
Nuclear Physics, Section B
 

How Clifford algebra helps understand second quantized quarks and leptons and
corresponding vector and scalar boson fields,  opening a new step beyond the

standard model
--Manuscript Draft--

 
Manuscript Number: NPB-D-23-00223R3

Article Type: Full Length Article

Section/Category: HEP ‒ Theory (Stephan Stieberger)

Keywords: Clifford algebra offers a description of internal spaces for fermion and boson fields in
even and odd-dimensional spaces
explaining the second quantised postulates for fermions and bosons and the Fadeev-
Popov ghosts;  Irreducible representations of odd Clifford algebra offer families for
fermions;  Even Clifford algebra offers two kinds of boson fields -- the gauge fields of
the two kinds of $\gamma^a$;  Higher dimensional spaces, $d\ge (13 +1)$, manifest in
$d=(3+1)$ quarks and leptons and
antiquarks and antileptons  and the corresponding gauge fields, with scalar fields
included, as postulated by the standard model before the electroweak break;  Spin-
charge-family theory using higher dimensional spaces and the Clifford algebra, even
and odd, offers the explanation
for several of so far observed phenomena, making several predictions

Corresponding Author: Norma Susana Mankoc Borstnik
University of Ljubljana Faculty of Mathematics and Physics
Ljubljana, Slovenia SLOVENIA

First Author: Norma Susana Mankoc Borstnik

Order of Authors: Norma Susana Mankoc Borstnik

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Answer to referee’s comments from 27.07.2023

Dear Editor, dear Referee,

I am answering to comments and suggestions of the Referee in my best way.

Let me first point out that the Referee’s suggestions and comments are far
the best ones which I have obtained in connection with the two main topics of
these paper: The Clifford odd and even objects in even and odd dimensional
spaces, describing fermion and boson internal and external spaces. Although
with the Referee, we do not always agree, or I do not understand his suggestions,
his comments are beneficial. I am grateful for them.

Let me comment:

a. The duplicate occurrence in footnote 11 is corrected.

b. Evaluating the last equation in the second line of Eq. (32) in detail I get
zero:

I treat free fermion fields

|p⃗ >= e−ip⃗·x⃗|0p >= b̂†p⃗ |0p > , < p⃗| =< 0p|eip⃗·x⃗ =< 0p| b̂p⃗
< p⃗′|p⃗ >=< 0p| b̂p⃗′ b̂

†
p⃗ |0p >= δ(p⃗′ − p⃗) ,

< −⃗p′|−⃗p >=< 0p| b̂†p⃗′ b̂p⃗ |0p >= δ(−⃗p′ − (−⃗p)) = δ(p⃗− p⃗′) ,

consequently
< 0p|{ b̂p⃗ , b̂†p⃗′}− |0p >=< 0p| b̂p⃗ b̂†p⃗′ − b̂†

p⃗′ b̂p⃗|0p >= 0 . I added this into footnote

11. (I do not see how this could be equal to δ(p⃗′ − p⃗), unless we forbid −p⃗.)
Using my result I proved that my way of presenting second quantized fermion

and boson fields agrees with postulates of the second quantization of fields when
I take into account the simple vacuum state.

Also the Referee’s suggestion might be the correct one. I just do not see his
way. (I guess he suggests something like redefining b̂†p⃗ |0p > as a new creation

operator in ordinary space.)
I see that the main disagreement between the Referee and myself is that the

postulated second quantized relations for fermion and boson fields do not assume
a particular vacuum state, although the creation and annihilation operators of
Dirac do apply on some vacuum state to produce the states.

In my case, when the internal space of fermions (and bosons) are described
by the Clifford odd (even) “basis vectors” and the creation operators are the
tensor products, ∗T , of “basis vectors” and basis in ordinary space, I do need the
vacuum state on which the creation and annihilation operators apply. Then my
creation and annihilation operators fulfil all the requirements of the postulates
of the second quantized fields (following from properties of the “basis vectors”).
From these creation and annihilation operators (for quarks and leptons and
antiquarks and antileptons) then follow the creation and annihilation operators
for clusters of quarks and leptons. My spin-charge-family theory then offer,
starting from the simple starting action in d ≥ (13 + 1), the explanation for all
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the assumptions of the standard models (for quarks and leptons, for antiquarks
and antileptons, for families of quarks for scalar Higgs, ...)

c. Footnotes 12 (a new one) and 13 (the old 12) answer the Referee’s ques-
tion. The second quantized postulates for fermion and boson fields do indeed not
include the vacuum state. But they are postulated. I do not assume any rela-
tion; I just realize that the Clifford odd operators “basis vectors” anti-commute
(and the Clifford even “basis vectors” commute) and that they remain anti-
commuting (commuting) even in a tensor products with the basis in ordinary
space, provided that creation operators for fermion fields apply on a simple
vacuum state.

Creation operators do create the Hilbert space of fermion (boson) states
when applying on a vacuum state also in the Dirac’s postulated relations. I
proved that my creation and annihilation operators have all the properties of
the second postulated fields of Dirac on a chosen simple vacuum state.

footnote 12:
Two fermion states (formed from two creation operators applying on the vac-
uum state) with the orthogonal basis part in ordinary space (with two different
momentum in ordinary space in the case of free fields) ”do not meet”; corre-
spondingly, each can carry the same “basis vector”. They must differ in the
internal basis if they have the identical ordinary part of the basis. (Otherwise,
the tensor product, ∗TH

, of such two fermion states is zero.) Illustration: Let
us treat an atom with many electrons. Each electron has a spin of either 1/2 or
−1/2. Their orthogonal basis in ordinary space allows them to have the internal
spin ±1/2 (leading to total angular momentum either ±1/2 or larger due to
the angular momentum in ordinary space). As mentioned in the introduction
section in a.iii. the Hilbert space of the second quantized fermion states is
represented by the tensor products, ∗TH

, of all possible members of creation
operators from zero to infinity applying on the simple vacuum state. For any of
these members the scalar product is obtained by multiplying from the left hand
side by their Hermitian conjugated partner.

footnote 13:
The anti-commutation relations of Eq. (34) are valid also if we replace the vac-
uum state, |ψoc > |0p⃗ >, by the Hilbert space of the Clifford fermions generated
by the tensor products multiplication, ∗TH

, of any number of the Clifford odd
fermion states of all possible internal quantum numbers and all possible mo-
menta (that is, of any number of b̂s †

f (p⃗) of any (s, f, p⃗)), Ref. (14, Sect. 5.).

Although my proposed description of the internal spaces of fermions and
bosons need further work to see what new can it bring in the second quanti-
sation of fermion and boson fields, the results are auspicious so far; although I
have well defined a very simple vacuum state, while the postulated second quan-
tized fields do not. In my case the anti-fermions belong to the same irreducible
representation (to the same family) as fermions, while in the ordinary second
quantized theories they have to be defined separately.

Sincerely yours, Norma Susana Mankoč Borštnik
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How Clifford algebra helps understand second quantized
quarks and leptons and corresponding vector and scalar boson

fields, opening a new step beyond the standard model

N.S. Mankoč Borštnik1
1Department of Physics, University of Ljubljana

SI-1000 Ljubljana, Slovenia
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Abstract

This article presents the description of the internal spaces of fermion and boson fields in d-
dimensional spaces, with the odd and even “basis vectors” which are the superposition of odd
and even products of operators γa. While the Clifford odd “basis vectors” manifest properties of
fermion fields, appearing in families, the Clifford even “basis vectors” demonstrate properties of
the corresponding gauge fields. In d ≥ (13 + 1) the corresponding creation operators manifest in
d = (3+1) the properties of all the observed quarks and leptons, with the families included, and of
their gauge boson fields, with the scalar fields included, making several predictions. The properties
of the creation and annihilation operators for fermion and boson fields are illustrated on the case
d = (5 + 1), when SO(5, 1) demonstrates the symmetry of SU(3)× U(1).

Keywords: Second quantization of fermion and boson fields with Clifford algebra; Beyond the standard
model; Kaluza-Klein-like theories in higher dimensional spaces; Clifford algebra in odd dimensional
spaces; Ghosts in quantum field theories

1 Introduction

The standard model (corrected with the right-handed neutrinos) has been experimentally confirmed
without raising any severe doubts so far on its assumptions, which, however, remain unexplained.

The standard model assumptions have several explanations in the literature, mostly with several
new, not explained assumptions. The most popular are the grand unifying theories ([1, 2, 3, 4, 5] and
many others).

. In a long series of works ([6, 7, 8, 9],and the references there in) the author has found, together
with the collaborators ([10, 11, 12, 19, 14] and the references therein), the phenomenological success
with the model named the spin-charge-family theory with the properties:
a. The internal space of fermions are described by the “basis vectors” which are superposition of
odd products of anti-commuting objects (operators) 1 γa (in the sense {γa, γb}− = 2ηab), Sect. 2.1,

1According to Eq. (6) {γa, γb}− = 2ηab are anticommuting unless a = b.
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in d = (13 + 1)-dimensional space [19, 14]. Correspondingly the “basis vectors” of one Lorentz irre-
ducible representation in internal space of fermions, together with their Hermitian conjugated partners,
anti-commute, fulfilling (on the vacuum state) all the requirements for the second quantized fermion
fields ([10, 14] and references therein).
a.i. The second kind of anti-commuting objects, γ̃a, Sect. 2.1, equip each irreducible representation of
odd “basis vectors” with the family quantum number [19, 10].
a.ii. Creation operators for single fermion states — which are tensor products, ∗T , of a finite number of
odd “basis vectors” appearing in 2

d
2
−1 families, each family with 2

d
2
−1 members, and the (continuously)

infinite momentum/coordinate basis applying on the vacuum state [19, 14] — inherit anti-commutativity
of “basis vectors”. Creation operators and their Hermitian conjugated partners correspondingly anti-
commute.
a.iii. The Hilbert space of second quantized fermion field is represented by the tensor products, ∗TH ,
of all possible numbers of creation operators, from zero to infinity [14], applying on a vacuum state.
a.iv. Spins from higher dimensions, d > (3 + 1), described by the eigenvectors of the superposition of
the Cartan subalgebra Sab, Table 4, manifest in d = (3+1) all the charges of the standard model quarks
and leptons and antiquarks and antileptons.
b. In a simple starting action, Eq. (1), massless fermions carry only spins and interact with only grav-
ity — with the vielbeins and the two kinds of spin connection fields (the gauge fields of momenta, of
Sab = i

4
(γaγb − γbγa) and of S̃ab = 1

4
(γ̃aγ̃b − γ̃bγ̃a), respectively 2). The starting action includes only

even products of γa’s and γ̃a’s ([14] and references therein).
b.i. Gravity — the gauge fields of Sab, ((a, b) = (5, 6, ...., d)), with the space index m = (0, 1, 2, 3) —
manifest as the standard model vector gauge fields [11], with the ordinary gravity included ((a, b) =
(0, 1, 2, 3)).
b.ii. The scalar gauge fields of S̃ab, and of some of the superposition of Sab, with the space index
s = (7, 8) manifest as the scalar higgs and Yukawa couplings [9, 14], determining mass matrices (of
particular symmetry) and correspondingly the masses of quarks and leptons and of the weak boson
fields after (some of) the scalar fields with the space index (7, 8) gain constant values.
b.iii. The scalar gauge fields of S̃ab and of Sab with the space index s = (9, 10, ..., 14) and (a, b) =
(5, 6, ...., d) offer the explanation for the observed matter/antimatter asymmetry [8, 9, 12, 14] in the
universe.
c. The theory predicts at low energy two groups with four families. To the lower group of four families
the so far observed three belong [34, 35, 36, 38, 39], and the stable of the upper four families, the fifth
family of (heavy) quarks and leptons, offers the explanation for the appearance of dark matter. Due to
the heavy masses of the fifth family quarks, the nuclear interaction among hadrons of the fifth family
members is very different than the ones so far observed [37, 40].
d. The theory offers a new understanding of the second quantized fermion fields, as mentioned in a.
and it is explained in Refs. [19, 14], it also enables a new understanding of the second quantization of
boson fields which is the main topics of this article [16, 17], both in even dimensional spaces.

d.i. The Clifford odd “basis vectors” appear in 2
d
2
−1 families, each family having 2

d
2
−1 members. Their

Hermitian conjugated partners appear in a separate group, Sect. 2.
d.ii. The Clifford even “basis vectors” appear in two groups, each with 2

d
2
−1 ×2

d
2
−1 members with

their Hermitian conjugated partners within the same group. One group of the Clifford even “basis
vectors” transform, when applying algebraically on the Clifford odd “basis vector”, this Clifford odd
“basis vector” into other members of the same family. The other group of the Clifford even “basis
vectors” transform, when being applied algebraically by the Clifford odd “basis vector”, this Clifford
odd “basis vector” into the same member of another family; in agreement with the action, Eq. (1).
d.iii. In odd dimensional spaces, d = (2n + 1), the properties of Clifford odd and Clifford even “basis

2If no fermions are present, the two kinds of spin connection fields are uniquely expressible by the vielbeins.
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vectors” differ essentially from their properties in even dimensional spaces, resembling the ghosts needed
to make the contributions of the Feynman diagrams finite [20].

The theory seems very promising to offer a new insight into the second quantization of fermion and
boson fields and to show the next step beyond the standard model.

The more work is put into the theory, the more phenomena the theory can explain.
Other references used a different approach by trying to make the next step with Clifford algebra to

the second quantized fermion, which might also be a boson field [41, 42].
Let us present a simple starting action of the spin-charge-family theory ([14] and the references

therein) for massless fermions and anti-fermions which interact with massless gravitational fields only;
with vielbeins (the gauge fields of momenta) and the two kinds of spin connection fields, the gauge
fields of the two kinds of the Lorentz transformations in the internal space of fermions, of Sab and S̃ab,
in d = 2(2n+ 1)-dimensional space

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR + α̃ R̃) ,

p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα ,

p0a = fα
ap0α +

1

2E
{pα, Efα

a}− ,

R =
1

2
{fα[afβb] (ωabα,β − ωcaα ω

c
bβ)}+ h.c. ,

R̃ =
1

2
{fα[afβb] (ω̃abα,β − ω̃caα ω̃

c
bβ)}+ h.c. . (1)

Here 3 fα[afβb] = fαafβb − fαbfβa. The vielbeins, fa
α, and the two kinds of the spin connection fields,

ωabα (the gauge fields of Sab) and ω̃abα (the gauge fields of S̃ab), manifest in d = (3 + 1) as the known
vector gauge fields and the scalar gauge fields taking care of masses of quarks and leptons and antiquarks
and antileptons and of the weak boson fields [11, 8, 9, 12] 4.

The action, Eq. (1), assumes two kinds of the spin connection gauge fields, due to two kinds of the
operators: γa and γ̃a. Let be pointed out that the description of the internal space of bosons with the
Clifford even “basis vectors” offers as well two kinds of the Clifford even “basis vectors”, as presented
in d.ii..

In Sect. 2 the Grassmann and the Clifford algebras are explained, Subsect.2.1, and creation and
annihilation operators described as tensor products of the “basis vectors” offering an explanation of the
internal spaces of fermion (by the Clifford odd algebra) and boson (by the Clifford even algebra) fields
and the basis in ordinary space.

In Subsect. 2.2, the “basis vectors” are introduced and their properties presented in even and odd-
dimensional spaces, Subsects. 2.2.1, Subsect. 2.2.2, respectively.

3fαa are inverted vielbeins to eaα with the properties eaαf
α
b = δab, e

a
αf

β
a = δβα, E = det(eaα). Latin indices

a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index
(a curved index). Letters from the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ), from
the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and µ, ν, ..), indexes from the bottom of the al-
phabets indicate the compactified dimensions (s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.

4Since the multiplication with either γa’s or γ̃a’s changes the Clifford odd “basis vectors” into the Clifford even objects,
and even “basis vectors” commute, the action for fermions can not include an odd numbers of γa’s or γ̃a’s, what the
simple starting action of Eq. (1) does not. In the starting action γa’s and γ̃a’s appear as γ0γap̂0a or as γ0γc Sabωabc and
as γ0γc S̃abω̃abc.
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In Subsect. 2.3, the properties of the Clifford odd and even “basis vectors” are demonstrated in the
toy model in d = (5 + 1).

In Subsect. 2.4, the properties of the creation and annihilation operators for the second quantized
fermion and boson fields in even dimensional spaces are described.

Sect. 3 presents what the reader could learn new from this article.
In App. B, the answers of the spin-charge-family theory to some of the open questions of the standard

model are discussed.
In App. C, some useful formulas and relations are presented.
In App. D one irreducible representation (one family) of SO(13, 1), group, annalysed with respect

to SO(3, 1), SU(2)I , SU(2)II , SU(3), and U(1), representing “basis vectors” of quarks and leptons and
antiquarks and antilepons is discussed.

App. A, suggested by the referee, illustrates on the simplest case d = (3+1) (and d = (1+1); which
offers only one “family” of fermions, d = (3 + 1) has two families) the properties of the Clifford odd
and Clifford even“basis vectors” describing the internal spaces of fermion and boson fields, explaining
in a pedagogical way in details their construction, manifestation of ant-commutativity (in the fermion
case) and commutativity (in the boson case) of the tensor product of the “basis vectors” and the basis
in ordinary space-time.

The referee suggested also several footnotes.

2 Creation and annihilation operators for fermions and bosons

in even and odd dimensional spaces

Refs. [6, 10, 19, 8, 14] describe the internal space of fermion fields by the superposition of odd products
of γa in even dimensional spaces (d = 2(2n+1), or d = 4n). In any even dimensional space there appear

2
d
2
−1 members of each irreducible representation of Sab, each irreducible representation representing one

of 2
d
2
−1 families, carrying quantum numbers determined by S̃ab. Their Hermitian conjugated partners

appear in a separate group (not reachable by either Sab or S̃ab). Since the tensor products, ∗T , of these
Clifford odd “basis vectors” and basis in ordinary momentum or coordinate space, applying on the
vacuum state, fulfil the second quantization postulates for fermions [21, 22, 23], it is obvious that the

2
d
2
−1 × 2

d
2
−1 anti-commuting Clifford odd “basis vectors”, together with their Hermitian conjugated

partners, transferring their anti-commutativity to creation and annihilation operators, explain the sec-
ond quantization postulates of Dirac for fermions and their families [19].

There are, however, the same number of the Clifford even “basis vectors”, which obviously commute,
transferring their commutativity to tensor products, ∗T , of the Clifford even “basis vectors” and basis
in ordinary momentum or coordinate space.

We shall see in what follows that the Clifford even “basis vectors” appear in two groups, each with
2
d
2
−1 × 2

d
2
−1 members. The members of each group have their Hermitian conjugated partners within

the same group. As we shall see, one group transforms a particular family member of a Clifford odd
“basis vector” into other members of the same family, keeping the family quantum number unchanged.
The second group transforms a particular family member of a Clifford odd “basis vector” into the same
member of another family [17]. We shall see that the Clifford even “basis vectors” of each of the two
groups has, in even dimensional spaces, the properties of the gauge boson fields of the corresponding
Clifford odd “basis vectors”: One group with respect to Sab, the other with respect to S̃ab.

The properties of the Clifford odd and the Clifford even “basis vectors” in odd dimensional spaces,
d = (2n + 1), differ essentially from their properties in even dimensional spaces, as we shall review
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Ref. [20] in Subsect. 2.2.2. Although anti-commuting, the Clifford odd “basis vectors” manifest prop-
erties of the Clifford even “basis vectors” in even dimensional spaces. And the Clifford even “basis
vectors”, although commuting, manifest properties of the Clifford odd “basis vectors” in even dimen-
sional spaces.

2.1 Grassmann and Clifford algebras

This part is a short overview of several references, cited in Ref. ([14], Subsects. 3.2,3.3), also appearing
in Ref. [18, 19, 20].

The internal spaces of anti-commuting or commuting second quantized fields can be described by
using either the Grassmann or the Clifford algebras [6, 14]

In Grassmann d-dimensional space there are d anti-commuting (operators) θa, and d anti-commuting
operators which are derivatives with respect to θa, ∂

∂θa
,

{θa, θb}+ = 0 , { ∂

∂θa
,
∂

∂θb
}+ = 0 ,

{θa,
∂

∂θb
}+ = δab , (a, b) = (0, 1, 2, 3, 5, · · · , d) . (2)

Making a choice [12]

(θa)† = ηaa
∂

∂θa
, leads to (

∂

∂θa
)† = ηaaθa , (3)

with ηab = diag{1,−1,−1, · · · ,−1}.
θa and ∂

∂θa
are, up to the sign, Hermitian conjugated to each other. The identity is the self adjoint

member of the algebra. The choice for the following complex properties of θa

{θa}∗ = (θ0, θ1,−θ2, θ3,−θ5, θ6, ...,−θd−1, θd) , (4)

correspondingly requires { ∂
∂θa

}∗ = ( ∂
∂θ0
, ∂
∂θ1
,− ∂

∂θ2
, ∂
∂θ3
,− ∂

∂θ5
, ∂
∂θ6
, ...,− ∂

∂θd−1
, ∂
∂θd

) .

There are 2d superposition of products of θa, the Hermitian conjugated partners of which are the
corresponding superposition of products of ∂

∂θa
.

There exist two kinds of the Clifford algebra elements (operators), γa and γ̃a, expressible with θa’s
and their conjugate momenta pθa = i ∂

∂θa
[6], Eqs. (2, 3),

γa = (θa +
∂

∂θa
) , γ̃a = i (θa − ∂

∂θa
) ,

θa =
1

2
(γa − iγ̃a) ,

∂

∂θa
=

1

2
(γa + iγ̃a) ,

(5)

offering together 2·2d operators: 2d are superposition of products of γa and 2d of γ̃a. It is easy to prove if
taking into account Eqs. (3, 5), that they form two anti-commuting Clifford subalgebras, {γa, γ̃b}+ = 0,
Refs. ([14] and references therein)

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,
{γa, γ̃b}+ = 0 , (a, b) = (0, 1, 2, 3, 5, · · · , d) ,

(γa)† = ηaa γa , (γ̃a)† = ηaa γ̃a . (6)
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While the Grassmann algebra offers the description of the “anti-commuting integer spin second quan-
tized fields” and of the “commuting integer spin second quantized fields” [19, 14], the Clifford algebras
which are superposition of odd products of either γa’s or γ̃a’s offer the description of the second quan-
tized half integer spin fermion fields, which from the point of the subgroups of the SO(d− 1, 1) group
manifest spins and charges of fermions and antifermions in the fundamental representations of the group
and subgroups, Table 4.
The superposition of even products of either γa’s or γ̃a’s offer the description of the commuting second
quantized boson fields with integer spins (as we can see in [16, 17] and shall see in this contribution)
which from the point of the subgroups of the SO(d − 1, 1) group manifest spins and charges in the
adjoint representations of the group and subgroups.

The following postulate, which determines how does γ̃a operate on γa, reduces the two Clifford
subalgebras, γa and γ̃a, to one, to the one described by γa [10, 6, 9, 12]

{γ̃aB = (−)B i Bγa} |ψoc > , (7)

with (−)B = −1, if B is (a function of) an odd products of γa’s, otherwise (−)B = 1 [10], the vacuum
state |ψoc > is defined in Eq. (46) of Subsect. 2.2.

After the postulate of Eq. (7) it follows:
a. The Clifford subalgebra described by γ̃a’s looses its meaning for the description of the internal space
of quantum fields.
b. The “basis vectors” which are superposition of an odd or an even products of γa’s obey the postulates
for the second quantized fields for fermions or bosons, respectively, Sect.2.2.
c. It can be proven that the relations presented in Eq. (6) remain valid also after the postulate of
Eq. (7). The proof is presented in Ref. ([14], App. I, Statement 3a).
d. Each irreducible representation of the Clifford odd “basis vectors” described by γa’s are equipped
by the quantum numbers of the Cartan subalgebra members of S̃ab, chosen in Eq. (8), as follows

S03, S12, S56, · · · , Sd−1 d ,

S̃03, S̃12, S̃56, · · · , S̃d−1 d ,

Sab = Sab + S̃ab = i (θa
∂

∂θb
− θb

∂

∂θa
) . (8)

After the postulate of Eq. (7) no vector space of γ̃a’s needs to be taken into account for the description
of the internal space of either fermions or bosons, in agreement with the observed properties of fermions
and bosons. Also the Grassmann algebra is reduced to only one of the Clifford subalgebras. The
operator γ̃a will from now on be used to describe the properties of fermion “basis vectors”, determining
by S̃ab = i

4
(γ̃aγ̃b− γ̃bγ̃a) the “family” quantum numbers of the irreducible representations of the Lorentz

group in internal space of fermions, Sab, and the properties of bosons “basis vectors” determined by
Sab = Sab + S̃ab. We shall see that while the fermion “basis vectors” appear in “families”, the boson
“basis vectors” have no “families” and manifest properties of the gauge fields of the corresponding
fermion fields. In App. A the case of d = (3 + 1) is discussed.

γ̃a’s equip each irreducible representation of the Lorentz group (with the infinitesimal generators
Sab = i

4
{γa, γb}−) when applying on the Clifford odd “basis vectors” (which are superposition of odd

products of γa
′s) with the family quantum numbers (determined by S̃ab = i

4
{γ̃a, γ̃b}−).

Correspondingly the Clifford odd “basis vectors” (they are the superposition of odd products of

γa’s) form 2
d
2
−1 families, with the quantum number f , each family has 2

d
2
−1 members, m. They offer

the description of the second quantized fermion fields.
The Clifford even “basis vectors” (they are the superposition of even products of γa’s) have no

families, as we shall see in what follows, but they do carry both quantum numbers, f and m, offering
the description of the second quantized boson fields as the gauge fields of the second quantized fermion
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fields. The generators of the Lorentz transformations in the internal space of the Clifford even “basis
vectors” are Sab = Sab + S̃ab.

Properties of the Clifford odd and the Clifford even “basis vectors” are discussed in the following
subsection.

2.2 “Basis vectors” of fermions and bosons in even and odd dimensional
spaces

This subsection is a short overview of similar sections of several articles of the author, like [18, 17, 20, 19].
After the reduction of the two Clifford subalgebras to only one, Eq. (7), we only need to define “basis

vectors” for the case that the internal space of second quantized fields is described by superposition of
odd or even products γa’s 5.

Let us use the technique which makes “basis vectors” products of nilpotents and projectors [6, 10]
which are eigenvectors of the (chosen) Cartan subalgebra members, Eq. (8), of the Lorentz algebra in
the space of γa’s, either in the case of the Clifford odd or in the case of the Clifford even products of
γa’s.
There are in even-dimensional spaces d

2
members of the Cartan subalgebra, Eq. (8). In odd-dimensional

spaces there are d−1
2

members of the Cartan subalgebra.

One finds in even dimensional spaces for any of the d
2
Cartan subalgebra member, Sab applying on

a nilpotent
ab

(k) or on projector
ab

[k]

ab

(k): =
1

2
(γa +

ηaa

ik
γb) , (

ab

(k))2 = 0 ,

ab

[k]: =
1

2
(1 +

i

k
γaγb) , (

ab

[k])2 =
ab

[k], (9)

the relations

Sab
ab

(k)=
k

2

ab

(k) , S̃ab
ab

(k)=
k

2

ab

(k) ,

Sab
ab

[k]=
k

2

ab

[k] , S̃ab
ab

[k]= −k
2

ab

[k] , (10)

with k2 = ηaaηbb 6, demonstrating that the eigenvalues of Sab on nilpotents and projectors expressed
with γa differ from the eigenvalues of S̃ab on nilpotents and projectors expressed with γa, so that S̃ab

can be used to equip each irreducible representation of Sab with the ”family” quantum number. 7

We define in even d the “basis vectors” as algebraic, ∗A, products of nilpotents and projectors so that
each product is an eigenvector of all d

2
Cartan subalgebra members, Eq.(8). Fermion “basis vectors”

are (algebraic, ∗A,) products of an odd number of nilpotents; each of them is the eigenvector of one of
the Cartan subalgebra members, and the rest of the projectors; again is each projector the eigenvector
of one of the Cartan subalgebra members. The boson “basis vectors” are (algebraic, ∗A) products of
an even number of nilpotents and the rest of the projectors. (In App. A, the reader can find concrete
examples.)

5In Ref. [14], the reader can find in Subsects. (3.2.1 and 3.2.2) definitions for the “basis vectors” for the Grassmann
and the two Clifford subalgebras, which are products of nilpotents and projectors chosen to be the eigenvectors of the
corresponding Cartan subalgebra members of the Lorentz algebras presented in Eq. (8).

6Let us prove one of the relations in Eq. (10): Sab
ab

(k)= i
2γ

aγb 12 (γ
a + ηaa

ik γ
b) = 1

22 {−i(γ
a)2γb + i(γb)2γa ηaa

ik } =
1
2
ηaaηbb

k
1
2{γ

a + k2

ηbbik
γb}. For k2 = ηaaηbb the first relation follows.

7The reader can find the proof of Eq. (10) also in Ref. [14], App. (I).
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It follows that the Clifford odd “basis vectors”, which are the superposition of odd products of γa,
must include an odd number of nilpotents, at least one, while the superposition of an even products of
γa, that is Clifford even “basis vectors”, must include an even number of nilpotents or only projectors.

We shall see that the Clifford odd “basis vectors” have properties appropriate to describe the internal
space of the second quantized fermion fields while the Clifford even “basis vectors” have properties
appropriate to describe the internal space of the second quantized boson fields.

Taking into account Eq. (6) one finds

γa
ab

(k) = ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k) = −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) ,

ab

(k)

†

= ηaa
ab

(−k) , (
ab

(k))2 = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,

ab

[k]

†

=
ab

[k] , (
ab

[k])2 =
ab

[k] ,
ab

[k]
ab

[−k]= 0 , (11)

More relations are presented in App. C.

The relations in Eq. (11) demonstrate that the properties of “basis vectors” which include an odd
number of nilpotents, differ essentially from the “basis vectors”, which include an even number of
nilpotents.

One namely recognizes:

i. Since the Hermitian conjugated partner of a nilpotent
ab

(k)
†

is ηaa
ab

(−k) and since neither Sab nor

S̃ab nor both can transform odd products of nilpotents to belong to one of the 2
d
2
−1 members of one of

2
d
2
−1 irreducible representations (families), the Hermitian conjugated partners of the Clifford odd “basis

vectors” must belong to a different group of 2
d
2
−1 members of 2

d
2
−1 families.

Since Sac transforms
ab

(k) ∗A
cd

(k′) into
ab

[−k] ∗A
cd

[−k′], while S̃ab transforms
ab

(k) ∗A
cd

(k′) into
ab

[k] ∗A
cd

[k′] it is
obvious that the Hermitian conjugated partners of the Clifford even “basis vectors” must belong to the
same group of 2

d
2
−1× 2

d
2
−1 members. Projectors are self-adjoint.

ii. Since an odd products of γa anti-commute with another group of an odd products of γa, the Clifford
odd “basis vectors” anti-commute, manifesting in a tensor product, ∗T , with the basis in ordinary space
(together with the corresponding Hermitian conjugated partners) properties of the anti-commutation
relations postulated by Dirac for the second quantized fermion fields 8. The creation and annihilation
operators, which include the internal space of fermions and bosons described by “basis vectors”, the
anti-commutativity or commutativity of which determine properties of the “basis vectors”, fulfil the
postulates of the second quantized fermion and boson fields. Basis of ordinary space commute as
presented in Eq.(31). App. (A) discuses the creation and annihilation operators.
The Clifford even “basis vectors” correspondingly fulfil, in a tensor product, ∗T , with the basis in
ordinary space, the commutation relations for the second quantized boson fields.
iii. The Clifford odd “basis vectors” have all the eigenvalues of the Cartan subalgebra members equal
to either ±1

2
or to ± i

2
.

The Clifford even “basis vectors” have all the eigenvalues of the Cartan subalgebra members Sab =
Sab + S̃ab equal to either ±1 and zero or to ±i and zero.

In odd-dimensional spaces the “basis vectors” can not be products of only nilpotents and projections.
As we shall see in Subsect. 2.2.2, half of “basis vectors” can be chosen as products of nilpotents and
projectors, the rest can be obtained from the first half by the application of S0d on the first half.

8So far, we multiply nilpotents and projectors, or products of nilpotents and projectors forming “basis vectors”, among
themselves. With the tensor product, ∗T , we include the basis in ordinary space.
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We shall demonstrate, shortly overviewing [20], that the second half of the “basis vectors” have
unusual properties: The Clifford odd “basis vectors have properties of the Clifford even “basis vectors”,
the Clifford even “basis vectors have properties of the Clifford odd “basis vectors”.

2.2.1 Clifford odd and even “basis vectors” in even d

Let us define Clifford odd and even “basis vectors” as products of nilpotents and projectors in even-
dimensional spaces.

a. Clifford odd “basis vectors”

This part overviews several papers with the same topic ([14, 20] and references therein).
The Clifford odd “basis vectors” must be products of an odd number of nilpotents, and the rest, up

to d
2
, of projectors, each nilpotent and each projector must be the “eigenstate” of one of the members of

the Cartan subalgebra, Eq. (8), correspondingly are the “basis vectors” eigenstates of all the members

of the Lorentz algebra: Sab’s determine 2
d
2
−1 members of one family, S̃ab’s transform each member of

one family to the same member of the rest of 2
d
2
−1 families.

Let us call the Clifford odd “basis vectors” b̂m†
f , if it is the mth membership of the family f . The

Hermitian conjugated partner of b̂m†
f is called b̂mf (= (b̂m†

f )†.

Let us start in d = 2(2n + 1) with the “basis vector” b̂1†1 which is the product of only nilpotents,
all the rest members belonging to the f = 1 family follow by the application of S01, S03, . . . , S0d, S15,
. . . , S1d, S5d . . . , Sd−2 d. They are presented on the left-hand side. Their Hermitian conjugated partners
are presented on the right-hand side. The algebraic product mark ∗A among nilpotents and projectors
is skipped.

d = 2(2n+ 1) ,

b̂1†1 =
03

(+i)
12

(+)
56

(+) · · ·
d−1 d

(+) , b̂11 =
03

(−i)
12

(−) · · ·
d−1 d

(−) ,

b̂2†1 =
03

[−i]
12

[−]
56

(+) · · ·
d−1 d

(+) , b̂21 =
03

[−i]
12

[−]
56

(−) · · ·
d−1 d

(−) ,

· · · · · ·

b̂2
d
2−1†

1 =
03

[−i]
12

[−]
56

(+) . . .
d−3 d−2

[−]
d−1 d

[−] , b̂2
d
2−1†

1 =
03

[−i]
12

[−]
56

(−)
78

[−] . . .
d−3 d−2

[−]
d−1 d

[−] ,

· · · , · · · . (12)

In d = 4n the choice of the starting “basis vector” with maximal number of nilpotents must have
one projector

d = 4n ,

b̂1†1 =
03

(+i)
12

(+) · · ·
d−1 d

[+] , b̂11 =
03

(−i)
12

(−) · · ·
d−1 d

[+]

b̂2†1 =
03

[−i]
12

[−]
56

(+) · · ·
d−1 d

[+] , b̂21 =
03

[−i]
12

[−]
56

(+) · · ·
d−1 d

[+] ,

· · · , · · · ,

b̂2
d
2−1†

1 =
03

[−i]
12

[−]
56

(+) . . .
d−3 d−2

[−]
d−1 d

[+] , b̂2
d
2−1

1 =
03

[−i]
12

[−]
56

(−) . . .
d−3 d−2

[−]
d−1 d

[+] ,

· · · , · · · . (13)

The Hermitian conjugated partners of the Clifford odd “basis vectors” b̂m†
1 , presented in Eq. (13) on

the right-hand side, follow if all nilpotents
ab

(k) of b̂m†
1 are transformed into ηaa

ab

(−k).
For either d = 2(2n + 1) or for d = 4n all the 2

d
2
−1 families follow by applying S̃ab’s on all the

members of the starting family. (Or one can find the starting b̂1†f for all families f and then generate

all the members b̂mf from b̂1†f by the application of Sab on the starting member.)
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It is not difficult to see that all the “basis vectors” within any family, as well as the “basis vectors”
among families, are orthogonal; that is, their algebraic product is zero. The same is true within their
Hermitian conjugated partners. Both can be proved by the algebraic multiplication using Eqs. (11, 47).

b̂m†
f ∗A b̂m‘†

f ‘ = 0 , b̂mf ∗A b̂m‘
f ‘ = 0 , ∀m,m′, f, f ‘ . (14)

When we choose the vacuum state equal to

|ψoc >=
2
d
2−1∑
f=1

b̂mf ∗A b̂
m†
f | 1 > , (15)

for one of members m, which can be anyone of the odd irreducible representations f it follows that the
Clifford odd “basis vectors” obey the relations

b̂mf ∗A|ψoc > = 0. |ψoc > ,

b̂m†
f ∗A|ψoc > = |ψm

f > ,

{b̂mf , b̂m
′

f ‘ }∗A+|ψoc > = 0. |ψoc > ,

{b̂m†
f , b̂m

′†
f ‘ }∗A+|ψoc > = 0. |ψoc > ,

{b̂mf , b̂
m′†
f ‘ }∗A+|ψoc > = δmm′

δff ‘|ψoc > , (16)

while the normalization < ψoc|b̂m†
f ∗A b̂m†

f ∗A |ψoc >= 1 is used and the anti-commutation relation mean

{b̂m†
f , b̂m

′†
f ‘ }∗A+ = b̂m†

f ∗A b̂m
′†

f ‘ + b̂m
′†

f ‘ ∗A b̂m†
f .

If we write the creation and annihilation operators for fermions as the tensor, ∗T , products of “basis
vectors” and the basis in ordinary space, the creation and annihilation operators fulfil Dirac’s anti-
commutation postulates since the “basis vectors” transfer their anti-commutativity to creation and
annihilation operators; the ordinary basis namely commute as presented in Eqs. (31, 32). Describing
the internal space of fermions with the Clifford odd “basis vectors”, makes creation operators fulfilling
the Dirac postulates for the second quantized fermion fields: No postulates are needed. The creation
and annihilation operators for fermions and bosons are discussed in App. A, in the part with the title
“Creation and annihilation operators”.

It turns out, therefore, that not only the Clifford odd “basis vectors” offer the description of the
internal space of fermions, they explain the second quantization postulates for fermions as well.

Table 1, presented in Subsect. 2.3, illustrates the properties of the Clifford odd “basis vectors” on
the case of d = (5 + 1).

b. Clifford even “basis vectors”

This part proves that the Clifford even “basis vectors” are in even-dimensional spaces offering the
description of the internal spaces of boson fields — the gauge fields of the corresponding Clifford odd
“basis vectors””: It is a new recognition, offering a new understanding of the second quantized fermion
and boson fields [17].

The Clifford even “basis vectors” must be products of an even number of nilpotents and the rest,
up to d

2
, of projectors; each nilpotent and each projector is chosen to be the “eigenstate” of one of the

members of the Cartan subalgebra of the Lorentz algebra, Sab = Sab+S̃ab, Eq. (8). Correspondingly the
“basis vectors” are the eigenstates of all the members of the Cartan subalgebra of the Lorentz algebra.

The Clifford even “basis vectors” appear in two groups, each group has 2
d
2
−1× 2

d
2
−1 members. The

members of one group can not be reached from the members of another group by either Sab’s or S̃ab’s
or both.

10



Sab and S̃ab generate from the starting “basis vector” of each group all the 2
d
2
−1× 2

d
2
−1 members.

Each group contains the Hermitian conjugated partner of any member; 2
d
2
−1 members of each group

are products of only (self adjoint) projectors.
Let us call the Clifford even “basis vectors” iÂm†

f , where i = (I, II) denotes the two groups of
Clifford even “basis vectors”, while m and f determine membership of “basis vectors” in any of the two
groups, I or II.

d = 2(2n+ 1)

IÂ1†
1 =

03

(+i)
12

(+) · · ·
d−1 d

[+] , IIÂ1†
1 =

03

(−i)
12

(+) · · ·
d−1 d

[+] ,

IÂ2†
1 =

03

[−i]
12

[−]
56

(+) · · ·
d−1 d

[+] , IIÂ2†
1 =

03

[+i]
12

[−]
56

(+) · · ·
d−1 d

[+] ,

IÂ3†
1 =

03

(+i)
12

(+)
56

(+) · · ·
d−3 d−2

[−]
d−1 d

(−) , IIÂ3†
1 =

03

(−i)
12

(+)
56

(+) · · ·
d−3 d−2

[−]
d−1 d

(−) ,

. . . . . .

d = 4n

IÂ1†
1 =

03

(+i)
12

(+) · · ·
d−1 d

(+) , IIÂ1†
1 =

03

(−i)
12

(+) · · ·
d−1 d

(+) ,

IÂ2†
1 =

03

[−i]
12

[−i]
56

(+) · · ·
d−1 d

(+) , IIÂ2†
1 =

03

[+i]
12

[−i]
56

(+) · · ·
d−1 d

(+) ,

IÂ3†
1 =

03

(+i)
12

(+)
56

(+) · · ·
d−3 d−2

[−]
d−1 d

[−] , IIÂ3†
1 =

03

(−i)
12

(+)
56

(+) · · ·
d−3 d−2

[−]
d−1 d

[−]

. . . . . . (17)

There are 2
d
2
−1× 2

d
2
−1 Clifford even “basis vectors” of the kind IÂm†

f and there are 2
d
2
−1 × 2

d
2
−1 Clifford

even “basis vectors” of the kind IIÂm†
f .

Table 1, presented in Subsect. 2.3, illustrates properties of the Clifford odd and Clifford even “basis
vectors” on the case of d = (5 + 1). Looking at this case it is easy to evaluate properties of either
even or odd “basis vectors”. We shall discuss in this subsection the general case by carefully inspecting
properties of both kinds of “basis vectors”.

The Clifford even “basis vectors” belonging to two different groups are orthogonal due to the fact
that they differ in the sign of one nilpotent or one projector, or the algebraic product of a member
of one group with a member of another group gives zero according to the first two lines of Eq. (47):
ab

(k)
ab

[k]= 0,
ab

[k]
ab

(−k)= 0,
ab

[k]
ab

[−k]= 0.

IÂm†
f ∗A IIÂm†

f = 0 = IIÂm†.f ∗A IÂm†
f . (18)

The members of each of these two groups have the property

iÂm†
f ∗A iÂm′†

f ‘ →
{

iÂm†
f ‘ , i = (I, II)

or zero .
(19)

For a chosen (m, f, f ‘) there is only one m′ (out of 2
d
2
−1) which gives nonzero contribution.

Two “basis vectors”, iÂm†
f and iÂm′†

f ′ , the algebraic product, ∗A, of which gives non zero contribution,

“scatter” into the third one iÂm†
f ‘ , for i = (I, II).

Let us treat a particular case in d = 2(2n+ 1)-dimensional internal space, like:

IÂm†
f =

03

(+i)
12

(+)
56

(+) . . .
d−3 d−2

(+)
d−1 d

[+] ∗A
03

[−i]
12

[−]
56

(−) . . .
d−3 d−2

(−)
d−1 d

[+] →
03

(+i)
12

(+)
56

[+] . . .
d−3 d−2

[+]
d−1 d

[+] , what follows

if the first two lines of Eq. (47) are taken into account. The eigenvalues of the Cartan subalgebra members

of
03

(+i)
12

(+)
56

(+) . . .
d−3 d−2

(+)
d−1 d

[+] are (i, 1, 1, 1, . . . , 1, 0), of
03

[−i]
12

[−]
56

(−) . . .
d−3 d−2

(−)
d−1 d

[+] are (0, 0,−1,−1, . . . ,−1, 0),
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and of
03

(+i)
12

(+)
56

[+] . . .
d−3 d−2

[+]
d−1 d

[+] are (i, 1, 0, 0, . . . , 0, 0). The sum of the Cartan subalgebra eigenvalues of the

two scattered Clifford even “basis vectors” leads to the eigenvalues (i, 1, 0, 0, . . . , 0, 0) of the third Clifford even

“basis vector”.

It remains to evaluate the algebraic application, ∗A, of the Clifford even “basis vectors” I,IIÂm†
f on

the Clifford odd “basis vectors” b̂m
′†

f ‘ . One finds, taking into account Eq. (47), for IÂm†
f

IÂm†
f ∗A b̂m

′†
f ‘ →

{
b̂m†
f ‘ ,

or zero ,
(20)

For each IÂm†
f there are among 2

d
2
−1× 2

d
2
−1 members of the Clifford odd “basis vectors” (describing

the internal space of fermion fields) 2
d
2
−1 members, b̂m

′†
f ‘ , fulfilling the relation of Eq. (20). All the rest

(2
d
2
−1× (2

d
2
−1−1)) Clifford odd “basis vectors” give zero contributions. Or equivalently, there are 2

d
2
−1

pairs of quantum numbers (f,m′) for which b̂m†
f ‘ ̸= 0.

Taking into account Eq. (47) one finds

b̂m†
f ∗A IÂm′†

f ‘ = 0 , ∀(m,m‘, f, f ‘) . (21)

Let us treat a particular case in d = 2(2n+ 1)-dimensional space:

IÂm†
f (≡

03

(+i)
12

(+)
56

(+) . . .
d−3 d−2

(+)
d−1 d

[+] )∗A b̂m
′†

f ‘ (≡
03

(−i)
12

(−)
56

(−) . . .
d−3 d−2

(−)
d−1 d

(+) ) → b̂m†
f ‘ (≡

03

[+i]
12

[+]
56

[+] . . .
d−3 d−2

[+]
d−1 d

(+) .

The Sab (meaning S03,S12,S56, . . .Sd−1 d) say for the above case that the boson field with the quantum num-

bers (i, 1, 1, . . . , 1, 0) when “scattering” on the fermion field with the Cartan subalgebra quantum numbers

(S03, S1,2, S56 . . . Sd−3 d−2, Sd−1 d) = (− i
2 ,−

1
2 ,−

1
2 , . . . ,−

1
2 ,

1
2), and the family quantum numbers (− i

2 ,−
1
2 ,−

1
2 , . . . ,

−1
2 ,

1
2) transfers to the fermion field its quantum numbers (i, 1, 1, . . . , 1, 0), transforming fermion family mem-

bers quantum numbers to ( i2 ,
1
2 ,

1
2 , . . . ,

1
2 ,

1
2), leaving family quantum numbers unchanged.

Eqs. (20, 21) demonstrates that IÂm†
f , applying on b̂m

′†
f ‘ , transforms the Clifford odd “basis vector”

into another Clifford odd “basis vector” of the same family, transferring to the Clifford odd “basis
vector” integer spins, or gives zero.

For “scattering” the Cifford even “basis vectors” IIÂm†
f on the Clifford odd “basis vectors” b̂m

′†
f ‘ it

follows

IIÂm†
f ∗A b̂m

′†
f ‘ = 0 , ∀(m,m′, f, f ‘) , (22)

while we get

b̂m†
f ∗A IIÂm′†

f ‘ →
{

b̂m†
f“ ,

or zero ,
(23)

For each b̂m†
f there are among 2

d
2
−1 × 2

d
2
−1 members of the Clifford even “basis vectors” (describing

the internal space of boson fields) , IIÂm′†
f ‘ , 2

d
2
−1 members (with appropriate f ‘ and m′) fulfilling the

relation of Eq. (23) while f“ runs over (1− 2
d
2
−1).

All the rest (2
d
2
−1 × (2

d
2
−1 − 1)) Clifford even“basis vectors” give zero contributions.

Or equivalently, there are 2
d
2
−1 pairs of quantum numbers (f ′,m′) for which b̂m†

f and IIÂm′†
f ‘ give non

zero contribution. 2mm Let us treat a particular case in d = 2(2n+ 1)-dimensional space:

b̂m†
f (≡

03

(−i)
12

(−)
56

(−) . . .
d−3 d−2

(−)
d−1 d

(+) )∗A IIÂm‘†
f ‘ (≡

03

(+i)
12

(+)
56

(+) . . .
d−3 d−2

(+)
d−1 d

[−] ) → b̂m†
f ‘′ (≡

03

[−i]
12

[−]
56

[−] . . .
d−3 d−2

[−]
d−1 d

(+) )

When the fermion field with the Cartan subalgebra family members quantum numbers (S03, S1,2, S56 . . .

12



Sd−3 d−2, Sd−1 d) = (− i
2 ,−

1
2 ,−

1
2 , . . . ,−

1
2 ,

1
2) and family quantum numbers (S̃03, S̃1,2, S̃56 . . . S̃d−3 d−2, S̃d−1 d)

(− i
2 ,−

1
2 ,−

1
2 , . . . ,−

1
2 ,

1
2) “absorbs” a boson field with the Cartan subalgebra quantum numbers Sab (mean-

ing S03,S12,S56, . . .Sd−1 d) equal to (i, 1, 1, . . . , 1, 0), the fermion field changes the family quantum numbers

(S̃03, S̃1,2, S̃56 . . . S̃d−3 d−2, S̃d−1 d) to ( i2 ,
1
2 ,

1
2 , . . . ,

1
2 ,

1
2), keeping family members quantum numbers unchanged.

Eqs. (22, 23) demonstrate that IIÂm′†
f ′ , “absorbed” by b̂m†

f , transforms the Clifford odd “basis vector”
into the Clifford odd “basis vector” of the same family member and of another family, or gives zero.

The Clifford even “basis vectors” offer the description of the internal space of the gauge fields of the
corresponding fermion fields.

While the Clifford odd “basis vectors”, b̂m†
f , offer the description of the internal space of the sec-

ond quantized anti-commuting fermion fields, appearing in families, the Clifford even “basis vectors”,
I,IIÂm†

f , offer the description of the internal space of the second quantized commuting boson fields,

having no families and appearing in two groups. One of the two groups, IÂm†
f , transferring their inte-

ger quantum numbers to the Clifford odd “basis vectors”, b̂m†
f , changes the family members quantum

numbers leaving the family quantum numbers unchanged. The second group, transferring their integer
quantum numbers to the Clifford odd “basis vector”, changes the family quantum numbers leaving the
family members quantum numbers unchanged.

Both groups of Clifford even “basis vectors” manifest as the gauge fields of the corresponding fermion
fields: One concerning the family members quantum numbers, the other concerning the family quantum
numbers.

We shall discus properties of the Clifford even and odd “basis vectors” for d = (5 + 1)- dimensional
internal spaces in Subsect. 2.3 in more details.

2.2.2 Clifford odd and even “basis vectors” in d odd

Let us shortly overview properties of the fermion and boson “basis vectors” in odd dimensional spaces,
as presented in Ref. [20], Subsect. 2.2.

In even dimensional spaces the Clifford odd “basis vectors” fulfil the postulates for the second
quantized fermion fields, Eq. (16), and the Clifford even ”basis vectors” have the properties of the
internal spaces of their corresponding gauge fields, Eqs. (19, 20, 23). In odd dimensional spaces, the
Clifford odd and even ”basis vectors” have unusual properties resembling properties of the internal
spaces of the Faddeev–Popov ghosts, as we described in [20].

In d = (2n + 1)-dimensional cases, n = 1, 2, . . . , half of the “basis vectors”, 2
2n
2
−1 × 2

2n
2
−1, can be

taken from the 2n-dimensional part of space, presented in Eqs. (12, 13, 17, 19).

The rest of the “basis vectors” in odd dimensional spaces, 2
2n
2
−1 × 2

2n
2
−1, follow if S0 2n+1 is applied

on these half of the “basis vectors”. Since S0 2n+1 are Clifford even operators, they do not change the
oddness or evenness of the “basis vectors”.

For the Clifford odd “basis vectors”, the 2
d−1
2

−1 members appearing in 2
d−1
2

−1 families and repre-
senting the part which is the same as in even, d = 2n, dimensional space are present on the left-hand
side of Eq. (24), the part obtained by applying S0 2n+1 on the one of the left-hand side is presented on

13



the right hand side. Below the “basis vectors” and their Hermitian conjugated partners are presented.

d = 2(2n+ 1) + 1

b̂1†1 =
03

(+i)
12

(+)
56

(+) · · ·
d−2 d−1

(+) , b̂1†

2
d−1
2 −1+1

=
03

[−i]
12

(+)
56

(+) · · ·
d−2 d−1

(+) γd ,

· · · · · ·

b̂2
d−1
2 −1†

1 =
03

[−i]
12

[−]
56

(+) . . .
d−2 d−1

[−] , b̂2
d−1
2 −1†

2d−12−1+1
=

03

(+i)
12

[−]
56

(+) . . .
d−2 d−1

[−] γd ,

· · · · · · ,
· · · ,

b̂11 =
03

(−i)
12

(−)
56

(−) · · ·
d−2 d−1

(−) , b̂1
2
d−1
2 −1+1

=
03

[+i]
12

(−)
56

(−) · · ·
d−2 d−1

(−) γd ,

· · · · · · . (24)

The application of S0d or S̃0d on the left-hand side of the “basis vectors” (and the Hermitian conju-
gated partners of both) generate the whole set of 2× 2d−2 members of the Clifford odd “basis vectors”
and their Hermitian conjugated partners in d = (2n+1)- dimensional space appearing on the left-hand
side and the right-hand sides of Eq. (24).

It is not difficult to see that b̂m†

2
d−1
2 −1+k

and b̂m
′

2
d−1
2 −1+k′

on the right-hand side of Eq. (24) obtain

properties of the two groups (they are orthogonal to each other; the algebraic products, ∗A, of a
member from one group, and any member of another group give zero) with the Hermitian conjugated
partners within the same group; they have properties of the Clifford even “basis vectors” from the point
of view of the Hermiticity property: The operators γa are up to a constant the self-adjoint operators,
while S0d transform one nilpotent into a projector.

Sab do not change the Clifford oddness of b̂m†
f , and b̂mf ; b̂

m†
f remain to be Clifford odd objects, how-

ever, with the properties of boson fields.

Let us find the Clifford even “basis vectors” in odd dimensional space d = 2(2n+ 1) + 1.

d = 2(2n+ 1) + 1

IA1†
1 =

03

(+i)
12

(+)
56

(+) · · ·
d−2 d−1

[+] , IA1†
2d−12−1+1

=
03

[−i]
12

(+)
56

(+) · · ·
d−2 d−1

[+] γd ,

· · · · · ·
IA2

d−1
2 −1†

1 =
03

[−i]
12

[−]
56

[−] . . .
d−2 d−1

[+] , IA2
d−1
2 −1†

2d−12−1+1
=

03

(+i)
12

[−]
56

[−] . . .
d−2 d−1

[+] γd ,

· · · · · · ,
· · · · · ·

IIA1†
1 =

03

(−i)
12

(+)
56

(+) · · ·
d−2 d−1

[+] , IIA1†
2d−12−1+1

=
03

[+i]
12

(+)
56

(+) · · ·
d−2 d−1

[+] γd ,

· · · · · · . (25)

The right hand side of Eq. (24), although anti-commuting, is resembling the properties of the Clifford
even “basis vectors” on the left hand side of Eq. (25), while the right-hand side of Eq. (25), although
commuting, resembles the properties of the Clifford odd “basis vectors”, from the left hand side of
Eq. (24): γa are up to a constant the self adjoint operators, while S0d transform one nilpotent into a
projector (or one projector into a nilpotent). However, Sab do not change Clifford eveness of IAm†

f , i =
(I, II).
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For illustration let me copy the special case for d = (4 + 1) from Subsect.3.2.2. of Ref. [20].

d = 4 + 1

Clifford odd

b̂
1†
1 =

03
(+i)

12
[+] , b̂

1†
2 =

03
[+i]

12
(+) , b̂

1†
3 =

03
[−i]

12
[+] γ

5
, b̂

1†
4 =

03
(−i)

12
(+) γ

5
,

b̂
2†
1 =

03
[−i]

12
(−) , b̂

2†
2 =

03
(−i)

12
[−] , b̂

2†
3 =

03
(+i)

12
(−) γ

5
, b̂

2†
4 =

03
[+i]

12
[−] γ

5
,

b̂
1
1 =

03
(−i)

12
[+] , b̂

1
2 =

03
[+i]

12
(−) , b̂

1
3 =

03
[+i]

12
[+] γ

5
, b̂

1
4 =

03
(−i)

12
(−) γ

5
,

b̂
2
1 =

03
[−i]

12
(+) , b̂

2
2 =

03
(+i)

12
[−] , b̂

2
3 =

03
(+i)

12
(+) γ

5
, b̂

2
4 =

03
[−i]

12
[−] γ

5
,

Clifford even

IA1†
1 =

03
[+i]

12
[+] ,

IA1†
2 =

03
(+i)

12
(+) ,

IA1
3 =

03
(−i)

12
[+] γ

5
,

IA1
4 =

03
[−i]

12
(+) γ

5
,

IA2†
1 =

03
(−i)

12
(−i) , IA2†

2 =
03
[−i]

12
[−] ,

IA2
3 =

03
[+i]

12
(−) γ

5
,

IA2
4 =

03
(+i)

12
[−] γ

5
,

IIA1†
1 =

03
[−i]

12
[+] ,

IIA1†
2 =

03
(−i)

12
(+) ,

IIA1†
3 =

03
(+i)

12
[+] γ

5
,

IIA1†
4 =

03
[+i]

12
(+) γ

5
,

IIA2†
1 =

03
(+i)

12
(−) ,

IIA2†
2 =

03
[+i]

12
[−] ,

IIA2†
3 =

03
[−i]

12
(−) γ

5
,

IIA2†
4 =

03
(−i)

12
[−] γ

5
. (26)

It can clearly be seen that the left-hand side of the Clifford odd “basis vectors” and the right-hand side of

the Clifford even “basis vectors”, although the former are the Clifford odd objects and the latter are Clifford

even objects, have similar properties [20].

2.3 Example demonstrating properties of Clifford odd and even “basis
vectors” for d = (5 + 1)

Subsect. 2.3 demonstrates the properties of the Clifford odd and even “basis vectors” in the special case
when d = (5 + 1) to clear up the relations of the Clifford odd and even “basis vectors” to fermion and
boson fields, respectively.

Table 1 presents the 64 (= 2d=6) “eigenvectors” of the Cartan subalgebra members of the Lorentz
algebra, Sab and Sab, Eq. (8).

The Clifford odd “basis vectors” — they appear in 4 (= 2
d=6
2

−1) families, each family has 4 members
— are products of an odd number of nilpotents, either of three or one. They appear in the group
named odd I b̂m†

f . Their Hermitian conjugated partners appear in the second group named odd II b̂mf .
Within each of these two groups the members are mutually orthogonal (which can be checked by using

Eq. (47)); b̂m†
f ∗A b̂m

′†
f ‘ = 0 for all (m,m′, f, f ‘). Equivalently, b̂mf ∗A b̂m

′

f ‘ = 0 for all (m,m′, f, f ‘). The
“basis vectors” and their Hermitian conjugated partners are normalized as

< ψoc|b̂mf ∗A b̂m
′†

f ‘ |ψoc >= δmm′
δff ‘ , (27)

since the vacuum state |ψoc >=
1√

2
d=6
2 −1

(
03

[−i]
12

[−]
56

[−] +
03

[−i]
12

[+]
56

[+] +
03

[+i]
12

[−]
56

[+] +
03

[+i]
12

[+]
56

[−]) is normal-

ized to one: < ψoc|ψoc >= 1.
The more extended overview of the properties of the Clifford odd “basis vectors” and their Hermitian

conjugated partners for the case d = (5 + 1) can be found in Ref. [14].

The Clifford even “basis vectors” are products of an even number of nilpotents — of either two
or none in this case. They are presented in Table 1 in two groups, each with 16 (= 2

d=6
2

−1 × 2
d=6
2

−1)
members, as even I Am†

f and even II Am†
f . One can easily check, using Eq. (47), that the algebraic

product IAm†
f ∗A IIAm′†

f ‘ = 0 = IIAm†
f ∗A IAm′†

f ‘ ,∀ (m,m′, f.f ‘), Eq. (18). An overview of the Clifford
even “basis vectors” and their Hermitian conjugated partners for the case d = (5 + 1) can be found in
Ref. [17].
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Table 1: 2d = 64 “eigenvectors” of the Cartan subalgebra of the Clifford odd and even algebras —
the superposition of odd and even products of γa’s — in d = (5 + 1)-dimensional space are presented,
divided into four groups. The first group, odd I, is chosen to represent “basis vectors”, named b̂m†

f ,

appearing in 2
d
2
−1 = 4 “families” (f = 1, 2, 3, 4), each ”family” with 2

d
2
−1 = 4 “family” members

(m = 1, 2, 3, 4). The second group, odd II, contains Hermitian conjugated partners of the first group
for each family separately, b̂mf = (b̂m†

f )†. Either odd I or odd II are products of an odd number of

nilpotents (one or three) and projectors (two or three). The “family” quantum numbers of b̂m†
f , that

is the eigenvalues of (S̃03, S̃12, S̃56), are for the first odd I group appearing above each “family”, the
quantum numbers of the family members (S03, S12, S56) are written in the last three columns. For
the Hermitian conjugated partners of odd I, presented in the group odd II, the quantum numbers
(S03, S12, S56) are presented above each group of the Hermitian conjugated partners, the last three
columns tell eigenvalues of (S̃03, S̃12, S̃56). The two groups with the even number of γa’s, even I and even
II, each group has their Hermitian conjugated partners within its group, have the quantum numbers f ,
that is the eigenvalues of (S̃03, S̃12, S̃56), written above column of four members, the quantum numbers
of the members, (S03, S12, S56), are written in the last three columns. To find the quantum numbers of
(S03,S12,S56) one has to take into account that Sab = Sab + S̃ab.

′′basis vectors′′ m f = 1 f = 2 f = 3 f = 4

(S̃03, S̃12, S̃56) → ( i
2
,− 1

2
,− 1

2
) (− i

2
,− 1

2
, 1
2
) (− i

2
, 1
2
,− 1

2
) ( i

2
, 1
2
, 1
2
) S03 S12 S56

odd I b̂
m†
f

1
03

(+i)
12
[+]

56
[+]

03
[+i]

12
[+]

56
(+)

03
[+i]

12
(+)

56
[+]

03
(+i)

12
(+)

56
(+) i

2
1
2

1
2

2 [−i](−)[+] (−i)(−)(+) (−i)[−][+] [−i][−](+) − i
2

− 1
2

1
2

3 [−i][+](−) (−i)[+][−] (−i)(+)(−) [−i](+)[−] − i
2

1
2

− 1
2

4 (+i)(−)(−) [+i](−)[−] [+i][−](−) (+i)[−][−] i
2

− 1
2

− 1
2

(S03, S12, S56) → (− i
2
, 1
2
, 1
2
) ( i

2
, 1
2
,− 1

2
) ( i

2
,− 1

2
, 1
2
) (− i

2
,− 1

2
,− 1

2
) S̃03 S̃12 S̃56

03 12 56 03 12 56 03 12 56 03 12 56

odd II b̂mf 1 (−i)[+][+] [+i][+](−) [+i](−)[+] (−i)(−)(−) − i
2

− 1
2

− 1
2

2 [−i](+)[+] (+i)(+)(−) (+i)[−][+] [−i][−](−) i
2

1
2

− 1
2

3 [−i][+](+) (+i)[+][−] (+i)(−)(+) [−i](−)[−] i
2

− 1
2

1
2

4 (−i)(+)(+) [+i](+)[−] [+i][−](+) (−i)[−][−] − i
2

1
2

1
2

(S̃03, S̃12, S̃56) → (− i
2
, 1
2
, 1
2
) ( i

2
,− 1

2
, 1
2
) (− i

2
,− 1

2
,− 1

2
) ( i

2
, 1
2
,− 1

2
) S03 S12 S56

03 12 56 03 12 56 03 12 56 03 12 56

even I IAm
f 1 [+i](+)(+) (+i)[+](+) [+i][+][+] (+i)(+)[+] i

2
1
2

1
2

2 (−i)[−](+) [−i](−)(+) (−i)(−)[+] [−i][−][+] − i
2

− 1
2

1
2

3 (−i)(+)[−] [−i][+][−] (−i)[+](−) [−i](+)(−) − i
2

1
2

− 1
2

4 [+i][−][−] (+i)(−)[−] [+i](−)(−) (+i)[−](−) i
2

− 1
2

− 1
2

(S̃03, S̃12, S̃56) → ( i
2
, 1
2
, 1
2
) (− i

2
,− 1

2
, 1
2
) ( i

2
,− 1

2
,− 1

2
) (− i

2
, 1
2
,− 1

2
) S03 S12 S56

03 12 56 03 12 56 03 12 56 03 12 56

even II IIAm
f 1 [−i](+)(+) (−i)[+](+) [−i][+][+] (−i)(+)[+] − i

2
1
2

1
2

2 (+i)[−](+) [+i](−)(+) (+i)(−)[+] [+i][−][+] i
2

− 1
2

1
2

3 (+i)(+)[−] [+i][+][−] (+i)[+](−) [+i](+)(−) i
2

1
2

− 1
2

4 [−i][−][−] (−i)(−)[−] [−i](−)(−) (−i)[−](−) − i
2

− 1
2

− 1
2
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While the Clifford odd “basis vectors” are (chosen to be) left handed, Γ(5+1) = −1, their Hermitian
conjugated partners have opposite handedness, Eq. 45 in App. C 9.

While the Clifford odd “basis vectors” have half integer eigenvalues of the Cartan subalgebra mem-
bers, Eq. (8), that is of S03, S12, S56 in this particular case of d = (5 + 1), the Clifford even “basis
vectors” have integer spins, obtained by S03 = S03 + S̃03, S12 = S12 + S̃12, S56 = S56 + S̃56.

Let us check what does the algebraic application, ∗A, of IÂm=1†
f=4 , for example, presented in Table 1

in the first line of the fourth column of even I, do on the Clifford odd “basis vector” b̂m=2†
f=2 , presented in

odd I as the second member of the second column. (This can easily be evaluated by taking into account
Eq. (47) for any m.)

IÂ1†
4 (≡

03

(+i)
12

(+)
56

[+]) ∗A b̂2†2 (≡
03

(−i)
12

(−)
56

(+)) → b̂1†2 (≡
03

[+i]
12

[+]
56

(+)) , (28)

The sign → means that the relation is valid up to the constant. The Hermitian conjugated partner of
IÂ1†

4 is IÂ2†
3 .

Let us check the Cartan subalgebra quantum numbers of this “scattering”: IÂ1†
4 has (S03,S12,S56) =

(i, 1, 0), b̂2†2 has (S03,S12,S56) = (− i
2
,−1

2
, 1
2
) and (S̃03, S̃12, S̃56) = (− i

2
,−1

2
, 1
2
), and b̂1†2 has (S03,S12,S56) =

( i
2
, 1
2
, 1
2
) and (S̃03, S̃12, S̃56) = (− i

2
,−1

2
, 1
2
). This means that Clifford even “basis vector” changes the

family members quantum numbers of the Clifford odd “basis vector”, leaving the family quantum
numbers unchanged.

One can find that the algebraic application, ∗A, of IÂ1†
3 (≡

03

[+i]
12

[+]
56

[+]) on b̂1†1 leads to the same family
member of the same family f = 1, namely to b̂1†1 .

Calculating the eigenvalues of the Cartan subalgebra members, Eq. (8), before and after the algebraic
multiplication, ∗A, assures us that IÂm†

3 carry the integer eigenvalues of the Cartan subalgebra members,
namely of Sab = Sab + S̃ab, since they transfer to the Clifford odd “basis vector” integer eigenvalues
of the Cartan subalgebra members, changing the Clifford odd “basis vector” into another Clifford odd
“basis vector” of the same family.

We, therefore, confirm that the algebraic application of IÂm†
3 , m = 1, 2, 3, 4, on b̂1†1 transforms b̂1†1

into b̂m†
1 , m = (1, 2, 3, 4). Similarly we find that the algebraic application of IÂm

4 , m = (1, 2, 3, 4) on b̂2†1
transforms b̂2†1 into b̂m†

1 ,m = (1, 2, 3, 4). The algebraic application of IÂm
2 , m = (1, 2, 3, 4) on b̂3†1 transforms

b̂3†1 into b̂m†
1 ,m = (1, 2, 3, 4). And the algebraic application of IÂm

1 , m = (1, 2, 3, 4) on b̂4†1 transforms b̂4†1 into

b̂m†
1 ,m = (1, 2, 3, 4).

One easily checks Eq. (21) if taking into account Eq. (47); like: b̂1†1 ∗A IÂm
4 = 0, (m = (1, 2, 3, 4)), since

either (
03

(+i))2 = 0 or
12

[+] ∗A
12

[−]= 0 or
56

[+]
56

(−)= 0.

Similarly, one can check Eq. (22) by evaluating, for example, IIÂm
4 ∗A b̂1†1 , since either

12

(+) ∗A
12

[+]= 0 or
12

[−]
56

[+]= 0.

Let us check the validity of Eq. (23) on the case: b̂4†1 ∗A IIÂm
4 = b̂4†3 for m = 1, and zero for m =

(2, 3, 4), while b̂4†1 ∗A IIÂ1
f = (b̂4†4 , b̂

4†
2 , b̂

4†
1 , b̂

4†
3 ) for f = (1, 2, 3, 4). All IIÂm

f giving non zero contributions,
keep the family member quantum numbers of the Clifford odd “basis vectors” unchanged, changing the
family quantum number. All the rest give zero contribution.

The statements of Eq. (20, 21, 22, 23), are, therefore, demonstrated on the case of d = (5 + 1).

The Cartan subalgebra has in d = (5 + 1)-dimensional space 3 members. To illustrate that the
Clifford even “basis vectors” have the properties of the gauge fields of the corresponding Clifford odd

9Let us check the hadedness of the chosen representation: Γ5+1b̂1†1 (≡
03

(+i)
12

[+]
56

[+]) =
√

(−1)5i3( 2i )
3S03S12S56(

03

(+i)
12

[+]
56

[+]

) = i423

i3
i
2
1
2
1
2 (

03

(+i)
12

[+]
56

[+]) = −1(
03

(+i)
12

[+]
56

[+])).
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τ

τ8

τ'

(1/2,1/2√3,1/6)

(0,0,-1/2)

(-1/2,1/2√3,1/6)

(0,-1/√3,1/6)

Figure 1: The representations of the subgroups SU(3) and U(1) of the group SO(5, 1), the properties
of which appear in Tables (1, 2) for the Clifford odd “basis vectors”, are presented. (τ 3, τ 8, τ ′) can
be calculated if using Eq. (29). On the abscissa axis, on the ordinate axis and on the third axis, the
eigenvalues of the superposition of the three Cartan subalgebra members, (τ 3, τ 8, τ ′), are presented.
One notices one triplet, denoted by ⃝ with the values τ ′ = 1

6
, (τ 3 = −1

2
, τ 8 = 1

2
√
3
, τ ′ = 1

6
), (τ 3 =

1
2
, τ 8 = 1

2
√
3
, τ ′ = 1

6
), (τ 3 = 0, τ 8 = − 1√

3
, τ ′ = 1

6
), respectively, and one singlet denoted by the square.

(τ 3 = 0, τ 8 = 0, τ ′ = −1
2
). The triplet and the singlet appear in four families, with the family quantum

numbers presented in the last three columns of Table 2.
.

“basis vectors” let us study properties of the SU(3) ×U(1) subgroups of the Clifford odd and Clifford
even “basis vectors”. We need the relations between Sab and (τ 3, τ 8, τ ‘)

τ 3 :=
1

2
(−S1 2 − iS0 3) , τ 8 =

1

2
√
3
(−iS0 3 + S1 2 − 2S5 6) ,

τ ′ = −1

3
(−iS0 3 + S1 2 + S5 6) . (29)

The corresponding relations for (τ̃ 3, τ̃ 8, τ̃ ′) can be read from Eq. (29), if replacing Sab by S̃ab.
The corresponding relations for superposition of the Cartan subalgebra elements (τ ′, τ 3, τ 8) for

Sab = Sab + S̃ab follow if in Eq. (29) Sab is replaced by Sab.

In Tables (2, 3) the Clifford odd and even “basis vectors” (b̂m†
f and IÂm

f , respectively) are presented

as products of nilpotents (odd number of nilpotents for b̂m†
f and even number of nilpotents for IÂm

f )
and projectors: Like in Table 1. Besides the eigenvalues of the Cartan subalgebra members of Eq. (8)
also (τ 3, τ 8, τ ‘) are added on both tables. In Table 2 also (τ̃ 3, τ̃ 8, τ̃ ‘) are written. In Fig. (1) only one
family is presented; all four families have the same (τ 3, τ 8, τ ‘), they only distinguish in (τ̃ 3, τ̃ 8, τ̃ ‘) .

The corresponding table for the Clifford even “basis vectors” IIÂm
f are not presented. IIÂm

f carry,

namely, the same quantum numbers (τ 3, τ 8, τ ‘) as IÂm
f . There are only products of nilpotents and

projectors which distinguish among IÂm
f and IIÂm

f , causing differences in properties with respect to the

Clifford odd “basis vectors”; IIÂm′

f ‘ transform b̂m†
f with a family member m of particular family f into

b̂m†
f ′′ of the same family member m of another family f ′′. IÂm

f transform a family member of particular

family b̂m
′†

f ‘ into another family member m of the same family b̂m†
f ‘ . (Let us remind the reader that

the SO(5, 1) group and the SU(3), U(1) subgroups have the same number of commuting operators, but
different number of generators; SO(5, 1) has 15 generators, SU(3) and U(1) have together 9 generators.)

In the case that the group SO(5, 1) — manifesting as SU(3) × U(1) and representing the colour
group with quantum numbers (τ 3, τ 8) and the “fermion” group with the quantum number τ , — is
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Table 2: The ”basis vectors” b̂m†
f are presented for d = (5 + 1)-dimensional case. Each b̂m†

f is a product
of projectors and of an odd number of nilpotents and is the ”eigenvector” of all the Cartan subalgebra
members, (S03, S12, S56) and (S̃03, S̃12, S̃56), Eq. (8), m counts the members of each family, while f
determines the family quantum numbers (the eigenvalues of (S̃03, S̃12, S̃56)). This table also presents
in the columns (8th, 9th, 10th) the eigenvalues of the three commuting operators (τ 3, τ 8 and τ ′) of the
subgroups SU(3)× U(1), Eq. (29), as well as (in the last three columns) the corresponding (τ̃ 3, τ̃ 8, τ̃ ′).
Γ(3+1) = iγ0γ1γ2γ3 is written in the 7th column. Γ(5+1) = −1 (= −γ0γ1γ2γ3γ5γ6). Operators b̂m†

f and

b̂mf fulfil the anti-commutation relations of Eq. (16).

f m b̂
m†
f

S03 S12 S56 Γ3+1 τ3 τ8 τ ′ S̃03 S̃12 S̃56 τ̃3 τ̃8 τ̃ ‘

I 1
03

(+i)
12
[+] |

56
[+] i

2
1
2

1
2

1 0 0 − 1
2

i
2

− 1
2

− 1
2

1
2

1
2
√

3
1
6

2
03
[−i]

12
(−) |

56
[+] − i

2
− 1

2
1
2

1 0 − 1√
3

1
6

i
2

− 1
2

− 1
2

1
2

1
2
√

3
1
6

3
03
[−i]

12
[+] |

56
(−) − i

2
1
2

− 1
2

−1 − 1
2

1
2
√

3
1
6

i
2

− 1
2

− 1
2

1
2

1
2
√

3
1
6

4
03

(+i)
12
(−) |

56
(−) i

2
− 1

2
− 1

2
−1 1

2
1

2
√

3
1
6

i
2

− 1
2

− 1
2

1
2

1
2
√

3
1
6

II 1
03
[+i]

12
[+] |

56
(+) i

2
1
2

1
2

1 0 0 − 1
2

− i
2

− 1
2

1
2

0 − 1√
3

1
6

2
03

(−i)
12
(−) |

56
(+) − i

2
− 1

2
1
2

1 0 − 1√
3

1
6

− i
2

− 1
2

1
2

0 − 1√
3

1
6

3
03

(−i)
12
[+] |

56
[−] − i

2
1
2

− 1
2

−1 − 1
2

1
2
√

3
1
6

− i
2

− 1
2

1
2

0 − 1√
3

1
6

4
03
[+i]

12
(−) |

56
[−] i

2
− 1

2
− 1

2
−1 1

2
1

2
√

3
1
6

− i
2

− 1
2

1
2

0 − 1√
3

1
6

III 1
03
[+i]

12
(+) |

56
[+] i

2
1
2

1
2

1 0 0 − 1
2

− i
2

1
2

− 1
2

− 1
2

1
2
√

3
1
6

2
03

(−i)
12
[−] |

56
[+] − i

2
− 1

2
1
2

1 0 − 1√
3

1
6

− i
2

1
2

− 1
2

− 1
2

1
2
√

3
1
6

3
03

(−i)
12
(+) |

56
(−) − i

2
1
2

− 1
2

−1 − 1
2

1
2
√

3
1
6

− i
2

1
2

− 1
2

− 1
2

1
2
√

3
1
6

4
03
[+i]

12
[−] |

56
(−) i

2
− 1

2
− 1

2
−1 1

2
1

2
√

3
1
6

− i
2

1
2

− 1
2

− 1
2

1
2
√

3
1
6

IV 1
03

(+i)
12
(+) |

56
(+) i

2
1
2

1
2

1 0 0 − 1
2

i
2

1
2

1
2

0 0 − 1
2

2
03
[−i]

12
[−] |

56
(+) − i

2
− 1

2
1
2

1 0 − 1√
3

1
6

i
2

1
2

1
2

0 0 − 1
2

3
03
[−i]

12
(+) |

56
[−] − i

2
1
2

− 1
2

−1 − 1
2

1
2
√

3
1
6

i
2

1
2

1
2

0 0 − 1
2

4
03

(+i)
12
[−] |

56
[−] i

2
− 1

2
− 1

2
−1 1

2
1

2
√

3
1
6

i
2

1
2

1
2

0 0 − 1
2
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embedded into SO(13, 1) the triplet would represent quarks (and antiquarks), and the singlet leptons
(and antileptons).

The corresponding gauge fields, presented in Table 3 and Fig. 2, if belonging to the sextet, would
transform the triplet of quarks among themselves, changing the colour and leaving the “fermion” quan-
tum number equal to 1

6
.

Table 3 presents the Clifford even “basis vectors” IÂm†
f for d = (5 + 1) with the properties:

i. They are products of an even number of nilpotents,
ab

(k), with the rest up to d
2
of projectors,

ab

[k].

ii. Nilpotents and projectors are eigenvectors of the Cartan subalgebra members Sab = Sab + S̃ab,
Eq. (8), carrying the integer eigenvalues of the Cartan subalgebra members.

iii. They have their Hermitian conjugated partners within the same group of IÂm†
f (with 2

d
2
−1 ×

2
d
2
−1 members).
iv. They have properties of the boson gauge fields. When the Clifford even “basis vectors”, IÂm†

f ,
apply on the Clifford odd “basis vectors” (offering the description of the fermion fields) they transform
the Clifford odd “basis vectors” into another Clifford odd “basis vectors” of the same family, transferring
to the Clifford odd “basis vectors” the integer spins with respect to the SO(d− 1, 1) group, while with
respect to subgroups of the SO(d−1, 1) group they transfer appropriate superposition of the eigenvalues
(manifesting the properties of the adjoint representations of the corresponding subgroups.)

If, for example, IÂ1†
3 applies on a singlet b̂1†1 keeps the internal space of b̂1†1 unchanged (it can change only

momentum), while if IÂ2†
3 applies on b̂1†1 transforms it to a member of a triplet, to b̂2†1 .

We can see that IÂm†
3 with (m = 2, 3, 4), if applied on the SU(3) singlet b̂1†4 with (τ ′ = −1

2
, τ 3 =

0, τ 8 = 0), transforms it to b̂
m(=2,3,4)†
4 , respectively, which are members of the SU(3) triplet. All these

Clifford even “basis vectors” have τ ′ equal to 2
3
, changing correspondingly τ ′ = −1

2
into τ ′ = 1

6
and

bringing the needed values of τ 3 and τ 8.

In Table 3 we find (6+4) Clifford even “basis vectors” IÂm†
f with τ ′ = 0. Six of them are Hermitian

conjugated to each other — the Hermitian conjugated partners are denoted by the same geometric figure
on the third column. Four of them are self-adjoint and correspondingly with (τ ′ = 0, τ 3 = 0, τ 8 = 0),
denoted in the third column of Table 3 by ⃝. The rest 6 Clifford even “basis vectors” belong to one
triplet with τ ′ = 2

3
and (τ 3, τ 8) equal to [(0,− 1√

3
), (−1

2
, 1
2
√
3
), (1

2
, 1
2
√
3
)] and one antitriplet with τ ′ = −2

3

and ((τ 3, τ 8) equal to [(−1
2
,− 1

2
√
3
), (1

2
,− 1

2
√
3
), (0, 1√

3
)].

Each triplet has Hermitian conjugated partners in anti-triplet and opposite. In Table 3 the Hermitian
conjugated partners of the triplet and antitriplet are denoted by the same signum: (IÂ1†

1 , IÂ4†
3 ) by ⋆⋆,

(IÂ1†
2 , IÂ3†

3 ) by •, and (IÂ2†
3 , IÂ1†

4 ) by ⊙⊙.
The octet, two triplets and four singlets are presented in Fig. 2.

Fig. 2 represents the 2
d
2
−1×2

d
2
−1 members IÂm

f of the Clifford even “basis vectors” for the case that

d = (5+1). The properties of IÂm
f are presented also in Table 3. Manifesting the structure of subgroups

SU(3) × U(1) of the group SO(5, 1) they are represented as eigenvectors of the superposition of the
Cartan subalgebra members (S03,S12,S56), that is with τ 3 = 1

2
(−S12−iS03), τ 8 = 1

2
√
3
(S12−iS03−2S56),

and τ ′ = −1
3
(S12 − iS03 + S56). There are four self adjoint Clifford even “basis vectors” with (τ 3 =

0, τ 8 = 0, τ ′ = 0), one sextet of three pairs Hermitian conjugated to each other, one triplet and one
antitriplet with the members of the triplet Hermitian conjugated to the corresponding members of the
antitriplet and opposite. These 16 members of the Clifford even “basis vectors” IÂm

f are the gauge

fields “partners” of the Clifford odd “basis vectors” b̂m†
f , presented in Fig. 1 for one of four families,

anyone. The reader can check that the algebraic application of IÂm
f , belonging to the triplet transforms

applying on the Clifford odd singlet, denoted in Fig. 1 by a square, this singlet to one of the members
of the triplet, denoted in Fig. 1 by the circle ⃝.
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τ(1,0,0)(-1,0,0)

(1/2,√3/2,0)(-1/2,√3/2,0)

(-1/2,-√3/2,0)
(1/2,-√3/2,0)

(0,1/√3,-2/3)

(-1/2,-1/(2√3),-2/3)

(1/2,-1/(2√3),-2/3)

(1/2,1/(2√3),2/3)
(-1/2,1/(2√3),2/3)

(0,-1/√3,2/3)
τ

τ

3

8

'

Figure 2: The Clifford even ”basis vectors” IÂm†
f in the case that d = (5 + 1) are presented concerning

the eigenvalues of the commuting operators of the subgroups SU(3) and U(1) of the group SO(5, 1),
Eq. (29): (τ 3, τ 8, τ ′). Their properties appear in Table 3. The abscissa axis carries the eigenvalues
of τ 3, the ordinate axis carries the eigenvalues of τ 8 and the third axis carries the eigenvalues of
τ ′. One notices four singlets with (τ 3 = 0, τ 8 = 0, τ ′ = 0), denoted by ⃝, representing four self
adjoint Clifford even ”basis vectors” IÂm†

f , with (f = 1,m = 4), (f = 2,m = 3), (f = 3,m = 1),
(f = 4,m = 2) , one sextet of three pairs, Hermitian conjugated to each other, with τ ′ = 0, denoted
by △ (IÂ2†

1 with (τ ′ = 0, τ 3 = −1
2
, τ 8 = − 3

2
√
3
) and IÂ4†

4 with (τ ′ = 0, τ 3 = 1
2
, τ 8 = 3

2
√
3
)), by ‡

(IÂ3†
1 with (τ ′ = 0, τ 3 = −1, τ 8 = 0) and IÂ4†

2 with τ ′ = 0, τ 3 = 1, τ 8 = 0)), and by ⊗ (IÂ2†
2 with

(τ ′ = 0, τ 3 = 1
2
, τ 8 = − 3

2
√
3
) and IÂ3†

4 with (τ ′ = 0, τ 3 = −1
2
, τ 8 = 3

2
√
3
)), and one triplet, denoted by ⋆⋆

(IÂ4†
3 with (τ ′ = 2

3
, τ 3 = 1

2
, τ 8 = 1

2
√
3
)), by • (IÂ3†

3 with (τ ′ = 2
3
, τ 3 = −1

2
, τ 8 = 1

2
√
3
)), and by ⊙⊙ (IÂ2†

3

with (τ ′ = 2
3
, τ 3 = 0, τ 8 = − 1√

3
)), as well as one antitriplet, Hermitian conjugated to triplet, denoted

by ⋆⋆ (IÂ1†
1 with (τ ′ = −2

3
, τ 3 = −1

2
, τ 8 = − 1

2
√
3
)), by • (IÂ1†

2 with (τ ′ = −2
3
, τ 3 = 1

2
, τ 8 = − 1

2
√
3
)), and

by ⊙⊙ (IÂ4†
1 with (τ ′ = −2

3
, τ 3 = 0, τ 8 = 1√

3
)).

21



Table 3: The Clifford even “basis vectors” IÂm†
f , each of them is the product of projectors and an

even number of nilpotents, and each is the eigenvector of all the Cartan subalgebra members, S03, S12,
S56, Eq. (8), are presented for d = (5 + 1)-dimensional case. Indexes m and f determine 2

d
2
−1 × 2

d
2
−1

different members IÂm†
f . In the third column the “basis vectors” IÂm†

f which are Hermitian conjugated
partners to each other (and can therefore annihilate each other) are pointed out with the same symbol.
For example, with ⋆⋆ are equipped the first member with m = 1 and f = 1 and the last member of
f = 3 with m = 4. The sign ⃝ denotes the Clifford even “basis vectors” which are self-adjoint (IÂm†

f )†

= IÂm′†
f ‘ . It is obvious that † has no meaning, since IÂm†

f are self adjoint or are Hermitian conjugated

partner to another IÂm′†
f ‘ . This table also represents the eigenvalues of the three commuting operators

τ 3, τ 8 and τ ′ of the subgroups SU(3)× U(1).

f m ∗ IÂm†
f

S03 S12 S56 τ3 τ8 τ ′

I 1 ⋆⋆
03
[+i]

12
(+)

56
(+) 0 1 1 − 1

2
− 1

2
√

3
− 2

3

2 △
03

(−i)
12
[−]

56
(+) −i 0 1 − 1

2
− 3

2
√

3
0

3 ‡
03

(−i)
12
(+)

56
[−] −i 1 0 −1 0 0

4 ⃝
03
[+i]

12
[−]

56
[−] 0 0 0 0 0 0

II 1 •
03

(+i)
12
[+]

56
(+) i 0 1 1

2
− 1

2
√

3
− 2

3

2 ⊗
03
[−i]

12
(−)

56
(+) 0 −1 1 1

2
− 3

2
√

3
0

3 ⃝
03
[−i]

12
[+]

56
[−] 0 0 0 0 0 0

4 ‡
03

(+i)
12
(−)

56
[−] i −1 0 1 0 0

III 1 ⃝
03
[+i]

12
[+]

56
[+] 0 0 0 0 0 0

2 ⊙⊙
03

(−i)
12
(−)

56
[+] −i −1 0 0 − 1√

3
2
3

3 •
03

(−i)
12
[+]

56
(−) −i 0 −1 − 1

2
1

2
√

3
2
3

4 ⋆⋆
03
[+i]

12
(−)

56
(−) 0 −1 −1 1

2
1

2
√

3
2
3

IV 1 ⊙⊙
03

(+i)
12
(+)

56
[+] i 1 0 0 1√

3
− 2

3

2 ⃝
03
[−i]

12
[−]

56
[+] 0 0 0 0 0 0

3 ⊗
03
[−i]

12
(+)

56
(−) 0 1 −1 − 1

2
3

2
√

3
0

4 △
03

(+i)
12
[−]

56
(−) i 0 −1 1

2
3

2
√

3
0
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Looking at the boson fields IÂm†
f from the point of view of subgroups SU(3) × U(1) of the group

SO(5+1) we recognize in the part of fields forming the octet the colour gauge fields of quarks and leptons
and antiquarks and antileptons. The Clifford even “basis vectors” IÂm†

f transform when applying on

the Clifford odd “basis vectors” b̂m
′†

f ‘ b̂m
′†

f ‘ to another (or the same) member, keeping the family member
unchanged.

We can check that although IIÂm†
f have different structure of an even number of nilpotents, and

the rest of the projectors then IÂm†
f , having correspondingly different properties with respect to the

Clifford odd “basis vectors”: IÂm†
f transform b̂m

′†
f ‘ among the family members, keeping the family

quantum numbers unchanged, IIÂm†
f transform b̂m†

f into the same member of another family, keeping
the family member’s quantum number unchanged.

Both, IÂm†
f and IIÂm†

f do have the equivalent figure and equivalent Sab and correspondingly also
(τ 3, τ 8, τ ′) content, indistinguishable from those of τ 3.

Let us anyhow demonstrate properties of “scattering” of b̂m†
f on IIÂm′†

f ‘ , paying attention on SU(3)
and U(1) substructure of SO(5, 1).

Let us look at the “scattering” of the kind of Eq. (28)

b̂2†2 (≡
03

(−i)
12

(−)
56

(+)) ∗A IIÂ3†
1 (≡

03

(+i)
12

(+)
56

[−]) → b̂2†4 (≡
03

[−i]
12

[−]
56

(+)) , (30)

b̂2†2 (≡
03

(−i)
12

(−)
56

(+)) has (τ 3 = 0, τ 8 = − 1√
3
, τ ′ = 1

6
) and (τ̃ 3 = 0, τ̃ 8 = − 1√

3
, τ̃ ′ = 1

6
). b̂2†4 (≡

03

[−i]
12

[−]
56

(+))

has (τ 3 = 0, τ 8 = − 1√
3
, τ ′ = 1

6
) and (τ̃ 3 = 0, τ̃ 8 = 0, τ̃ ′ = −1

2
). IIÂ1†

4 (≡
03

(+i)
12

(+)
56

[−]) has (τ 3 = 0, τ 8 =
1√
3
, τ ′ = −2

3
)

If b̂2†2 absorbs IIÂ3†
4 (≡

03

[+i]
12

(+)
56

(−)) with (τ 3 = −1
2
, τ 8 = 3

2
√
3
, τ ′ = 0) becomes b̂2†3 (≡

03

(−i)
12

[−]
56

[+]) with

quantum numbers (τ 3 = 0, τ 8 = − 1√
3
, τ ′ = 1

6
) and (τ̃ 3 = −1

2
, τ̃ 8 = 1

2
√
3
, τ̃ ′ = 1

6
).

IIÂ3†
4 transfers its quantum numbers to b̂2†2 , changing family and leaving the family member m

unchanged.

2.4 Second quantized fermion and boson fields with internal spaces de-
scribed by Clifford “basis vectors” in even dimensional spaces

We learned in the previous Subsects. (2.2, 2.3) that in even dimensional spaces (d = 2(2n+1) or d = 4n)
the Clifford odd and the Clifford even “basis vectors”, which are the superposition of the Clifford odd
and the Clifford even products of γa’s, respectively, offer the description of the internal spaces of fermion
and boson fields.

The Clifford odd algebra offers 2
d
2
−1 “basis vectors” b̂m†

f , appearing in 2
d
2
−1 families (with the family

quantum numbers determined by S̃ab = i
2
{γ̃a, γ̃b}−), which, together with their 2

d
2
−1× 2

d
2
−1 Hermitian

conjugated partners b̂mf fulfil the postulates for the second quantized fermion fields, Eq. (16) in this
paper, Eq.(26) in Ref. [14], explaining the second quantization postulate of Dirac.

The Clifford even algebra offers 2
d
2
−1× 2

d
2
−1 “basis vectors” of IÂm†

f , and the same number of IIÂm†
f ,

with the properties of the second quantized boson fields manifesting as the gauge fields of fermion fields
described by the Clifford odd “basis vectors” b̂m†

f . The commutation relations of iÂm†
f , i = (I, II), are

commented in the last paragraph of App. A on a simple case of d = (3+ 1). The subgroup structure of
SU(3) can be recognized on Fig. 2, leading to the commutation relations of the observed colour boson
gauge fields. However, further studies are needed to recognize what new this way of describing internal
spaces of fermion and boson fields with the Clifford algebra is offering.
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The Clifford odd and the Clifford even “basis vectors” are chosen to be products of nilpotents,
ab

(k) (with the odd number of nilpotents if describing fermions and the even number of nilpotents if

describing bosons), and projectors,
ab

[k]. Nilpotents and projectors are (chosen to be) eigenvectors of
the Cartan subalgebra members of the Lorentz algebra in the internal space of Sab for the Clifford odd
“basis vectors” and of Sab(= Sab + S̃ab) for the Clifford even “basis vectors”.

To define the creation operators, for fermions or bosons, besides the “basis vectors” defining the
internal space of fermions and bosons, the basis in ordinary space in momentum or coordinate repre-
sentation is needed. Here Ref. [14], Subsect. 3.3 and App. J is overviewed.

Let us introduce the momentum part of the single-particle states. (The extended version is presented
in Ref. [14] in Subsect. 3.3 and App. J.)

|p⃗ > = b̂†p⃗ | 0p > , < p⃗ | =< 0p | b̂p⃗ ,

< p⃗ | p⃗′ > = δ(p⃗− p⃗′) =< 0p |b̂p⃗ b̂†p⃗′ | 0p > ,
pointing out

< 0p |b̂p⃗′ b̂
†
p⃗ | 0p > = δ(p⃗′ − p⃗) , (31)

with the normalization < 0p | 0p >= 1. While the quantized operators ˆ⃗p and ˆ⃗x commute {p̂i , p̂j}− = 0
and {x̂k , x̂l}− = 0, it follows for {p̂i , x̂j}− = iηij. One correspondingly finds

< p⃗ | x⃗ > = < 0p⃗ | b̂p⃗ b̂†x⃗|0x⃗ >= (< 0x⃗ | b̂x⃗ b̂†p⃗ |0p⃗ >)†

< 0p⃗ |{b̂†p⃗ , b̂
†
p⃗ ′}−|0p⃗ > = 0 , < 0p⃗ |{b̂p⃗, b̂p⃗ ′}−|0p⃗ >= 0 , < 0p⃗ |{b̂p⃗, b̂†p⃗ ′}−|0p⃗ >= 0 ,

< 0x⃗ |{b̂†x⃗, b̂
†
x⃗ ′}−|0x⃗ > = 0 , < 0x⃗ |{b̂x⃗, b̂x⃗ ′}−|0x⃗ >= 0 , < 0x⃗ |{b̂x⃗, b̂†x⃗ ′}−|0x⃗ >= 0 ,

< 0p⃗ |{b̂p⃗, b̂†x⃗}−|0x⃗ > = eip⃗·x⃗
1√

(2π)d−1
, < 0x⃗ |{b̂x⃗, b̂†p⃗}−|0p⃗ >= e−ip⃗·x⃗ 1√

(2π)d−1
. (32)

. The internal space of either fermion or boson fields has the finite number of “basis vectors”, 2
d
2
−1×2

d
2
−1

for fermions (and the same number of their Hermitian conjugated partners), and twice 2
d
2
−1 × 2

d
2
−1 for

bosons, the momentum basis is continuously infinite.

The creation operators for either fermions or bosons must be tensor products, ∗T , of both contribu-
tions, the “basis vectors” describing the internal space of fermions or bosons and the basis in ordinary
momentum or coordinate space.

The creation operators for a free massless fermion of the energy p0 = |p⃗|, belonging to a family f
and to a superposition of family members m applying on the vacuum state |ψoc > ∗T |0p⃗ > can be
written as ([14], Subsect.3.3.2, and the references therein)

b̂s†
f (p⃗) =

∑
m

csmf (p⃗) b̂
†
p⃗ ∗T b̂m†

f , (33)

where the vacuum state for fermions |ψoc > ∗T |0p⃗ > includes both spaces, the internal part, Eq.(46),
and the momentum part, Eq. (31) (in a tensor product for a starting single particle state with zero
momentum, from which one obtains the other single fermion states of the same ”basis vector” by the
operator b̂†p⃗ which pushes the momentum by an amount p⃗ 10).

10The creation operators and their Hermitian conjugated annihilation operators in the coordinate representation can be

read in [14] and the references therein: b̂s†
f (x⃗, x0) =

∑
m b̂m†

f ∗T
∫ +∞
−∞

dd−1p

(
√
2π)d−1

csmf (p⃗) b̂†p⃗ e
−i(p0x0−εp⃗·x⃗) ([14], subsect.

3.3.2., Eqs. (55,57,64) and the references therein).
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The creation operators and annihilation operators for fermion fields fulfil the anti-commutation rela-
tions for the second quantized fermion fields 11 12.

< 0p⃗ |{b̂s′
f ‘(p⃗

′) , b̂s†
f (p⃗)}+ |ψoc > |0p⃗ > = δss

′
δff ′ δ(p⃗′ − p⃗) · |ψoc > ,

{b̂s′
f ‘(p⃗

′) , b̂s
f (p⃗)}+ |ψoc > |0p⃗ > = 0 · |ψoc > |0p⃗ > ,

{b̂s′†
f ′ (p⃗′) , b̂

s†
f (p⃗)}+ |ψoc > |0p⃗ > = 0 · |ψoc > |0p⃗ > ,

b̂s†
f (p⃗) |ψoc > |0p⃗ > = |ψs

f (p⃗) > ,

b̂s
f (p⃗) |ψoc > |0p⃗ > = 0 · |ψoc > |0p⃗ > ,

|p0| = |p⃗| . (34)

The creation operators b̂s†
f (p⃗) and their Hermitian conjugated partners annihilation operators b̂s

f (p⃗),
creating and annihilating the single fermion states, respectively, fulfil when applying the vacuum state,
|ψoc > ∗T |0p⃗ >, the anti-commutation relations for the second quantized fermions, postulated by Dirac
(Ref. [14], Subsect. 3.3.1, Sect. 5). 13

To write the creation operators for boson fields, we must take into account that boson gauge fields
have the space index α, describing the α component of the boson field in the ordinary space 14. We,
therefore, add the space index α as follows.

iÂm†
fα (p⃗) = b̂†p⃗ ∗T iCm

fα
iÂm†

f , i = (I, II) . (35)

We treat free massless bosons of momentum p⃗ and energy p0 = |p⃗| and of particular “basis vectors”
iÂm†

f ’s which are eigenvectors of all the Cartan subalgebra members 15, iCm
fα carry the space index α

of the boson field. Creation operators operate on the vacuum state |ψocev > ∗T |0p⃗ > with the internal

11Let us evaluate: < 0p⃗ |{b̂s′

f ‘(p⃗
′) , b̂s†

f (p⃗)}+ |ψoc > |0p⃗ >= δss
′
δff ′ δ(p⃗′ − p⃗) · |ψoc >= < 0p⃗ |b̂s′

f ‘ b̂
s†
f b̂p⃗′ b̂†p⃗ +

b̂†p⃗b̂p⃗′ b̂s†
f b̂s′

f ‘ |ψoc > |0p⃗ >= < 0p⃗ |b̂s′

f ‘ b̂
s†
f b̂p⃗′ b̂†p⃗ |ψoc > |0p⃗ >, since, according to Eq. (16), b̂s′

f ‘ |ψoc >= 0.

Let us demonstrate for free fields |p⃗ >= e−ip⃗·x⃗|0p >= b̂†p⃗ |0p > , < p⃗| =< 0p|eip⃗·x⃗ =< 0p| b̂p⃗
< p⃗′|p⃗ >=< 0p| b̂p⃗′ b̂

†
p⃗ |0p >= δ(p⃗′ − p⃗) , < −⃗p′|−⃗p >=< 0p| b̂†p⃗′ b̂p⃗ |0p >= δ(−⃗p′ − (−⃗p)) = δ(p⃗− p⃗′) , consequently

< 0p|{ b̂p⃗ , b̂†p⃗′}− |0p >= 0 .
12Two fermion states (formed from two creation operators applying on the vacuum state) with the orthogonal basis part

in ordinary space (with two different momentum in ordinary space in the case of free fields) ”do not meet”; correspondingly,
each can carry the same “basis vector”. They must differ in the internal basis if they have the identical ordinary part of
the basis. (Otherwise, the tensor product, ∗TH

, of such two fermion states is zero.) Illustration: Let us treat an atom
with many electrons. Each electron has a spin of either 1/2 or −1/2. Their orthogonal basis in ordinary space allows them
to have the internal spin ±1/2 (leading to total angular momentum either ±1/2 or larger due to the angular momentum
in ordinary space). As mentioned in the introduction section in a.iii. the Hilbert space of the second quantized fermion
states is represented by the tensor products, ∗TH

, of all possible members of creation operators from zero to infinity
applying on the simple vacuum state. For any of these members the scalar product is obtained by multiplying from the
left hand side by their Hermitian conjugated partner.

13The anti-commutation relations of Eq. (34) are valid also if we replace the vacuum state, |ψoc > |0p⃗ >, by the Hilbert
space of the Clifford fermions generated by the tensor products multiplication, ∗TH

, of any number of the Clifford odd

fermion states of all possible internal quantum numbers and all possible momenta (that is, of any number of b̂s †
f (p⃗) of

any (s, f, p⃗)), Ref. ([14], Sect. 5.).
14In the spin-charge-family theory the Higgs’s scalars origin in the boson gauge fields with the vector index (7, 8),

Ref. ([14], Sect. 7.4.1, and the references therein).
15In the general case, the energy eigenstates of bosons are in a superposition of iÂm†

f , for either i = I or i = II. One
example, which uses the superposition of the Cartan subalgebra eigenstates manifesting the SU(3)× U(1) subgroups of
the group SO(5, 1), is presented in Fig. 2.
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space part just a constant, |ψocev >= | 1 >, and for a starting single boson state with zero momentum
from which one obtains the other single boson states with the same ”basis vector” by the operators b̂†p⃗
which push the momentum by an amount p⃗, making also iCm

fα depending on p⃗.
For the creation operators for boson fields in a coordinate representation one finds using Eqs. (31,

32)

iÂm†
fα (x⃗, x0) =

∫ +∞

−∞

dd−1p

(
√
2π)d−1

iÂm†
fα (p⃗) e

−i(p0x0−εp⃗·x⃗)|p0=|p⃗| , i = (I, II) . (36)

To understand what new the Clifford algebra description of the internal space of fermion and boson
fields, Eqs. (35, 36, 33), bring to our understanding of the second quantized fermion and boson fields
and what new can we learn from this offer, we need to relate

∑
ab c

abωabα and
∑

mf
IÂm†

f
ICm

fα, rec-

ognizing that IÂm†
f

ICm
fα are eigenstates of the Cartan subalgebra members, while ωabα are not. And,

equivalently, we need to relate
∑

ab c̃
abω̃abα and

∑
mf

IIÂm†
f

IICm
fα.

The gravity fields, the vielbeins and the two kinds of spin connection fields, fa
α, ωabα, ω̃abα, respec-

tively, are in the spin-charge-family theory (unifying spins, charges and families of fermions and offering
not only the explanation for all the assumptions of the standard model but also for the increasing num-
ber of phenomena observed so far) the only boson fields in d = (13+1), observed in d = (3+1) besides
as gravity also as all the other boson fields with the Higgs’s scalars included [11].

We, therefore, need to relate:

{1
2

∑
ab

Sab ωabα}
∑
m

βmf b̂m†
f (p⃗) related to {

∑
m′f ′

IÂm′†
f ′ Cm′f ′

α }
∑
m

βmf b̂m†
f (p⃗) ,

∀f and∀ βmf ,

Scd
∑
ab

(cabmf ωabα) related to Scd (IÂm†
f Cmf

α ) ,

∀ (m, f),
∀ Cartan subalgebra memberScd . (37)

Let be repeated that IÂm†
f are chosen to be the eigenvectors of the Cartan subalgebra members, Eq. (8).

Correspondingly we can relate a particular IÂm†
f

ICm
fα with such a superposition of ωabα’s, which is the

eigenvector with the same values of the Cartan subalgebra members as there is a particular IÂm†
f Cmf

α .
We can do this in two ways:
i. Using the first relation in Eq. (37). On the left hand side of this relation Sab’s apply on b̂m†

f part

of b̂m†
f (p⃗). On the right hand side IÂm†

f apply as well on the same “basis vector” b̂m†
f .

ii. Using the second relation, in which Scd apply on the left hand side on ωabα’s,

Scd
∑
ab

cabmf ωabα =
∑
ab

cabmf i (ωcbαη
ad − ωdbαη

ac + ωacαη
bd − ωadαη

bc), (38)

on each ωabα separately; cabmf are constants to be determined from the second relation, where on the

right-hand side of this relation Scd(= Scd + S̃cd) apply on the “basis vector” IÂm†
f of the corresponding

gauge field 16.

We must treat equivalently also IIÂm†
f

IICm
fα and ω̃abα.

16The reader can find the relation of Eq. (37) demonstrated for the case d = 3 + 1 in Ref. [17] at the end of Sect. 3.
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Let us conclude this section by pointing out that either the Clifford odd “basis vectors”, b̂m†
f , or the

Clifford even “basis vectors”, iÂm†
f , i = (I, II), have each in any even d, 2

d
2
−1 × 2

d
2
−1 members, while

ωabα as well as ω̃abα have each for a particular α d
2
(d−1)members. It is needed to find out what new this

difference brings into the unifying theories of the Kaluza-Klein-like kind to what the spin-charge-family
belongs.

3 Conclusions

In the spin-charge-family theory [6, 8, 11, 9, 24, 12, 14] the Clifford odd algebra describes the internal
space of fermion fields. The Clifford odd “basis vectors” — the superposition of odd products of γa’s
— in a tensor product with the basis in ordinary space form the creation and annihilation operators,
in which the anti-commutativity of the “basis vectors” is transferred to the creation and annihilation
operators for fermions, explaining the second quantization postulates for fermion fields.

The Clifford odd “basis vectors” have all the properties of fermions: Half integer spins concerning the
Cartan subalgebra members of the Lorentz algebra in the internal space of fermions in even dimensional
spaces (d = 2(2n + 1) or d = 4n), as discussed in Subsects. (2.2, 2.4) (and in App A in a pedagogical
way). With respect to the subgroups of the SO(d− 1, 1) group the Clifford odd “basis vectors” appear
in the fundamental representations, as illustrated in Subsects. 2.3.

In this article, it is demonstrated that Clifford even algebra is offering the description of the internal
space of boson fields. The Clifford even “basis vectors” — the superposition of even products of γa’s —
in a tensor product with the basis in ordinary space form the creation and annihilation operators which
manifest the commuting properties of the second quantized boson fields, offering the explanation for
the second quantization postulates for boson fields [16, 17]. The Clifford even “basis vectors” have all
the properties of boson fields: Integer spins for the Cartan subalgebra members of the Lorentz algebra
in the internal space of bosons, as discussed in Subsects. 2.2.

With respect to the subgroups of the SO(d− 1, 1) group the Clifford even “basis vectors” manifest
the adjoint representations, as illustrated in Subsect. 2.3.

There are two kinds of anti-commuting algebras [6]: The Grassmann algebra, offering in d-dimensional
space 2 . 2d operators (2d θa’s and 2d ∂

∂θa
’s, Hermitian conjugated to each other, Eq. (3)), and the two Clifford

subalgebras, each with 2d operators named γa’s and γ̃a’s, respectively, [6, 10], Eqs. (2-6).

The operators in each of the two Clifford subalgebras appear in even-dimensional spaces in two groups of

2
d
2
−1× 2

d
2
−1 of the Clifford odd operators (the odd products of either γa’s in one subalgebra or of γ̃a’s in the

other subalgebra), which are Hermitian conjugated to each other: In each Clifford odd group of any of the two

subalgebras, there appear 2
d
2
−1 irreducible representation each with the 2

d
2
−1 members and the group of their

Hermitian conjugated partners.

There are as well the Clifford even operators (the even products of either γa’s in one subalgebra or of

γ̃a’s in another subalgebra) which again appear in two groups of 2
d
2
−1× 2

d
2
−1 members each. In the case of

the Clifford even objects, the members of each group of 2
d
2
−1× 2

d
2
−1 members have the Hermitian conjugated

partners within the same group, Subsect. 2.2, Table 1.

The Grassmann algebra operators are expressible with the operators of the two Clifford subalgebras and
opposite, Eq. (5). The two Clifford sub-algebras are independent of each other, Eq. (6), forming two independent
spaces.

Either the Grassmann algebra [12] or the two Clifford subalgebras can be used to describe the internal

space of anti-commuting objects, if the superposition of odd products of operators (θa’s or γa’s, or γ̃a’s) are

used to describe the internal space of these objects. The commuting objects must be a superposition of even

products of operators (θa’s or γa’s or γ̃a’s).

No integer spin anti-commuting objects have been observed so far, and to describe the internal space

27



of the so far observed fermions only one of the two Clifford odd subalgebras are needed.
The problem can be solved by reducing the two Clifford subalgebras to only one, the one (chosen

to be) determined by γa’s. The decision that γ̃a’s apply on γa as follows: {γ̃aB = (−)B i Bγa} |ψoc >,
Eq. (7), (with (−)B = −1, if B is a function of an odd products of γa’s, otherwise (−)B = 1) enables

that 2
d
2
−1 irreducible representations of Sab = i

2
{γa , γb}− (each with the 2

d
2
−1 members) obtain the

family quantum numbers determined by S̃ab = i
2
{γ̃a , γ̃b}−.

The decision to use in the spin-charge-family theory in d = 2(2n+1), n ≥ 3 (d ≥ (13+1) indeed), the
superposition of the odd products of the Clifford algebra elements γa’s to describe the internal space of
fermions which interact with gravity only (with the vielbeins, the gauge fields of momenta, and the two
kinds of the spin connection fields, the gauge fields of Sab and S̃ab, respectively), Eq. (1), offers not only
the explanation for all the assumed properties of fermions and bosons in the standard model, with the
appearance of the families of quarks and leptons and antiquarks and antileptons ([14] and the references
therein) and of the corresponding vector gauge fields and the Higgs’s scalars included [11], but also for
the appearance of the dark matter [37] in the universe, for the explanation of the matter/antimatter
asymmetry in the universe [8], and for several other observed phenomena, making several predictions [7,
35, 36, 38].

The recognition that the use of the superposition of the even products of the Clifford algebra elements
γa’s to describe the internal space of boson fields, what appears to manifest all the properties of the
observed boson fields, as demonstrated in this article, makes clear that the Clifford algebra offers not
only the explanation for the postulates of the second quantized anti-commuting fermion fields but also
for the postulates of the second quantized boson fields.

This recognition, however, offers the possibility to relate

{1
2

∑
ab

Sab ωabα}
∑
m

βmf b̂m†
f (p⃗) to {

∑
m′f ′

IÂm′†
f ′

ICm′
f ‘α}

∑
m

βmf b̂m†
f (p⃗) ,

∀f and∀ βmf ,

Scd
∑
ab

(cabmf ωabα) to Scd (IÂm†
f

ICm
fα) ,

∀ (m, f),
∀ Cartan subalgebra memberScd ,

and equivalently for IIÂm†
f

IICm
fα and ω̃abα, what offers the possibility to replace the covariant derivative

p0α

p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα

in Eq. (1) with

p0α = pα −
∑
mf

IÂm†
f

ICm
fα −

∑
mf

IIÂm†
f

IICm
fα ,

where the relations among IÂm†
f

ICm
fα and IIÂm†

f
IICm

fα with respect to ωabα and ω̃abα, not discussed
directly in this article, need additional study and explanation.

Although the properties of the Clifford odd and even “basis vectors” and correspondingly of the
creation and annihilation operators for fermion and boson fields are, hopefully, demonstrated in this
article, yet the proposed way of the second quantization of fields, the fermion and the boson ones needs
further study to find out what new can the description of the internal space of fermions and bosons
bring into the understanding of the second quantized fields.

This study showing up that the Clifford algebra can be used to describe the internal spaces of fermion
and boson fields equivalently, offering correspondingly the explanation for the second quantization
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postulates for fermion and boson fields is opening a new insight into the quantum field theory, since
studies of the interaction of fermion fields with boson fields and of boson fields with boson fields so far
looks very promising.

The study of properties of the second quantized boson fields, the internal space of which is described
by Clifford even algebra has just started and needs further consideration.

A “Basis vectors” in d = (3 + 1)

This section, suggested by the referee, is to illustrate on a simple case of d = (3 + 1) the properties
of “basis vectors” when describing internal spaces of fermions and bosons by the Clifford algebra: i.
The way of constructing the“basis vectors” for fermions which appear in families and for bosons which
have no families. ii. The manifestation of anti-commutativity of the second quantized fermion fields
and commutativity of the second quantized boson fields. iii. The creation and annihilation operators,
described by a tensor product, ∗T , of the “basis vectors” and their Hermitian conjugated partners with
the basis in ordinary space-time.

This section is a short overview of some sections presented in the article [20], equipped by concrete
examples of “basis vectors” for fermions and bosons in d = (3 + 1).

“Basis vectors”

Let us start by arranging the “basis vectors” as a superposition of products of (operators 17) γa, each
“basis vector” is the eigenvector of all the Cartan subalgebra members, Eq. (8). To achieve this, we
arrange “basis vectors” to be products of nilpotents and projectors, Eqs. (9, 10), so that every nilpotent
and every projector is the eigenvector of one of the Cartan subalgebra members.

Example 1.

Let us notice that, for example, two nilpotents anti-commute, while one nilpotent and one projector (or two

projectors) commute due to Eq. (6):
1
2(γ

0 − γ3)12(γ
1 − iγ2) = −1

2(γ
1 − iγ2)12(γ

0 − γ3), while 1
2(γ

0 − γ3)12(1 + iγ1γ2) = 1
2(1 + iγ1γ2)12(γ

0 − γ3).

In d = (3 + 1) there are 16 (2d=4) “eigenvectors” of the Cartan subalgebra members (S03, S12) and
(S03,S12) of the Lorentz algebras Sab and Sab , Eq. (8).

Half of them are the Clifford odd “basis vectors”, appearing in two irreducible representations, in
two “families” (2

4
2
−1, f = (1, 2)), each with two (2

4
2
−1, m = (1, 2)) members, b̂m†

f , Eq. (39).

There is a separate group of 2
4
2
−1×2

4
2
−1 (Clifford odd) Hermitian conjugated partners b̂mf = (b̂m†

f )†

appearing in a separate group which is not reachable by Sab, Eq. (40).

There are two separate groups of 2
4
2
−1 × 2

4
2
−1 Clifford even ”basis vectors”, iAm†

f , i = (I, II), the

2
4
2
−1 members of each are self-adjoint, the rest have their Hermitian conjugated partners within the

same group, Eqs. (42, 43).
All the members of each group are reachable by Sab or S̃ab from any starting ”basis vector” iA1†

1 .
Example 2.

b̂m=1†
f=1 =

03

(+i)
12

[+] (= 1
2(γ

0 − γ3)12(1 + iγ1γ2)) is a Clifford odd “basis vector”, its Hermitian conjugated partner,

Eq. (6), is b̂m=1
f=1 =

03

(−i)
12

[+] (= 1
2(γ

0 + γ3)12(1 + iγ1γ2), not reachable by either Sab or by S̃ab from any of two

members in any of two “families” of the group of b̂m†
f , presented in Eq. (39).

17We repeat that we treat γa as operators, not as matrices. We write “basis vectors” as the superposition of products
of γa. If we want to look for a matrix representation of any operator, say Sab, we arrange the “basis vectors” into a
series and write a matrix of transformations caused by the operator. However, we do not need to look for the matrix
representations of the operators since we can directly calculate the application of any operators on “basis vectors”.
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IAm=1†
f=1 (=

03

[+i]
12

[+]= 1
2(1 + γ0γ3)12(1 + iγ1γ2) is self-adjoint, IAm=2†

f=1 (=
03

(−i)
12

(−)= 1
2(γ

0 − γ3)(γ1 − iγ2). Its

Hermitian conjugated partner, belonging to the same group, is IAm=1†
f=2 and is reachable from IAm=1†

f=1 by the

application of S̃01, since γ̃0∗A
03

[+i]= i
03

(+i) and γ̃1∗A
12

[+]= i
12

(+).

Clifford odd “basis vectors”

Let us first present the Clifford odd anti-commuting “basis vectors”, appearing in two “families”
b̂m†
f , and their Hermitian conjugated partners (b̂m†

f )†. Each member of the two groups is a product of one

nilpotent and one projector. We choose the right-handed Clifford odd “basis vectors” 18. Clifford odd
“basis vectors” appear in two families, each family has two members 19. Let us notice that members of
each of two families have the same quantum numbers (S03 , S12). They distinguish in “family” quantum
numbers (S̃03 , S̃12).

f = 1 f = 2

S̃03 = i
2 , S̃

12 = −1
2 S̃03 = − i

2 , S̃
12 = 1

2 S03 S12

b̂1†1 =
03

(+i)
12

[+] b̂1†2 =
03

[+i]
12

(+) i
2

1
2

b̂2†1 =
03

[−i]
12

(−) b̂2†2 =
03

(−i)
12

[−] − i
2 −1

2 .

(39)

We find for their Hermitian conjugated partners

S03 = − i
2 , S

12 = 1
2 S03 = i

2 , S
12 = −1

2 S̃03 S̃12

b̂11 =
03

(−i)
12

[+] b̂12 =
03

[+i]
12

(−) − i
2 −1

2

b̂21 =
03

[−i]
12

(+) b̂22 =
03

(+i)
12

[−] i
2

1
2 .

(40)

The vacuum state |ψoc >, Eq. (46), on which the Clifford odd ”basis vectors” apply is equal to:

|ψoc >=
1√
2
(

03

[−i]
12

[+] +
03

[+i]
12

[+]).

Let us recognize that the Clifford odd ”basis vectors” anti-commute due to the odd number of
nilpotents, Example 1. And they are orthogonal according to Eqs. (47, 48, 49): b̂m†

f ∗A b̂m
′†

f ′ = 0.

Example 3.

According to the vacuum state presented above, one finds that, for example, b̂1†1 (=
03

(+i)
12

[+])|ψoc > is b̂1†1 back,

since
03

(+i)
12

[+] ∗A
03

[−i]
12

[+]=
03

(+i)
12

[+], according to Eq. (47), while
03

(−i)
12

[+] ∗A
03

[−i]
12

[+]= 0 (due to (γ0 + γ3)(1 −
γ0γ3) = 0).

Let us apply S01 and S̃01 on some of the “basis vectors” b̂m†
f , say b̂1†1 .

When applying S01 = i
2γ

0γ1 on 1
2(γ

0 − γ3)12(1 + iγ1γ2)(≡
03

(+i)
12

[+]) we get − i
2
1
2(1 − γ0γ3)12(γ

1 − iγ2)(≡

(− i
2

03

[−i]
12

(−)).

When applying S̃01 = i
2 γ̃

0γ̃1 on 1
2(γ

0 − γ3)12(1 + iγ1γ2)(≡
03

(+i)
12

[+]) we get, according to Eq. (7), or if using

Eq. (11), − i
2
1
2(1 + γ0γ3)12(γ

1 + iγ2)(≡ (− i
2

03

[+i]
12

(+)).

It then follows, after using Eqs. (11, 47, 48, 49) or just the starting relation, Eq. (6), and taking into

18We could choose the left-handed Clifford odd “basis vectors” by exchanging the role of ‘basis vectors” and their
Hermitian conjugated partners.

19In the case of d = (1 + 1), we would have one family with one member only, which must be nilpotent.
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account the above concrete evaluations, the relations of Eq. (16) for our particular case

b̂m†
f ∗A |ψoc > = |ψm

f > ,

b̂mf ∗A |ψoc > = 0 · |ψoc > ,

{b̂m†
f , b̂m

′†
f ′ }− ∗A |ψoc > = 0 · |ψoc > ,

{b̂mf , b̂m
′

f ′ }− ∗A |ψoc > = 0 · |ψoc > ,

{b̂mf , b̂
m′†
f ′ }− ∗A |ψoc > = δmm′

δff ‘|ψoc > . (41)

The last relation of Eq. (41) takes into account that each “basis vector” carries the “family” quantum
number, determined by S̃ab of the Cartan subalgebra members, Eq. (8), and the appropriate normal-
ization of “basis vectors”, Eqs. (39, 40).

Clifford even “basis vectors”

Besides 2
4
2
−1×2

4
2
−1 Clifford odd “basis vectors” and the same number of their Hermitian conjugated

partners, Eqs. (39, 40), the Clifford algebra objects offer two groups of 2
4
2
−1× 2

4
2
−1 Clifford even ”basis

vectors”, the members of the group IAm†
f and IIAm†

f , which have Hermitian conjugated partners within

the same group or are self-adjoint 20. We have the group IAm†
f , m = (1, 2), f = (1, 2), the members of

which are Hermitian conjugated to each other or are self-adjoint,

S03 S12 S03 S12

IA1†
1 =

03

[+i]
12

[+] 0 0 , IA1†
2 =

03

(+i)
12

(+) i 1

IA2†
1 =

03

(−i)
12

(−) −i −1 , IA2†
2 =

03

[−i]
12

[−] 0 0 ,

(42)

and the group IIAm†
f , m = (1, 2), f = (1, 2), the members of which are either Hermitian conjugated to

each other or are self adjoint

S03 S12 S03 S12

IIA1†
1 =

03

[+i]
12

[−] 0 0 , IIA1†
2 =

03

(+i)
12

(−) i −1

IIA2†
1 =

03

(−i)
12

(+) −i 1 , IIA2†
2 =

03

[−i]
12

[+] 0 0 .

(43)

The Clifford even “basis vectors” have no families. The two groups, IAm†
f and IIAm†

f (they are not

reachable from one another by Sab), are orthogonal (which can easily be checked, since
ab

(±k) ∗A
ab

(±k)= 0,

and
ab

[±k] ∗A
ab

[∓k]= 0).

IAm†
f ∗A IIAm′†

f ‘ = 0, for any (m,m′, f, f ‘) . (44)

Application of iAm†
f , i = (I, II) on b̂m†

f

Let us demonstrate the application of iAm†
f , i = (I, II), on the Clifford odd “basis vectors” b̂m†

f ,
Eqs. (20, 23), for our particular case d = (3 + 1) and compare the result with the result of application
Sab and S̃ab on b̂m†

f evaluated above in Example 3. We found, for example, that S01(= i
2
γ0γ1) ∗A b̂1†1 (=

1
2
(γ0 − γ3)1

2
(1 + iγ1γ2)(=

03

(+i)
12

[+]) = − i
2
1
2
(1− γ0γ3)1

2
(γ1 − iγ2)(= (− i

2

03

[−i]
12

(−i)) = b̂2†1 .

Applying IA2†
1 (=

03

(−i)
12

(−)) ∗A b̂1†1 (=
03

(+i)
12

[+]) = −
03

[−i]
12

(−), which is b̂2†1 , presented in Eq. (39). We
obtain in both cases the same result, up to the factor i

2
(in front of γ0γ1 in S01). In the second case

20Let be repeated that Sab = Sab + S̃ab [17].
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one sees that IA2†
1 (carrying S03 = −i,S12 = −1) transfers these quantum numbers to b̂1†1 (carrying

S03 = i
2
, S12 = 1

2
) what results in b̂2†1 (carrying S03 = −i

2
, S12 = −1

2
).

We can check what the application of the rest three IAm†
f , do when applying on b̂m†

f . The self-adjoint

member carrying S03 = 0,S12 = 0, either gives b̂m†
f back, or gives zero, according to Eq. (47). The

Clifford even “basis vectors”, carrying non zero S03 and S12 transfer their internal values to b̂m†
f or give

zero. In all cases IAm†
f transform a “family” member to another or the same “family” member of the

same “family”.

Example 4.:

IA1†
1 (=

03

[+i]
12

[+]) ∗A b̂1†1 (=
03

(+i)
12

[+]) = b̂1†1 (=
03

(+i)
12

[+]) , IA1†
1 (=

03

[+i]
12

[+]) ∗A b̂1†2 (=
03

[+i]
12

(+)) = b̂1†2 (=
03

[+i]
12

(+)) ,

IA2†
1 (=

03

(−i)
12

(−)) ∗A b̂1†2 (=
03

[+i]
12

(+)) = b̂2†2 (=
03

(−i)
12

[−]) , IA2†
1 (=

03

(−i)
12

(−)) ∗A b̂2†2 (=
03

(−i)
12

[−]) = 0.

One easily sees that the application of IIAm†
f on b̂m

′†
f ‘ give zero for all (m,m′, f, f ′) (due to

ab

[±k]

∗A
ab

[∓k]= 0,
ab

[±k] ∗A
ab

(∓k)= 0, and similar applications).

We realised in Example 3. that the application of S̃01 = i
2
γ̃0γ̃1 on b̂1†1 gives (− i

2

03

[+i]
12

(+i)) = − i
2
b̂1†2 .

Let us algebraically, ∗A, apply IIA2†
1 (=

03

(−i)
12

(+)), with quantum numbers (S03,S12) = (−i, 1), from
the right hand side the Clifford odd “basis vector” b̂1†1 . This application causes the transition of b̂1†1
(with quantum numbers (S̃03, S̃12) = ( i

2
,−1

2
) (see Eq. (10)) into b̂1†2 (with quantum numbers (S̃03, S̃12) =

(− i
2
, 1
2
)). IIA2†

1 obviously transfers its quantum numbers to Clifford odd “basis vectors”, keeping m

unchanged, and changing the “family” quantum number: b̂1†1 ∗A IIA2†
1 = b̂1†2 .

We can conclude: The internal space of the Clifford even “basis vectors” has properties of the
gauge fields of the Clifford odd “basis vectors”; IAm†

f transform “family” members of the Clifford odd

“basis vectors” among themselves, keeping the “family” quantum number unchanged, IIAm†
f transform

a particular “family” member into the same “family” member of another “family”.

Creation and annihilation operators

To define creation and annihilation operators for fermion and boson fields, we must include besides
the internal space, the ordinary space, presented in Eq. (31), which defines the momentum or coordinate
part of fermion and boson fields.

We define the creation operators for the single particle fermion states as a tensor product, ∗T , of
the Clifford odd “basis vectors” and the basis in ordinary space, Eq. (33):
b̂s†
f (p⃗) =

∑
m c

sm
f (p⃗) b̂

†
p⃗ ∗T b̂m†

f . The annihilation operators are their Hermitian conjugated partners.

We have seen in Example 1. that Clifford odd “basis vectors” (having odd products of nilpotents)
anti-commute. The commuting objects b̂†p⃗ (multiplying the “basis vectors”) do not change the Clifford

oddness of b̂s†
f (p⃗). The two Clifford odd objects, b̂s†

f (p⃗) and b̂s′†
f ‘ (p⃗

′), keep their anti-commutativity,
fulfilling the anti-commutation relations as presented in Eq. (34). Correspondingly we do not need to
postulate anti-commutation relations of Dirac. The Clifford odd “basis vectors” in a tensor product
with the basis in ordinary space explain the second quantized postulates for fermion fields.

The Clifford odd “basis vectors” contribute for each p⃗ a finite number of b̂s†
f (p⃗), the ordinary basis

offers infinite possibilities 21.

21An infinitesimally small difference between p⃗ and p⃗′ makes two creation operators b̂s†
f (p⃗) and b̂s†

f (p⃗′) with the same
“basis vector” describing the internal space of fermion fields still fulfilling the anti-commutation relations (as we learn
from atomic physics; two electrons can carry the same spin if they distinguish in the coordinate part of the state).
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Recognizing that internal spaces of fermion fields and their corresponding boson gauge fields are
describable in even dimensional spaces by the Clifford odd and even “basis vectors”, respectively, it
becomes evidently that when including the basis in ordinary space, we must take into account that
boson gauge fields have the space index α, which describes the α component of the boson fields in
ordinary space.

We multiply, therefore, as presented in Eq. (35), the Clifford even “basis vectors” with the coefficient
iCm

fα carrying the space index α so that the creation operators iÂm†
fα (p⃗) = b̂†p⃗ ∗T iCm

fα
iÂm†

f , i = (I, II)

carry the space index α 22. The self-adjoint “basis vectors”, like (iÂ1†
1α,

iÂ2†
2α, i = (I, II)), do not change

quantum numbers of the Clifford odd “basis vectors”, since they have internal quantum numbers equal
to zero.

In higher dimensional space, like in d = (5 + 1), IÂ1†
3 , presented in Table 3, could represent the

internal space of a photon field, which transfers to, for example, a fermion and anti-fermion pair with
the internal space described by (b̂1†1 , b̂3†1 ), presented in Table 2, the momentum in ordinary space.

The subgroup structure of SU(3) gauge fields can be recognized in Fig. 2.

Properties of the gauge fields iÂm†
fα need further studies.

In even dimensional spaces, the Clifford odd and even “basis vectors”, describing internal spaces
of fermion and boson fields, offer the explanation for the second quantized postulates for fermion and
boson fields [17].

B Discussion on the open questions of the standard model and

answers offered by the spin-charge-family theory

There are many suggestions in the literature for unifying charges in larger groups, adding additional groups
for describing families [1, 2, 3, 4, 5], or by going to higher dimensional spaces of the Kaluza-Kline like theo-
ries [26, 27, 28, 29, 30, 31, 33, 32], what also the spin-charge-family is.

Let me present some open questions of the standard model and briefly tell the answers offered by the spin-
charge family theory.

A. Where do fermions — quarks and leptons and antiquarks and antileptons — and their families originate?

The answer offered by the spin-charge-family theory: In d = (13+1) one irreducible representation of SO(13, 1)

analysed with respect to subgroups SO(7, 1) (containing subgroups of SO(3, 1)× SU(2)× SU(2)) and SO(6)

(containing subgroups of SU(3)× U(1)) offers the Clifford odd “basis vectors”, describing the internal spaces

of quarks and leptons and antiquarks and antileptons, Table 4, as assumed by the standard model. The Clifford

odd “basis vectors” appear in families.

B. Why are charges of quarks so different from charges of leptons, and why have left-handed family members

so different charges from the right-handed ones?

The answer offered by the spin-charge-family theory: The SO(7, 1) part of the “basis vectors” is identical for

quarks and leptons and identical for antiquarks and antileptons, Table 4, they distinguish only in the SU(3),

the colour or anticolour part, and in the fermion or antifermion U(1) quantum numbers. All families have the

same content of SO(7, 1), SU3 and U(1) with respect to Sab. They distinguish only in the family quantum

number, determined by S̃ab. The difference between left-handed and right-handed members appears due to the

difference in one quantum numbers of the two SU(2) groups, as seen in Table 4.

C. Why do family members — quarks and leptons — manifest such different masses if they all start as massless,

as (elegantly) assumed by the standard model?

22Requiring the local phase symmetry for the fermion part of the action, Eq. (1), would lead to the requirement of the
existence of the boson fields with the space index α.
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The answer offered by the spin-charge-family theory: Masses of quarks and leptons are in this theory determined

by the spin connection fields ωstσ, the gauge fields of Sab 23, and by ω̃stσ, the gauge fields of S̃ab, which are the

same for quarks and leptons 24. Triplets and singlets are scalar gauge fields with the space index σ = (7, 8).

They have, with respect to the space index, the quantum numbers of the Higgs scalars, Ref. ([14], Table 8,

Eq. (110,111)).

D. What is the origin of boson fields, of vector fields which are the gauge fields of fermions, and the Higgs’

scalars and the Yukawa couplings? Have all boson fields, with gravity and scalar fields included a common

origin?

The answer offered by the spin-charge-family theory: In a simple starting action, Eq. (1), boson fields origin in

gravity — in vielbeins and two kinds of spin connection fields, ωabα and ω̃abα, in d = (13+1) — and manifest in

d = (3+1) as vector gauge fields, α = (0, 1, 2, 3), or scalar gauge fields, α ≥ 5 [11], ([14], Sect. 6 and references

therein). Boson gauge fields are massless as there are fermion fields. The breaks of the starting symmetry

makes some gauge fields massive. This article describes the internal space of boson fields by the Clifford even

basis vectors, manifesting as the boson gauge fields of the corresponding fermion fields described by the Clifford

odd “basis vectors”. The description of the boson fields with the Clifford even “basis vectors” confirms the

existence of two kinds of spin connection fields as we see in Sects. 2.2 and2.3, but also open a door to a new

understanding of gravity. According to the starting action, Eq. (1), all gauge fields start in d ≥ (13 + 1) as

gravity.

E. How are scalar fields connected with the origin of families? How many scalar fields determine properties of

the so far (and others possibly be) observed fermions and of weak bosons?

The answer offered by the spin-charge-family theory: The interaction between quarks and leptons and the

scalar gauge fields, which at the electroweak brake obtain constant values, causes that quarks and leptons and

the weak bosons become massive. There are three singlets, they distinguish among quarks and leptons, and

two triplets, they do not distinguish among quarks and leptons, which give masses to the lower four families 25.

F. Where does the dark matter originate?

The answer offered by the spin-charge-family theory: The theory predicts two groups of four families at low

energy. The stable of the upper four groups are candidates to form the dark matter [37].

G. Where does the “ordinary” matter-antimatter asymmetry originate?

The answer offered by the spin-charge-family theory: The theory predicts scalars triplets and antitriplets with

the space index α = (9, 10, 11, 12, 13, 14) [8].

H. How can we understand the second quantized fermion and boson fields?

The answer offered by the spin-charge-family theory: The main contribution of this article, Sect. 2, is the

description of the internal spaces of fermion and boson fields with the superposition of odd (for fermions) and

even (for bosons) products of γa. The corresponding creation and annihilation operators, which are tensor, ∗T ,
products of (finite number) “basis vectors” and (infinite) basis in ordinary space inherit anti-commutativity

or commutativity from the corresponding “basis vectors”, explaining the postulates for the second quantized

fermion and boson fields.

I. What is the dimension of space? (3 + 1)?, ((d− 1) + 1)?, ∞?

The answer offered by the spin-charge-family theory: We observe (3 + 1)-dimensional space. In order that one

irreducible representation (one family) of the Clifford odd “basis vectors”, analysed with respect to subgroups

SO(3, 1)× SO(4) ×SU(3) ×U(1) of the group SO(13, 1) includes all quarks and leptons and antiquarks and

antileptons, the space must have d ≥ (13 + 1). (Since the only “elegantly” acceptable numbers are 0 and ∞,

23The three U(1) singlets, the gauge fields of the “fermion” quantum number τ4, of the hypercharge Y , and of the
electromagnetic charge Q, determine the difference in masses of quarks and leptons, presented in Table 4, Ref. ([14], Sect,
6.2.2, Eq. (108))

24The two times two S̃U(2) triplets are the same for quarks and leptons, forming two groups of four families. Ref. ([14],
Sect, 6.2.2, Eq. (108).

25There are the same three singlets and two additional triplets, which determine the masses of the upper four families-
explaining the existence of the dark matter.
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the space-time could be ∞.)

The SO(10) theory [2], for example, unifies the charges of fermions and bosons separately. Analysing SO(10)

with respect to the corresponding subgroups, the charges of fermions appear in fundamental representations

and bosons in adjoint representations 26.

There are additional open questions answers of which the spin-charge-family the theory offers.

The spin-charge-family theory has to answer the question common to all the Kaluza-Klein-like
theories: How and why the space we observe has d = (3 + 1) dimensions? The proposed description of
the internal spaces of fermion and boson fields might help.

C Some useful relations in Grassmann and Clifford algebras,

needed also in App. D

This appendix contains the helpful relations needed for the reader of this paper. For more detailed
explanations and for proofs, the reader is kindly asked to read [14] and the references therein.

For fermions, the operator of handedness Γd is determined as follows:

Γ(d) =
∏
a

(
√
ηaaγa) ·

{
(i)

d
2 , for d even ,

(i)
d−1
2 , for d odd ,

(45)

The vacuum state for the Clifford odd ”basis vectors”, |ψoc >, is defined as

|ψoc >=
2
d
2−1∑
f=1

b̂mf ∗A b̂
m†
f | 1 > . (46)

Taking into account that the Clifford objects γa and γ̃a fulfil relations of Eq. 6, one obtains beside
the relations presented in Eq. (11) the following once where i = (I, II) denotes the two groups of
Clifford even “basis vectors”, while m and f determine membership of “basis vectors” in any of the two
groups I or II.

ab

(k)
ab

(−k) = ηaa
ab

[k] ,
ab

(−k)
ab

(k)= ηaa
ab

[−k] ,
ab

(k)
ab

[k]= 0 ,
ab

(k)
ab

[−k]=
ab

(k) ,
ab

(−k)
ab

[k] =
ab

(−k) ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

[k]
ab

(−k)= 0 ,
ab

[k]
ab

[−k]= 0 ,

ab
˜(k)

ab

(k) = 0 ,
ab
˜(k)

ab

(−k)= −iηaa
ab

[−k] ,
ab

(̃−k)
ab

(k)= −iηaa
ab

[k] ,
ab
˜(k)

ab

[k]= i
ab

(k) ,

ab
˜(k)

ab

[−k] = 0 ,

ab

(̃−k)
ab

[k]= 0 ,

ab

(̃−k)
ab

[−k]= i
ab

(−k) ,
ab
˜[k]

ab

(k)=
ab

(k) ,

ab
˜[k]

ab

(−k) = 0 ,

ab

[̃k]
ab

[k]= 0 ,

ab

[̃−k]
ab

[k]=
ab

[k] ,
ab
˜[k]

ab

[−k]=
ab

[−k] , (47)

The algebraic multiplication among
ab

˜(k) and
ab

˜[k] goes as in the case of
ab

(k) and
ab

[k]

ab
˜(k)

ab
˜[k] = 0 ,

ab
˜[k]

ab
˜(k)=

ab
˜(k) ,

ab
˜(k)

ab
˜[−k]=

ab
˜(k) ,

ab
˜[k]

ab
˜(−k)= 0 ,

ab

(̃−k)
ab
˜(k) = ηaa

ab

[−k] ,
ab

(̃−k)
ab

[̃−k]= 0 , (48)

26The space-time is in unifying theories (3+1), consequently they have to relate handedness and charges “by hand” [24],
postulate the existence of antiparticles, and the existence of scalar fields, as does the standard model.
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One can further find that

Sac
ab

(k)
cd

(k) = − i

2
ηaaηcc

ab

[−k]
cd

[−k] , Sac
ab

[k]
cd

[k]=
i

2

ab

(−k)
cd

(−k) ,

Sac
ab

(k)
cd

[k] = − i

2
ηaa

ab

[−k]
cd

(−k) , Sac
ab

[k]
cd

(k)=
i

2
ηcc

ab

(−k)
cd

[−k] . (49)

D One family representation of Clifford odd “basis vectors”

in d = (13 + 1)

This appendix, is following App. D of Ref. [20], with a short comment on the corresponding gauge vector
and scalar fields and fermion and boson representations in d = (14 + 1)-dimensional space included.

In even dimensional space d = (13+ 1) ([17], App. A), one irreducible representation of the Clifford
odd “basis vectors”, analysed from the point of view of the subgroups SO(3, 1) × SO(4) (included in
SO(7, 1)) and SO(7, 1)×SO(6) (included in SO(13, 1), while SO(6) breaks into SU(3)×U(1)), contains
the Clifford odd “basis vectors” describing internal spaces of quarks and leptons and antiquarks, and
antileptons with the quantum numbers assumed by the standard model before the electroweak break.
Since SO(4) contains two SU(2) groups, Y = τ 23 + τ 4, one irreducible representation includes the
right-handed neutrinos and the left-handed antineutrinos, which are not in the standard model scheme.

The Clifford even “basis vectors”, analysed to the same subgroups, offer the description of the
internal spaces of the corresponding vector and scalar fields, appearing in the standard model before the
electroweak break [16, 17]; as explained in Subsect. 2.2.1.

For an overview of the properties of the vector and scalar gauge fields in the spin-charge-family theory,
the reader is invited to see Refs. ([14, 11] and the references therein). The vector gauge fields, expressed
as the superposition of spin connections and vielbeins, carrying the space indexm = (0, 1, 2, 3), manifest
properties of the observed boson fields. The scalar gauge fields, causing the electroweak break, carry
the space index s = (7, 8) and determine the symmetry of mass matrices of quarks and leptons.

In this Table 4, one can check the quantum numbers of the Clifford odd “basis vectors” representing
quarks and leptons and antiquarks and antileptons if taking into account that all the nilpotents and
projectors are eigenvectors of one of the Cartan subalgebra members, (S03, S12, S56, . . . , S13 14), with

the eigenvalues ± i
2
for

ab

(±i) and
ab

[±i], and with the eigenvalues ±1
2
for

ab

(±1) and
ab

[±1].

Taking into account that the third component of the weak charge, τ 13 = 1
2
(S56 − S78), for the

second SU(2) charge, τ 23 = 1
2
(S56 + S78), for the colour charge [τ 33 = 1

2
(S9 10 − S11 12) and τ 38 =

1
2
√
3
(S9 10 + S11 12 − 2S13 14)], for the “fermion charge” τ 4 = −1

3
(S9 10 + S11 12 + S13 14), for the hyper

charge Y = τ 23+ τ 4, and electromagnetic charge Q = Y + τ 13, one reproduces all the quantum numbers
of quarks, leptons, and antiquarks, and antileptons. One notices that the SO(7, 1) part is the same for
quarks and leptons and the same for antiquarks and antileptons. Quarks distinguish from leptons only
in the colour and “fermion” quantum numbers and antiquarks distinguish from antileptons only in the
anti-colour and “anti-fermion” quantum numbers.

In odd dimensional space, d = (14 + 1), the eigenstates of handedness are the superposition of one
irreducible representation of SO(13, 1), presented in Table 4, and the one obtained if on each “basis
vector” appearing in SO(13, 1) the operator S0 (14+1) applies, Subsect. 2.2.2, Ref. [20].

Let me point out that in addition to the electroweak break of the standard model the break at
≥ 1016 GeV is needed ([14], and references therein). The condensate of the two right-handed neutrinos
causes this break (Ref. [14], Table 6); it interacts with all the scalar and vector gauge fields, except
the weak, U(1), SU(3) and the gravitational field in d = (3 + 1), leaving these gauge fields massless up
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to the electroweak break, when the scalar fields, leaving massless only the electromagnetic, colour and
gravitational fields, cause masses of fermions and weak bosons.

The theory predicts two groups of four families: To the lower group of four families, the three so far
observed contribute. The theory predicts the symmetry of both groups to be SU(2) × SU(2) × U(1),
Ref. ([14], Sect. 7.3), which enable to calculate mixing matrices of quarks and leptons for the accurately
enough measured 3× 3 sub-matrix of the 4× 4 unitary matrix. No sterile neutrinos are needed, and no
symmetry of the mass matrices must be guessed [38].

In the literature, one finds a lot of papers trying to reproduce mass matrices and measured mixing
matrices for quarks and leptons [43, 44, 45, 46, 47, 49].

The stable of the upper four families predicted by the spin-charge-family theory is a candidate for
the dark matter, as discussed in Refs. [37, 14]. In the literature, there are several works suggesting
candidates for the dark matter and also for matter/antimatter asymmetry [51, 50].
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i |aψi > Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q
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i |aψi > Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, Γ(7,1) = (−1) 1 , Γ(6) = (1) − 1
of (anti)quarks and (anti)leptons
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03
[−i]

12
(−) |

56
[+]

78
[−] ||

9 10
[−]

11 12
[−]

13 14
[−] 1 − 1

2
1
2

0 0 0 1
2

1
2

1

Table 4: The left-handed (Γ(13,1) = −1, Eq. (45)) irreducible representation of one family of spinors — the

product of the odd number of nilpotents and of projectors, which are eigenvectors of the Cartan subalgebra of

the SO(13, 1) group [8, 10], manifesting the subgroup SO(7, 1) of the colour charged quarks and antiquarks and

the colourless leptons and antileptons — is presented. It contains the left-handed (Γ(3,1) = −1) weak (SU(2)I)

charged (τ13 = ±1
2 , and SU(2)II chargeless (τ

23 = 0 quarks and leptons, and the right-handed (Γ(3,1) = 1) weak

(SU(2)I) chargeless and SU(2)II charged (τ23 = ±1
2) quarks and leptons, both with the spin S12 up and down

(±1
2 , respectively). Quarks distinguish from leptons only in the SU(3)×U(1) part: Quarks are triplets of three

colours (ci = (τ33, τ38) = [(12 ,
1

2
√
3
), (−1

2 ,
1

2
√
3
), (0,− 1√

3
), carrying the ”fermion charge” (τ4 = 1

6). The colourless

leptons carry the ”fermion charge” (τ4 = −1
2). The same multiplet contains also the left handed weak (SU(2)I)

chargeless and SU(2)II charged antiquarks and antileptons and the right handed weak (SU(2)I) charged and

SU(2)II chargeless antiquarks and antileptons. Antiquarks distinguish from antileptons again only in the

SU(3)× U(1) part: Antiquarks are anti-triplets carrying the ”fermion charge” (τ4 = −1
6). The anti-colourless

antileptons carry the ”fermion charge” (τ4 = 1
2). Y = (τ23 + τ4) is the hyper charge, the electromagnetic

charge is Q = (τ13 + Y ).
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[7] A. Borštnik Bračič, N. S. Mankoč Borštnik, ”On the origin of families of fermions and their mass
matrices”, hep-ph/0512062, Phys. Rev. D 74 073013-28 (2006).
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[19] N.S. Mankoč Borštnik, H.B.F. Nielsen, “Understanding the second quantization of fermions in
Clifford and in Grassmann space: New way of second quantization of fermions—Part I and Part II.
(2020), [arXiv:2007.03516], [arXiv:1802.05554v4, arXiv:1902.10628].
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