi
7 − i AAi

8 ) +
78

(−) τAi (AAi
7 + i AAi

8 ) }ψ ,

78

(±) =
1

2
(γ7 ± i γ8 ) , AAi

78
(±)

:= (AAi
7 ∓ i AAi

8 ) .



Operators Y , Q and τ13, applied on (AAi
7 ∓ i AAi

8 )

τ13 (AAi
7 ∓ i AAi

8 ) = ± 1

2
(AAi

7 ∓ i AAi
8 ) ,

Y (AAi
7 ∓ i AAi

8 ) = ∓ 1

2
(AAi

7 ∓ i AAi
8 ) ,

Q (AAi
7 ∓ i AAi

8 ) = 0 ,

manifest that all (AAi
7 ∓ i AAi

8 ) have quantum numbers of the
Higgs’s scalar of the standard model, ”dressing”, after gaining
nonzero expectation values, the right handed members of a
family with appropriate charges, so that they gain charges of the
left handed partners:
(AAi

7 + iAAi
8 ) ”dresses” uR , νR and (AAi

7 − iAAi
8 ) ”dresses”

dR , eR , with quantum numbers of their left handed partners, just
as required by the ”standard model”.



Ai determines:

either
o the Q,Q’,Y’ charges of the family members

or

o family charges (⃗̃τ 1̃, ⃗̃NL), transforming a family member of
one family into the same family member of another family,

manifesting in each group of four families the
S̃U(2)× S̃U(2)× U(1)

symmetry.



Eight families of uR (spin 1/2, colour ( 1
2
, 1
2
√

3
)) and of colourless νR (spin 1/2). All have ”tilde spinor charge”

τ̃4 = − 1
2
, the weak charge τ13 = 0, τ23 = 1

2
. Quarks have ”spinor” q.no. τ4 = 1

6
and leptons τ4 = − 1

2
. The

first four families have τ̃23 = 0, Ñ3
R = 0, the second four families have τ̃13 = 0, Ñ3

L = 0.
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Before the electroweak break all the families are mass protected and correspondingly massless.



▶ Scalars with the weak and the hyper charge (∓1
2 ,±

1
2)

determine masses of all the family members α of the lower
four families, νR of the lower four families have nonzero
Y ′ := −τ4 + τ23 and interact with the scalar field

(AY ′

(±),
⃗̃A1̃
(±),

⃗̃AÑL

(±)).

▶ The group of the lower four families manifest the
S̃U(2)

S̃O(1,3)
× S̃U(2)

S̃O(4)
× U(1) symmetry (also after all

loop corrections).

Mα =


−a1 − a e d b

e∗ −a2 − a b d
d∗ b∗ a2 − a e
b∗ d∗ e∗ a1 − a


α

.

[arXiv:1412.5866], [arXiv:1902.02691], [arXiv:1902.10628]



We made calculations, treating quarks and leptons in
equivalent way, as required by the ”spin-charge-family”
theory. Although

▶ any (n-1)x (n-1) submatrix of an unitary n x n matrix
determines the nxn matrix for n ≥ 4 uniquely,

▶ the measured mixing matrix elements of the 3 x 3
submatrix are not yet accurate enough even for quarks to
predict the masses m4 of the fourth family members.
o We can say, taking into account the data for the
mixing matrices and masses, that m4 quark masses
might be any in the interval (300 < m4 < 1000) GeV or
even above. Other experiments require that m4 are above
1000 GeV.

▶ Assuming masses m4 we can predict mixing matrices.



Results are presented for two choices of mu4 = md4 ,
[arxiv:1412.5866]:
▶ 1. mu4 = 700 GeV, md4 = 700 GeV.....new1

▶ 2. mu4 = 1200 GeV, md4 = 1 200 GeV.....new2

|V(ud)| =



expn 0.97425 ± 0.00022 0.2253 ± 0.0008 0.00413 ± 0.00049
new1 0.97423(4) 0.22539(7) 0.00299 0.00776(1)
new2 0.97423[5] 0.22538[42] 0.00299 0.00793[466]
expn 0.225 ± 0.008 0.986 ± 0.016 0.0411 ± 0.0013
new1 0.22534(3) 0.97335 0.04245(6) 0.00349(60)
new2 0.22531[5] 0.97336[5] 0.04248 0.00002[216]
expn 0.0084 ± 0.0006 0.0400 ± 0.0027 1.021 ± 0.032
new1 0.00667(6) 0.04203(4) 0.99909 0.00038
new2 0.00667 0.04206[5] 0.99909 0.00024[21]
new1 0.00677(60) 0.00517(26) 0.00020 0.99996
new2 0.00773 0.00178 0.00022 0.99997[9]


.

One can see what
B. Belfatto, R. Beradze, Z. Berezhiani, required in
[arXiv:1906.02714v1], that
Vu1d4 > Vu1d3 , Vu2d4 < Vu1d4 , and Vu3d4 < Vu1d4 , ,
what is just happening in my theory.
The newest experimental data, PDG, (P A Zyla at al, Prog.
Theor. and Exp. Phys., Vol. 2020, Issue 8, Aug. 2020, 083C01)
have not yet been used to fit mass matrix of Eq. (1).



▶ o The matrix elements VCKM depend strongly on the
accuracy of the experimental 3 x 3 submatrix.
o Calculated 3 x 3 submatrix of 4 x 4 VCKM depends on
the m4th family masses, but not much.
o Vuid4 , Vdiu4 do not depend strongly on the m4th family
masses and are obviously very small.

▶ The higher are the fourth family members masses, the
closer are the mass matrices to the democratic matrices
for either quarks or leptons, as expected.

▶ The higher are the fourth family members masses, the
better are conditions
Vu1d4 > Vu1d3 ,
Vu2d4 < Vu1d4 , and
Vu3d4 < Vu1d4

fulfilled.



▶ The stable family of the upper four families group is the
candidate to form the Dark Matter.

▶ Masses of the upper four families are influenced :
o by the S̃U(2)

II S̃O(3,1)
× S̃U(2)

II S̃O(4)
scalar fields with

the corresponding family quantum numbers,
o by the scalars (AQ

78
(∓)

, AQ′

78
(∓)

, AY ′
78
(∓)

), and

o by the condensate of the two νR of the upper four
families.



Dark matter

d → (d − 4) + (3 + 1) before (or at least at) the electroweak
break.



▶ We follow the evolution of the universe, in particular the
abundance of the fifth family members - the candidates
for the dark matter in the universe.

▶ We estimate the behaviour of our stable heavy family
quarks and anti-quarks in the expanding universe by
solving the system of Boltzmann equations.

▶ We follow the clustering of the fifth family quarks and
antiquarks into the fifth family baryons through the
colour phase transition.

▶ The mass of the fifth family members is determined
from the today dark matter density.

Phys. Rev. D (2009) 80.083534



Figure: The dependence of the two number densities nq5 (of the fifth family quarks) and nc5 (of the fifth

family clusters) as the function of
mq5

c2

Tkb
is presented for the values mq5

c2 = 71 TeV, ηc5 = 1
50

and

η(qq̄)b
= 1. We take g∗ = 91.5.



We estimated from following the fifth family members in the
expanding universe:

▶

10 TeV < mq5 c
2 < 4 · 102TeV .

▶

10−8fm2 < σc5 < 10−6fm2 .

(It is at least 10−6× smaller than the cross section for the first
family neutrons.)



We estimate from the scattering of the fifth family members
on the ordinary matter on our Earth, on the direct
measurements - DAMA, CDMS,..- ...

▶

200TeV < mq5c
2 < 105TeV .



Matter-antimatter asymmetry

▶ There are besides doublets, with the space index
s = (5, 6, 7, 8), as well triplets and anti-triplets, with
respect to the space index s = (9, . . . , 14).

▶ There are no additional scalars in the theory for
d=(13+1).

▶ All the scalars have the family and the family members
quantum numbers in the adjoint representations.

▶ It is the (so far assumed) the condensate, which makes
those gauge fields — vector or scalar — with which it
interacts, massive.
o The condensate breaks the CP symmetry.



There are also triplet and anti-triplet scalars, s = (9, .., d):,

▶

state τ33 τ38 spin τ4 Q
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√
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3
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9 + iAAi
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2
√

3
0 + 1

3
+ 1

3
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11 12
(−)

AAi
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2

− 1
2
√

3
0 + 1

3
+ 1

3

AAi
13 14
(−)

AAi
13 + iAAi

14 0 1√
3

0 + 1
3

+ 1
3

They cause transitions from anti-leptons into quarks and
anti-quarks into quarks and back, transforming matter into
antimatter and back. The condensate breaks CP symmetry,
offering the explanation for the matter-antimatter
asymmetry in the universe.



Let us look at scalar triplets, causing the birth of a proton
from the left handed positron, antiquark and quark:
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•



These two quarks, dc1
R and uc3R can bind (at low enough energy)

together with uc2R into the colour charge-less baryon - a proton.

After the appearance of the condensate the CP is broken.

In the expanding universe, fulfilling the Sakharov request for
appropriate non-thermal equilibrium, these triplet scalars have
offer explanation for the matter-antimatter asymmetry.

The opposite transition makes the proton decay.
These processes seem to explain the lepton number non
conservation.



In the standard model the family members with all their
properties,
the families,

the vector gauge fields,
the scalar Higgs, the Yukawa couplings,

exist by the assumption.



In the spin-charge-family theory the appearance of all the
standard model fields before the electroweak break, as well

as their properties follow from
the simple starting action in d = 13 + 1

with fermions carrying two kinds of spins no charges,
interacting with the gravity only;

the vielbeins (the gauge fields of momenta),
and the two kinds of the spin connection fields,

(the gauge fields of Sab and S̃ab).

The internal spaces of fermions and bosons are described by
the Clifford algebra objects.



The theory offers the explanation for the :
o dark matter, the stable of the upper four families does

this .

o matter-antimatter asymmetry,
the condensate (breaking the CP symmetry), and the

massive triplet scalars do that,

o all scalar and all vector gauge fields are directly or
indirectly observable.

o definition of the creation and annihilation operators
without postulating their anti-commutativity or

commutativity,

o Fadeev-Popov ghosts which appear in odd-dimensional
spaces.



The spin-charge-family theory explains also many other
properties, which are not explainable in the standard model,
like ”miraculous” non-anomalous triangle Feynman diagrams.

The more work is put into the spin-charge-family theory the
more explanations for the phenomena follow.



To summarize:

▶ I hope that I managed to convince you that the
spin-charge-family theory answers many open questions
of particle physics and cosmology.
The more work is put into this theory the more observed
phenomenas I can explain and the predictions offer.

▶ The collaborators are very welcome!

▶ There are namely still a lot of properties to derive and
explain and understand:
o Are equations of motion of elementary fields simple
end elegant? as it is in the spin-charge-family theory?
o Does nature choose the Clifford algebra to describe
the internal degres of freedom of fermion and boson
fields?
o Are all the systems second quantized, with the Black
holes included? Can my way help to second quantize
gravity?

▶ There are many calculations still needed.
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