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**
More than 50 years ago the electroweak (and colour) standard
model offered an elegant new step in understanding the
origin of fermions and bosons by postulating for before the
electroweak break:

A.

▶ The existence of massless family members with the
charges in the fundamental representation of the groups -
o the coloured triplet quarks and colourless leptons,
o the left handed members as the weak charged doublets,
o the right handed weak chargeless members,
o the left handed quarks distinguishing in the hyper
charge from the left handed leptons,
o each right handed member having a different hyper
charge.

▶ The existence of massless families to each of a family
member.



**

▶

α hand- weak hyper colour elm
edness charge charge charge charge

name −4iS03S12 τ13 Y Q

uiL −1 1
2

1
6

colour triplet 2
3

diL −1 − 1
2

1
6

colour triplet − 1
3

ν iL −1 1
2

− 1
2

colourless 0

eiL −1 − 1
2

− 1
2

colourless −1

uiR 1 weakless 2
3

colour triplet 2
3

diR 1 weakless − 1
3

colour triplet − 1
3

ν iR 1 weakless 0 colourless 0

eiR 1 weakless −1 colourless −1

Members of each of the i = 1, 2, 3 families, massless before the electroweak break. Each family contains the

left handed weak charged quarks and the right handed weak chargeless quarks, belonging to the colour triplet

(1/2, 1/(2
√
3)), (−1/2, 1/(2

√
3)), (0,−1/(

√
3)).

And the anti-fermions to each family and family member.



**

B.

▶ The existence of massless vector gauge fields to the
observed charges of the family members,
carrying charges in the adjoint representation of the
charge groups.

Masslessness needed for gauge invariance.



**

▶ Three massless vector fields, the gauge fields of the
three charges.

name hand- weak hyper colour elm
edness charge charge charge charge

hyper photon 0 0 0 colourless 0

weak bosons 0 triplet 0 colourless triplet

gluons 0 0 0 colour octet 0

They all are vectors in d = (3 + 1), in the adjoint
representations with respect to the weak, colour and
hyper charges.



**

C.

▶ The existence of a massive scalar field - the higgs,

o carrying the weak charge ±1
2 and the hyper charge ∓1

2 .

o gaining at some step the imaginary mass and consequently
the constant value , breaking the weak and the hyper charge
and correspondingly breaking the mass protection.

▶ The existence of the Yukawa couplings, taking care of

o the properties of fermions and

o the masses of the heavy bosons.



**

▶ The Higgs’s field, the scalar in d = (3 + 1), a doublet
with respect to the weak charge.

▶

name hand- weak hyper colour elm
edness charge charge charge charge

0· Higgsu 0 1
2

1
2 colourless 1

< Higgsd > 0 − 1
2

1
2 colourless 0

▶

name hand- weak hyper colour elm
edness charge charge charge charge

< Higgsu > 0 1
2 − 1

2 colourless 0

0· Higgsd 0 − 1
2 − 1

2 colourless −1



D.

▶ There is the gravitational field in d=(3+1).



o

▶ The standard model assumptions have been confirmed
without offering surprises.

▶ The last unobserved field as a field, the Higgs’s scalar,
detected in June 2012, was confirmed in March 2013.

▶ The waves of the gravitational field were detected in
February 2016 and again 2017.



o
The assumptions of the standard model remain unexplained.

▶ There are several cosmological observations which do
not look to be explainable within the standard model, like

o The existence of the dark matter

o The matter/antimatter asymmetry in the universe

o The need for the dark energy

▶ the observed dimension of space time,

▶ the quantization of the gravitational field,

▶ · · ·



▶ o The Standard model assumptions have in the
literature several explanations, but with many new not
explained assumptions.

▶ o It is obviously the time to make the new step beyond
the standard model.

▶ o And to recognize whether the laws of nature are
simple and elegant, answering all the questions without
adding new terms to the action, or are like the
approximate laws in the many body problems.



▶ o The Spin-Charge-Family theory offers the explanation
for
o i. all the assumptions of the standard model,
o ii. for many observed phenomena:
o ii.a. the dark matter,
o ii.b. the matter-antimatter asymmetry,
o ii.c. others observed phenomena,
o iii. offering the explanation of the Dirac’s postulates

for the second
quantized fermion and second quantized boson
fields,

o iv. Explaining the offer of the Fadeev-Popov ghosts.
o v. making several predictions.

Is the Spin-Charge-Family theory the right next step
beyond both standard models?



▶ Work done so far on the spin-charge-family theory is
promising.



** We try to understand:

▶ What are elementary constituents and interactions
among constituents in our Universe, in any universe?

▶ Are the elementary constituents of only one kind?

▶ Are the four observed interactions — gravitational,
electromagnetic, weak and colour — of the common
origin?

▶ Are the laws of “nature” simple and “elegant”?

▶ Are all the fermion and boson fields second quantized?



**

▶ Can the postulates for the second quantized fermions
and for the second quantized bosons be understood in
equivalent way?

▶ Can the description of the internal space of fermions
with the Clifford odd and of the internal space of bosons
with the Clifford even algebra explain/replace the second
quantization postulates?

▶ Is the space-time (3 + 1)? If yes, why (3+1)?

▶ If not (3 + 1), may it be that the space-time is infinite?

▶ How has the space-time of our universe started?

▶ What is the matter and what the anti-matter?



**

What questions should one ask to be able to find next steps
beyond the standard models and to understand not yet
understood phenomena?

▶ o Where do family members originate?
o Where do charges of family members originate?
o Why are the charges of family members so different?
o Why have the left handed family members so different
charges from the right handed ones?

▶ o Where do families of family members originate?
o How many different families exist?
o Why do family members – quarks and leptons –
manifest so different properties if they all start as
massless?



**

▶ o How are the origin of the scalar field (the Higgs’s
scalar) and the Yukawa couplings connected with the
origin of families?
o How many scalar fields determine properties of the so
far (and others possibly be) observed fermions and masses
of weak bosons? (The Yukawa couplings certainly speak for
the existence of several scalar fields with the properties of
Higgs’s scalar.)

▶ Why is the Higgs’s scalar, or are all scalar fields, if there
are several, doublets with respect to the weak and the
hyper charge?

▶ Do exist also scalar fields with the colour charge in the
fundamental representation and where, if they are, do
they manifest?



**

▶ Where do the charges and correspondingly the so far (and
others possibly be) observed vector gauge fields originate?

▶ Where does the dark matter originate?

▶ Where does the ”ordinary” matter-antimatter asymmetry
originate?

▶ Where does the dark energy originate?

▶ What is the dimension of space? (3+ 1)?, ((d − 1) + 1)?, ∞?

▶ What is the role of the symmetries– discrete, continuous,
global and gauge – in our universe, in “nature”?

▶ And many others.



o
My statement:

▶ An elegant trustworthy next step must offer answers to
open questions in elementary particle physics and
cosmology, explaining all the above questions:

o The origin of the family members and the charges.
o The origin of the families and their properties.
o The origin of the scalar fields and their properties.
o The origin of the vector fields and their properties.
o The origin of the internal space of fermions and
bosons and of their properties.
o The origin of the dark matter.
o The origin of the ”ordinary” matter-antimatter
asymmetry.



o
My proposition:
Assuming:

▶ That the space-time is d ≥ (13 + 1),

▶ that the internal space of fermions is describable by the
superposition of the Clifford odd products of γa,

▶ that the internal space of bosons is describable by the
superposition of the Clifford even products of γa,

▶ that the second kind of the Clifford objects, γ̃a, are used
to denote the family quantum numbers of fermions,

▶ that the starting action for massless fermions and
bosons assumes only one kind of fields, spin connections
of two kinds, or, may be even better, the bosons with
the internal space described by the Clifford even algebra,

then one has a chance to get answers on all the above
questions.



o The Spin-Charge-Family theory does offer the explanation
for all the assumptions of the standard model,

answering up to now several of the above cited open
questions!

o The more effort is put into this theory,
the more answers to the open questions in elementary
particle physics and cosmology is the theory offering.



o o I shall first make a short introduction into the
Spin-Charge-Family theory.

o I shall report on how does the odd Clifford algebra explain
the second quantization postulates of Dirac.

Rev. article in JPPNP –2021 Progress in Particle and
Nuclear Physics http://doi.org/10.1016.j.ppnp.2021.103890

.
o I shall report on how does the even Clifford algebra explain

the second quantization of boson fields. Nucl. Phys. B,
https://doi.org/10.1016/

j.nuclphysb.2023.116326,[arXiv:2306.17167]
o I shall report on how do fermion and boson fields behave in

odd d = (2n + 1) dimensional spaces. Symmetry
2023,15,818-12-V2 94818,

https:doi.org/10.3390/sym15040818,
[arxiv.org/abs/2301.04466]

o o I shall make an overview of achievements so far of the
Spin-Charge-Family theory.



▶ A brief introduction into the spin-charge-family theory.



▶ o There are two kinds of the Clifford algebra objects
in any d . I recognized that in Grassmann space.

J. of Math. Phys. 34 (1993) 3731

θa’s and pθa ’s, p
θ
a = ∂

∂θa
with the property
(θa)† = ηaa ∂

∂θa
.

i. The Dirac γa (recognized 90 years ago in d = (3 + 1)).

ii. The second one: γ̃a,

γa = (θa − i pθa) , γ̃a = i (θa + i pθa) ,

References can be found in
Progress in Particle and Nuclear Physics,
http://doi.org/10.1016.j.ppnp.2021.103890 .



▶ o The two kinds of the Clifford algebra objects
anti-commute in the sense

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+,
{γa, γ̃b}+ = 0,

▶ o the postulate

(γ̃aB = i(−)nBBγa ) |ψ0 >,

(B = a0 + aaγ
a + aabγ

aγb + · · ·+ aa1···adγ
a1 . . . γad )|ψo >,

with (−)nB = +1,−1, if B has a Clifford even or odd
character, respectively, |ψo > is a vacuum state on which the
operators γa apply, reduces the Clifford space for
fermions for the factor of two, while the operators
γ̃aγ̃b = −2i S̃ab define the family quantum numbers.



▶ o It is convenient to write all the ”basis vectors” describing
the internal space of either fermion fields or boson fields
as products of nilpotents and projectors, which are
eigenvectors of the chosen Cartan subalgebra

S03,S12,S56, · · · ,Sd−1 d ,

S̃03, S̃12, S̃56, · · · , S̃d−1 d ,

Sab = Sab + S̃ab .

nilpotents

Sab 1

2
(γa +

ηaa

ik
γb) =

k

2

1

2
(γa +

ηaa

ik
γb) ,

ab

(k) :=
1

2
(γa +

ηaa

ik
γb) ,

projectors

Sab 1

2
(1 +

i

k
γaγb) =

k

2

1

2
(1 +

i

k
γaγb) ,

ab

[k] :=
1

2
(1+

i

k
γaγb) ,

(
ab

(k))2 = 0 , (
ab

[k])2 =
ab

[k] ,

ab

(k)

†

= ηaa
ab

(−k) ,
ab

[k]

†

=
ab

[k] .



**

Sab
ab

(k) =
k

2

ab

(k), Sab
ab

[k] =
k

2

ab

[k],

S̃ab
ab

(k) =
k

2

ab

(k), S̃ab
ab

[k] = −k

2

ab

[k] .

γa
ab

(k) = ηaa
ab

[−k] , γb
ab

(k) = −ik
ab

[−k] , γa
ab

[k] =
ab

(−k) , γb
ab

[k] = −ikηaa
ab

(−k) ,

γ̃a
ab

(k) = −iηaa
ab

[k] , γ̃b
ab

(k) = −k
ab

[k] , γ̃a
ab

[k] = i
ab

(k) , γ̃b
ab

[k] = −kηaa
ab

(k) ,
ab

(k)
ab

(−k) = ηaa
ab

[k] ,
ab

[k]
ab

(k) =
ab

(k) ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(−k) = 0 ,
ab

[k]
ab

[−k] = 0 ,
ab

(̃−k)
ab

(k) = −iηaa
ab

[k] ,
ab

[̃k]
ab

(k) =
ab

(k) ,
ab

(̃k)
ab

[k] = i
ab

(k) ,
ab

[̃−k]
ab

[k] =
ab

[k] ,
ab

(̃k)
ab

(k) = 0 ,
ab

[̃−k]
ab

(k) = 0 ,
ab

(̃k)
ab

[−k] = 0 ,
ab

[̃k]
ab

[k] = 0 .



o

▶ γa transforms
ab

(k) into
ab

[−k], never to
ab

[k].

▶ γ̃a transforms
ab

(k) into
ab

[k], never to
ab

[−k].

▶ There are the Clifford odd ”basis vector”, that is the
”basis vector” with an odd number of nilpotents, at
least one, the rest are projectors, such ”basis vectors”
anti-commute among themselves. (They are superposition
of odd products of γa.)

▶ There are the Clifford even ”basis vector”, that is the
”basis vector” with an even number of nilpotents, the
rest are projectors, such ”basis vectors” commute among
themselves. (They are superposition of even products of γa.)



o

▶ In any even d there are two times 2
d
2
−1× 2

d
2
−1 Clifford

odd “basis vectors” offering description of fermions:

2
d
2
−1 families, each family with 2

d
2
−1 members, and the

same number 2
d
2
−1× 2

d
2
−1 of their Hermitian conjugated

partners, appearing in a separate group.

▶ In any even d there are two times 2
d
2
−1× 2

d
2
−1 Clifford

even “basis vectors” offering description of bosons:

They appear in two groups, each group with 2
d
2
−1× 2

d
2
−1

members and with their Hermitian conjugated partners
within the same group.



▶ o Let us see how does one family of the Clifford odd
”basis vector” in d = (13 + 1) look like, if spins in
d = (13 + 1) are analysed with respect to the standard
model groups.

o Each of the nilpotent and projector is the eigenvector
of one of the Cartan subalgebra eigenvectors:
S03 = ± i

2 , S
12 = ±1

2 , ....,S
13 14 = ±1

2 ,

and of: S̃03 = ± i
2 , S̃

12 = ±1
2 , ...., S̃

13 14 = ±1
2 .

▶ o One irreducible representation of one family contains

2
(13+1)

2
−1 = 64 members which include all the family

members, quarks and leptons with the right handed
neutrinos included, as well as all the anti-members,
antiquarks and antileptons, reachable by either Sab (or
by CN PN on a family member).

Jour. of High Energy Phys. 04 (2014) 165
J. of Math. Phys. 34, 3731 (1993),
Int. J. of Modern Phys. A 9, 1731 (1994),
J. of Math. Phys. 44 4817 (2003), hep-th/030322 .



Sab generate all the members of one family. The eightplet
(represent. of SO(7, 1)) of quarks of a particular colour charge.
All are Clifford odd ”basis vectors” .

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y τ4

Octet, Γ(7,1) = 1, Γ(6) = −1,
of quarks

1 uc1R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
1 0 1

2
2
3

1
6

2 uc1R

03
[−i ]

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
1 0 1

2
2
3

1
6

3 dc1R

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
1 0 − 1

2
− 1

3
1
6

4 dc1R

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
1 0 − 1

2
− 1

3
1
6

5 dc1L

03
[−i ]

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
-1 − 1

2
0 1

6
1
6

6 dc1L

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
-1 − 1

2
0 1

6
1
6

7 uc1L

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
-1 1

2
0 1

6
1
6

8 uc1L

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
-1 1

2
0 1

6
1
6

γ0γ7 and γ0γ8 transform uR of the 1st row into uL of the 7th row, and dR of the 4rd row into dL of the 6th row,

doing what the Higgs scalars and γ0 do in the standard model.



Sab generate all the members of one family also leptons.
Here is the eightplet (represent. of SO(7, 1)) of leptons colour
chargeless. The SO(7, 1) part is identical with the one of
quarks, they differ in SU(3)× U(1) part, leading to different
(Y ,Q).

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y Q

Octet, Γ(7,1) = 1, Γ(6) = −1,
of leptons

1 νR
03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
1 0 1

2
0 0

2 νR
03

[−i ]
12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
1 0 1

2
0 0

3 eR
03

(+i)
12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
1 0 − 1

2
−1 −1

4 eR
03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
1 0 − 1

2
−1 −1

5 eL
03

[−i ]
12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
-1 − 1

2
0 − 1

2
−1

6 eL
03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
-1 − 1

2
0 − 1

2
−1

7 νL
03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
-1 1

2
0 − 1

2
0

8 νL
03

(+i)
12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
-1 1

2
0 − 1

2
0

γ0γ7 and γ0γ8 transform νR of the 1st line into νL of the 7th line, and eR of the 4rd line into eL of the 6th line,

doing what the Higgs scalars and γ0 do in the standard model.



Sab generate also all the anti-eightplet (repres. of SO(7, 1)) of
anti-quarks of the anti-colour charge bellonging to the same
family of the Clifford odd basis vectors .

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y τ4

Antioctet, Γ(7,1) = −1, Γ(6) = 1,
of antiquarks

33 d̄c̄1L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
1 0 1

2
1
3

− 1
6

34 d̄ c̄1L

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 − 1

2
1 0 1

2
1
3

− 1
6

35 ūc̄1L

03
[−i ]

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
1 0 − 1

2
− 2

3
− 1

6

36 ūc̄1L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] - 1 − 1

2
1 0 − 1

2
− 2

3
− 1

6

37 d̄c̄1R

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
-1 1

2
0 − 1

6
− 1

6

38 d̄ c̄1R

03
[−i ]

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
-1 1

2
0 − 1

6
− 1

6

39 ūc̄1R

03
(+i)

12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
-1 − 1

2
0 − 1

6
− 1

6

40 ūc̄1R

03
[−i]

12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
-1 − 1

2
0 − 1

6
− 1

6

γ0γ7 and γ0γ8 transform d̄L of the 1st row into d̄R of the 5th row, and ūL of the 4rd row into ūR of the 8th row.



▶ o We discuss so far the internal space of fermions
describing their internal space with Clifford odd ”basis
vectors”.

▶ o The detailed study of the Clifford even ”basis vectors”,
describing the internal space of bosons, together with
the Clifford odd ”basis vectors”, describing the internal
space of fermions was presented in the Workshop of this
Forum one hour ago, when we made the first step in
confronting the internal spaces, described by the Clifford
odd and even “basis vectors”, with those in strings
theories.

NUPHB 994 (2023) 116326 , [arXiv: 2210.06256,
physics.gen-ph V2]

Symmetry 2023,15,818-12-V2 94818,
https:doi.org/10.3390/sym15040818,
[arxiv.org/abs/2301.04466]
[arxiv: ]



o

▶ Let us write down the action.

▶ Fermions and bosons can exist even if they do not
interact, at least mathematically.

▶ Describing their internal spaces we do not pay attention
on their interactions. We treat them as free fields.

▶ Describing the properties of fermions and bosons as we
observe, the interaction should be included: A simple
and elegant one (this is how I ”see nature”);
demonstrating at low energies all the observed
phenomena.



I use in the spin-charge-family theory a simple action.
Fermions carry in d = (13 + 1) only spins, two kinds of spins
(no charges, no family charges “put by hand”)
and interact with the gauge gravitational fields.
γa, in a superposition of odd products, determine spins,
charges and families of fermions. (In a superposition of even
products, determine spins and charges of bosons).

S =

∫
ddx E Lf +∫
ddx E (αR + α̃ R̃)

▶

Lf =
1

2
(ψ̄ γap0aψ) + h.c.

p0a = f αap0α +
1

2E
{pα,Ef αa}−

p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα



▶ The Einstein action for a free gravitational field is assumed to
be linear in the curvature

Lg = E (αR+ α̃R̃),

R = fα[afβb] (ωabα,β − ωcaαω
c
bβ),

R̃ = fα[afβb] (ω̃abα,β − ω̃caαω̃
c
bβ),

with E = det(eaα)
and f α[af βb] = f αaf βb − f αbf βa.



**
We can write the action also by using “basis vectors”
describing internal spaces of bosons, I Âm†

f , and fermions,

b̂m†
f :

▶ For fermions we obtain

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c .+

functions ψ are expressible with the superposition of

the Clifford odd “basis vectors′′ b̂m†
f and continuously

differentiable functions in ordinary space ϕmf (x
a) ,

ψm
f = b̂m†

f ∗T ϕmf (x
a)

p0a = f αap0α +
1

2E
{pα,Ef αa}− ,

p0α = pα −
∑
mf

IÂm†
f

ICm
fα(x

a)−∑
mf

IIÂm†
f

IICm
fα(x

a) ,



**

▶ For bosons we must replace ωcaα with I Âm†
f

ICm
f α, and

ω̃caα with II Âm†
f

IICm
f α

IR =
1

2
{f α[af βb] (ωabα,β − ωcaα ω

c
bβ)}+ h.c . ,

withωabα replaced by superposition of I Âm†
f

ICm
f α ,

IIR = ?
1

2
{f α[af βb] (ω̃abα,β − ω̃caα ω̃

c
bβ)}+ h.c. ,

with ω̃abα replaced by superposition of II Âm†
f

IICm
f α .



**

▶ The ”basis vectors” and correspondingly the creation
operators for either the Clifford odd fermion fields or for
the Clifford even boson fields in even and odd
dimensional spaces are the newest achievements of the
spin-charge-family theory.

”How Clifford algebra helps understand second quantized quarks
and leptons and corresponding vector and scalar boson fields,
opening a new step beyond the standard model”, Nucl. Phys. B,
NUPHB 994 (2023) 116326 , [arXiv: 2210.06256, physics.gen-ph
V2].
”Clifford odd and even objects in even and odd dimensional
spaces”, Symmetry 2023,15,818-12-V2 94818,
https:doi.org/10.3390/sym15040818, [arxiv.org/abs/2301.04466] ,
https://www.mdpi.com/2073-8994/15/4/818 Manuscript ID:
symmetry-2179313.



**

▶ The Clifford algebra objects, if used to describe the
internal space — ”basis vectors” — of fermion and
boson fields, offer the explanation for the postulates of
the usual second quantization procedure.

▶ The internal space offers a finite number of degrees of

freedom for either fermion “basis vectors”: twice 2
d
2
−1

×2
d
2
−1 or for boson “basis vectors”: twice 2

d
2
−1 ×2

d
2
−1 in

d(= 2n)-dimensional spaces .

It is the ordinary momentum or coordinate basis which offers
the continuously infinite basis.

Progress in Particle and Nuclear Physics,
http://doi.org/10.1016.j.ppnp.2021.103890

Nucl. Phys. B, NUPHB 994 (2023) 116326 , [arXiv: 2210.06256,
physics.gen-ph V2].
Symmetry 2023,15,818-12-V2 94818,
https:doi.org/10.3390/sym15040818, [arxiv.org/abs/2301.04466] ,
https://www.mdpi.com/2073-8994/15/4/818 Manuscript ID:
symmetry-2179313.



In what follows a short overview of the achievements of the
spin-charge-family theory is presented.

▶ The spin-charge-family explaining the observed
properties of quarks and leptons and the vector and
scalar boson fields, including the cosmological
observations.



**

We have discussed so far free fermion fields and boson fields
in any even dimensional space, in particular in d = (13 + 1).
We describe the internal space of fermion fields and also

boson fields with the odd and even Clifford algebra elements,
respectively.

The presentation of which were discussed in Workshop of
this Forum.

▶ We learned that the family members of fermions, they
are reachable by Sab, distinguish in the eigenvalues of
the Cartan subalgebra quantum numbers, and all the
families, they are reachable by S̃ab, are equivalent with
respect to Sab, they distinguish in the family quantum
numbers.



**
Let us repeat:

▶ The spin-charge-family theory assumes a simple starting
action for fermions and bosons in d ≥ (13 + 1), with the
gravity as the only gauge fields.

▶ It is the break of the starting symmetry which causes
that fermion fields and gravitational fields manifest in
d = (3 + 1) as all the observed quarks and leptons and
the corresponding vector and scalar gauge fields.

▶ C,P,T symmetries in d = (3 + 1) follow from the
symmetry in d ≥ (13 + 1).

JHEP 04 (2014) 165,
Phys. Rev. D 91 065004 (2015),
J.of Mod. Physics 6 (2015) 2244,
Rev. article in
JPPNPhttp://doi.org/10.1016.j.ppnp.2021.103890 .
J. of Math. Phys. 34 (1993), 3731,
J. of Math. Phys. 43, 5782 (2002) [hep-th/0111257].



o

In the spin-charge-family theory:

▶ All vector and scalar gauge fields origin in gravity,
explaining the origin of the vector and scalar gauge
fields, which in the Standard model are assumed,
Eur. Phys. J. C 77 (2017) 231.

o Vector and scalar gauge fields origin in two spin
connection fields, the gauge fields of γaγb and γ̃aγ̃b, and in

o vielbeins, the gauge fields of momenta
Eur. Phys. J. C 77 (2017) 231, [arXiv:1604.00675].

▶ If there are no spinor sources present, then either vector
(A⃗A

m, m = 0, 1, 2, 3) or scalar (A⃗A
s , s = 5, 6, .., d) gauge

fields are determined by vielbeins uniquely.



▶ o Spinors (fermions) interact correspondingly with
o the vielbeins and
o the two kinds of the spin connection fields,
Eur. Phys. J. C 77 (2017) 231.

▶ o In d = (3 + 1) the spin-connection fields,
together with the vielbeins,
manifest either as
o vector gauge fields with all the charges in the adjoint
representations or as
o scalar gauge fields with the charges with respect to the
space index in the ”fundamental” representations (what
explains the assumed weak and hyper charges of the standard
model for higgs scalars), and all the other charges in the
adjoint representations, or as
o tensor gravitational field.



o There are two kinds of scalar fields with respect to the
space index s ≥ 5 — manifesting in d = (3 + 1):

▶ A. Those with (s = 5, 6, 7, 8) (they carry zero ”spinor
charge”) are doublets with respect to the SU(2)I (the
weak) charge and the second SU(2)II charge (determining
the hyper charge),
forming two groups, each with four families.
(They are in the adjoint representations with respect to
the Sab and S̃ab).

o These scalars, belonging to one of two groups, explain
the Higgs’s scalar and the Yukawa couplings .

Scalars, belonging to the second of two groups, explain
the the appearance of dark matter.

o Phys. Rev. D 91 (2015) 6, 065004



▶ B. o Those with (s = 9, 10, ..d) are colour triplets and
antitriplets.
(Also they are in the adjoint representations with respect
to the Sab and S̃ab).

o These scalars transform antileptons into quarks, and
antiquarks into quarks and back and correspondingly
contribute to matter-antimatter asymmetry of our
universe and to proton decay.

▶ There are no additional scalar fields in the
spin-charge-family theory, if d = (13 + 1).

Phys. Rev. D 91 (2015) 6, 065004
J. of Mod. Phys. 6 (2015) 2244



o Breaking symmetry from M13+1 into M7+1 ×M6 (and
further) makes in d = (3 + 1) observable vector and scalar
gauge fields of massive quarks and leptons and (much more

massive) dark matter.

▶ o We start with the massless solutions of the Weyl
equation in d = (13 + 1) with the ”basis vectors”,
described by the odd Clifford algebra objects,
determining the internal space of fermions.

▶ With the spin (or the total angular momentum) in extra
dimensions, d > (7 + 1), determining the charge in
d = (7 + 1).

▶ o Also all the boson fields, vector and scalar gauge
fields, are in d = (13 + 1) massless free fields (with the
”basis vectors”, described by the even Clifford algebra objects,
determining the internal space of bosons, as we learned one
hour ago.)



**

▶ We then let the M13+1 manifold to break into M7+1 × an almost
S6 sphere, with

▶ the Weyl equation, m = (0, 1, 2, 3, 5, 6, 7, 8) and s = 9, 10, . . . 13, 14

(γmpm + γsp0s)ψ = 0 ,

p0s = f σs (pσ − 1

2
Sabωabσ − 1

2
S̃abω̃abσ) +

1

2E
{pσ, f σs E}− .

▶ With the choice of the vielbein fields and the spin connection fields
of both kinds, ωabα and ω̃abα, one can achieve that the infinite
surface d = (9, 10, 11, . . . , 13, 14) curls into an almost S6 (with one
hole with the substructure of SU(3)× U(1)) with massless fermions
in d = (7 + 1).

▶ This is the project, not yet done. The simpler problem with
breaking M5+1 manifold into M3+1 × an almost S2 sphere with
one hole is done, without and with families taking into account.

New J. Phys. 13:103027, 2011.
J. Phys. A: Math. Theor. 45:465401, 2012.



o Condensate

▶ The (assumed so far, waiting to be derived how does
this spontaneously appear) scalar condensate of two
right handed neutrinos with the family quantum
numbers of the upper four families (let us repeat that
there are two four family groups in the theory), appearing
≈ 1016 GeV or higher,

o breaks the CP symmetry, causing the
matter-antimatter asymmetry and the proton decay,

o couples to all the scalar fields, making them massive,

o couples to all the phenomenologically unobserved
vector gauge fields, making them massive.

o Before the electroweak break all the so far observed
vector gauge fields are massless.

Phys. Rev. D 91 (2015) 6, 065004,
J. of Mod. Phys. 6 (2015) 2244,

J. Phys.: Conf.Ser. 845 01, IARD 2017



o

▶ The vector fields, which do not couple to the condensate
and remain massless, are:

o the hyper charge vector field.

o the weak vector fields,

o the colour vector fields,

o the gravity fields.

The SU(2)II symmetry breaks due to the condensate, leaving
the hyper charge unbroken.



** Nonzero vacuum expectation values of scalars
— waiting to be shown how does such an event, making the
masses of the scalar gauge fields imaginary, appear in the

spin-charge-family spontaneously.

o
▶ The scalar fields with the space index (7, 8), gaining

nonzero vacuum expectation values, a constant values,
cause the electroweak break,

o breaking the weak and the hyper charge,

o changing their own masses,

o bringing masses to the weak bosons,

o bringing masses to the families of quarks and leptons.

Phys. Rev. D 91 (2015) 6, 065004,
J. Phys.: Conf.Ser. 845 01 IARD 2017,
Eur. Phys. J.C. 77 (2017) 231 [arXiv:1604.00675],

J. of Mod. Phys. 6 (2015) 2244, [arXiv:1502.06786,

arXiv:1409.4981]



o

▶ The only gauge fields which do not couple to these
scalars and remain massless are

o electromagnetic,

o colour vector gauge fields,

o gravity.

▶ There are two times four decoupled massive families of
quarks and leptons after the electroweak break:

o There are the observed three families among the lower
four, the fourth to be observed.

o The stable among the upper four families form the
dark matter.

Phys. Rev. D 80, 083534 (2009),
Phys. Rev. D 91 (2015) 6, 065004,

J. Phys.: Conf.Ser. 845 01, IARD 2017



**
▶ It is extremely encouraging for the spin-charge-family

theory, that a simple starting action contains all the
degrees of freedom observed at low energies, directly or
indirectly, and that only

o the break of manifold M(13,1) to M(7,1) ×M(6) is needed
so that the manifold M(6) makes an almost Sn sphere.

o the condensate and

o constant values of all the scalar fields with s = (7, 8)

are needed that the theory explains

o all the assumptions of the standard model, with the
gauge fields, scalar fields, families of fermions, masses of
fermions and of bosons included,

o explaining also the dark matter,

o the matter/antimatter asymmetry,

o the triangle anomalies cancellation in the standard
model
Forts. der Physik, Prog.of Phys.) (2017) 1700046
and...



**
Variation of the action brings for ωabα

ωabα = − 1

2E

{
eeαebγ ∂β(Ef

γ[e f βa]) + eeαeaγ ∂β(Ef
γ
[bf

βe])

− eeαe
e
γ ∂β

(
Ef γ [af

β
b]

)}
− eeα

4

{
Ψ̄

(
γeSab +

3i

2
(δebγa − δeaγb)

)
Ψ

}
− 1

d − 2

{
eaα

[
1

E
edγ∂β

(
Ef γ [d f

β
b]

)
+

1

2
Ψ̄γdSdbΨ

]
− ebα

[
1

E
edγ∂β

(
Ef γ [d f

β
a]

)
+

1

2
Ψ̄γdSdaΨ

}]
IARD, J. Phys.: Conf. Ser. 845 012017 and the Refs. therein



**
and for ω̃abα ,

ω̃abα = − 1

2E

{
eeαebγ ∂β(Ef

γ[e f βa]) + eeαeaγ ∂β(Ef
γ
[bf

βe])

− eeαe
e
γ ∂β

(
Ef γ [af

β
b]

)}
− eeα

4

{
Ψ̄

(
γe S̃ab +

3i

2
(δebγa − δeaγb)

)
Ψ

}
− 1

d − 2

{
eaα

[
1

E
edγ∂β

(
Ef γ [d f

β
b]

)
+

1

2
Ψ̄γd S̃dbΨ

]
− ebα

[
1

E
edγ∂β

(
Ef γ [d f

β
a]

)
+

1

2
Ψ̄γd S̃daΨ

}]
Eur. Phys. J. C, 77 (2017) 231 and the refs. therein.

If there are no spinors present, the two spin connections are
uniquely described by vielbeins f αa.



o Fermions

▶ The action for spinors ”seen” from d = (3 + 1) and
analyzed with respect to the standard model groups as
subgroups of SO(13 + 1):

Lf =
∑

m=0,1,2,3

ψ̄γm(pm −
∑
A,i

gAτAiAAi
m )ψ +

{
∑

s=[7],[8]

ψ̄γsp0s ψ}+

{
∑

s=[5],[6]

ψ̄γsp0s ψ +

∑
t=[9],...[14]

ψ̄γtp0t ψ} . ,

J. of Mod. Phys. 4 (2013) 823



**
Covariant momenta

p0m = {pm −
∑
A

gA τ⃗A A⃗A
m}

m n (0, 1, 2, 3) ,

p0s = f σs [pσ −
∑
A

gA τ⃗A A⃗A
σ −

∑
A

g̃A ⃗̃τA ⃗̃AA
σ ] ,

s ∈ (7, 8) ,

p0s = f σs [pσ −
∑
A

gA τ⃗A A⃗A
σ −

∑
A

g̃A ⃗̃τA ⃗̃AA
σ ] ,

s ∈ (5, 6) ,

p0t = f σ
′

t (pσ′ −
∑
A

gA τ⃗A A⃗A
σ′ −

∑
A

g̃A ⃗̃τA ⃗̃AA
σ′) ,

t ∈ (9, 10, 11, . . . , 14) ,



**

AAi
s =

∑
a,b

cAiab ωabs ,

AAi
t =

∑
a,b

cAiab ωabt ,

ÃAi
s =

∑
a,b

c̃Aiab ω̃abs ,

ÃAi
t =

∑
a,b

c̃Aiab ω̃abt .



τAi =
∑
a,b

cAi ab Sab ,

τ̃Ai =
∑
a,b

c̃Ai ab S̃ab ,

{τAi, τBj}− = iδAB f AijkτAk ,

{τ̃Ai, τ̃Bj}− = iδAB f Aijk τ̃Ak ,

{τAi, τ̃Bj}− = 0 .

▶ o τAi represent the standard model charge groups
— SU(3)c ,SU(2)w — the second SU(2)II , the ”spinor”
charge U(1), taking care of the hyper charge Y ,

▶ o τ̃Ai denote the family quantum numbers.



Ni
(L,R) : =

1

2
(S23 ± iS01, S31 ± iS02,S12 ± iS03) ,

τ i(1,2) : =
1

2
(S58 ∓ S67, S57 ± S68, S56 ∓ S78) ,

τ i3 :=
1

2
{S9 12 − S10 11 ,S9 11 + S10 12, S9 10 − S11 12,

S9 14 − S10 13, S9 13 + S10 14 , S11 14 − S12 13 ,

S11 13 + S12 14,
1√
3
(S9 10 + S11 12 − 2S13 14)} ,

τ4 := −1

3
(S9 10 + S11 12 + S13 14) ,

Y := τ4 + τ23 ,

Y′ := −τ4 tan2 ϑ2 + τ23 ,

Q := τ13 + Y ,

Q′ := −Y tan2 ϑ1 + τ13 ,

and equivalently for family groups S̃ab .



**

Breaks of symmetries
after starting with

o massless spinors (fermions) ,

o massles vielbeins and two kinds of the spin connection
fields

We prove for a toy model that breaking symmetry in
Kaluza-Klein theories can lead to massless fermions.

New J. Phys. 13, 103027, 2011.
J. Phys. A. Math. Theor. 45, 465401, 2012.
[arXiv:1205.1714], [arXiv:1312.541], [arXiv:hep-ph/0412208 p.64-84].

[arXiv:1302.4305], p. 157-166.



**

SO(1, 13)× ˜SO(1, 13)

BREAK I

at E ≥ 1016GeV

↓

SO(1, 7)× U(1)× SU(3)

× ˜SO(1, 7)
↙ ↘

eight massless families

SO(1, 3)×SO(4)×U(1)× (S̃U(2)I
S̃O(1,3)

×S̃U(2)I
S̃O(4)

)× (S̃U(2)II
S̃O(1,3)

×S̃U(2)II
S̃O(4)

)× SU(3)

(devided into two groups)

BREAK II

︸ ︷︷ ︸
↓

The Standard Model like way of breaking
↓

SO(1, 3) × U(1) × SU(3)
×(two groups of four massive families)



▶ o The break from SO(13, 1) to SO(7, 1)× SO(6), caused
by the appearance of the condensate, leaves eight
families (28/2−1 = 8, determined by the symmetry of

S̃O(1, 7)) massless. All the families are S̃U(3) chargeless.
Phys. Rev. D, 80.083534 (2009)

▶ The appearance of the condensate of the two right
handed neutrinos, coupled to spin 0, makes the boson
gauge fields, with which the condensate interacts,
massive. These gauge fields are:

o All the scalar gauge fields with the space index s ≥ 5.

o The vector (m ≤ 3) gauge fields with the Y ′ charges
— the superposition of SU(2)II and U(1)II charges.
J. Phys.: Conf. Ser. 845 (2017) 012017



o The condensate has spin S12 = 0, S03 = 0,
weak charge τ⃗1 = 0, and

⃗̃τ1 = 0, Ỹ = 0, Q̃ = 0, ⃗̃NL = 0.

state τ23 τ4 Y Q τ̃23 Ñ3
R τ̃4

|νVIII1R >1 |νVIII2R >2 1 −1 0 0 1 1 −1

|νVIII1R >1 |eVIII2R >2 0 −1 −1 −1 1 1 −1
|eVIII1R >1 |eVIII2R >2 −1 −1 −2 −2 1 1 −1

o Only the member on the first line |νVIII1R >1 |νVIII2R >2 gets
non zero vacuum expectation value — by assumption.



o Let us look at boson ”basis vectors” as was already
presented in the figure, which analyses I Âm†

f with respect to
Cartan subalgebra members (τ3, τ8, τ ′) in a toy model with
d = (5 + 1).

There are
one sextet with τ ′ = 0,

four singlets with (τ3 = 0, τ8 = 0, τ ′ = 0),
one triplet with τ ′ = 2

3 and one triplet with τ ′ = −2
3 .

The only I Âm†
f which couple to condensate are the two

triplets with non zero τ ′ = ±2
3 , which transform leptons into

quarks. They become massive.

τ(1,0,0)(-1,0,0)

(1/2,√3/2,0)(-1/2,√3/2,0)

(-1/2,-√3/2,0)
(1/2,-√3/2,0)

(0,1/√3,-2/3)

(-1/2,-1/(2√3),-2/3)
(1/2,-1/(2√3),-2/3)

(1/2,1/(2√3),2/3)
(-1/2,1/(2√3),2/3)

(0,-1/√3,2/3)
τ

τ

3

8

'



o

▶ Only the colour, elm, weak and hyper vector gauge fields
do not interact with the condensate and remain
massless.

J. of Mod. Physics 6 (2015) 2244



**

▶ At the electroweak break from
SO(1, 3)× SU(2)I × U(1)I × SU(3) to
SO(1, 3)× U(1)× SU(3)
o scalar fields with the space index s = (7, 8) obtain
constant values and imaginary masses (nonzero vacuum
expectation values),
o break correspondingly the weak and the hyper charge
and change their own masses.
o They leave massless only the colour, elm and gravity
gauge fields.

▶ All the eight massless families gain masses.

Also these is so far just assumed, waiting to be proven
that scalar fields, together with boundary conditions, are

spontaneously causing also this last breaks.
However, all the needed vector and scalar gauge fields,
the fermion fields with all the observed properties, are

already in the simple starting action, making the
spin-charge-family theory (at least so far) very promising.



▶ o To the electroweak break several scalar fields, the
gauge fields of two times S̃U(2)× S̃U(2) and three times
singlets U(1) , contribute, all with the weak and the
hyper charge of the standard model Higgs.

▶ o They carry besides the weak and the hyper charge
either
o the family members quantum numbers
originating in (Q,Q’,Y’) or
o the family quantum numbers
originating in twice S̃U(2)× S̃U(2).

J. of Mod. Physics 6 (2015) 2244.



▶ o The mass matrices of each family member manifest
the S̃U(2)× S̃U(2)× U(1) symmetry, which — almost
proven — remains unchanged in all loop corrections.

[arXiv:1902.02691, arXiv:1902.10628]



▶ ** We studied on a toy model of d = (5 + 1) conditions
which lead after breaking symmetries to massless spinors
chirally coupled to the Kaluza-Klein-like gauge field.

New J. Phys. 13 (2011) 103027, 1-25,
Int. J Mod. Phys. A 29, 1450124 (2014), 21 pages.



**

▶ All the vector gauge fields, AAi
m , (m, n) = (0, 1, 2, 3) of the

observed charges τAi =
∑

s,t c
Ai

st S
st , manifesting at the

observable energies, have all the properties as assumed
by the standard model.

▶ They carry with respect to the space index m ∈ (0, 1, 2, 3)
the vector degrees of freedom, while they have
additional internal degrees of freedom (τAi ) in the
adjoint representations.

▶ They origin as spin conection gauge fields of Sab:
AAi
m=

∑
s,t c

Aist ωstm.

▶ Sab applies on indexes (s, t,m) as follows

Sab ωstm...g = i (δas ω
b
tm...g − δbs ω

a
tm...g ) .



**

The action for vectors with respect to the space index
m = (0, 1, 2, 3) origin in gravity

∫
Ed4x d(d−4)xαR(d) =

∫
d4x {−1

4
FAi

mn F
Aimn },

AAi
m =

∑
s,t

cAist ωstm .

Eur. Phys. J. C. 77 (2017) 231,



*

Also scalar fields
(there are doublets and triplets)

origin in gravity fields — they are spin connections and
vielbeins —

with the space index s ≥ 5,

Eur. Phys. J. C. 77 (2017) 231 ,
Phys. Rev. D 91 (2015) 6, 065004,
J. of Mod. Physics 6 (2015) 2244.



**

▶ There are several scalar gauge fields with the space
index (s,t,s’) = (7,8), all origin in the spin connection
fields, either ω̃abs or ωs′ts :
o Twice two triplets, the scalar gauge fields with the
family quantum numbers (τ̃Ai =

∑
a,b c̃

Ai
ab S̃ab) and

o three singlets with the family members quantum
numbers (Q,Q’,Y’), the gauge fields of S st .

▶ They are all doublets with respect to the space index
(5,6,7,8).

▶ They have all the rest quantum numbers determined by
the adjoint representations.

▶ They explain at the so far observable energies the
Higgs’s scalar and the Yukawa couplings.



o The two doublets, determining the properties of the
Higgs’s scalar and the Yukawa couplings, are:

▶

state τ13 τ23 = Y spin τ4 Q

AAi
78
(−)

AAi
7 + iAAi

8 + 1
2

− 1
2

0 0 0

AAi
56
(−)

AAi
5 + iAAi

6 − 1
2

− 1
2

0 0 -1

AAi
78
(+)

AAi
7 − iAAi

8 − 1
2

+ 1
2

0 0 0

AAi
56
(+)

AAi
5 − iAAi

6 + 1
2

+ 1
2

0 0 +1

o There are AAi
78
(−)

and AAi
78
(+)

which gain nonzero vacuum

expectation values at the electroweak break.

Index Ai determines the family (τ̃Ai) quantum numbers and
the family members (Q,Q’,Y’) quantum numbers, both are in
adjoint representations.



▶ o There are besides doublets, with the space index
s = (5, 6, 7, 8), as well triplets and anti-triplets, with
respect to the space index s = (9, . . . , 14).

▶ o There are no additional scalars in the theory for
d=(13+1).

▶ All are massless.

▶ All the scalars have the family and the family members
quantum numbers in the adjoint representations.

▶ The properties of scalars are to be analyzed with respect to
the generators of the corresponding subgroups, expressible
with Sab, as it is the case of the vector gauge fields.

▶ It is the (so far assumed) condensate, which makes those
gauge fields, with which it interacts, massive.
o The condensate breaks the CP symmetry.



▶ o The scalar condensate of two right handed neutrinos
couple to
o the scalar and vector gauge fields, making some of
them massive,
o It does not interact with the weak charge SU(2)I , the
hyper charge U(1), and the colour SU(3) charge gauge
fields, as well as the gravity,
leaving them massless.

J. of Mod.Phys.4 (2013) 823-847,
J. of Mod.Phys. 6 (2015) 2244-2247,
Phys Rev.D 91(2015)6,065004.



o Scalars with s=( 7,8), which gain nonzero vacuum
expectation values, break the weak and the hyper symmetry,
while conserving the electromagnetic and colour charge:

AAi
s ⊃ (AQ

s ,A
Q′
s ,AY′

s , ˜̃A1̃
s ,

˜̃A
ÑL̃
s , ˜̃A2̃

s ,
˜̃A
ÑR̃
s ) ,

τAi ⊃ ( Q, Q′, Y′, ˜̃τ1, ˜̃NL, ˜̃τ2, ˜̃NR) ,

s = (7, 8) .

Ai denotes:
o family quantum numbers

(˜̃τ1, ˜̃NL) quantum numbers of the first group of four families
and
(˜̃τ2, ˜̃NR)) quantum numbers of the second group of four
families.
o And family members quantum numbers (Q,Q ′,Y ′)



**
AAi
s are expressible with either ωsts′ or ω̃abs′.

⃗̃A1
s = (ω̃58s − ω̃67s , ω̃57s + ω̃68s , ω̃56s − ω̃78s) ,

⃗̃A2
s = (ω̃58s + ω̃67s , ω̃57s − ω̃68s , ω̃56s + ω̃78s) ,

⃗̃AN
Ls = (ω̃23s + i ω̃01s , ω̃31s + i ω̃02s , ω̃12s + ω̃03s) ,

⃗̃AN
Rs = (ω̃23s − i ω̃01s , ω̃31s − i ω̃02s , ω̃12s − i ω̃03s) ,

AQ
s = ω56s − (ω9 10s + ω11 12s + ω13 14s) ,

AY
s = (ω56s + ω78s)− (ω9 10s + ω11 12s + ω13 14s)

A4
s = −(ω9 10s + ω11 12s + ω13 14s) .



The mass term, appearing in the starting action,
is (momentum ps , when treating the lowest energy solutions, is left
out)

LM =
∑

s=(7,8),Ai

ψ̄ γs (−τAi AAi
s )ψ =

−ψ̄ {
78

(+) τAi (AAi
7 − i AAi

8 ) +
78

(−) τAi (AAi
7 + i AAi

8 ) }ψ ,

78

(±) =
1

2
(γ7 ± i γ8 ) , AAi

78
(±)

:= (AAi
7 ∓ i AAi

8 ) .



o Operators Y , Q and τ13, applied on (AAi
7 ∓ i AAi

8 )

τ13 (AAi
7 ∓ i AAi

8 ) = ± 1

2
(AAi

7 ∓ i AAi
8 ) ,

Y (AAi
7 ∓ i AAi

8 ) = ∓ 1

2
(AAi

7 ∓ i AAi
8 ) ,

Q (AAi
7 ∓ i AAi

8 ) = 0 ,

manifest that all (AAi
7 ∓ i AAi

8 ) have quantum numbers of the
Higgs’s scalar of the standard model, ”dressing”, after gaining
nonzero expectation values, the right handed members of a
family with appropriate charges, so that they gain charges of the
left handed partners:
(AAi

7 + iAAi
8 ) ”dresses” uR , νR and (AAi

7 − iAAi
8 ) ”dresses”

dR , eR , with quantum numbers of their left handed partners, just
as required by the ”standard model”.



**

Ai determines:

either
o the Q,Q’,Y’ charges of the family members

or

o family charges (⃗̃τ 1̃, ⃗̃NL), transforming a family member of
one family into the same family member of another family,

manifesting in each group of four families the
S̃U(2)× S̃U(2)× U(1)

symmetry.



** Eight families of uR (spin 1/2, colour ( 1
2
, 1
2
√

3
)) and of colourless νR (spin 1/2). All have ”tilde spinor

charge” τ̃4 = − 1
2
, the weak charge τ13 = 0, τ23 = 1

2
. Quarks have ”spinor” q.no. τ4 = 1

6
and leptons

τ4 = − 1
2
. The first four families have τ̃23 = 0, Ñ3

R = 0, the second four families have τ̃13 = 0, Ñ3
L = 0.

Ñ3
R = 0, τ̃23 = 0 Ñ3
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Before the electroweak break all the families are mass protected and correspondingly massless.



o

▶ Scalars with the weak and the hyper charge (∓1
2 ,±

1
2)

determine masses of all the family members α of the lower
four families, νR of the lower four families have nonzero
Y ′ := −τ4 + τ23 and interact with the scalar field

(AY ′

(±),
⃗̃A1̃
(±),

⃗̃AÑL

(±)).

▶ The group of the lower four families manifest the
S̃U(2)

S̃O(1,3)
× S̃U(2)

S̃O(4)
× U(1) symmetry (also after all

loop corrections).

Mα =


−a1 − a e d b

e∗ −a2 − a b d
d∗ b∗ a2 − a e
b∗ d∗ e∗ a1 − a


α

.

[arXiv:1412.5866], [arXiv:1902.02691], [arXiv:1902.10628]



We made calculations, treating quarks and leptons in
equivalent way, as required by the ”spin-charge-family”
theory. Although

▶ any (n-1)x (n-1) submatrix of an unitary n x n matrix
determines the nxn matrix for n ≥ 4 uniquely,

▶ the measured mixing matrix elements of the 3 x 3
submatrix are not yet accurate enough even for quarks to
predict the masses m4 of the fourth family members.
o We can say, taking into account the data for the
mixing matrices and masses, that m4 quark masses
might be any in the interval (300 < m4 < 1000) GeV or
even above. Other experiments require that m4 are
above 1000 GeV.

▶ Assuming masses m4 we can predict mixing matrices.



Results are presented for two choices of mu4 = md4 ,
[arxiv:1412.5866]:
▶ 1. mu4 = 700 GeV, md4 = 700 GeV.....new1

▶ 2. mu4 = 1200 GeV, md4 = 1 200 GeV.....new2

|V(ud)| =



expn 0.97425 ± 0.00022 0.2253 ± 0.0008 0.00413 ± 0.00049
new1 0.97423(4) 0.22539(7) 0.00299 0.00776(1)
new2 0.97423[5] 0.22538[42] 0.00299 0.00793[466]
expn 0.225 ± 0.008 0.986 ± 0.016 0.0411 ± 0.0013
new1 0.22534(3) 0.97335 0.04245(6) 0.00349(60)
new2 0.22531[5] 0.97336[5] 0.04248 0.00002[216]
expn 0.0084 ± 0.0006 0.0400 ± 0.0027 1.021 ± 0.032
new1 0.00667(6) 0.04203(4) 0.99909 0.00038
new2 0.00667 0.04206[5] 0.99909 0.00024[21]
new1 0.00677(60) 0.00517(26) 0.00020 0.99996
new2 0.00773 0.00178 0.00022 0.99997[9]


.

One can see what
B. Belfatto, R. Beradze, Z. Berezhiani, required in
[arXiv:1906.02714v1], that
Vu1d4 > Vu1d3 , Vu2d4 < Vu1d4 , and Vu3d4 < Vu1d4 , ,
what is just happening in my theory.
The newest experimental data, PDG, (P A Zyla at al, Prog.
Theor. and Exp. Phys., Vol. 2020, Issue 8, Aug. 2020, 083C01)
have not yet been used to fit mass matrix of Eq. (1).



▶ o The matrix elements VCKM depend strongly on the
accuracy of the experimental 3 x 3 submatrix.
o Calculated 3 x 3 submatrix of 4 x 4 VCKM depends on
the m4th family masses, but not much.
o Vuid4 , Vdiu4 do not depend strongly on the m4th family
masses and are obviously very small.

▶ The higher are the fourth family members masses, the
closer are the mass matrices to the democratic matrices
for either quarks or leptons, as expected.

▶ The higher are the fourth family members masses, the
better are conditions
Vu1d4 > Vu1d3 ,
Vu2d4 < Vu1d4 , and
Vu3d4 < Vu1d4

fulfilled.



▶ The stable family of the upper four families group is the
candidate to form the dark matter.

▶ Masses of the upper four families are influenced :
o by the S̃U(2)

II S̃O(3,1)
× S̃U(2)

II S̃O(4)
scalar fields with

the corresponding family quantum numbers,
o by the scalars (AQ

78
(∓)

, AQ′

78
(∓)

, AY ′
78
(∓)

), and

o by the condensate of the two νR of the upper four
families.



Matter-antimatter asymmetry



There are also triplet and anti-triplet scalars, s = (9, .., d):,

▶

state τ33 τ38 spin τ4 Q
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They cause transitions from anti-leptons into quarks and
anti-quarks into quarks and back, transforming matter into
antimatter and back. The condensate breaks CP symmetry,
offering the explanation for the matter-antimatter
asymmetry in the universe.



Let us look at scalar triplets, causing the birth of a proton
from the left handed positron, antiquark and quark:

uc2R

τ4= 1
6
,τ13=0,τ23= 1

2

(τ33,τ38)=(− 1
2
, 1
2
√

3
)

Y= 2
3
,Q= 2

3

uc2R
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•



These two quarks, dc1
R and uc3R can bind (at low enough energy)

together with uc2R into the colour chargeless baryon - a proton.

After the appearance of the condensate the CP is broken.

In the expanding universe, fulfilling the Sakharov request for
appropriate non-thermal equilibrium, these triplet scalars have a
chance to explain the matter-antimatter asymmetry.

The opposite transition makes the proton decay.
These processes seems to explain the lepton number non
conservation.



Dark matter

d → (d − 4) + (3 + 1) before (or at least at) the electroweak
break.



▶ We follow the evolution of the universe, in particular the
abundance of the fifth family members - the candidates
for the dark matter in the universe.

▶ We estimate the behaviour of our stable heavy family
quarks and anti-quarks in the expanding universe by
solving the system of Boltzmann equations.

▶ We follow the clustering of the fifth family quarks and
antiquarks into the fifth family baryons through the
colour phase transition.

▶ The mass of the fifth family members is determined
from the today dark matter density.

Phys. Rev. D (2009) 80.083534



Figure: The dependence of the two number densities nq5 (of the fifth family quarks) and nc5 (of the fifth

family clusters) as the function of
mq5

c2

Tkb
is presented for the values mq5

c2 = 71 TeV, ηc5 = 1
50

and

η(qq̄)b
= 1. We take g∗ = 91.5.



We estimated from following the fifth family members in the
expanding universe:

▶

10 TeV < mq5 c
2 < 4 · 102TeV .

▶

10−8fm2 < σc5 < 10−6fm2 .

(It is at least 10−6× smaller than the cross section for the first
family neutrons.)



We estimate from the scattering of the fifth family members
on the ordinary matter on our Earth, on the direct
measurements - DAMA, CDMS,..- ...

▶

200TeV < mq5c
2 < 105TeV .



▶ In the standard model the family members with all their
properties, the families, the gauge vector fields, the scalar
Higgs, the Yukawa couplings, exist by the assumption.

▶ ** In the spin-charge-family theory the appearance
and all the properties of all these fields follow from the
simple starting action with two kinds of spins and with the
gravity only .

** The theory offers the explanation for the dark matter.

** The theory offers the explanation for the
matter-antimatter asymmetry.

** All the scalar and all the vector gauge fields are
directly or indirectly observable.

▶ ** The spin-charge-family theory even offers the
creation and annihilation operators without postulation.



The spin-charge-family theory explains also many other
properties, which are not explainable in the standard model,

like ”miraculous” non-anomalous triangle Feynman diagrams.

The more work is put into the spin-charge-family theory the
more explanations for the phenomena follow.



Concrete predictions:

▶ There are several scalar fields;
o two triplets , o three singlets ,
explaining higgss and Yukawa couplings,
some of them will be observed at the LHC, JMP 6
(2015) 2244,
Phys. Rev. D 91 (2015) 6, 065004.

▶ There is the fourth family, (weakly) coupled to the
observed three, which will be observed at the LHC,
New J. of Phys. 10 (2008) 093002.

▶ There is the dark matter with the predicted properties,
Phys. Rev. D (2009) 80.083534.

▶ There is the ordinary matter/antimatter asymmetry
explained and the proton decay predicted and explained,
Phys. Rev. D 91 (2015) 6, 065004.



We recognize that:

▶ The last data for mixing matrix of quarks are in better
agreement with our prediction for the 3× 3 submatrix
elements of the 4× 4 mixing matrix than the previous
ones.

▶ Our fit to the last data predicts how will the 3× 3
submatrix elements change in the next more accurate
measurements.

▶ Masses of the fourth family lie much above the known
three, masses of quarks are close to each other.

▶ The1larger are masses of the fourth family the larger are
Vu1d4 in comparison with Vu1d3 and the more is valid that
Vu2d4 < Vu1d4, Vu3d4 < Vu1d4.
The flavour changing neutral currents are correspondingly
weaker.



▶ Masses of the fifth family lie much above the known
three and the predicted fourth family masses.

▶ Although the upper four families carry the weak (of two
kinds) and the colour charge, these group of four
families are completely decoupled from the lower four
families up to the < 1016 GeV, unless the breaks of
symmetries recover.

▶ Baryons of the fifth family are heavy, forming small
enough clusters with small enough scattering amplitude
among themselves and with the ordinary matter to be
the candidate for the dark matter.

▶ The ”nuclear” force among them is different from the
force among ordinary nucleons.



▶ The spin-charge-family theory is offering an explanation
for the hierarchy problem:
The mass matrices of the two four families groups are
almost democratic, causing spreading of the fermion
masses from 1016 GeV to 10−8 MeV.

▶ Using odd and even Clifford algebra objects the
spin-charge-family theory is offering an explanation for
the second quantization postulates for fermions and
bosons, while describing the internal space of fermions
with the Clifford odd anti-commuting ”basis vectors”
and the internal space of bosons with the Clifford even
commuting ”basis vectors” .

▶ When all the properties of b̂m†
f , and their Hermitian

conjugated partners, b̂mf , as well as of IÂm†
f

ICm
fα will be

understood we very probably will understood nature in
d = (3 + 1) much better.



To summarize:

▶ I hope that I managed to convince you that I can answer
many open questions of particle physics and cosmology.
The more work is put into this theory the more observed
phenomenas I can explain and the predictions offer.

▶ The collaborators are very welcome!

▶ There are namely a lot of properties to derive.

Thank you for attendance.
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