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Although it looks like that we know almost everything about
our Universe, due to the fact that the theories and models
are to high extend supported by the experiments and the
cosmological observations,
it is also true that we do not know why and how the universe
has started,
what caused the exponential grow of the size of the universe,
what is happening in the black holes,
we namely do not know how to treat the second quantized
gravity.



More than 50 years ago the electroweak (and colour) standard
model offered an elegant new step in understanding the
origin of fermions and bosons by postulating, supported by
theories, models, experiments and cosmological observations:

▶ The existence of massless family members with the
charges in the fundamental representation of the groups -
o the coloured triplet quarks and colourless leptons,
o the left handed members as the weak charged doublets,
o the right handed weak chargeless members,
o the left handed quarks distinguishing in the hyper
charge from the left handed leptons,
o each right handed member having a different hyper
charge.

▶ The existence of massless families to each of a family
member.



▶ The existence of massless vector gauge fields to the
observed charges (with the space i ndex in (3+1)) of the
family members,
carrying charges in the adjoint representation of the
charge groups.
(Masslessness needed for gauge invariance.)
o Three massless vector fields, the gauge fields of the
three charges.
They all are vectors in d = (3 + 1), in the adjoint
representations with respect to the weak SU(2), colour
SU(3) and hyper U(1) charges.

▶ The existence of a massive scalar field - the higgs,
o carrying the weak charge ±1

2 and the hyper charge ∓1
2 .

o gaining at some step the imaginary mass and consequently
the constant value , breaking the weak and the hyper charge
and correspondingly breaking the mass protection.

▶ The existence of the Yukawa couplings, taking care of
o the properties of fermions and
o the masses of the heavy bosons.



▶ There is the gravitational field in d=(3+1), determined by
the vielbeins and spin connections, with the space index
in (d=3+1).

▶ There are the Dirac prescriptions for the second
quantized fermion and boson fields

▶ There are several trials to explain the appearance of
families of quarks and leptons.

▶ There are several trials to explain the appearance of the
inflation of the universe.

▶ There are several trials to try to treat the fermions and
bosons in a unifying way.

▶ There are several trials to make a next step beyond the
both standard models, electroweak and cosmological.

▶ There are several trials to make the theories
renormalizable and without anomalies.



▶ The electroweak and colour standard model assumptions
have been confirmed without offering surprises.

▶ The last unobserved field as a field, the Higgs’s scalar,
detected in June 2012, was confirmed in March 2013.

▶ The waves of the gravitational field were detected in
February 2016 and again 2017.



The assumptions of the standard model remain unexplained.

▶ There are several cosmological observations which do
not look to be explainable within the standard model,

▶ the second quantization of fermion and boson fields are
postulated,

▶ the second quantization of the gravitational field is not
yet even postulated,

▶ the used groups used in the standard model are
postulated,

▶ · · ·



▶ The standard model assumptions have in the literature
several explanations.

▶ The string theorists promise the theory offering the
understanding the nature.

▶ What is the most promising next step beyond the
standard model?.

▶ Physicists suggest theories and look for predictions
confirmed by experiments.

▶ We might all agree that the elementary constituents are
two kinds of fields: Anti-commuting fermion and
commuting boson fields, both assumed to be second
quantized fields.



▶ The Spin-Charge-Family theory,

assuming the description of the internal spaces of
fermions and bosons with the “basis vectors”, which are
superposition of products of

odd number of γa for fermions and

even number of γa for bosons,

offers an unique description of boson and fermion second
quantized fields.

There are namely the same number of fermion and
boson second quantized fields, manifesting a kind of
supersymmetry.

If the internal space involved in creating our universe
has d ≥ (13 + 1) and the ordinary space is active in
d = (3 + 1) and no symmetry is broken, then both “basis
vectors” have the same number of elements.



▶ Making a choice that all “basis vectors” are eigenvectors
of the chosen Cartan subalgebra members, and arrange
the “basis vectors” to be products of nilpotents and
projectors then “basis vectors” of fermions have an odd
number of nilpotents , and “basis vectors” of bosons
have an even number of nilpotents .

▶ These description is elegant and simple to use.

▶ Analysing the “basis vectors” with respect to the
symmetry they manifest in d = (3 + 1) all the second
quantized boson fields observed in d = (3 + 1), and all
the second quantized fermion fields observed in
d = (3 + 1) can be described, with the second quantized
graviton fields included.

▶ Choosing the simplest action for fermions and bosons,
we can describe all the properties of the observed fields.



▶ The Spin-Charge-Family theory offers the explanation for
i. all the assumptions of the standard model,
ii. for many observed phenomena:
ii.a. the dark matter,
ii.b. the matter-antimatter asymmetry,
ii.c. others observed phenomena,
iii. explaining the Dirac’s postulates for the second

quantized fermion and second quantized boson
fields,

iv. offering explanation for the appearance of the
graviton,
v. explaining the offer of the Fadeev-Popov ghosts,
vi. making several predictions.



▶ Is the Spin-Charge-Family theory the right next step
beyond both standard models?

▶ Work done so far on the spin-charge-family theory is
promising.

▶ Let me comment whether the low energy limit of strings
can be presented by the spin-charge-family theory.



▶ There are two kinds of the Clifford algebra objects
in any d . I recognized that in Grassmann space.

J. of Math. Phys. 34 (1993) 3731

θa’s and pθa ’s, p
θ
a = ∂

∂θa
with the property
(θa)† = ηaa ∂

∂θa
.

i. The Dirac γa (recognized 90 years ago in d = (3 + 1)).
ii. The second one: γ̃a,

γa = (θa − i pθa) , γ̃a = i (θa + i pθa) ,

References can be found in
Progress in Particle and Nuclear Physics,
http://doi.org/10.1016.j.ppnp.2021.103890 .



▶ The two kinds of the Clifford algebra objects
anticommute as follows

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+,
{γa, γ̃b}+ = 0,

▶ the postulate

(γ̃aB = i(−)nBBγa ) |ψ0 >,

(B = a0 + aaγ
a + aabγ

aγb + · · ·+ aa1···adγ
a1 . . . γad )|ψo >,

with (−)nB = +1,−1, if B has a Clifford even or odd
character, respectively, |ψo > is a vacuum state on which the
operators γa apply, reduces the Clifford space for fermions
for the factor of two, from 2× 2d to 2d , while the operators
γ̃aγ̃b = −2i S̃ab define the family quantum numbers.



▶ It is convenient to write all the ”basis vectors” describing
the internal space of either fermion fields or boson fields
as products of nilpotents and projectors, which are
eigenvectors of the chosen Cartan subalgebra

S03,S12,S56, · · · ,Sd−1 d ,

S̃03, S̃12, S̃56, · · · , S̃d−1 d ,

Sab = Sab + S̃ab .
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projectors
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[k] .
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▶ γa transforms
ab

(k) into
ab

[−k], never to
ab

[k].

▶ γ̃a transforms
ab

(k) into
ab

[k], never to
ab

[−k].

▶ There are the Clifford odd ”basis vectors”, that is the
”basis vectors” with an odd number of nilpotents, at
least one, the rest are projectors, such ”basis vectors”
anti commute among themselves.

▶ There are the Clifford even ”basis vectors”, that is the
”basis vectors” with an even number of nilpotents, the
rest are projectors, such ”basis vectors” commute
among themselves.

▶ There are the 2
d
2
−1 Clifford odd ”basis vectors”

appearing in 2
d
2
−1 families and the same number of their

Hermitian conjugated partners; 2
d
2
−1 × 2

d
2
−1.

▶ There are 2
d
2
−1 × 2

d
2
−1 Clifford even ”basis vectors”

appearing in two orthogonal groups.



▶ Let us see how does one family of the Clifford odd
”basis vector” in d = (13 + 1) look like, if spins in
d = (13 + 1) are analysed with respect to the Standard
Model groups: SO(3, 1)× SU(2)× SU(2)× SU(3)× U(1).

▶ One irreducible representation of one family contains

2
(13+1)

2
−1 = 64 members which include all the family

members, quarks and leptons with the right handed
neutrinos included, as well as all the antimembers,
antiquarks and antileptons, reachable by either Sab (or
by CN PN on a family member).

Jour. of High Energy Phys. 04 (2014) 165
J. of Math. Phys. 34, 3731 (1993),
Int. J. of Modern Phys. A 9, 1731 (1994),
J. of Math. Phys. 44 4817 (2003), hep-th/030322 .



Sab generate all the members of one family. The eightplet
(represent. of SO(7, 1)) of quarks of a particular colour charge. All
are Clifford odd ”basis vectors” , with SU(3)× U(1) part
(τ 33 = 1/2, τ 38 = 1/(2

√
3), and τ 41 = 1/6)

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y τ4

Octet, Γ(7,1) = 1, Γ(6) = −1,
of quarks
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γ0γ7 and γ0γ8 transform uR of the 1st row into uL of the 7th row, and dR of the 4rd row into dL of the 6th row,

doing what the Higgs scalars and γ0 do in the standard model.



Sab generate all the members of one family of quarks,
leptonsantiquarks, antileptons. Here is the eightplet (represent. of
SO(7, 1)) of the colour chargeless leptons. The SO(7, 1) part is
identical with the one of quarks, while the SU(3)× U(1) part is:
τ 33 = 0, τ 38 = 0, τ 41 = − 1

2 .

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y Q

Octet, Γ(7,1) = 1, Γ(6) = −1,
of leptons
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γ0γ7 and γ0γ8 transform νR of the 1st line into νL of the 7th line, and eR of the 4rd line into eL of the 6th line,

doing what the Higgs scalars and γ0 do in the standard model.



Sab generate also all the anti-eightplet (repres. of SO(7, 1)) of
anti-quarks of the anti-colour charge belonging to the same family
of the Clifford odd basis vectors . (τ 33 = −1/2, τ 38 = −1/(2

√
3),

τ 41 = −1/6).

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y τ4

Antioctet, Γ(7,1) = −1, Γ(6) = 1,
of antiquarks
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35 ūc̄1L

03
[−i ]

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
1 0 − 1

2
− 2

3
− 1

6

36 ūc̄1L
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γ0γ7 and γ0γ8 transform d̄L of the 1st line into d̄R of the 5th line, and ūL of the 4rd line into ūR of the 8th line.



▶ The Clifford odd ”basis vector” describing the internal
space of quark uc1†↑R , ⇔ b1†1 :=
03

(+i)
12

[+] |
56

[+]
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] ,
has the Hermitian conjugated partner equal to

uc1↑R⇔ (b1†1 )† =
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[−]
11 12

[−]
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(−) ||
78

(−)
56

[+] |
12

[+]
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(−i), both with
an odd number of nilpotents,
both are the Clifford odd objects — forming two
separate groups.



Anti-commutation relations for Clifford odd ”basis vectors”,
representing the internal space of fermion fields of
quarks and leptons (i = (uc,f ,↑,↓R,L , dc,f ,↑,↓

R,L , νf ,↑,↓R,L , ef ,↑,↓R,L )) ,
and anti-quarks and anti-leptons, with the family quantum

number f .

▶ {bmf ,b
k†
f‘ }∗A+|ψo > = δf f′ δ

mk |ψo > ,

▶ {bmf ,bkf‘}∗A+|ψo > = 0·|ψo > ,

▶ {bm†
f ,bk†f′ }∗A+|ψo > = 0·|ψo > ,

▶ bmf |ψo > = 0·|ψo > ,

▶ bm†
f |ψo > = |ψm

f > ,

|ψo > =
03

[−i]
12

[−]
56

[−] · · ·
13 14

[−] | 1 >
define the vacuum state for quarks and leptons and
antiquarks and antileptons of the family f .



▶ Clifford even ”basis vectors”, having an even number of
nilpotents, describe the internal space of the
corresponding boson field. The gluon field, for example,
I Â†

gl uc1R →uc2R
, which transforms the uc1R into uc2R looks

like: I Â†
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(≡
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[+i ]
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[+]
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IÂ†

gl uc1R →uc2R
= uc2†R ∗A (uc1†R )† ,

I Â†
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R →uc1
R
(≡
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[+i ]
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[+]
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[+]
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[+]
9 10

(+)
11 12

(−)
13 14

[−] ) ∗A uc2†R → uc1†R ,

IÂ†
gl uc2R →uc1R

= uc1†R ∗A (uc2†R )† .



▶ These gluons I Â†
gl uciR→ucjR

= ucj†R ∗A (uci†R )† transform

quarks of a particular colour charge to quarks of all the
rest colour charges.
Let us notice that they all are expressed as the algebraic
product of a family member and one of the Hermitian
conjugated partner.

▶ We can in an equivalent way express the weak boson
I Â†

weak uciR→dci
R

= dci†
R ∗A (uci†R )† transforming quarks of a

particular weak charge to quarks of another weak charge
(keeping the colour charges unchanged).



There is the second kind of the Clifford even ”basis vectors”,
having as well an even number of nilpotents, and consequently
commute, describing the internal space of boson fields; they are
orthogonal to allIÂ†m

f .

▶ We call them IIÂ†m
f .

IIÂ†m
f transform a family member of a particular family of

fermions to the same family member of all the rest families of
quarks and leptons and antiquarks and antileptons.

Let e−†
L↑f=1 be (≡

03

[−i ]
12

[+]
56

(−)
78
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11 12
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13 14

(+)), and e−†
L↑f=2 be

(≡
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(−)
12
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(−)
78
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9 10

(+)
11 12

(+)
13 14

(+)).

It follows that IIÂ†m
f apply fermions from the right hand side

e−†
L↑f=2 (≡

03

(−)
12
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56

(−)
78
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9 10

(+)
11 12

(+)
13 14

(+)) ∗A IIÂ†m
f

(≡
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56
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[−]
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[−]
13 14

[−] ) → e−†
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13 14
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[k] = i
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[k] ,
ab
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(k) ,
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0 ,
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(−k) = 0 ,
ab

[k]
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Also IIÂ†m
f can be expressed as algebraic products of the

Hermitian conjugate fermion fields and one of the Clifford
odd “basis vector’.

▶ photon II Â†
phe−†e−

= (e−†
L )† ∗A e−†

L =

photon II Â†
phe+†e+

= (e+†
R )† ∗A e+†

R



▶ All bosons “basis vectors”, I Âm†
f and II Âm†

f (describing
internal spaces of boson fields) are expressible as
algebraic products of “basis vectors” and their

Hermitian conjugated partners as b̂m
′†

f ‘ ∗A (b̂m
′′†

f ‘′ )† or as

(b̂m
′†

f ‘ )† ∗A b̂m
′′†

f “ .

▶ Knowing “basis vectors” of fermions appearing in
families we know all the boson fields as well.



Let us see how does the annihilation of electron and positron
look like.

•

photon I Â†
phpp†

(≡e+†
R ∗A (e+†

R )†)

• ••

photon I Â†
phee†

(≡e−†
L ∗A (e−†

L )†)

positron

e+†
R

elektron
e−†
L

photon II Â†
phe†e

(≡(e+†
R )† ∗A e+†

R )



▶ Let us present graviton I Â†
gr uc1R↑→uc1R↓

, which must leave

all the charges of fermions, except the spin (S03, S12) in
d = (3 + 1), unchanged.

I Â†
gr uc1†

R↑ →uc1†
R↓

(≡
03

(−i)
12

(−)
56

[+]
78

[+]
9 10

[+]
11 12

[−]
13 14

[−] ) ∗A

uc1†R ↑ , (≡
03

(+i)
12

[+]
56

[+]
78

(+)
9 10

(+)
11 12

[−]
13 14

[−] ) →

uc1†R ↓ (≡
03

[−i ]
12

(−)
56

[+]
78

(+)
9 10

(+)
11 12

[−]
13 14

[−] ) ,

IÂ†
gr uc1†R↑ →uc1†R↓

= uc1†R↓ ∗A (uc1†R↑ )
† ,

I Â†
gr uc1†

R↓ →uc1†
R↑

(≡
03

(+i)
12

(+)
56

[+]
78

[+]
9 10

[+]
11 12

[−]
13 14

[−] ) ∗A uc1†R↓ → uc1†R↑ ,

IÂ†
gr uc1†R↓ →uc1†R↑

= uc1†R↑ ∗A (uc1†R↓ )
† .



Let be recognized again

▶ All bosons “basis vectors”, I Âm†
f and II Âm†

f (describing
internal spaces of boson fields) are expressible as
algebraic products of “basis vectors” and their

Hermitian conjugated partners as b̂m
′†

f ‘ ∗A (b̂m
′′†

f ‘′ )† or as

(b̂m
′†

f ‘ )† ∗A b̂m
′′†

f “ .

▶ Knowing “basis vectors” of fermions appearing in
families we know all the boson fields as well.



▶ The Clifford odd and the Clifford even “basis vectors”
differ essentially in their properties:

The Clifford odd ”basis vectors” in even dimensional
spaces appear in 2

d
2
−1 families, each family having 2

d
2
−1

members, and have their Hermitian conjugated partners

in a separate group, with 2
d
2
−1 × 2

d
2
−1 contributions.

The Clifford even ”basis vectors” in even dimensional
spaces appear in two groups, each with 2

d
2
−1 × 2

d
2
−1

members, having the Hermitian conjugated partners
within the same group. They have no families.

▶ The Clifford odd ”basis vectors” in even dimensional
spaces carry the eigenvalues of the Cartan subalgebra
members ± i

2 or ± i
2 .

The Clifford even ”basis vectors” in even dimensional
spaces carry the eigenvalues of the Cartan subalgebra
members (±i , 0) or (±1, 0).



▶ There are in d = 2(2n + 1) dimensional spaces 2
d
2
−1

Clifford odd families, each family having 2
d
2
−1 members.

The Clifford odd “basis vectors” have their Hermitian
conjugated partners in a separate group of 2

d
2
−1 families

with 2
d
2
−1 members.

In a tensor product with the basis in ordinary space the
Clifford odd “basis vectors” together with their
Hermitian conjugated partners form anti commuting
creation and annihilation operators, fulfilling on the
vacuum state the postulates of the second quantized
fermion fields.

▶ There are in even dimensional spaces two times

2
d
2
−1 × 2

d
2
−1 Clifford even “basis vectors”, with their

Hermitian conjugated partners within the same group.

In a tensor product with the basis in ordinary space the
Clifford even “basis vectors” form commuting creations
and annihilation operators, fulfilling the postulates of the
second quantized boson fields.



Properties of the Clifford odd and Clifford even ”basis
vectors” in odd dimensional spaces d=(2n + 1) differ
essentially from the corresponding properties in even
dimensional spaces.

While in even dimensional spaces the Clifford odd “basis
vectors” fulfil the postulates for the second quantized
fermion fields, and Clifford even ”basis vectors” fulfil the
postulates for the second quantized boson fields,

have the Clifford odd and even ”basis vectors” in odd
dimensional spaces unusual properties resembling properties
of the internal spaces of the Faddeev-Popov ghosts.



▶ In d = (2n + 1)-dimensional cases, n = 1, 2, . . . , we find
for the Clifford odd and Clifford even “basis vectors”
the “basis vectors” from the 2n-dimensional part of
space having the properties of the even-dimensional
space; they form half of the “basis vectors”.

▶ The rest of the “basis vectors” in odd dimensional
spaces follow if applying S0 2n+1 on the obtained half of
the Clifford odd and the Clifford even “basis vectors”.
Since S0 2n+1 are Clifford even operators; they do not
change oddness or evenness of the “basis vectors”.
But the rest half of the “basis vectors” do change their
character:
The anti-commuting part appears in two orthogonal
groups, resembling properties of I Âm

f
II Âm

f .

The commuting part appears as 2
d−1
2

−1 members in

2
d−1
2

−1 families and the same number of their Hermitian
conjugated partners.



Here are the Clifford odd “basis vectors”;
On the right hand side is the first part paying attention of
d = 2n.
On the left hand side is the second part, following from the
first by application of S0 2n+1 on the first part.

d = 2(2n+ 1) + 1

b̂1†1 =
03

(+i)
12

(+)
56

(+) · · ·
d−2 d−1

(+) , b̂1†
2

d−1
2

−1+1
=

03

[−i]
12

(+)
56

(+) · · ·
d−2 d−1

(+) γd ,

b̂2†1 =
03

[−i]
12

[−]
56

(+) · · ·
d−2 d−1

(+) , b̂2†
2

d−1
2

−1+1
=

03

(+i)
12

[−]
56

(+) · · ·
d−2 d−1

(+) γd ,

· · · · · ·

b̂2
d−1
2

−1†
1 =

03

[−i]
12

[−]
56

(+) . . .
d−2 d−1

[−] , b̂2
d−1
2

−1†

2
d−1
2

−1+1
=

03

(+i)
12

[−]
56

(+) . . .
d−2 d−1

[−] γd ,

· · · · · · .



Here are the Clifford even “basis vectors”;
On the right hand side is the first part paying attention of d = 2n.
On the left hand side is the second part, following from the first by
application of S0 2n+1 on the first part.

d = 2(2n+ 1) + 1

IA1†
1 =

03

(+i)
12

(+)
56

(+) · · ·
d−2 d−1

[+] , IA1†

2
d−1
2

−1+1
=

03

[−i]
12

(+)
56

(+) · · ·
d−2 d−1

[+] γd ,

IA2†
1 =

03

[−i]
12

[−]
56

(+) · · ·
d−2 d−1

[+] , IA2†

2
d−1
2

−1+1
=

03

(+i)
12

[−]
56

(+) · · ·
d−2 d−1

[+] γd ,

· · · · · ·
IA2

d−1
2

−1†
1 =

03

[−i]
12

[−]
56

[−] . . .
d−2 d−1

[+] , IA2
d−1
2

−1†

2
d−1
2

−1+1
=

03

(+i)
12

[−]
56

[−] . . .
d−2 d−1

[+] γd ,

· · · · · · .

Let us show on chosen d = (2n + 1) how do the right hand sides
get — although anti commuting — properties of the left hand
sides of commuting Clifford even “basis vectors” and

let us show on chosen cases d = (2n + 1) how do the right hand

sides get — although commuting — manifest properties of the

left hand sides of anticommuting Clifford odd “basis vectors”.



Let us point out that the Lorentz transformations in internal
spaces of fermion and boson fields transform the left hand
sides of equations into the corresponding right hand sides
and opposite.



d = 4+ 1

Clifford odd

b̂1†1 =
03

(+i)
12

[+] , b̂1†2 =
03

[+i]
12

(+) , b̂1†3 =
03

[−i]
12

[+] γ5 , b̂1†4 =
03

(−i)
12

(+) γ5 ,

b̂2†1 =
03

[−i]
12

(−) , b̂2†2 =
03

(−i)
12

[−] , b̂2†3 =
03

(+i)
12

(−) γ5 , b̂2†4 =
03

[+i]
12

[−] γ5 ,

b̂11 =
03

(−i)
12

[+] , b̂12 =
03

[+i]
12

(−) , b̂13=
03

[+i]
12

[+] γ5 , b̂14=
03

(−i)
12

(−) γ5 ,

b̂21 =
03

[−i]
12

(+) , b̂22 =
03

(+i)
12

[−] , b̂23=
03

(+i)
12

(+) γ5 , b̂24=
03

[−i]
12

[−] γ5 ,

Clifford even

IA1†
1 =

03

[+i]
12

[+] , IA1†
2 =

03

(+i)
12

(+) , IA1
3=

03

(−i)
12

[+] γ5 , IA1
4=

03

[−i]
12

(+) γ5 ,

IA2†
1 =

03

(−i)
12

(−i) , IA2†
2 =

03

[−i]
12

[−] , IA2
3=

03

[+i]
12

(−) γ5 , IA2
4=

03

(+i)
12

[−] γ5 ,

IIA1†
1 =

03

[−i]
12

[+] , IIA1†
2 =

03

(−i)
12

(+) , IIA1†
3 =

03

(+i)
12

[+] γ5 , IIA1†
4 =

03

[+i]
12

(+) γ5 ,

IIA2†
1 =

03

(+i)
12

(−) , IIA2†
2 =

03

[+i]
12

[−] , IIA2†
3 =

03

[−i]
12

(−) γ5 , IIA2†
4 =

03

(−i)
12

[−] γ5 .



Let us repeat the properties of “basis vectors” of the left
hand side:

▶ On the left hand sides we have
b̂m†
f *A b̂m

′†
f ‘ are orthogonal (=0) ,

b̂mf ∗A b̂m
′

f ‘ are orthogonal (=0) ,

b̂m†
f ∗A b̂m

′
f ‘ are not orthogonal ( ̸= 0) ,

b̂mf ∗A b̂m
′†

f ‘ are not orthogonal ( ̸= 0) ,

IAm†
f ∗A IIAm′†

f‘ are orthogonal (=0)
IIAm†

f ∗A IAm′†
f‘ are orthogonal (=0)

IAm†
f ∗A IAm′†

f‘ are not orthogonal (̸= 0)
IIAm†

f ∗A IIAm′†
f‘ are not orthogonal (̸= 0),

paying attention on

ab

(k)
ab

(−k) = ηaa
ab

[k] ,
ab

[k]
ab

(k) =
ab

(k) ,
ab

(k)
ab

[−k] =
ab

(k) , ∗∗
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(−k) = 0 ,
ab

[k]
ab

[−k] = 0 , ∗∗



Let us see properties of the “basis vectors” for the right
hand side

▶ b̂m†
f *A b̂m

′
f ‘ are orthogonal (=0) ,

b̂m†
f ∗A b̂m

′
f ‘ are orthogonal (=0) ,

b̂m†
f ∗A b̂m

′†
f ‘ are not orthogonal (̸= 0) ,

b̂mf ∗A b̂m
′

f ‘ are not orthogonal ( ̸= 0) ,

IAm†
f ∗A IAm′†

f‘ are orthogonal (=0)
IIAm†

f ∗A IIAm′†
f‘ are orthogonal (=0)

IAm†
f ∗A IIAm′†

f‘ are not orthogonal (̸= 0)
IIAm†

f ∗A IAm′†
f‘ are not orthogonal (̸= 0)

▶ The anticommuting right hand side have the properties
of the commuting left hand side.

▶ The commuting right hand side have the properties of
the anti commuting left hand side.



We can conclude that neither Clifford odd nor the Clifford
even “basis vectors”, have in odd dimensional spaces the
properties which they do demonstrate in even dimensional
spaces: Only half of the “basis vectors” have in d = 2n + 1
the properties which they demonstrate in d = 2(2n′ + 1).

The other half of the Clifford odd “basis vectors”
demonstrate properties of the Clifford even “basis vectors”
and the other half of the Clifford even “basis vectors”
demonstrate properties of the Clifford odd “basis vectors”,
keeping their anti commutativity or commutativity
unchanged.
(Arbitrary Lorentz transformations transform the “basis
vectors” of the left hand sides into the “basis vectors” of the
right sides, and vice versa.)

These are properties of the internal spaces of the ghost
scalar fields, used in the quantum field theory to make
contributions of the Feynman diagrams finite.



General points of my way for cosmology.
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