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More than 50 years ago the electroweak (and colour) standard
model offered an elegant new step in understanding the
origin of fermions and bosons by postulating:

A.

▶ The existence of massless family members with the
charges in the fundamental representation of the groups -
o the coloured triplet quarks and colourless leptons,
o the left handed members as the weak charged doublets,
o the right handed weak chargeless members,
o the left handed quarks distinguishing in the hyper
charge from the left handed leptons,
o each right handed member having a different hyper
charge.

▶ The existence of massless families to each of a family
member.



▶

α hand- weak hyper colour elm
edness charge charge charge charge

name −4iS03S12 τ13 Y Q

uiL −1 1
2

1
6

colour triplet 2
3

diL −1 − 1
2

1
6

colour triplet − 1
3

ν iL −1 1
2

− 1
2

colourless 0

eiL −1 − 1
2

− 1
2

colourless −1

uiR 1 weakless 2
3

colour triplet 2
3

diR 1 weakless − 1
3

colour triplet − 1
3

ν iR 1 weakless 0 colourless 0

eiR 1 weakless −1 colourless −1

Members of each of the i = 1, 2, 3 families, i = 1, 2, 3 massless before the electroweak break. Each family

contains the left handed weak charged quarks and the right handed weak chargeless quarks, belonging to the

colour triplet (1/2, 1/(2
√
3)), (−1/2, 1/(2

√
3)), (0,−1/(

√
3)).

And the anti-fermions to each family and family member.



B.

▶ The existence of massless vector gauge fields to the
observed charges of the family members,
carrying charges in the adjoint representation of the
charge groups.

Masslessness needed for gauge invariance.



Gauge fields before the electroweak break

▶ Three massless vector fields, the gauge fields of the
three charges.

name hand- weak hyper colour elm
edness charge charge charge charge

hyper photon 0 0 0 colourless 0

weak bosons 0 triplet 0 colourless triplet

gluons 0 0 0 colour octet 0

They all are vectors in d = (3 + 1), in the adjoint
representations with respect to the weak, colour and
hyper charges.



C.

▶ The existence of a massive scalar field - the higgs,

o carrying the weak charge ±1
2 and the hyper charge ∓1

2 .

o gaining at some step the imaginary mass and consequently
the constant value , breaking the weak and the hyper charge
and correspondingly breaking the mass protection.

▶ The existence of the Yukawa couplings, taking care of

o the properties of fermions and

o the masses of the heavy bosons.



▶ The Higgs’s field, the scalar in d = (3 + 1), a doublet
with respect to the weak charge.

▶

name hand- weak hyper colour elm
edness charge charge charge charge

0· Higgsu 0 1
2

1
2 colourless 1

< Higgsd > 0 − 1
2

1
2 colourless 0

▶

name hand- weak hyper colour elm
edness charge charge charge charge

< Higgsu > 0 1
2 − 1

2 colourless 0

0· Higgsd 0 − 1
2 − 1

2 colourless −1



D.

▶ There is the gravitational field in d=(3+1).



▶ The standard model assumptions have been confirmed
without offering surprises.

▶ The last unobserved field as a field, the Higgs’s scalar,
detected in June 2012, was confirmed in March 2013.

▶ The waves of the gravitational field were detected in
February 2016 and again 2017.



The assumptions of the standard model remain unexplained.

▶ There are several cosmological observations which do
not look to be explainable within the standard model,

▶ the quantization of fermion and boson fields are
postulated,

▶ the quantization of the gravitational field is not yet
postulated,

▶ the used groups are postulated,

▶ · · ·



▶ It is obviously the time to make the step beyond the
standard model.



▶ The Spin-Charge-Family theory offers the explanation for
i. all the assumptions of the standard model,
ii. for many observed phenomena:
ii.a. the dark matter,
ii.b. the matter-antimatter asymmetry,
ii.c. others observed phenomena,
iii. explaining the Dirac’s postulates for the second

quantized fermion and second quantized boson
fields,

iv. offering explanation for the appearance of the
graviton,
v. explaining the offer of the Fadeev-Popov ghosts,
vi. making several predictions.



▶ Is the Spin-Charge-Family theory the right next step
beyond both standard models?

▶ Work done so far on the spin-charge-family theory is
promising.



Trying to understand what the elementary constituents of
our universe are and what are the laws of nature; physicists

suggest theories and look for predictions which need
confirmation of experiments.

What seems to be trustworthy is that the elementary
constituents are two kinds of fields: Anti-commuting fermion
and commuting boson fields, both assumed to be second

quantized fields.



We try to understand:

▶ Are the elementary constituent of only one kind?
Are the observed interactions — gravitational,
electromagnetic, weak and colour — of the common
origin?

▶ Can the postulates for the second quantized fermions
and for the second quantized bosons be understood in
equivalent way?

I found that it is the Clifford algebra offering the equivalent
procedure for both kinds of the second quantized fields.

The Clifford odd algebra offers the description of the internal
space of fermion second quantized fields .

The Clifford even algebra offers the description of the
internal space of boson second quantized fields .



I found in 1990 that it is the Clifford algebra — the algebra
of the superposition of products of γa’s — offering the

equivalent procedure for both kinds of the second quantized
fields.

The Clifford odd algebra — the superposition of odd
products of γa’s — offers the description of the internal

space of fermion second quantized fields .
The Clifford even algebra — the superposition of even
products of γa’s — offers the description of the internal

space of boson second quantized fields .



▶ The Clifford odd algebra, arranged in the Clifford odd
“basis vectors”, which are eigenvectors of the (chosen)
Cartan subalgebra members of Sab = i

2γ
aγb, a ̸= b,

describe the internal space of fermions.

o Appearing in 2
d
2
−1 irreducible representations —

families — each irreducible representation with 2
d
2
−1

members (which include particles and antiparticles) the
“basis vectors” describe the internal space of fermions.
o Their Hermitian conjugated partners, with again

2
d
2
−1 × 2

d
2
−1 members, appear in a separate group.

▶ The Clifford even algebra, arranged in the Clifford even
“basis vectors”, which are eigenvectors of the (chosen)
Cartan subalgebra members of Sab = i

2γ
aγb, a ̸= b,

describe the internal space of bosons.

o Appearing in two groups, with 2
d
2
−1 × 2

d
2
−1 members

each, having their Hermitian conjugated partners within
the same group, the “basis vectors” describe the
internal space of bosons.



▶ Clifford odd “basis vector demonstrate families of family
members,

o which manifest quarks and leptons and antiquarks and
anti-leptons as observed so far in d=(3 + 1),

o the quarks distinguishing from leptons (and the
antiquarks distinguishing from antiptons) only in the
part determined by the eigenvalues of S9 10, S11 12,S13 14 )
predicting the fourth family to the observed three,

o predicting the additional group of four families, the
lowest of which determine properties of the dark matter.

o explaining also why do family members – quarks and
leptons – manifest so different properties.



▶ Clifford even “basis vector demonstrate all the vector
(with the space index α = (0, 1, 2, 3)) and scalar (with
the space index α = (5, 6, ..., d)) gauge fields:

o The vector gauge fields – gluons, photons, weak
bosons, (two kinds of weak bosons), gravitons .

o The scalar gauge fields (the Higgs’s scalar) and the
Yukawa couplings (The Yukawa couplings certainly speak
for the existence of several scalar fields with the
properties of Higgs’s scalar, which do appear in this
theory, explaining the quantum numbers of scalars.)

o Predicting the additional scalar gauge fields, which
explain matter/antimatter asymmetry in our universe.



Many a question remains unanswered like:

▶ Is the space-time (3 + 1)? If yes why (3+1)?

▶ If not (3 + 1) may it be that the space-time is infinite?

▶ How has the space-time of our universe started?

▶ What caused the start of our universe?

▶ What caused the inflation of our universe



o The Spin-Charge-Family theory, assuming that the
elementary fermion fields are quarks, leptons, antiquarks, and
antileptons, the internal space of which is described by the

Clifford odd “basis vectors”,

o and the elementary boson fields are SO(3, 1) graviton
fields, SU(2)× SU(2) weak boson fields, SU(3) gluon fields
and (photon) U(1) fields, the internal space of which is

described by the Clifford even “basis vectors”,

o while recognizing that SO(3, 1)× SU(2)× SU(2)×
SU(3)× U(1) are subgroups of the group SO(13, 1),

o assuming as well that the dynamics in ordinary space are
non-zero only in d = (3 + 1) space (that is, the momentum is

non-zero only if space concerns xµ = (x0, x1, x2, x3)), the
vector gauge fields (photons, weak bosons, gluons, gravitons)
carry the (additional) space index α= µ = (0, 1, 2, 3), while

scalars have the space index α ≥ 5,

o do offer the explanation for all the assumptions of the
standard model.



o The more effort is put into this theory,
the more answers to the open questions in elementary
particle physics and cosmology is the theory offering.



o Let us make a short introduction into the
Spin-Charge-Family theory.

o I shall report on how does the odd Clifford algebra explain
the second quantization postulates of Dirac.

Rev. article in JPPNP –2021 Progress in Particle and
Nuclear Physics http://doi.org/10.1016.j.ppnp.2021.103890

, Symmetry 2023,15,818-12-V2 94818,
https:doi.org/10.3390/sym15040818, [arXiv:2301.04466] .

o I shall report on how does the even Clifford algebra explain
the second quantization of boson fields. Nucl. Phys. B,
NUPHB 994 (2023) 116326 , [arXiv: 2210.06256, V2].

o I shall make a very short overview of achievements so far
of the Spin-Charge-Family theory.



▶ There are two kinds of the Clifford algebra objects
in any d . I recognized that in Grassmann space.

J. of Math. Phys. 34 (1993) 3731

θa’s and pθa ’s, p
θ
a = ∂

∂θa
with the property
(θa)† = ηaa ∂

∂θa
.

i. The Dirac γa (recognized 90 years ago in d = (3 + 1)).
ii. The second one: γ̃a,

γa = (θa − i pθa) , γ̃a = i (θa + i pθa) ,

References can be found in
Progress in Particle and Nuclear Physics,
http://doi.org/10.1016.j.ppnp.2021.103890 .



▶ The two kinds of the Clifford algebra objects
anticommute as follows

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+,
{γa, γ̃b}+ = 0,

▶ the postulate

(γ̃aB = i(−)nBBγa ) |ψ0 >,

(B = a0 + aaγ
a + aabγ

aγb + · · ·+ aa1···adγ
a1 . . . γad )|ψo >,

with (−)nB = +1,−1, if B has a Clifford even or odd
character, respectively, |ψo > is a vacuum state on which the
operators γa apply, reduces the Clifford space for fermions
for the factor of two, from 2× 2d to 2d , while the operators
γ̃aγ̃b = −2i S̃ab define the family quantum numbers.



▶ It is convenient to write all the ”basis vectors” describing
the internal space of either fermion fields or boson fields
as products of nilpotents and projectors, which are
eigenvectors of the chosen Cartan subalgebra

S03,S12,S56, · · · ,Sd−1 d ,

S̃03, S̃12, S̃56, · · · , S̃d−1 d ,

Sab = Sab + S̃ab .

nilpotents

Sab 1

2
(γa +

ηaa

ik
γb) =

k

2

1

2
(γa +

ηaa

ik
γb) ,

ab

(k) :=
1

2
(γa +

ηaa

ik
γb) ,

projectors

Sab 1

2
(1 +

i

k
γaγb) =

k

2

1

2
(1 +

i

k
γaγb) ,

ab

[k] :=
1

2
(1+

i

k
γaγb) ,

(
ab

(k))2 = 0 , (
ab

[k])2 =
ab

[k] ,

ab

(k)

†

= ηaa
ab

(−k) ,
ab

[k]

†

=
ab

[k] .



Sab
ab

(k) =
k

2

ab

(k), Sab
ab

[k] =
k

2

ab

[k],

S̃ab
ab

(k) =
k

2

ab

(k), S̃ab
ab

[k] = −k

2

ab

[k] .

γa
ab

(k) = ηaa
ab

[−k] , γb
ab

(k) = −ik
ab

[−k] , γa
ab

[k] =
ab

(−k) , γb
ab

[k] = −ikηaa
ab

(−k) ,

γ̃a
ab

(k) = −iηaa
ab

[k] , γ̃b
ab

(k) = −k
ab

[k] , γ̃a
ab

[k] = i
ab

(k) , γ̃b
ab

[k] = −kηaa
ab

(k) ,
ab

(k)
ab

(−k) = ηaa
ab

[k] ,
ab

[k]
ab

(k) =
ab

(k) ,
ab

(k)
ab

[−k] =
ab

(k) , ∗∗
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(−k) = 0 ,
ab

[k]
ab

[−k] = 0 , ∗∗
ab

(̃−k)
ab

(k) = −iηaa
ab

[k] ,
ab

[̃k]
ab

(k) =
ab

(k) ,
ab

(̃k)
ab

[k] = i
ab

(k) ,
ab

[̃−k]
ab

[k] =
ab

[k] ,
ab

(̃k)
ab

(k) = 0 ,
ab

[̃−k]
ab

(k) = 0 ,
ab

(̃k)
ab

[−k] = 0 ,
ab

[̃k]
ab

[k] = 0 .



▶ γa transforms
ab

(k) into
ab

[−k], never to
ab

[k].

▶ γ̃a transforms
ab

(k) into
ab

[k], never to
ab

[−k].

▶ There are the Clifford odd ”basis vector”, that is the
”basis vector” with an odd number of nilpotents, at
least one, the rest are projectors, such ”basis vectors”
anti commute among themselves.

▶ There are the Clifford even ”basis vectors”, that is the
”basis vectors” with an even number of nilpotents, the
rest are projectors, such ”basis vectors” commute
among themselves.



▶ Let us see how does one family of the Clifford odd
”basis vector” in d = (13 + 1) look like, if spins in
d = (13 + 1) are analysed with respect to the Standard
Model groups: SO(3, 1)× SU(2)× SU(2)× SU(3)× U(1).

▶ One irreducible representation of one family contains

2
(13+1)

2
−1 = 64 members which include all the family

members, quarks and leptons with the right handed
neutrinos included, as well as all the antimembers,
antiquarks and antileptons, reachable by either Sab (or
by CN PN on a family member).

Jour. of High Energy Phys. 04 (2014) 165
J. of Math. Phys. 34, 3731 (1993),
Int. J. of Modern Phys. A 9, 1731 (1994),
J. of Math. Phys. 44 4817 (2003), hep-th/030322 .



Sab generate all the members of one family. The eightplet
(represent. of SO(7, 1)) of quarks of a particular colour charge. All
are Clifford odd ”basis vectors” , with SU(3)× U(1) part
(τ 33 = 1/2, τ 38 = 1/(2

√
3), and τ 41 = 1/6)

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y τ4

Octet, Γ(7,1) = 1, Γ(6) = −1,
of quarks

1 uc1R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
1 0 1

2
2
3

1
6

2 uc1R

03
[−i ]

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
1 0 1

2
2
3

1
6

3 dc1R

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
1 0 − 1

2
− 1

3
1
6

4 dc1R

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
1 0 − 1

2
− 1

3
1
6

5 dc1L

03
[−i ]

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
-1 − 1

2
0 1

6
1
6

6 dc1L

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
-1 − 1

2
0 1

6
1
6

7 uc1L

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
-1 1

2
0 1

6
1
6

8 uc1L

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
-1 1

2
0 1

6
1
6

γ0γ7 and γ0γ8 transform uR of the 1st row into uL of the 7th row, and dR of the 4rd row into dL of the 6th row,

doing what the Higgs scalars and γ0 do in the standard model.



Sab generate all the members of one family of quarks,
leptonsantiquarks, antileptons. Here is the eightplet (represent. of
SO(7, 1)) of the colour chargeless leptons. The SO(7, 1) part is
identical with the one of quarks, while the SU(3)× U(1) part is:
τ 33 = 0, τ 38 = 0, τ 41 = − 1

2 .

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y Q

Octet, Γ(7,1) = 1, Γ(6) = −1,
of leptons

1 νR
03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
1 0 1

2
0 0

2 νR
03

[−i ]
12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
1 0 1

2
0 0

3 eR
03

(+i)
12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
1 0 − 1

2
−1 −1

4 eR
03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
1 0 − 1

2
−1 −1

5 eL
03

[−i ]
12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
-1 − 1

2
0 − 1

2
−1

6 eL
03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
-1 − 1

2
0 − 1

2
−1

7 νL
03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
-1 1

2
0 − 1

2
0

8 νL
03

(+i)
12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
-1 1

2
0 − 1

2
0

γ0γ7 and γ0γ8 transform νR of the 1st line into νL of the 7th line, and eR of the 4rd line into eL of the 6th line,

doing what the Higgs scalars and γ0 do in the standard model.



Sab generate also all the anti-eightplet (repres. of SO(7, 1)) of
anti-quarks of the anti-colour charge belonging to the same family
of the Clifford odd basis vectors . (τ 33 = −1/2, τ 38 = −1/(2

√
3),

τ 41 = −1/6).

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y τ4

Antioctet, Γ(7,1) = −1, Γ(6) = 1,
of antiquarks

33 d̄c̄1L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
1 0 1

2
1
3

− 1
6

34 d̄ c̄1L

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 − 1

2
1 0 1

2
1
3

− 1
6

35 ūc̄1L

03
[−i ]

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
1 0 − 1

2
− 2

3
− 1

6

36 ūc̄1L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] - 1 − 1

2
1 0 − 1

2
− 2

3
− 1

6

37 d̄c̄1R

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
-1 1

2
0 − 1

6
− 1

6

38 d̄ c̄1R

03
[−i ]

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
-1 1

2
0 − 1

6
− 1

6

39 ūc̄1R

03
(+i)

12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
-1 − 1

2
0 − 1

6
− 1

6

40 ūc̄1R

03
[−i]

12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
-1 − 1

2
0 − 1

6
− 1

6

γ0γ7 and γ0γ8 transform d̄L of the 1st line into d̄R of the 5th line, and ūL of the 4rd line into ūR of the 8th line.



▶ Clifford odd ”basis vector” describing the internal space

of quark uc1†↑R , ⇔ b1†1 :=
03

(+i)
12

[+] |
56

[+]
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] ,
has the Hermitian conjugated partner equal to

uc1↑R⇔ (b1†1 )† =
13 14

[−]
11 12

[−]
9 10

(−) ||
78

(−)
56

[+] |
12

[+]
03

(−i), both with
an odd number of nilpotents,
both are the Clifford odd objects — forming two
separate groups.



Anti-commutation relations for Clifford odd ”basis vectors”,
representing the internal space of fermion fields of
quarks and leptons (i = (uc,f ,↑,↓R,L , dc,f ,↑,↓

R,L , νf ,↑,↓R,L , ef ,↑,↓R,L )) ,
and anti-quarks and anti-leptons, with the family quantum

number f .

▶ {bmf ,b
k†
f‘ }∗A+|ψo > = δf f′ δ

mk |ψo > ,

▶ {bmf ,bkf‘}∗A+|ψo > = 0·|ψo > ,

▶ {bm†
f ,bk†f′ }∗A+|ψo > = 0·|ψo > ,

▶ bmf |ψo > = 0·|ψo > ,

▶ bm†
f |ψo > = |ψm

f > ,

|ψo > =
03

[−i]
12

[−]
56

[−] · · ·
13 14

[−] | 1 >
define the vacuum state for quarks and leptons and
antiquarks and antileptons of the family f .



▶ Clifford even ”basis vectors”, having an even number of
nilpotents, describe the internal space of the
corresponding boson field. The gluon field, for example,
I Â†

gl uc1R →uc2R
, which transforms the uc1R into uc2R looks

like: I Â†
gl uc1R →uc2R

(≡
03

[+i ]
12

[+]
56

[+]
78

[+]
9 10

(−)
11 12

(+)
13 14

[−] ).

If it algebraically multiplies on uc1R

(≡
03

(+i)
12

[+]
56

[+]
78

(+)
9 10

(+)
11 12

[−]
13 14

[−] ) it follows

I Â†
gl uc1

R →uc2
R
(≡

03

[+i ]
12

[+]
56

[+]
78

[+]
9 10

(−)
11 12

(+)
13 14

[−] ) ∗A

uc1†R , (≡
03

(+i)
12

[+]
56

[+]
78

(+)
9 10

(+)
11 12

[−]
13 14

[−] ) →

uc2†R , (≡
03

(+i)
12

[+]
56

[+]
78

(+)
9 10

[−]
11 12

(+)
13 14

[−] ) ,
IÂ†

gl uc1R →uc2R
= uc2†R ∗A (uc1†R )† ,

I Â†
gl uc2

R →uc1
R
(≡

03

[+i ]
12

[+]
56

[+]
78

[+]
9 10

(+)
11 12

(−)
13 14

[−] ) ∗A uc2†R → uc1†R ,

IÂ†
gl uc2R →uc1R

= uc1†R ∗A (uc2†R )† .



There are two kinds of the Clifford even ”basis vectors”,
having an even number of nilpotents, describing the internal
space of boson field:

▶ Two gluon fields, IÂ†m
f , which transform family members

of a particular family of fermions among themselves;
the same IÂ†m

f make transformations for any family of
quarks and leptons and antiquarks and antileptons.

I Â†
gl uc1R →uc2R

and I Â†
gl uc2R →uc2R

were presented above.

Let us point out that both have all the Sab of the Cartan
subalgebra members equal zero, except two of the group
SU(3)× U(1) (S9 10, S11 12, S13 14).
They can correspondingly change only the colour charge
of fermions.



▶ Let us present graviton I Â†
gr uc1R↑→uc1R↓

, which must leave

all the charges of fermions, except the spin (S03, S12) in
d = (3 + 1), unchanged.

I Â†
gr uc1†

R↑ →uc1†
R↓

(≡
03

(−i)
12

(−)
56

[+]
78

[+]
9 10

[+]
11 12

[−]
13 14

[−] ) ∗A

uc1†R ↑ , (≡
03

(+i)
12

[+]
56

[+]
78

(+)
9 10

(+)
11 12

[−]
13 14

[−] ) →

uc1†R ↓ (≡
03

[−i ]
12

(−)
56

[+]
78

(+)
9 10

(+)
11 12

[−]
13 14

[−] ) ,

IÂ†
gr uc1†R↑ →uc1†R↓

= uc1†R↓ ∗A (uc1†R↑ )
† ,

I Â†
gr uc1†

R↓ →uc1†
R↑

(≡
03

(+i)
12

(+)
56

[+]
78

[+]
9 10

[+]
11 12

[−]
13 14

[−] ) ∗A uc1†R↓ → uc1†R↑ ,

IÂ†
gr uc1†R↓ →uc1†R↑

= uc1†R↑ ∗A (uc1†R↓ )
† .



There is the second kind of the Clifford even ”basis vectors”,
having an even number of nilpotents, and consequently commute,
describing the internal space of boson fields; they are orthogonal
to all IÂ†m

f .

▶ We call them IIÂ†m
f .

IIÂ†m
f transform a family member of a particular family of

fermions to the same family member of all the rest families of
quarks and leptons and antiquarks and antileptons.

Let e−†
L↑f=1 be (≡

03

[−i ]
12

[+]
56

(−)
78

(+)
9 10

(+)
11 12

(+)
13 14

(+)), and e−†
L↑f=2 be

(≡
03

(−)
12

(+)
56

(−)
78

(+)
9 10

(+)
11 12

(+)
13 14

(+)).
It follows

e−†
L↑f=2 (≡

03

(−)
12

(+)
56

(−)
78

(+)
9 10

(+)
11 12

(+)
13 14

(+)) ∗A IIÂ†m
f

(≡
03

(+)
12

(−)
56

[+]
78

[−]
9 10

[−]
11 12

[−]
13 14

[−] ) → e−†
L↑f=1

(≡
03

[−i ]
12

[+]
56

(−)
78

(+)
9 10

(+)
11 12

(+)
13 14

(+)).

γa
ab

(k) = ηaa
ab

[−k] , γa
ab

[k] =
ab

(−k) , γ̃a
ab

(k) = −iηaa
ab

[k] , γ̃a
ab

[k] = i
ab

(k).
ab

(k)
ab

(−k) = ηaa
ab

[k] ,
ab

[k]
ab

(k) =
ab

(k) ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

(k)
ab

[k] =

0 ,
ab

[k]
ab

(−k) = 0 ,
ab

[k]
ab

[−k] = 0 ,



Let us see how does the annihilation of electron and positron
look like.

•

photon I Â†
phpp†

(≡e+†
R ∗A (e+†

R )†)

• ••

photon I Â†
phee†

(≡e−†
L ∗A (e−†

L )†)

positron

e+†
R

elektron
e−†
L

photon II Â†
phe†e

(≡(e+†
R )† ∗A e+†

R )



Let be recognized again

▶ photon II Â†
phe−†e−

= (e−†
L )† ∗A e−†

L =

photon II Â†
phe+†e+

= (e+†
R )† ∗A e+†

R

▶ All bosons “basis vectors”, I Âm†
f and II Âm†

f (describing
internal spaces of boson fields) are expressible as
algebraic products of “basis vectors” and their

Hermitian conjugated partners as b̂m
′†

f ‘ ∗A (b̂m
′′†

f ‘′ )† or as

(b̂m
′†

f ‘ )† ∗A b̂m
′′†

f “ .

▶ Knowing “basis vectors” of fermions appearing in
families we know all the boson fields as well.



▶ We discuss so far the internal space of fermions
describing their internal space with Clifford odd ”basis
vectors”;

And the internal space of bosons described with the
Clifford even ”basis vectors”.

▶ Let us write down the action.

Fermions and bosons can exist even if they do not
interact, but have non zero momenta in ordinary space,
at least mathematically.

▶ Describing the properties of fermions and bosons as we
observe, the interaction should be included.

Let us assume a simple and elegant one (this is how I
”see nature”) demonstrating at low energies all the
observed phenomena.



Let us take into account what we have learned up to now

▶ If “nature uses” the Clifford algebra to describe internal
degrees of freedom of fermions and bosons
then most of the action is determined:

There are fermions appearing in families and there are
their Hermitian conjugated partners .
Families and family members demonstrate symmetries.

There are bosons, the “basis vectors” of which are
expressible as algebraic products of “basis vectors” and

their Hermitian conjugated partners as b̂m
′†

f ‘ ∗A (b̂m
′′†

f ‘′ )†

or as (b̂m
′†

f ‘ )† ∗A b̂m
′′†

f “ .

There are two kinds of bosons again demonstrating
symmetries determined by their internal spaces.



I use in the spin-charge-family theory a simple action.

▶ Internal spaces of fermions , of their “basis vectors”, are

determined in d = (1 + 13), demonstrating 2
d
2
−1

members (which include particles and antiparticles)

appearing in 2
d
2
−1 families and the same number of their

Hermitian conjugated partners. Making a choice of the
subgroups of the group SO(13,1) determines symmetries
of fermions.

▶ Internal spaces of two kinds of bosons have also twice

2
d
2
−1× 2

d
2
−1 members. Making a choice of the

subgroups of the group SO(13,1) determines symmetries
also of bosons.

▶ The action must have an even number of γa’s and two
kinds of boson fields: ωabα and ω̃abα.



S =

∫
ddx E Lf +∫
ddx E (αR + α̃ R̃)

▶

Lf =
1

2
(ψ† γ0γap0aψ) + h.c .

p0a = f αap0α +
1

2E
{pα,Ef αa}−

p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα

We have two kinds of ωabα, ω̃abα, in the the
spin-charge-family theory already. They must be related by
I Âm†

f and II Âm†
f . It is not difficult to relate them.



We relate the application of bosons, I Âm†
f

ICm
f α , and

Sabωabα by applying both on fermions
∑

m′ b̂
m′†
f ′ βm

′

{
∑
m,f

IÂm†
f Cmf

α }∗A {
∑
m′

b̂m
′†

f′ βm
′} = {

∑
ab

Sabcabωabα} {
∑
m′′

b̂m
′′†

f′ βm
′′}

for a chosen family f ′, the same one in {
∑

m′ b̂
m′†
f′ βm

′} and in

{
∑

m′′ b̂
m′′†
f′ βm

′′}.

Let us try to relate the case of graviton.
Having no charges the gravitons must be of the kind:

I Â†
gr µ (≡

03

(±i)
12

(±)
56

[±] . . .
11 12

[±]
13 14

[±] ICgr µ.
II Â†

gr µ (≡
03

(±i)
12

(±)
56

[∓] . . .
11 12

[±]
13 14

[±] IICgr µ.



Requiring that the superpositions of
∑

ab cab ωabα and
I Âm†

f Cmf
α have the same values of the Cartan subalgebra

members, that is of Sab we find

One finds for “gravitons” with S03 = i and S12 = 1

I Â1†
4α(≡

03

(+i)
12

(+)
56

[+]
78

[+] . . .
13 14

[±] ICgr µ ⇔
c1 (S

01ω01α + i S02ω02α + S13ω13α + i S23ω23α) ,

and similarly

II Â1†
4α(≡

03

(+i)
12

(+)
56

[−]
56

[+] . . .
13 14

[±] ICgr µ ⇔
c1 (S̃

01ω̃01α + i S̃02ω̃02α + S̃13ω̃13α + i S̃23ω̃23α) ,

This allows that
p0α = pα -

∑
ab

1
2 Sab ωabα -

∑
ab

1
2 S̃ab ω̃abα

is replaced by
p0α = pα -

∑
mf

I Âm†
f

ICm
f α -

∑
mf

II Âm†
f

IICm
f α ,



▶ The Einstein action for a free gravitational field is assumed to
be linear in the curvature

Lg = E (αR+ α̃R̃),

R = fα[afβb] (ωabα,β − ωcaαω
c
bβ),

R̃ = fα[afβb] (ω̃abα,β − ω̃caαω̃
c
bβ),

with E = det(eaα)
and f α[af βb] = f αaf βb − f αbf βa.

Let us repeat the anti-commutation and commutation
relations of the Clifford odd and the Clifford even “basis
vectors”.



Anti-commutation relations for Clifford odd ”basis vectors”,
representing the internal space of fermion fields of
quarks and leptons (i = (uc,f ,↑,↓R,L , dc,f ,↑,↓

R,L , νf ,↑,↓R,L , ef ,↑,↓R,L )) ,
and anti-quarks and anti-leptons, with the family quantum

number f .

▶ {bmf ,b
k†
f‘ }∗A+|ψo > = δf f′ δ

mk |ψo > ,

▶ {bmf ,bkf‘}∗A+|ψo > = 0·|ψo > ,

▶ {bm†
f ,bk†f′ }∗A+|ψo > = 0·|ψo > ,

▶ bmf |ψo > = 0·|ψo > ,

▶ bm†
f |ψo > = |ψm

f > ,

|ψo > =
03

[−i]
12

[−]
56

[−] · · ·
13 14

[−] | 1 >
define the vacuum state for quarks and leptons and
antiquarks and antileptons of the family f .

[ arXiv:1802.05554v1], [arXiv:1802.05554v4], [arXiv:1902.10628]



Commutation relations for Clifford even ”basis vectors”,
representing the internal space of boson fields of two kinds,
iÂm†

f , i = (I , II ), which are the gauge fields of the fermion
fields

▶

iÂm†
f ∗A iÂm′†

f‘ →
{

iÂm†
f‘ ,

or 0 , i = (I, II) .

▶

IÂm†
f ∗A IIÂm†

f = 0 = IIÂm†
f ∗A IÂm†

f .

iÂm†
f , i=(I,II) must carry the space index α:

iÂm†
f

iCm†
f i=(I,II)

(in order to represent the gauge fields of the
corresponding fermion fields).



▶ One finds (Prog. in Part. and Nucl. Phys.,
http://doi.org/10.1016.j.ppnp.2021.103890, Eqs.
(14,16,28), and refs.therein.)
that there are 2d Grassmann polynomials of θa’s and 2d

their Hermitian conjugated partners ∂
∂θa

, (θa)† = ηaa ∂
∂θa

.

▶ We have demonstrated that there are 2d Clifford
objects, which are products of γa’s

γa = (θa + ∂
∂θa

) ,

half of them form Clifford odd ”basis vectors”, half of
them form Clifford even ”basis vectors”.

▶ There are 2
d
2
−1 Clifford odd family members, appearing

2
d
2
−1 irreducible representations, carrying family

quantum numbers, determined by γ̃a

γ̃a = i (θa − ∂
∂θa

) ,

and there are 2
d
2
−1× 2

d
2
−1 their Hermitian conjugated

partners. Together there are 2d−1 Clifford odd ”basis
vectors”.

▶ And there are 2d−1 Clifford even ”basis vectors”.



▶ The 2d−1 Clifford even ”basis vectors” are of two kinds:
I Âm†

f and II Âm†
f .

Both are expressible as algebraic products of the Clifford
odd “basis vectors” and their Hermitian conjugated
partners as

b̂m
′†

f ‘ ∗A (b̂m
′′†

f ‘′ )† (I Âm†
f )

or as

(b̂m
′†

f ‘ )† ∗A b̂m
′′†

f “ (II Âm†
f ).



▶ Fermion and boson second quantized fields manifest all
the properties assumed by the standard model before the
electroweak break, with the Higgs scalars included and
the gravitational field included.

▶ The break of symmetry, caused by the two right-handed
neutrinos, makes the boson gauge fields , which are not
observed at low energies, massive.

The condensate has spin S12 = 0, S03 = 0,
weak charge τ⃗1 = 0, and

⃗̃τ1 = 0, Ỹ = 0, Q̃ = 0, ⃗̃NL = 0.

state τ23 τ4 Y Q τ̃23 Ñ3
R τ̃4

|νVIII1R >1 |νVIII2R >2 1 −1 0 0 1 1 −1

|νVIII1R >1 |eVIII2R >2 0 −1 −1 −1 1 1 −1
|eVIII1R >1 |eVIII2R >2 −1 −1 −2 −2 1 1 −1



The gluon I Â†
gl uc2R →uc1R

has, for example, with respect to the

Cartan subalgebra members (τ3, τ8, τ ′) the properties:
one sextet with τ ′ = 0,

four singlets with (τ3 = 0, τ8 = 0, τ ′ = 0),
one triplet with τ ′ = 2

3 and one triplet with τ ′ = −2
3 .

The only I Âm†
f which couple to the condensate are the two

triplets with non zero τ ′ = ±2
3 , which transform leptons into

quarks. They become massive.

τ(1,0,0)(-1,0,0)

(1/2,√3/2,0)(-1/2,√3/2,0)

(-1/2,-√3/2,0)
(1/2,-√3/2,0)

(0,1/√3,-2/3)

(-1/2,-1/(2√3),-2/3)
(1/2,-1/(2√3),-2/3)

(1/2,1/(2√3),2/3)
(-1/2,1/(2√3),2/3)

(0,-1/√3,2/3)
τ

τ

3

8

'



The only boson fields which remain massless after the
appearance of the condensate of the two right handed
neutrinos are

▶ gravitons,

▶ U(1) photon fields,

▶ SU(2) weak fields,

▶ SU(3) gluon fields.

The scalar fields, gaining masses as well in interaction with
the condensate–if carrying space index (7, 8) — bring masses
to quarks and leptons and antiquarks and antileptons and to
weak bosons at the electroweak break.



Due to the recognitions that all the boson fields’ “basis
vectors” are expressible with the algebraic products of
fermion’s “basis vectors” and their Hermition conjugated
partners appearing in families, we can get all the properties
of all the boson fields’ “basis vectors” knowing the
symmetries of the “basis vectors” of fermions:

▶ The fermion’s “basis vectors” appear in twice four
families of quarks and leptons and antiquarks and
antileptons demonstrating SU(2)× SU(2)× U(1)
symmetry.

▶ The observed three families of quarks and lepton belong
to the lower group of four families.
New J. of Phys. 10 (2008) 093002,
Phys. Rev. D 80, 083534 (2009), 1-16,
J. of Modern Phys. 4 (2013) 823 [arXiv:1312.1542],
Progr. in Part. and Nucl.r Phys., and references therein,
http://doi.org/10.1016.j.ppnp.2021.103890,



▶ There exists (at low energies decoupled from the lower
group) another group of four families (the masses of which
are determined by another group of scalar fields)offering the
explanation for the dark matter.
Phys. Rev. D 80, 083534 (2009),1-16,
J. of Mod. Phys. 4 (2013) 823 [arXiv:1312.1542],

▶ There exist scalar triplet and antitriplet fields, offering
an explanation for the matter/antimatter asymmetry in
our universe.
Phys. Rev. D 91 (2015) 065004 [arXiv:1409.7791].

▶ The description the internal spaces of fermions by the
anticommuting Clifford odd “basis vectors” and bosons
by the commuting Clifford even “basis vectors offers the
explanation for the second quantization of fermion and
boson fields.
Nucl. Phys. B NUPHB 994 (2023) 116326 , [arXiv:
2210.06256],
Symmetry 2023,15,818-12-V2 94818,
https:doi.org/10.3390/sym15040818,



There remain questions to be answered:
▶ Do two kinds of boson fields, I Âm†

f and II Âm†
f ,appearing

in this new recognition in my spin-charge-family theory
(offering the interpretation of the Feynman diagrams,
and elegantly confirming the requirement of the two
kinds of fields, ωabα and ω̃abα, used so far in the
spin-charge-family) offer the correct (true) description of
boson fields?

▶ Does this way of describing the internal spaces of
fermion and boson fields offer easier explanation for
breaking symmetries from SO(13, 1) to
SO(3, 1)×U(1)× SU(3)?

▶ Can in this theory appear the gravitino?
▶ How has our universe gotten non-zero momenta only in

d = (3 + 1)?
▶ Does this way of describing the internal spaces of

fermion and boson fields with the “basic vectors” “open
a new door” in understanding nature)?

▶ And many other questions to be answered.



Let us present some of the achievements so far.
Let us repeat: All the boson gauge fields with the gravity
included have the common origin.

The action for vectors with respect to the space index
m = (0, 1, 2, 3) can be written as

∫
Ed4x αR(d) =

∫
d4x {−1

4
FAi

mn F
Aimn },

AAi
m =

∑
s,t

cAist ωstm .

Eur. Phys. J. C. 77 (2017) 231,

Also scalar fields
(there are doublets and triplets)

origin in spin connections and vielbeins — expressible with
I Âm†

f α and II Âm†
f α

with the space index α ≥ 5.

Eur. Phys. J. C. 77 (2017) 231 ,
Phys. Rev. D 91 (2015) 6, 065004,
J. of Mod. Physics 6 (2015) 2244.



▶ Scalars with the weak and the hyper charge (∓1
2 ,±

1
2)

determine masses of all the family members α of the lower
four families, νR of the lower four families have nonzero
Y ′ := −τ4 + τ23 and interact with the scalar field

(AY ′

(±),
⃗̃A1̃
(±),

⃗̃AÑL

(±)).

▶ The group of the lower four families manifest the
S̃U(2)

S̃O(1,3)
× S̃U(2)

S̃O(4)
× U(1) symmetry (also after all

loop corrections).

Mα =


−a1 − a e d b

e∗ −a2 − a b d
d∗ b∗ a2 − a e
b∗ d∗ e∗ a1 − a


α

.

[arXiv:1412.5866], [arXiv:1902.02691], [arXiv:1902.10628]



We made calculations, treating quarks and leptons in
equivalent way, as required by the ”spin-charge-family”
theory. Although

▶ any (n-1)x (n-1) submatrix of an unitary n x n matrix
determines the nxn matrix for n ≥ 4 uniquely,

▶ the measured mixing matrix elements of the 3 x 3
submatrix are not yet accurate enough even for quarks to
predict the masses m4 of the fourth family members.
o We can say, taking into account the data for the
mixing matrices and masses, that m4 quark masses
might be any in the interval (300 < m4 < 1000) GeV or
even above. Other experiments require that m4 are above
1000 GeV.

▶ Assuming masses m4 we can predict mixing matrices.



Results are presented for two choices of mu4 = md4 ,
[arxiv:1412.5866]:

▶ 1. mu4 = 700 GeV, md4 = 700 GeV.....new1

▶ 2. mu4 = 1200 GeV, md4 = 1 200 GeV.....new2

|V(ud)| =



expn 0.97425 ± 0.00022 0.2253 ± 0.0008 0.00413 ± 0.00049
new1 0.97423(4) 0.22539(7) 0.00299 0.00776(1)
new2 0.97423[5] 0.22538[42] 0.00299 0.00793[466]
expn 0.225 ± 0.008 0.986 ± 0.016 0.0411 ± 0.0013
new1 0.22534(3) 0.97335 0.04245(6) 0.00349(60)
new2 0.22531[5] 0.97336[5] 0.04248 0.00002[216]
expn 0.0084 ± 0.0006 0.0400 ± 0.0027 1.021 ± 0.032
new1 0.00667(6) 0.04203(4) 0.99909 0.00038
new2 0.00667 0.04206[5] 0.99909 0.00024[21]
new1 0.00677(60) 0.00517(26) 0.00020 0.99996
new2 0.00773 0.00178 0.00022 0.99997[9]


.

We found:
Vu1d4 > Vu1d3 , Vu2d4 < Vu1d4 , and Vu3d4 < Vu1d4 , .
The newer are experimental data, the better agreement with
our calculations offer.
The newest experimental data, have not yet been used to fit
mass matrix.



▶ The stable family of the upper four families group is the
candidate to form the Dark Matter.

▶ Masses of the upper four families are influenced :
o by the S̃U(2)

II S̃O(3,1)
× S̃U(2)

II S̃O(4)
scalar fields with

the corresponding family quantum numbers,
o by the scalars (AQ

78
(∓)

, AQ′

78
(∓)

, AY ′
78
(∓)

), and

o by the condensate of the two νR of the upper four
families.



Dark matter

d → (d − 4) + (3 + 1) before (or at least at) the electroweak
break.



▶ We follow the evolution of the universe, in particular the
abundance of the fifth family members - the candidates
for the dark matter in the universe.

▶ We estimate the behaviour of our stable heavy family
quarks and anti-quarks in the expanding universe by
solving the system of Boltzmann equations.

▶ We follow the clustering of the fifth family quarks and
antiquarks into the fifth family baryons through the
colour phase transition.

▶ The mass of the fifth family members is determined
from the today dark matter density.
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Figure: The dependence of the two number densities nq5 (of the fifth family quarks) and nc5 (of the fifth

family clusters) as the function of
mq5

c2

Tkb
is presented for the values mq5

c2 = 71 TeV, ηc5 = 1
50

and

η(qq̄)b
= 1. We take g∗ = 91.5.



We estimated from following the fifth family members in the
expanding universe:

▶

10 TeV < mq5 c
2 < 4 · 102TeV .

▶

10−8fm2 < σc5 < 10−6fm2 .

(It is at least 10−6× smaller than the cross section for the first
family neutrons.)



We estimate from the scattering of the fifth family members
on the ordinary matter on our Earth, on the direct
measurements - DAMA, CDMS,..- ...

▶

200TeV < mq5c
2 < 105TeV .



Matter-antimatter asymmetry



There are also triplet and anti-triplet scalars, s = (9, .., d):,

▶

state τ33 τ38 spin τ4 Q

AAi
9 10
(+)

AAi
9 − iAAi

10 + 1
2

1
2
√

3
0 − 1

3
− 1

3

AAi
11 12
(+)

AAi
11 − iAAi

12 − 1
2

1
2
√

3
0 − 1

3
− 1

3

AAi
13 14
(+)

AAi
13 − iAAi

14 0 − 1√
3

0 − 1
3

− 1
3

AAi
9 10
(−)

AAi
9 + iAAi

10 − 1
2

− 1
2
√

3
0 + 1

3
+ 1

3

AAi
11 12
(−)

AAi
11 + iAAi

12
1
2

− 1
2
√

3
0 + 1

3
+ 1

3

AAi
13 14
(−)

AAi
13 + iAAi

14 0 1√
3

0 + 1
3

+ 1
3

They cause transitions from anti-leptons into quarks and
anti-quarks into quarks and back, transforming matter into
antimatter and back. The condensate breaks CP symmetry,
offering the explanation for the matter-antimatter
asymmetry in the universe.



Let us look at scalar triplets, causing the birth of a proton
from the left handed positron, antiquark and quark:

uc2R

τ4= 1
6
,τ13=0,τ23= 1

2

(τ33,τ38)=(− 1
2
, 1
2
√

3
)

Y= 2
3
,Q= 2

3

uc2R

ūc̄2L

τ4=− 1
6
,τ13=0,τ23=− 1

2

(τ33,τ38)=( 1
2
,− 1

2
√

3
)

Y=− 2
3
,Q=− 2

3

uc3R

τ4= 1
6
,τ13=0,τ23= 1

2

(τ33,τ38)=(0,− 1√
3
)

Y= 1
6
,Q= 2

3

ē+
L

τ4= 1
2
,τ13=0,τ23= 1

2

(τ33,τ38)=(0,0)
Y=1,Q=1

dc1R

τ4= 1
6
,τ13=0,τ23=− 1

2

(τ33,τ38)=( 1
2
, 1
2
√

3
)

Y=− 1
3
,Q=− 1

3

•

A2⊟
9 10
(+)

,

τ4=2×(− 1
6
),τ13=0,τ23=−1

(τ33,τ38)=( 1
2
, 1
2
√

3
)

Y=− 4
3
,Q=− 4

3

•



These two quarks, dc1
R and uc3R can bind (at low enough energy)

together with uc2R into the colour chargeless baryon - a proton.

After the appearance of the condensate the CP is broken.

In the expanding universe, fulfilling the Sakharov request for
appropriate non-thermal equilibrium, these triplet scalars have a
chance to explain the matter-antimatter asymmetry.

The opposite transition makes the proton decay.
These processes seems to explain the lepton number non
conservation.



Let me conclude:

▶ Describing internal space of boson fields with the two
kinds of the Clifford even ”basis vectors”, having an
even number of nilpotents (each),

▶ and internal space of fermion fields which appear in
families with the Clifford odd ”basis vectors” having an
odd number of nilpotents
with the Hermitian conjugated partners in a different
group,
it follows that either fermion or boson (vector and
scalar) second quantized gauge fields, with gravity
included, can be successfully described.
Only the boundary conditions and correspondingly break
of symmetry are not known.
However, a lot of work is still needed.

Thank you!
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