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Workshops organized at Bled

▷ What Comes Beyond the Standard Models
(June 29–July 9, 1998), Vol. 0 (1999) No. 1
(July 22–31, 1999)
(July 17–31, 2000)
(July 16–28, 2001), Vol. 2 (2001) No. 2
(July 14–25, 2002), Vol. 3 (2002) No. 4
(July 18–28, 2003) Vol. 4 (2003) Nos. 2-3
(July 19–31, 2004), Vol. 5 (2004) No. 2
(July 19–29, 2005) , Vol. 6 (2005) No. 2
(September 16–26, 2006), Vol. 7 (2006) No. 2
(July 17–27, 2007), Vol. 8 (2007) No. 2
(July 15–25, 2008), Vol. 9 (2008) No. 2
(July 14–24, 2009), Vol. 10 (2009) No. 2
(July 12–22, 2010), Vol. 11 (2010) No. 2
(July 11–21, 2011), Vol. 12 (2011) No. 2
(July 9–19, 2012), Vol. 13 (2012) No. 2
(July 14–21, 2013), Vol. 14 (2013) No. 2
(July 20–28, 2014), Vol. 15 (2014) No. 2
(July 11–19, 2015), Vol. 16 (2015) No. 2
(July 11–19, 2016), Vol. 17 (2016) No. 2
(July 9–17, 2017), Vol. 18 (2017) No. 2
(June 23–July 1, 2018), Vol. 19 (2018) No. 2
(July 6–14, 2019), Vol. 20 (2019) No. 2
(July 4–12, 2020), Vol. 21 (2020) No. 1
(July 4–12, 2020), Vol. 21 (2020) No. 2
(July 1–12, 2021), Vol. 22 (2021) No. 1
(July 4–12, 2022), Vol. 23 (2022) No. 1
(July 10–18, 2023), Vol. 24 (2023) No. 1
(July 8–17, 2024), Vol. 25 (2024) No. 1

▷ Hadrons as Solitons (July 6–17, 1999)
▷ Few-Quark Problems (July 8–15, 2000), Vol. 1 (2000) No. 1
▷ Selected Few-Body Problems in Hadronic and Atomic Physics (July 7–14, 2001),

Vol. 2 (2001) No. 1
▷ Quarks and Hadrons (July 6–13, 2002), Vol. 3 (2002) No. 3
▷ Effective Quark-Quark Interaction (July 7–14, 2003), Vol. 4 (2003) No. 1
▷ Quark Dynamics (July 12–19, 2004), Vol. 5 (2004) No. 1
▷ Exciting Hadrons (July 11–18, 2005), Vol. 6 (2005) No. 1
▷ Progress in Quark Models (July 10–17, 2006), Vol. 7 (2006) No. 1
▷ Hadron Structure and Lattice QCD (July 9–16, 2007), Vol. 8 (2007) No. 1
▷ Few-Quark States and the Continuum (September 15–22, 2008),

Vol. 9 (2008) No. 1
▷ Problems in Multi-Quark States (June 29–July 6, 2009), Vol. 10 (2009) No. 1
▷ Dressing Hadrons (July 4–11, 2010), Vol. 11 (2010) No. 1
▷ Understanding hadronic spectra (July 3–10, 2011), Vol. 12 (2011) No. 1
▷ Hadronic Resonances (July 1–8, 2012), Vol. 13 (2012) No. 1
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▷ Looking into Hadrons (July 7–14, 2013), Vol. 14 (2013) No. 1
▷ Quark Masses and Hadron Spectra (July 6–13, 2014), Vol. 15 (2014) No. 1
▷ Exploring Hadron Resonances (July 5–11, 2015), Vol. 16 (2015) No. 1
▷ Quarks, Hadrons, Matter (July 3–10, 2016), Vol. 17 (2016) No. 1
▷ Advances in Hadronic Resonances (July 2–9, 2017), Vol. 18 (2017) No. 1
▷ Double-charm Baryons and Dimesons (June 17–23, 2018), Vol. 19 (2018) No. 1
▷ Electroweak Processes of Hadrons (July 15–19, 2019), Vol. 20 (2019) No. 1
▷

◦ Statistical Mechanics of Complex Systems (August 27–September 2, 2000)
◦ Studies of Elementary Steps of Radical Reactions in Atmospheric Chemistry

(August 25–28, 2001)
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Preface in English and Slovenian Language

This year was 27th time that our series of workshops on ”What Comes Beyond
the Standard Models?” took place. The series started in 1998 with the idea of
organising a workshop where participants would spend most of the time in
discussions, confronting different approaches and ideas. The picturesque town
of Bled by the lake of the same name, surrounded by beautiful mountains and
offering pleasant walks, was chosen to stimulate the discussions.
The idea was successful and has developed into an annual workshop, which is
taking place every year since 1998. Very open-minded and fruitful discussions have
become the trademark of our workshops, producing several published works. It
took place in the house of Plemelj, which belongs to the Society of Mathematicians,
Physicists and Astronomers of Slovenia.
We discussed in these twenty-seven years a lot of concepts which could help
to understand our universe from the level of the second quantized elementary
fermion and boson fields up to the level of the born of our universe.
Trying to understand what the elementary constituents of our universe are and
what are the laws of nature; physicists suggest theories and look for predictions
which need confirmation of experiments and cosmological observations.
What seems to be trustworthy is that the elementary constituents are two kinds of
fields: Anti-commuting fermion and commuting boson fields, both assumed to be
second quantized fields.
Since experiments require precise predictions to be confirmed by experiments the
calculations must be accurate enough and designed for a particular experiment.
Although in these twenty-seventh years the technology of experiments, as well
as astronomical observations, have advanced incredibly it is still true that we are
only guessing how our universe has started and why it exponentially expanded
and then reheated, why do we experience only three space dimensions and one
time, why most of matter is almost unobservable in direct measurements, what
forces our universe to expand faster than expected; many other open questions
remain unanswered.
We improve our knowledge in small steps. But there were also large steps like the
special theory of relativity, the general theory of gravity, the quantum theory of
groups of constituents (in the first quantization models), the second quantization
of bosons and fermions, the electroweak standard model, the cosmological models.
In trying to understand the born and history of our universe, and the interactions
among elementary second quantized fields uniquely, a large step is needed. The
strings theories seems promising.
In the Bled workshops, “What comes beyond the standard models” the spin-charge-
family theory has been discussed and developed, holding the promise that all the
fermion and boson second quantized fields can be treated equivalently — the
fermion internal spaces can be described as a superposition of an odd products
of γa, the boson internal spaces can be described as a superposition of an even
products of γa, what makes unifying all the fermion fields (quarks and leptons
and antiquarks and antileptons appearing in families, predicting the fourth family
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to the observed three, the fifth stable family describing the dark matter) as well as
the boson gauge fields (gravitons, weak bosons, gluons, photons, several scalar
fields causing the inflation, the dark energy, the matter anti-matter asymmetry, the
electroweak break of symmetry with several Higgs scalar), offering a new large
step.

Also, in this year’s proceedings, most of the contributions discuss the theoretical
concepts of solving the open problems of elementary fermion and boson fields and
cosmology, looking for the next step beyond both standard models, the electroweak
one and the cosmological one.
There is an excellent pioneer project in the direct detection of the dark matter
confirming the annual modulation of signals deeply underground in Gran Sasso
over many independent annual cycles with various configurations (DAMA/NaI,
DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2); the last within the energy
scale from less than 1 KeV to 6 KeV. We are all waiting for the other laboratories to
confirm their measurements.
There is a proposal for the content of the dark matter, suggesting that it might be
formed from the composite Thomson-like atomic dark matter candidates, which
might resolve the problem of why no other experiment has not yet succeeded in
confirming the Gran Sasso experiment.
There are ideas, discussed in previous Proceedings, suggesting that even the
standard model offers the contributions to the dark matter.
The spin-charge-family theory, which explains the existence of families, suggests
(among many other predictions) that to the dark matter the clusters of the stable
fifth family quarks may contribute.
There are discussions in this and the previous Proceedings that the dark matter
accumulated in the vicinity of the Earth, influence the Earth’s ionosphere and
stratosphere.
There are ideas in this Proceedings on how to explain the appearance of families
within the gauged SU(3) model.
There are two contributions on the spin-charge-family theory. The first contribution
demonstrates the description of the internal spaces of fermions and bosons with
the nilpotents (they are the superpositions of an odd number of operators γa)
and projectors (they are the superposition of an even number of operators γa).
The products of an odd number of nilpotents (the rest are projectors) describe the
fermion’s internal space, appearing in families. The products of an even number of
nilpotents (the rest are projectors) describe the boson’s internal space. Both have an
equal number of internal states. One contribution discusses the spin-charge-family
theory’s latest achievements, with a trial to understand whether the extension
to strings or odd-dimensional spaces can lead to a new kind of supersymmetry,
offering the renormalizable and anomalies-free theory. The assumption is made
that all the fermion and boson fields are active only in d = (3 + 1), while the
internal spaces need d = (13+ 1).
There is the contribution explaining the possibility to derive an exact expressions
for the renormalization constants using the arguments based on the renormaliza-
tion group.
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There were several suggestions for solving the cosmological hierarchy problem
(the smallness of the dark energy).
There are ideas to investigate the behaviour of space-time in the vicinity of the
domain walls using an axion-like field. Using the specific models, like it is primor-
dial black hole merging, can help to interpret the results of gravitational wave
experiments, and other astronomical observations.
One contribution of micro-quasars in our galaxy offers the explanation for the
unexpected and surprising re-collimation of TeV beam jet, by using the well-known
high-energy nuclear physics models.
The ‘complete’ geometric special relativity and its new Lie group in real space is
presented.
One contribution demonstrates that the logarithm of the energies of the seriousness
of the scale versus the dimension related to number q (pertaining to the dimensions
of the scales) behaves as a straight line.
While the spin-charge-family theory declares that the description of the internal
spaces of fermion and boson fields by the superposition of odd (for fermions) and
even (for bosons) products of the operators γa not only explains but offers the sec-
ond quantization of fermion and boson fields, explaining the second quantization
postulates, there is the contribution which shows that random dynamics already
offers the first step to quantum mechanics.
Maybe next year, we shall report on physically realistic cellular automaton used
to offer several illustrations in elementary particle physics. This year, we only
received the abstracts.

The workshops at Bled changed after the Covid pandemic: For three years, the
workshop became almost virtual and correspondingly less open-minded. The
discussions, which asked the speaker to explain and prove each step, can not be
done so easily virtually. However, many questions still interrupt the presentations,
so the speakers must often continue their talks several times in the following days.
Also, this year, the talks were presented virtually.
Many a presented and developed idea in this proceeding might not be in agree-
ment with the others presented in the same proceedings. But yet different ideas, if
developed in a consistent way might help to understand the problems in connec-
tion with the measurements and observations, which only can confirm what is the
status of the laws in our universe.
Looking at the collection of open questions that we set ourselves before starting
these Bled workshops and continuously supplementing each workshop, it shows
up that we are all the time mostly looking for an answer to the essential questions:
How to explain all the assumptions of both standard models in an unique way —
with the second quantized fermion and boson fields — enabling to understand
the first quantization achievements so far, as well as the classical limits.
Many talks are ”unusual” because they seek a new, more trustworthy way of
understanding and describing the observed phenomena.

This year, the organisers are again asking the University of Ljubljana for the help
in arranging the DOI number.
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Although the Society of Mathematicians, Physicists and Astronomers of Slovenia remain
our organiser, for which we are very grateful, yet the Faculty of Mathematics and
Physics starts to be our publisher together with the University of Ljubljana. The
technical procedure is now different, and the possibility that the participants send
the contributions “the last moment” is less available.
Several participants have not succeeded in sending their contributions in time. We
publish only abstracts of those who sent in time at least abstracts. Their contribu-
tions will be published next year if they want. The same will also happen with
contributions for which even abstracts have not arrived in time. From July to In
particular, November is a short time since this period includes vacations.
The organisers are grateful to all the participants for the lively presentations and
discussions and an excellent working atmosphere, although most participants
appeared virtually, led by Maxim Khlopov.
The reader can find all the talks and soon also the whole Proceedings on the official
website of the Workshop: http://bsm.fmf.uni-lj.si/bled2024bsm/presentations.html,
and on the Cosmovia Forum https://bit.ly/bled2024bsm ..

Norma Mankoč Borštnik, Holger Bech Nielsen,
Maxim Khlopov, Astri Kleppe Ljubljana, December 2024
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1 Predgovor (Preface in Slovenian Language)

Letos je 27. leto, odkar poteka serija delavnic z naslovom “Kako preseči oba
standardna modela?”. Serija se je začela leta 1998 z idejo o delavnicah, na katerih
bi udelženci večino časa namenili razpravam in soočanju različnih pristopov in
idej. Za spodbujanje teh razprav smo izbrali slikovito mesto Bled ob istoimenskem
jezeru, obdano s čudovitimi gorami in prijetnimi sprehajalnimi potmi.
Ideja je bila uspešna in se je razvila v vsakoletno delavnico, ki poteka od 1998.
leta. Zelo odprte in plodne razprave so postale zaščitni znak naših delavnic in so
privedle do številnih objavljenih del. Delavnice potekajo v Plemeljevem domu, ki
je v lasti Društva matematikov, fizikov in astronomov Slovenije.
V teh sedemindvajsetih letih smo obravnavali veliko konceptov, ki bi lahko poma-
gali razumeti naše vesolje, od osnovnih fermionskih in bozononskih polj v drugi
kvantizaciji, do začetka našega vesolja.
Pri iskanju razumevanja, kaj so osnovni gradniki našega vesolja in kakšni so
zakoni narave, fiziki predlagajo teorije in iščejo napovedi, ki omogočajo potrditev
teorij z eksperimenti in kozmološkimi opazovanji.
Zdi se zaupanja vredna predpostavka, da so osnovni gradniki iz dveh vrst polj
— iz antikomutativnih fermionskih in komutativnih bozononskih polj v drugi
kvantizaciji.
Ker eksperimenti zahtevajo za potrditev natančne modelske napovedi, morajo biti
izračuni dovolj natančni in prilagojeni posameznemu eksperimentu.
Čeprav so se v teh sedemindvajsetih letih tehnologije eksperimentov in astronom-
skih opazovanj neverjetno razvile, še vedno samo ugibamo, kako se je naše vesolje
začelo in zakaj se je eksponentno širilo ter nato segrelo. Prav tako ne vemo, za-
kaj opažamo le tri prostorske razsežnosti in en čas, zakaj je večina snovi skoraj
neopažena v neposrednih meritvah, kaj sili naše vesolje, da se širi hitreje, kot
pričakujemo; tudi številna druga odprta vprašanja ostajajo brez odgovora.
Znanje izboljšujemo z majhnimi koraki. Vendar so bili v preteklosti tudi veliki pre-
boji, kot so posebna teorija relativnosti, splošna teorija gravitacije, kvantna teorija
skupin osnovnih gradnikov (v modelih prve kvantizacije), druga kvantizacija
bozonov in fermionov, elektrošibki standardni model in kozmološki modeli.
Da bi si lahko razložili nastanek in zgodovino našega vesolja in hkrati razumeli
interakcijo med osnovnimi fermionskimi in bozonskimi polji v drugi kvantizaciji
na enoten način, je potreben velik korak. Teorije strun se zde obetavne.
Na Blejskih delavnicah, ki nosijo ime “Kako preseči oba standardna modela”,
so potekale živahne razprave o teoriji spin-charge-family, ki je obetala, da bo vsa
fermionska in bozononska polja druge kvantizacije obravnavala ekvivalentno.
Teorija opiše zdaj notranje prostore fermionov in bozonov na enoten način: No-
tranji prostori fermionov so opisani kot superpozicija lihih produktov γa, notranji
prostori bozonov pa kot superpozicija sodih produktov γa. To omogoča enoten
opis tudi vseh fermionskih polj (kvarkov, leptonov, antikvarkov in antileptonov in
njihovih družin; pri čemer teorija napoveduje četrto družino poleg že opaženih
treh ter stabilno peto družino, ki prispeva k temni snovi) ter bozononskih polj
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(gravitonov, šibkih bozonov, gluonov, fotonov, skalarnih polj — ki pojasnijo in-
flacijo, obstoj temne energije, asimetrijo med snovjo in antisnovjo, tudi Higgsove
skalarje).
V letošnjem zborniku predstavi večina prispevkov teoretične koncepte za reševanje
odprtih problemov osnovnih fermionskih in bozononskih polj ter kozmologije in
iščejo naslednji korak za oba standardna modela, elektrošibkega in kozmološkega.
Predstavili pa so tudi zadnje izsledke odličnega pionirskega projekta, ki meri letno
modulacijo interakcije temne snovi z merilnimi aparaturami globoko pod zemljo
v Gran Sassu že vrsto let z neodvisnimi letnimi cikli z različnimi konfiguracijami
(DAMA/NaI, DAMA/LIBRA — faza1 in DAMA/LIBRA — faza2), ki potrju-
jejo letno modulacijo signalov temne snovi. V zadnji konfiguraciji je energijski prag
znižan pod 1 KeV. Nestrpno čakamo, da bodo drugi laboratoriji potrdili njihove
meritve.
Predlagana hipoteza o vsebini temne snovi nakazuje, da bi temno nov lahko ses-
tavljali skupki, podobni Thomsonovim atomom. To bi utegnilo pojasniti, zakaj
nobenemu drugemu eksperimentu doslej še ni uspelo potrditi rezultatov eksperi-
menta v Gran Sassu.
V prejšnjih zbornikih so bile obravnavane ideje, kako bi lahko pojasnili prisotnost
temne snovi tudi s skupki kvarkov in antikvarkov standardnega modela.
Teorija spin-charge-family, ki pojasnjuje obstoj družin, ocenjuje (med številnimi
drugimi napovedmi), da k temni snovi lahko prispevajo nevtralni skupki stabilnih
kvarkov pete družine.
V teh in prejšnjih zbornikih potekajo razprave, da temna snov, ki se kopiči v bliǐni
Zemlje, vpliva na Zemljino ionosfero in stratosfero.
V tem in prejšnjih zbornikih prispevki razložijo pojav druǐn in njihovih lastnosti z
modelom SU(3).
Dva prispevka poročata o napredku teorije spin-charge-family. Prvi prispevek pred-
stavi notranje prostore fermionov in bozonov z nilpotentnimi operatorji (ti so
superpozicije lihega števila operatorjev γa) in projekcijskimi operatorji (ti so su-
perpozicije sodega števila operatorjev γa). Produkti lihega števila nilpotentnih
operatorjev (preostali so projektorji) opisujejo notranji prostor fermionov, ki se
pojavljajo v družinah. Produkti sodega števila nilpotentnih operatorjev (preostali
so projektorji) opisujejo notranji prostor bozonov. Obe vrsti imata enako število
notranjih stanj.
Drugi prispevek obravnava najnovejše dosežke teorije spin-charge-family z na-
menom raziskati, ali lahko razširitev na strune ali liho-dimenzionalne prostore
privede do nove vrste supersimetrije, ki bi omogočila, da bo teorija renormal-
izabilna in brez anomalij. Predpostavka, da so vsa fermionska in bozononska
polja aktivna le v prostoru d = (3 + 1), medtem ko notranji prostori zahtevajo
d = (13+ 1), poenostavi opis nastanka vesolja in interakcije med fermionskimi in
bozonskimi polji.
Avtor enega od prispevkov predstavi možnost izpeljave točnih izrazov za renor-
malizacijske konstante s pomočjo argumentov, temelječih na renormalizacijski
grupi.
Podanih je bilo nekaj predlogov za reševanje problema kozmične hierarhije (majh-
nosti temne energije).
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Avtorji so predstavili, kako uporabiti polja, podobna aksionom, za raziskavo
obnašanja prostor-časa v bližini domennih sten. Uporaba modelov, kot je zdruěvanje
primarnih črnih lukenj, pa bi lahko pomagala pri interpretaciji rezultatov eksperi-
mentov z gravitacijskimi valovi in drugih astronomskih opazovanj.
Prispevek o mikro-kvazarjih v naši galaksiji ponuja razlago nepričakovane in
presenetljive ponovne kolimacije curka žarkov v območju TeV z uporabo dobro
znanih modelov visokoenergijske jedrske fizike.
Ponujen je model ”popolne” geometrične slike posebne teorije relativnosti in
ustrezne nove Liejeve grupe v realnem prostoru.
V enem od prispevkov je prikazano, da se logaritem energij glede na dimenzijo,
povezano s številom q (ki se nanaša na dimenzije skal), obnaša kot premica.
Medtem ko teorija spin-charge-family trdi, da opis notranjih prostorov fermion-
skih in bozononskih polj s superpozicijo lihega (za fermione) oziroma sodega
(za bozone) produkta operatorjev γa ne le pojasnjuje, temveč tudi ponuja drugo
kvantizacijo fermionskih in bozononskih polj ter razlaga postulate druge kvanti-
zacije, pa je prispevek, ki kaže, da naključna dinamika ponuja prvi korak h kvantni
mehaniki.
Morda bomo prihodnje leto poročali o realističnem celičnem avtomatu, ki bi
ponudil ilustracije delcev na področju fizike osnovnih delcev. Letos smo prejeli le
povzetke.
Delavnice na Bledu so se po pandemiji covida spremenile: tri leta so bile skoraj v
celoti virtualne in zato manj odprte za nove ideje. Razprave, v katerih so morali
govorniki pojasnjevati in dokazovati vsak korak, je v virtualnih soočenjih mnogo
težje ponoviti.
Vendar številna vprašanja še vedno prekinjajo predstavitve, zato morajo preda-
vatelji pogosto nadaljevati predavanja v naslednjih dneh.
Tudi letos so bile predstavitve izvedene virtualno.
Mnoge predstavljene in razvite ideje v tem zborniku morda niso skladne z drugimi
idejami, predstavljenimi v istem zborniku. Vendar pa lahko različne ideje, če
so matematično in idejno korektne in razvite na dosleden način, pomagajo pri
razumevanju problemov, povezanih z meritvami in opazovanji, ki lahko edine
potrdijo gradnike snovi in stanje zakonov v našem vesolju.
Ko pogledamo zbirko odprtih vprašanj, ki smo si jih zastavili pred začetkom
Blejskih delavnic in jih nenehno dopolnjevali na vsaki delavnici, ugotovimo, da
ves čas iščemo odgovor na temeljna vprašanja: Kako pojasniti vse predpostavke
obeh standardnih modelov na enoten način – s fermionskimi in bozonskimi polji
v drugi kvantizaciji – kar bi omogočilo razumevanje dosežkov prve kvantizacije
do zdaj, pa tudi klasičnih zakonov.
Mnoga predavanja so ”nenavadna”, saj iščejo nov, drugačen način kako opisati to
kar izmerimo in opazimo.

Letos so se organizatorji ponovno obrnili na Univerzo v Ljubljani za pomoč pri
urejanju DOI številke za zbornik.
Čeprav Društvo matematikov, fizikov in astronomov Slovenije ostaja naš orga-
nizator, za kar smo zelo hvaležni, je Fakulteta za matematiko in fiziko skupaj z
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Univerzo v Ljubljani prevzela vlogo založnika. Tehnični postopek je zdaj drugačen,
možnost, da udeleženci pošljejo prispevke ”zadnji trenutek”, pa je manj dostopna.
Kar nekaj udeležencem ni uspelo pravočasno poslati svojih prispevkov. Objavl-
jamo le izvlečke tistih, ki so pravočasno poslali vsaj povzetke. Njihovi prispevki
bodo objavljeni prihodnje leto, če bodo to želeli. Enako velja za prispevke, katerih
niti povzetki niso prispeli pravočasno. Od julija do novembra je namreč kratko
obdobje, saj to obdobje vključuje počitnice.
Organizatorji se zahvaljujejo vsem udeležencem za živahne predstavitve in razprave
ter odlično delovno vzdušje, čeprav je večina udeležencev sodelovala virtualno,
za kar je poskrbel Maksim Khlopov.
Bralec lahko najde vsa predavanja in kmalu tudi celoten zbornik na uradni spletni
strani delavnice
http://bsm.fmf.uni-lj.si/bled2024bsm/presentations.html,
and on the Cosmovia Forum https://bit.ly/bled2024bsm ..

Norma Mankoč Borštnik, Holger Bech Nielsen,
Maxim Khlopov, Astri Kleppe Ljubljana, december 2024
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1 Status of DAMA/LIBRA–phase2 and its
empowered stage
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2Dipartimento Ingegneria Civile e Informatica, Università di Roma “Tor Vergata”, INFN
sezione di Roma, “Tor Vergata”, I-00133 Rome, Italy
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4Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese
Academy of Sciences, Beijing 100049, P.R. China
5University of Jinggangshan, Ji’an, Jiangxi, P.R. China

Abstract. The model-independent annual modulation effect measured by DAMA deep
underground at Gran Sasso National Laboratory with different experimental configu-
rations is summarized; the evidence of a signal that meets all the requirements of the
model-independent Dark Matter annual modulation signature at high C.L. has been con-
firmed over many independent annual cycles with various configurations (DAMA/NaI,
DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2; full exposure is 2.86 ton × yr). The
DAMA/LIBRA–phase2–empowered configuration has then put in operation with an even
lower software energy threshold. As in the plans, the experiment will complete all data
takings at fall 2024. The DAMA project has also realized many measurements to investigate
various other rare processes.

Povzetek: Avtorji predstavijo dolgoletene meritve letnih modulacij signala, ki ga meri
experiment DAMA v laboratoriju Gran Sasso National Laboratory globoko pod zemljo. Da
gre za signale letne modulacije temne snovi, ki izpolnjujejo vse zahteve modelno neodvisnih
meritev, potrjujejo meritve z različnimi eksperimentalnimi konfiguracijami (DAMA/NaI,
DAMA/LIBRA–
faza 1 in DAMA/LIBRA–faza 2; s skupno izpostavljenostjo 2,86 ton × leto). Pri zadnji
konfiguraciji, DAMA/LIBRA–faza 2, je bil energetski prag znižan pod 1 KeV. Načrtovano
je bilo, da bo eksperiment zaključen jeseni 2024. Projekt DAMA je izvedel številne meritve
tudi drugih redkih procesov.

1.1 Introduction

The DAMA project [1] was proposed in 1990 as a pioneer in the field of Dark
Matter (DM) direct investigation with the aim to realize large mass set-ups (highly
radio-pure NaI(Tl) and liquid Xenon) mainly dedicated to the direct detection of

⋆⋆ e-mail: rita.bernabei@roma2.infn.it
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DM particles in the galactic halo by exploiting the model-independent DM signa-
ture (suggested in the middle of the ’80 by Ref. [2, 3]). Many other measurements
on various rare processes have also been carried along the DAMA project living
time [4]. In particular, the pioneer DAMA/NaI experiment (≃ 100 kg of highly ra-
diopure NaI(Tl) in a multi-ton multi-component shield) [8] ran deep underground
in the Gran Sasso National Laboratory (LNGS) of INFN until 2002 investigating as
first the DM signature with suitable exposed mass, sensitivity and control of the
running parameters [4, 6, 8]. After several years of new developments, at fall 2002
the experimental site as well as many components of the installation were imple-
mented [7] and the new DAMA/LIBRA(–phase1) experimental set-up (about 250
kg of highly radiopure NaI(Tl)) was installed; all the procedures were performed
in high purity (HP) Nitrogen atmosphere, and the detectors have also continuously
maintained in such an atmosphere in all the operations since then. That configura-
tion has been upgraded at the end of 2010 in DAMA/LIBRA–phase2 by replacing
all the PMTs with new ones having higher quantum efficiency (i.e. lowering the
software energy threshold of the experiment). For many experimental details see
in Ref. [8, 9]. After a period of commissioning, this set-up began data collection; at
the end of 2012 new preamplifiers and special developed trigger modules were
installed, and the apparatus was equipped with more compact electronic modules.
For our setups the details of the experimental aspects which are always important
and specify the difference among experiments claimed similar, can be found in
published papers and documents. Many model-independent results and related
corollary analyses have been published [4, 10, 11]. More recently, after studies
and tests to lower the software energy threshold below 1 keV, all the PMTs have
been equipped with new low-background voltage dividers with pre-amps on the
same board and new Transient Digitizers (TD) with higher vertical resolution
(14 bits). This new configuration, named DAMA/LIBRA–phase2–empowered,
is in measurements since December 1, 2021 and data collection is planned to be
completed at fall 2024.
It is worthy to remind that the largely model-independent DM annual modulation
signature is related to the Earth’s motion with respect to the DM particles of the
Galactic Dark Halo. In fact, as a consequence of the Earth’s revolution around
the Sun, which is moving in the Galaxy with respect to the Local Standard of
Rest towards the star Vega near the constellation of Hercules, the Earth should
be crossed by a larger flux of DM particles around ≃ 2 June and by a smaller one
around ≃ 2 December (in the first case the Earth orbital velocity is summed to
that of the solar system with respect to the Galaxy, while in the other one the two
velocities are subtracted). This DM signature depends on Earth’s and DM particles’
velocities and, thus, it has different origin and peculiarities than the seasons on
the Earth and than effects correlated with seasons (consider the expected value of
the phase as well as its other specific requirements) and it also does not depend
on the Earth hemisphere where it is measured.
We remind that this signature is very distinctive since the effect induced by DM
particles must simultaneously satisfy all the following requirements: the rate must
contain a component modulated according to a cosine function (1) with one–year
period (2) and a phase that peaks roughly ≃ 2 June (3); this modulation must only
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be found in a well-defined low energy range, where DM particle induced events
can be present (4); it must apply only to those events in which just one detector of
many actually “fires” (single-hit events), since the DM particle multi-interaction
probability is negligible (5); the modulation amplitude in the region of maximal
sensitivity must be 7% of the constant part of the signal for usually adopted
halo distributions (6), but it can be larger in case of some proposed scenarios
such as e.g. those in Ref. [12–16] (even up to ≃ 30%). This signature with its
many peculiarities allows the test of a wide range of parameters in many possible
astrophysical, nuclear and particle physics scenarios. It might be mimicked only
by systematic effects or side reactions able to account for the whole observed
modulation amplitude and to simultaneously satisfy all the requirements given
above. Finally, the NaI(Tl) target nuclei and procedures adopted by DAMA provide
sensitivity to large and low mass DM candidates inducing nuclear recoils and/or
electromagnetic signals.
For completeness, we note that the sensitivity of the DM annual modulation
signature depends – apart from the counting rate – on the product: ϵ× ∆E×M×
T × (α−β2), thus increasing either the detection efficiency, ϵ, or the measurement
time, T , or enlarging the energy interval, ∆E, is in practice equivalent to increase
the exposed massM; (α−β2) ≃ 0.5 is the squared cosine averaged over the period
where the data taking is active. Therefore, the followed strategy along the DAMA
project was to pursue an increasing of the experimental sensitivity.

1.2 Short summary on results on DM annual modulation results

The data released so far by DAMA/NaI, DAMA/LIBRA–phase1 and DAMA/LIBRA–
phase2 have been analyzed with many different and independent analysis strate-
gies, obtaining always consistent results. Any possible systematics or side pro-
cesses able to mimic the exploited signature has been excluded, both because
neither quantitatively significant amplitude can be given nor simultaneous satis-
faction of all the specific requirements of the signature. Details on the data and
the analyses can be found in the wide DAMA literature (see e.g. [4, 10, 11] and refs
therein). Here we recall just few points.
As first in Fig. 1.1-top: the (2 – 6) keV residual rates of the single-hit scintillation
events for the data released so far by the former DAMA/NaI, by DAMA/LIBRA–
phase1 and by DAMA/LIBRA–phase2 (total exposure 2.86 ton × yr) are shown.
The function A cosω(t− t0) was used to fit the data taking into account a period
T = 2π

ω
= 1 yr and a phase t0 = 152.5 day (June 2nd) as predicted by the

DM annual modulation signature. The obtained χ2/d.o.f. is 130/155 and the
modulation amplitude is A = (0.00996 ± 0.00074) cpd/kg/keV. Fig. 1.1-bottom
shows instead the experimental residual rate of the single-hit scintillation events
measured by DAMA/LIBRA–phase2 (having lower software energy threshold) in
the (1 – 6) keV energy intervals as a function of the time.
A further relevant investigation on the data has been performed by applying the
same hardware and software procedures, used to acquire and to analyze the single-
hit residual rate, to the multiple-hit one. Since the probability that a DM particle
interacts in more than one detector is negligible, a DM signal can be present just
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Fig. 1.1: Top: Experimental residual rate of the single-hit scintillation events mea-
sured by DAMA/NaI, DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 (total
exposure 2.86 ton × yr) in the (2 – 6) keV energy intervals as a function of the
time. The superimposed curve is the cosinusoidal functional forms A cosω(t− t0)

with a period T = 2π
ω

= 1 yr, a phase t0 = 152.5 day (June 2nd) and modula-
tion amplitude, A, equal to the central value obtained by best fit. Vertical dashed
lines indicate the expected maximum rate, while the dotted lines represent the
expected minimum rate. Bottom: Experimental residual rate of single-hit scintilla-
tion events measured by DAMA/LIBRA–phase2, which operates with a lower
software energy threshold, in the (1 – 6) keV energy range, shown as a function of
time.

in the single-hit residual rate. Thus, the comparison of the results of the single-hit
events with those of the multiple-hit ones corresponds to compare the cases of
DM particles beam-on and beam-off. This procedure also allows an additional
test of the background behaviour in the same energy interval where the positive
effect is observed. A clear modulation, satisfying all the peculiarities of the DM
annual modulation signature, is present in the single-hit events, while the fitted
modulation amplitude for the multiple-hit residual rate is well compatible with
zero (see e.g. Ref. [17]). Since the same identical hardware and the same identical
software procedures have been used to analyze the two classes of events, the
obtained result gives an additional support for the presence of a DM particle
component in the galactic halo. The single-hit residuals have also been investigated
by a Fourier analysis (see e.g. Ref. [18]). A clear peak corresponding to a period
of 1 year is evident in the low energy intervals; the same analysis in the (6 – 14)
keV energy region shows only aliasing peaks instead. Neither other structure at
different frequencies has been observed.
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The annual modulation present at low energy can also be pointed out by depict-
ing the energy dependence of the modulation amplitude, Sm(E), obtained by
maximum likelihood method considering fixed period and phase: T =1 yr and
t0 = 152.5 day. The modulation amplitudes for the whole data sets: DAMA/NaI,
DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 (total exposure 2.86 ton ×
yr) are plotted in Fig. 1.2; the data below 2 keV refer only to the DAMA/LIBRA–
phase2 exposure (1.53 ton × yr). It can be inferred that positive signal is present in
the (1 – 6) keV energy interval (a new data point below 1 keV has been added as
mentioned in the caption), while Sm values compatible with zero are present just
above.
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Fig. 1.2: Modulation amplitudes, Sm, as function of the energy for the whole
data sets: DAMA/NaI, DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 (total
exposure 2.86 ton×yr) above 2 keV; in the bin (1 – 2) keV only the DAMA/LIBRA-
phase2 exposure (1.53 ton × yr) is available and used, while the first lowest energy
point has been obtained by a cautious re-analysis with specific dedicated efficiency
analysis there. A clear modulation is present in the lowest energy region, while
Sm values compatible with zero are present just above.

It has also been verified that the observed annual modulation effect is well dis-
tributed in all the 25 detectors.
It is worth noting that in all the analyses, when releasing the period and phase,
values consistent with those expectations are obtained.
In particular, in Fig. 1.3 the results obtained with the same exposure of 2.86 ton ×
yr, when adopting in the maximum likelihood analysis of the single-hit events the
most general expression for the signal component (i.e. releasing the assumption of
a phase value t0 = 152.5 day):

Si(E) = S0(E) + Sm(E) cosω(ti − t0) + Zm(E) sinω(ti − t0) (1.1)

= S0(E) + Ym(E) cosω(ti − t
∗)

are shown.
For signals induced by DM particles, one would have: i) Zm ∼ 0 (because of
the orthogonality between the cosine and the sine functions); ii) Sm ≃ Ym; iii)
t∗ ≃ t0 = 152.5 day. In fact, these conditions hold for most of the dark halo models;
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however, as mentioned above, slight differences can be expected in case of possible
contributions from non-thermalized DM components.
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Fig. 1.3: 2σ contours in the plane (Sm, Zm) (left) and in the plane (Ym, t
∗) (right)

for: i) DAMA/NaI, DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 in the
(2 – 6) keV and (6 – 14) keV energy intervals (light areas, green on-line); ii) only
DAMA/LIBRA–phase2 in the (1 – 6) keV energy interval (dark areas, blue on-
line). The contours have been obtained by the maximum likelihood method. A
modulation amplitude is present in the lower energy intervals and the phase
agrees with that expected for DM induced signals.

As shown in Fig. 1.3 a clear modulation is present in the lower energy intervals
and the phase agrees with that expected for DM signal while such a modulation is
absent just above.
Among further additional analyses the modulation amplitudes separately for the
nine inner detectors and the external ones have been studied for DAMA/LIBRA–
phase1 and DAMA/LIBRA–phase2, as already done for the other data sets [11,
17–24]. The obtained values are fully in agreement showing that the effect is also
well shared between inner and outer detectors. Moreover, to test the hypothesis
that the modulation amplitudes calculated for each DAMA/LIBRA–phase1 and
DAMA/LIBRA–phase2 annual cycle are compatible and normally fluctuating
around their mean values, the χ2 test and the run test have been used; this analysis
has confirmed that the data collected in all the annual cycles with DAMA/LIBRA–
phase1 and –phase2 are statistically compatible and can be considered together
[11].
We invite the reader to see details and other kind of different and independent
analyses of the data in the DAMA literature [4] and, in particular, in [10, 11] and
Refs. therein.
No systematic or side processes able to mimic the signature, i.e. able to simul-
taneously satisfy all the many peculiarities of the signature and to account for
the whole measured modulation amplitude, has been found or suggested by any-
one throughout some decades thus far (for details see e.g. Ref. [6–9, 11, 17–28]).
In particular, arguments related to any possible role of some natural periodical
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phenomena have been discussed and quantitatively demonstrated to be unable
to mimic the signature (see references; e.g. Refs. [26, 27]). Thus, on the basis of
the exploited signature, the model independent DAMA results give evidence
at 13.7σ C.L. (over 22 independent annual cycles and in various experimental
configurations) for the presence of DM particles in the galactic halo.
The DAMA model independent evidence is compatible with a wide set of astro-
physical, nuclear and particle physics scenarios for high and low mass candidates
inducing nuclear recoil and/or electromagnetic radiation, as also shown in various
literature. Moreover, both the negative results and all the possible positive hints,
achieved so-far in the field, can be compatible with the DAMA model independent
DM annual modulation results in many scenarios considering also the existing
experimental and theoretical uncertainties; the same holds for indirect approaches.
For a discussion see e.g. Ref. [17, 18] and Refs. therein. Here we just mention the
model of Ref. [29] based on the assumption of the existence of a low-energy bound
state of dark atoms and nuclei while also considering the self-consistent influence
of nuclear attraction and Coulomb repulsion, discussed – at various extent – in
this series of Bled conferences.
It is worthy to note that in complete model-dependent corollary analyses, the
estimate of the upper limit on the signal component in the measured rate (see e.g.
in Ref. [10]) has obviously to be considered as a prior.

1.3 Few arguments about the analysis procedure

As reported several times along the years [11,17–24], the data taking of each annual
cycle in DAMA/LIBRA starts before the expected minimum of the DM signal
(about 2 December) and ends after its expected maximum (about 2 June). Thus,
adopting in the data analysis a constant background evaluated within each annual
cycle, any possible decay of long–term–living isotopes cannot mimic a DM positive
signal with all its peculiarities. On the contrary, it may only lead to underestimate
the DM annual modulation amplitude, depending on the radio-purity of the
set-up.
Despite this obvious fact, Refs. [30, 31] claim that the DAMA annual modulation
result might be mimicked by the adopted analysis procedure. Detailed analyses
on this argument have already been reported in Ref. [17], confuting these claims
quantitatively, even considering the case of a rate at low energy in DAMA/LIBRA
with odd behavior, increasing with time.
More recently, since Ref. [31] claims that an annual modulation in the COSINE–100
data can appear if they use an analysis method somehow similar to DAMA/LIBRA.
However, as expected from the rate of COSINE–100 that is very–decreasing with
time and from what mentioned above, the authors obtain a modulation with
reverse phase [31]; this corresponds, when fixing the phase to t0 = 152.5 day,
to NEGATIVE modulation amplitudes, as expected by the elementary considera-
tions reported before. This artificial effect has no way to mimic the observed DM
signature with its peculiarity.
Thus, while the appearance of modulation with NEGATIVE amplitudes is due to
the peculiar behavior of the COSINE–100 rate very–decreasing with time, this is
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not the case of DAMA/LIBRA. In particular, the DAMA/LIBRA NaI(Tl) detectors
are not the “same” as those of COSINE–100, since e.g. they were grown starting
from different powders, using different purification, growing procedures and
protocols; they have been stored underground since decades, they have different
quenching factors for alpha’s and nuclear recoils (i.e. nominally equal interval in
keV electron equivalent corresponds to different energy interval in keV of nuclear
recoil), etc. Thus, they have well different residual contaminations and features1

as well as different electronics and all other details of the experimental set-up and
procedures, the storage underground, etc.
Moreover, the stability with time of the running parameters of each DAMA/LIBRA
annual cycle is reported e.g. in Refs. [11, 17–24]. As regards the odd idea that the
low-energy rate in DAMA/LIBRA might increase with time due to spill out of
noise [31], we just recall two facts that rule out this possibility: 1) the stability
with time of noise, reported in several papers [11, 17–24]; 2) the estimate of the
remaining noise tail after the noise rejection procedure ≪ 1% [8].
Finally, the arguments of Ref. [17] already showed that any possible effect in
DAMA/LIBRA due to either long–term time–varying background or odd behavior
of the rate, increasing with time, is negligible. Here we just recall:

• The (2 – 6) keV single-hit residual rates have been recalculated considering
a possible time–varying background. They provide modulation amplitude,
fitted period and phase well compatible with those obtained in the original
analysis, showing that the effect of long–term time–varying background – if
any – is marginal [17].

• Any possible long–term time–varying background would also induce a fake
modulation amplitudes (Σ) on the tail of the Sm distribution above the energy
region where the signal has been observed. The analysis in Ref. [17] shows
that | Σ |< 1.5 × 10−3 cpd/kg/keV. Thus, taking into account that the ob-
served single-hit annual modulation amplitude at low energy is order of 10−2

cpd/kg/keV, any possible effect of long–term time–varying background – if
any – is marginal [17].

• The maximum likelihood analysis has been repeated including a linear term
decreasing with time. The obtained Sm averaged over the low energy interval
are compared with those obtained in the original analysis, showing that their
differences are well below the statistical errors [17].

• The behaviour of the multiple-hit events, where no modulation has been found
[11, 17] in the same energy region where the annual modulation is present in
the single-hit events, strongly disfavours the hypothesis that the counting rate
has significant long–term time–varying contributions.

• The last three published years of DAMA/LIBRA–phase2 (in which there
was continuity between one year and the next) were analyzed considering
the same background (w/ and w/o any slope). This detailed analysis has
been reported in this Conference; here we summarize it showing in Fig. 1.4

1 The DAMA/LIBRA set-up had some upgrades – one of them is that from phase1 to phase2
to lower the software energy threshold – also acting to improve the signal/background
ratio.
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the comparison between the modulation amplitudes, Sm, obtained with the
whole data set: DAMA/NaI, DAMA/LIBRA–phase1 and DAMA/LIBRA–
phase2 (total exposure 2.86 ton×yr) and with the last three published years
of DAMA/LIBRA–phase2 analyzed considering the same background. The
modulation amplitudes of the two data sets are compatible, implying that
any effect of long–term time–varying background or odd low-energy rate
increasing with time is negligible in DAMA/LIBRA, thanks to the radiopurity
and long-time underground of the ULB DAMA/LIBRA NaI(Tl). Thus, the
original DAMA analyses can be safely adopted.

Fig. 1.4: Comparison between the modulation amplitudes, Sm, for the whole
data set (open circles): DAMA/NaI, DAMA/LIBRA–phase1 and DAMA/LIBRA–
phase2 (total exposure 2.86 ton×yr) and for the data set (black circles) of the last
three published years of DAMA/LIBRA–phase2 (in which there was continuity
between one year and the next) analyzed considering the same background, see
text. The modulation amplitudes of the two data sets are compatible, implying
that any effect of long–term time–varying background or odd low-energy rate
increasing with time is negligible in DAMA/LIBRA, thanks to the radiopurity
and long-time underground of the ULB DAMA/LIBRA NaI(Tl). Thus, the original
DAMA analyses can be safely adopted.

Summarizing, the arguments of Ref. [17] and the analysis of the last three pub-
lished years of DAMA/LIBRA–phase2 already showed that any possible effect
in DAMA/ LIBRA due either to long–term time–varying background or to any
odd behavior of the rate, increasing with time, is negligible and the original analy-
ses, that assume a constant background within each annual cycle, can be safely
adopted. Similar conclusions were also reported in Ref. [32].

1.4 Running DAMA/LIBRA–phase2–empowered

In more recent years the DAMA collaboration has worked to further increase the
experimental sensitivity, to improve the measurement of the modulation parame-
ters (such as the phase, which brings important information), and to explore the
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Fig. 1.5: Data taking behaviour of DAMA/LIBRA–phase2–empowered; see text.

DM annual modulation signature at lower software energy threshold with high
overall efficiency (also improving the possibility to disentangle among different
possible scenarios).
After various R&D’s, a safer and cheaper solution has been adopted to improve
the signal over noise ratio in the lowest energy bins and, thus, to lower the soft-
ware energy threshold and to improve related quantities. In particular, new low-
background preamplifiers have been developed to realize a single device with
high signal/noise ratio, where the voltage divider and the preamplifier with minia-
turized selected components are integrated on the same low background board.
The main features of this new voltage divider plus preamplifier system are: i)
signal/noise: ≃ 3.0 – 9.0; ii) discrimination of single photoelectron from electronic
noise: 3 – 8; iii) peak to valley ratio: 4.7 – 11.6; iv) residual radioactivity lower than
that of single PMT. Further relevant improvements arise from improvements in
the electronic chain; in particular, all the Transient Digitizers were substituted with
new ones having higher vertical resolution (14 bits).
The DAMA/LIBRA–phase2 set-up was upgraded during fall 2021, and the data
taking in this new configuration, identified as DAMA/LIBRA–phase2–empowered,
started on Dec, 1 2021. The operational features are very stable; in particular, the
baseline fluctuations are more than a factor two lower than those of the previous
configuration and the RMS of the baseline distributions is around 150 µV, ranging
between 110 and 190 µV. The software Trigger Level (STL) is decreased in the
offline analysis. The “noise” events near software energy threshold due to single
photoelectron have evident different structures than the scintillation pulses with
the same energy, and this feature is used to discriminate them. DAMA/LIBRA–
phase2–empowered is planned to continuously run up to fall 2024; for example,
up to July 2024 (see Fig. 1.5) about 0.558 ton × yr exposure has been collected with
(α - β2) ≃ 0.501. In the same period, about 7.75 × 107 events have been collected
from sources for energy calibration and about 4.35 × 107 events (≃ 1.74 × 106

events/keV) for determining the acceptance window efficiency for all the crystals.
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Just few examples of the quality of the data taking are shown in Fig. 1.6 where the
stability of the counting rate and energy scale is given for some detectors (as the
other components of the set-up, always kept in High Purity Nitrogen atmosphere
and without exposure to neutron sources) in the region where both 210Pb and 129I
contribute and are dominant. There the data collected in the period December
2022 to December 2023 are divided in four time-intervals. As evident the energy
scale and the counting rate are well stable.

Fig. 1.6: Examples of the stability of the counting rate and energy scale of some
detectors in the energy region where both 210Pb and 129I contribute and are domi-
nant (as also the other components of DAMA set-ups, they have been always kept
in High Purity Nitrogen atmosphere and without exposure to neutron sources).
There the data collected in the period December 2022 to December 2023 are di-
vided in four time-intervals. As evident the energy scale and the counting rate are
well stable.

In addition, in Fig. 1.7-Left the distribution of the percentage variations (ϵtdcal) of
each low-energy energy scale factor (tdcalk) with respect to the value measured
in the previous calibration (tdcalk−1) from Dec 1, 2021 to Feb 23, 2023 is shown.
The Gaussian behaviour with σ = 0.3% assures that the low energy calibration
factor for each detector is known with an uncertainty << 1% during the data
taking periods implying a maximum relative contribution to annual modulation
amplitude < (1 − −2) × 10−4 cpd/kg/keV. Thus, no quantitatively significant
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energy scale variation is present: moreover, in every case, that cannot mimic the
exploited DM signature also failing some of the requirements.

Fig. 1.7: Left: Measured distribution of the percentage variations (ϵtdcal) of each
low-energy energy scale factor (tdcalk ) with respect to the value measured in the
previous calibration (tdcalk−1) from Dec 1, 2021 to Feb 23, 2023; see text. Right:
Measured distribution of the percentage variations of the R90 integral rate for the
data taken from Dec 1, 2021 to Feb 23, 2023; see text.

Finally, in Fig. 1.7-Right the stability of the overall background above 90 keV is
shown for the same data by studying the integral rate at higher energy (above 90
keV), R90. In particular, there is shown the R90 percentage variations with respect
to their mean values for single crystal. Fitting the behaviour with time, adding a
term modulated with period and phase as expected for DM particles, an amplitude
Amod = (0.04 ± 0.11) cpd/kg is found, well consistent with zero. Note that, if a
modulation would be present in the whole energy spectrum at the level found in
the lowest energy region by previous configurations, a R90 of tens cpd/kg would
be present, i.e about 100 σ far away from the measured value.

1.5 ..and more

For completeness we mention that other complementary strategies already pur-
sued – at some extent – by DAMA are still promising when analysing data corre-
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sponding to sensitivities larger than the previously published one. In particular,
the investigation of the DM diurnal modulation, already studied with the data
of DAMA/LIBRA–phase1 [33]. In fact, a DM diurnal modulation with sidereal
time is expected because of Earth rotation; this is a second order effect and thus
difficult to point out since very important sensitivity and overall experimental
stability are required, much more than e.g. those needed for DM annual modula-
tion investigations. An important aspect is that the ratio Rdy of the diurnal over
annual modulation amplitude is a model independent constant at a given latitude;
at LNGS latitude Rdy ≃ 0.016, the expected period in sidereal time is 24 h and the
phase is 14 h.
Another interesting effect has been preliminarily investigated with the same set
of data searching for possible Earth shadowing effect [34]. This effect could be
expected for DM candidate particles inducing just nuclear recoils and only for
candidates with high cross-section with ordinary matter (i.e. low DM local density).
In such a case a variation of the measured DM rate could be expected during the
day because of the different Earth thickness crossed by the DM particle to reach
the experimental set-up deep underground. Those DM candidate particles lose
their energy crossing the Earth and the DM velocity distribution, observed in the
laboratory frame, is modified as function of time. In this scenario, suitable analysis
strategies can allow to disentangle the DM local density and the cross section as
well as to add constraints for those DM candidates.
Moreover, DAMA has suggested in 1992 the use of anisotropic scintillators to
investigate the directionality approach to investigate the presence of DM candi-
dates inducing just nuclear recoils by exploiting the non-isotropic nuclear recoil
distribution correlated to the Earth motion in the galactic frame. The idea has
been subsequently further developed [35, 36] focusing more recently the ZnWO4
scintillators as the more suitable one for the purpose [37]. In fact, the light output
and the pulse shape of ZnWO4 for highly ionizing particles (as nuclear recoils)
depend on the direction with respect to the crystal axes and both anisotropic
features can provide two independent ways to exploit this approach. Moreover, no
anisotropy is present for electromagnetic signals. Many developments have then
been carried out and published since then (see in [4]), including measurements of
quenching factors both for α and recoiling nuclei [38]. The anisotropy for nuclear
recoils were established for the first time at 5.4 σ [38].
Finally, looking very forward, we remind the suggestion in Ref. [10] to exploit the
DM annual modulation on other celestial body and, in particular, on Mars where
the expected DM annual modulation would have period TM = 668.6 Sols, phase
≃ 354 Sols in the Mars calendar and an amplitude ≃ 5% (i.e. the Sm/S0 value)
for usually adopted halo distributions (Mars parameters evaluated by Starlink
Project).

1.6 Conclusions

DAMA has been a pioneer project in the direct detection of Dark Matter, obtaining
the first model-independent evidence for the presence of a particle component
of the Dark Matter particles in the galactic halo on the basis of the exploited DM
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annual modulation signature with various experimental configurations. Three
independent experimental set-ups have confirmed the presence of a peculiar an-
nual modulation of the single–hit events in the energy region (2 – 6) keV, that
meets all the many requirements of the DM annual modulation signature; the
cumulative exposure, considering them all together is 2.86 tons × yr (over 22
independent annual cycles and with different experimental configurations). No
systematic or side processes able to account for the observed signal are available.
Similar result has also been obtained when lowering the software energy thresh-
old down to 1 keV in DAMA/LIBRA-phase2. Corollary investigations on the
nature of the DM particle(s) in given scenarios have been performed by corollary
model-dependent analyses. Various models and parameters (experimental and
theoretical) are possible, and many hypotheses have to be considered.
For completeness, we remind that preliminarily to DAMA/LIBRA–phase2–empowered,
particular efforts for lowering the software energy threshold have been done in the
already-published data of DAMA/LIBRA–phase2 by using the same technique as
before with dedicated studies on the efficiencies, obtaining modulation amplitude
as a function of energy down to 0.75 keV; the peculiar modulation has also been
observed below 1 keV [11].
Finally, DAMA/LIBRA–phase2–empowered was realized and put in operation
to lower the software energy threshold below 1 keV with suitable acceptance
efficiency in order to further increase the experimental sensitivity and to better
disentangle some of the many possible astrophysical, nuclear and particle physics
scenarios in the investigation on the DM candidate particles. It is planned to collect
data until fall 2024.
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Abstract. The dark atoms XHe are the composite Thomson like atomic dark matter candi-
dates. We address two cosmological problems of this model. The excess of new superheavy
particles with even negative charge X−2n over the corresponding antiparticles is balanced
by sphaleron transitions with baryon asymmetry and the mass range of X particles should
be specified at which this excess can provide dominance of dark atoms in the dark matter
density. The other problem is possible capture of light nuclei by dark atoms, which can
lead to formation of anomalous isotopes. The possibility of formation of multi dark atom
systems at the nucleosynthesis stage is also studied. We approach these open questions of
dark atom cosmology in the present work.

Povzetek: Temni atomi XHe so kandidati za temno snov v obliki Thomsonovih atom-
skih struktur. Obravnavamo različne lastnosti tega modela: Presežek supertežkih delcev
z enakomernim negativnim nabojem X − 2n glede na ustrezne antidelce uravnotežimo
s sfaleronskimi prehodi z barionsko asimetrijo, maso delcev X pa določimo tako, da je
XHe v temni snovi dominanten. Če temni atomi ujamejo lahka jedra, pride do nastanka
nenavadnih izotopov. Lahko pa se zgodi tudi, da pri nukleosintezi nastanejo skupki večjega
števila temnih atomov XHe.

2.1 Introduction

The modern cosmological paradigm involves dark matter (DM). Its existing is con-
firmed by numerous astrophysical observations: gravitational lensing, anisotropy
of the cosmic microwave background and the behavior of galaxies. The theoretical
study of cosmological large-scale structures formation also requires to introduce
new stable forms of non-relativistic non-baryonic matter.
The nature of DM particles is determined by physics beyond the Standard Model
(SM). It was shown that new states could have only even negative electric charge
to fulfill the constraints on anomalous isotopes concentration [1]. In that scenario
the DM density should be provided by the X-helium dark atoms X−2n(He+2)n,
which forms in two steps. At first of them the excess of heavy negatively charged
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particles X−2n over the corresponding antiparticles finally generates in sphaleron
transitions. The density of the DM could be balanced with the density of baryonic
matter [2–4]. In particular model the constraints on the mass of the new particles
can also be found if it is only one source of the DM. The second stage is the
formation of a bound state by capturing the light primordial nuclei.
However, the description of both steps should be clarified. The properties of
the sphaleron transitions are depends on a model significantly [5, 6]. Therefore
calculations with using the SM parameters could be considered only as the first
estimation. At the same time, the process of the bound state formation is well
described only for small values of charge [7, 8]. The serial capture of light nuclei
leads to the significant changes in the inner structure of the dark atom. Moreover,
such reactions have not been described yet. Also the possible interaction of two
bound states at early stages of Universe evaluation has not been studied. In
general case, to solve this problems, it is necessary to use the quantum description
of Thompson-like dark atoms, which is absent.
We approach these open questions of dark atom cosmology in the present work.
Section 2.2 provides a brief review of papers on the properties of sphaleron(s) in
models with heavy particle. The minimal Walking Technicolor (WTC) model is con-
sidered as an example. In section 2.3 the dark atom formation at nucleosynthesis
stage is discussed. The results are summarized in the Conclusion.

2.2 Sphaleron in WTC model

The static unstable solution of electroweak field equations in pure gauge theory
was originally found by Manton in 1983 [9] and called ”sphaleron” . It corresponds
to the saddle point at the top of the potential barrier separating topologically
nonequivalent vacuums in configuration space. Author pointed that sphaleron
arises as a consequence of the topology of the SU(2) group. The main properties
of the similar solution in the SM were considered in several papers throughout
the 90s [10–13]. There were found that

1. Only for non-physical values of the Higgs parameters, the existence of addi-
tional branches of sphaleron transitions are possible [10].

2. Sphaleron can be described with high accuracy using the spherically symmet-
ric ansatz [11]. Its physical energy should be ESph ≈ 9.1TeV.

The further study has shown that both these statements can be violated by physics
beyond the SM. For instance, the existing of heavy fermions (with mass in order
of 1TeV) leads to a significant change in the sphaleron energy [13]. The additional
solution of field equations may arise as a consequence of a deformation of the
Higgs potential [6]. Such changes should affect baryosynthesis due to sphaleron
freezing out temperature T∗ decreases (or increases) [15]. Actually the predicted
ratio of DM and baryonic matter densities depends on the ratio mi

T∗
, where m is a

mass of ”i” type particle. It means that the resulting uncertainty in the temperature
value is insignificant and can be compensated by tuning unknown masses of heavy
species. However, it is also necessary to compare the shifted sphaleron freezing
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out temperature T∗ with the temperature of electroweak phase transition Tc. The
predictions may differ significantly for cases T∗ > Tc and T∗ < Tc [2–4, 16].
Therefore, the determination of the exact properties of sphaleron transitions is
needed to consider models suggesting the existence of dark atoms. This is es-
pecially true for the minimal WTC model which assumes both the new heavy
fermions and a modified Higgs potential [17–19]. Unfortunately, studying the
features of this SM extension involves some technical difficulties. Indeed, among
others the low energy effective WTC model predicts 19 new (pseudo)scalar fields,
which should be introduced into the system of equations. The problem is not only
in the number of additional degrees of freedom, but also in the fact that the effect
of spinless fields on the sphaleron solution has not yet been studied. All the same
can be said with respect to composite vector fields.
However, it can be expected that this approach will allow to find more precise
upper limits on the masses of heavy particles. Indeed, the height of the sphaleron
potential barrier significantly decreases if new fermions are too heavy. This con-
tradicts the absence of sphaleron transitions in modern experiments [20]. The
influence of additional branches of sphaleron transitions on cosmological evolu-
tion is less obvious and requires a particular case study.

2.3 Dark atom formation

The second step of the dark atom formation is serial capturing of light primordial
nuclei Ni by negatively charged heavy particles X−2n. The simplest possible
scenario assumes n = 2. In that case dark atom X−−He++, which is usually
denoted as OHe, can be considered as a Bohr-like bound state with energy

EBohr
OHe = 8α

2mHe ≈ 1.6MeV. (2.1)

It could easily estimated that O-helium is formed almost immediately after the
formation of helium during standard nucleosynthesis [7]. It is happens at temper-
atures T ∼ 1− 100 keV.
However, in general case n > 1 it is necessary to consider the much more compli-
cated scenario. Indeed, there are four types of processes are possible at nucleosyn-
thesis stage

N1 +N2 → N3 + γ/N4, (2.2)

X+N→ XN+ γ, (2.3)

XN1 +N2 → XN3 + γ/N4, (2.4)

XN1 + XN2 → X2N
3 + γ/N4. (2.5)

The first of them (2.2) describes the standard nuclear reactions. There are eleven
main processes that produce helium-4 and some heavier nuclei (isotopes of
lithium and beryllium) [14]. Reactions (2.3) are similar to the standard recom-
bination. In general case they produce negatively charged bound states (dark ions)
(XN)−2n+qN , which are burns in type (2.4) reactions. Unfortunately, this may lead
to overproduction of anomalous isotopes and/or primordial metals [8]. The last
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type processes (2.5) describes the merging of two dark ions into the molecule-like
bound state.
A correct description of nucleosynthesis in the presence of multicharged particles
requires to consider each step of the dark atom formation. First of all, it is necessary
to find the temperature when the (2.3) type reactions become possible. By analogy
with hydrogen recombination for non-relativistic equilibrium concentrations

nnow
i

(
T

Tnow

)3
= gi

(
miT

3
2

2π

)
e−

mi
T , (2.6)

the Saha equation [14] gives

Trec = EX−N


ln


gXgN
gXN

(
mNT

2
now

2πEX−N

) 3
2

1

nnow
N






−1

, (2.7)

where gi is the the number of spin degrees of freedom,mN is the mass of captured
light nucleus, nnow

N is its present concentration and EX−N is a binding energy for
the system ”heavy core plus nuclear shell” . The last one depends on the inner
structure of the dark ion.
For high values of the charge parameter n the ratio of nuclear and X−2n Bohr radii

a =
rN

rB
≈ ZXZN αmN r0A1/3N (2.8)

may have values higher than one. This means that composite particle has not
a Bohr, but Thomson structure (see Figure 2.1). Table 2.1 shows the results of

Fig. 2.1: Bohr-like (left) and Thompson-like (right) dark atoms

calculations of some XN bound states:

• B — all isotopes form Bohr-like particles;
• T — all isotopes form Thomson-like particles;
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• Number — the mass number of the lightest Thomson-like particle.

There was accepted r0 = 1.3 · 5GeV. It can be noted that almost all neutral and
positively charged states should have a Thomson structure, but hydrogen mostly
forms Bohr-type dark ions. This is consistent with the result of solving the two-
body Coulomb problem obtained in [8]. The predicted structure of transitional
states, which are indicated in the table by numbers, depends on value of r0. For
instance, OHe is Bohr-like dark atom if the values r0 ∼ (1.1 − 1.2) · 5GeV are
accepted.

n
A

——-— H He Li Be

1 B 4 3 T
2 4 3 T T
3 3 T T T
4 3 T T T
5 2 T T T

Table 2.1: The structure of the dark ions XN.

Therefore the Bohr energy

EBohr
X−N = 2n2Z2α2mN =

1

2mNr
2
B

. (2.9)

can be used in equation (2.7) only for hydrogen and helium (in case n = 1). To find
the binding energy of other bound states, the harmonic oscillator approximation
is often used in literature [7, 21, 22]. The Hamiltonian

H =


p2

2mN
−
ZXZNα

2rN

(
3−

r2

r2N

)
, r < rN

p2

2mN
−
ZXZNα

r
, r > rN

(2.10)

leads to the Thompson energy formula

E
Thompson
X−N =

3

2

ZXZNα

rN


1−

√
1

ZXZNαmNrN


 =

=
3

2

ZXZNα

rN


1−

√
rB

rN


 ,

(2.11)

which should be correct at region 2 < a <∞. For intermediate values (1 < a < 2)
it is proposed to find the binding energy variationally. The binding energy value of
Bohr-like states is higher than for Thomson-like dark ions. This can be qualitatively
explained by the compensation of Coulomb repulsion because of the spherical
symmetry of the Hamiltonian (2.10).
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Table 2.2 shows approximate values of dark ions recombination temperatures (start
of reactions (2.3)) calculated with equations (2.9) and (2.11). For the transitional
cases (D and 4He), only the boundary values are presented. The inner structure
of the bound states is specified by the corresponding letter in brackets. The result
depends weakly on the values of gX and gXN. Since helium-4 forms at temperature
T ≈ 65keV [14], there are two possible scenarios are predicted:

• For the n < 4, the helium capturing happens earlier than protons and/or
deuterium can be captured. Then, the excess of dark ions, (XHe)−2n+2, is
formed to start reactions (2.4).

• For n ≥ 4, hydrogen capturing becomes possible before the 4He formation.
Therefore, another branch of reactions (XH+N→ ...) is started. Such processes
lead to an additional danger of anomalous isotopes overproduction at later
stages of the dark atom formation. This may help to set limits on the maximum
charge of a heavy core.

Unfortunately, the temperature Trec for deuterium in case n = 5 can not be esti-
mated in this simple approach. Moreover, the drop in the energy value caused by
the change of the inner structure can lead to non-trivial consequences.

n
Trec, keV

— ——-— p D 3He 4He

1 3 (B) 4 (B) 28 (B) 37 (B) / 6 (T)
2 13 (B) 19 (B) ∼ 42 (T) 85 (T)
3 29 (B) 44 (B) ∼ 116 (T) 180 (T)
4 54 (B) 79 (B) ∼ 198 (T) 285 (T)
5 86 (B) ∼ 126 (B) / 17 (T) ∼ 286 (T) 395 (T)

Table 2.2: Recombination temperatures of the dark atoms

Since the standard reactions of nucleosynthesis and formation of dark atoms occur
at the same temperatures, the Saha equation becomes inapplicable. Indeed, it
requires that concentrations change only due to the expansion of the Universe,
which is not true in considered case. Therefore, to describe processes (2.3)-(2.5) it
is necessary to use the system of kinetic equations [23]

dni

dt
+ 3Hni =

∑
j,k

njnk ⟨σv⟩jki − ni
∑
j

nj ⟨σv⟩ij , (2.12)

where the energy-averaged cross sections ⟨σv⟩jki corresponds to 2→ 2 reactions
j+k→ i+l. Also it should be mentioned that produced in such processes ordinary
nuclei are not thermalized and should be described by additional equations

∂ϕNi
∂t

=
∑
j,k

njnk
d(σv)jkNi
dpNi

−ϕNi
∑
j

nj(σv)
Nij(pNi)−ϕNi

∑
j

∫
ϕNj(σv)

NiNjdpNj ,

(2.13)
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where it is defined
dnN

dpN
= ϕN(pN, t). (2.14)

Finally, reactions (2.4) and (2.5) may freeze out before the nucleosynthesis stops.
They are possible only if

nXN ⟨σv⟩ t > 1. (2.15)

For a simple estimation, it can be assumed that

nXN ≈ ρc

mXHe
Ωnow
DM

(
T

Tnow

)3
, (2.16)

where Ωnow
DM is the observable energy density of dark matter. Also it should be

taken into account that radiation dominates. Therefore

t =
3

4

mPl

T2

√
5

π3g∗
. (2.17)

Here mPl is the Plank mass and g∗ is a number of ultrarelativistic degrees of
freedom at the considered temperature [14]. For the non-relativistic particles ”i”

with the average thermal speed ⟨v⟩ =
√

8T
πmi

the condition (2.15) can be rewritten
as (energy is measured in GeV)

nXN ⟨σv⟩ t ≈ 3

2π2
ρcΩ

now
DMmPl σ

mXHeT3now

√
10 T3

g∗mi
≈

≈ 3 · 109 σ

mXN
√
mi
T
3
2 > 1.

(2.18)

If the cross section σ has a typical nuclear value

σ ∼ πr2XN ≈ 10−25 cm2 = 250GeV−2, (2.19)

then equation (2.18) predicts the similar scenario for both types of reactions. This
condition is fulfilled at high temperatures T ∼ 50− 100keV, but strongly violated
at T ∼ 1keV. The rate difference between the reactions of (2.4) and (2.5) types is
determined by the ratio of massesmXHe/mN. The production of dark molecules
should stop earlier then capturing of light nuclei. Moreover, if masses of heavy
particles is high enough (mX ∼ 10TeV), the formation of molecule-like states X2N
does not start.
The main source of inaccuracy in considered estimation is the value of cross section
(2.19). Its exact value is unknown for the most reactions therefore it is impossible
to make a correct prediction of the modified nucleosynthesis result.

2.4 Conclusion

The dark atoms XHe are the composite DM candidates. The cosmological con-
sequences of this model are studied pretty well for the simplest case when the
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heavy particles X are only doubly charged. However, the description of dark atom
formation is still incomplete. On the one hand, the predicted density of DM signif-
icantly depends on the properties of sphaleron transitions, which may change in
different extensions of the SM. On the other hand, the process of light nuclei serial
capturing has not been sufficiently studied.
To solve these two problems of considered model it is necessary to

• find the sphaleron solution of the field equations for the particular extension
of the SM and then to estimate the freezing out temperature of sphaleron
transitions;

• find the solution of the system of kinetic equations which describes the modi-
fied nucleosynthesis.

The computational complexity of such calculations is complemented by the lack
of an accurate quantum description of the Thompson-like dark atoms.
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Abstract. The hypothesis of composite XHe dark atoms may provide solution to the long-
standing problem of direct searches for dark matter particles. The main problem of the
XHe dark atom is its ability to strongly interact with the nucleus of substance, arising
from the unshielded nuclear attraction between the helium nucleus and the nucleus of
matter. It is assumed that in order to prevent the destruction of the bound structure of dark
atom, the effective potential of interaction between XHe and the nucleus of substance must
have dipole Coulomb barrier that prevents the fusion of dark matter atom particles with
the nucleus of substance. The problem in describing the interaction between dark atom
and substance nucleus is the three-body problem, for which an exact analytical solution is
not available. Consequently, to assess the physical meaning of the proposed scenario, it is
essential to develop a numerical approach. Our approach involves consistently developing
an accurate quantum mechanical description of this three-body system, comprising bound
dark atom and the external nucleus of substance. We incorporate the necessary effects
and interactions to enhance the precision of the results, which helps to elucidate the most
significant aspects of the proposed dark atom scenario.

Povzetek Hipoteza o skupkih temnih atomov XHe lahko ponudi razlago za dolgoletni
problem neposrednega iskanja delcev temne snovi. Ker temni atomi XHe močno interagi-
rajo z jedri običajne snovi, je možnost, da se zlijejo z njimi, velika. Da se to ne zgodi avtorji
predpostavijo, da zlitje prepreči dipolna Coulombova pregrada. Gre za problem treh delcev,
za katerega ni analitične rešitve. Avtorji so se lotili reševanja tega kvantnomehanskega
problema treh delcev numerično. V prispevku poročajo o dosežkih doslej.

Keywords: Dark atoms; composite dark matter; stable charged particles; ipole
coulomb barrier; effective interaction potential; XHe; X-helium
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3.1 X-helium dark atoms

The non-baryonic essence of dark matter suggests the existence of new stable
forms of non-relativistic matter that play the role of stable dark matter particles in
the universe. If dark matter is particle-based, it implies the presence of new stable
particles beyond the Standard Model. It has been proposed that such particles
may include stable, electrically charged particles [1–4]. This article discusses the
minimal walking technicolor (WTC) model, which introduces a novel perspective
on dark matter as a composite entity [5–7]. The WTC model suggests the exis-
tence of heavy fermions associated with new gauge interactions, and within this
framework, the Higgs boson is characterized by composite structure derived from
single scalar doublet. In the WTC model, the electric charge of stable, multicharged
particles remains undefined, yet stringent experimental constraints dictate that
these particles can only possess stable, negatively charged state of −2n [8,9], where
n is natural number. We denote these particles as X, with the specific case when X
has charge of −2 is denoted as O−−.
This article focuses on composite dark matter scenario in which hypothetical,
stable, heavy X−2n particles with lepton-like characteristics (i.e., without QCD
interactions or with highly suppressed QCD interactions) form neutral atom-like
states with n 4He nuclei of primary helium via usual electromagnetic Coulomb
binding. Such configurations are called XHe dark atoms, where X−2n particles
may exhibit lepton-like properties or represent unique combinations of heavy
quark new families, marked by weak interactions with hadrons [10].
The structural features of bound dark atom system are defined by parameter
a ≈ ZαZXαAαmpRnHe, with α denoting the fine-structure constant, ZX and Zα
are the charge numbers of the X particle and nHe nucleus, mp is the proton mass,
Aα is the mass number of nHe, and RnHe is the radius of the nHe nucleus. Here, a
signifies the ratio of the Bohr radius of the dark atom to the radius of the n-helium
nucleus. When the Bohr radius of the XHe atom is smaller than the radius of
n-helium nucleus, the dark atom resembles Thomson-like structure, otherwise, it
represents Bohr atom.
For values of a within 0 < a < 1, the XHe configuration aligns with Bohr atom
model, where the helium nucleus, approximated as point particle, orbits the
centrally positioned, negatively charged X particle. Conversely, for a values within
1 < a < ∞, the structure aligns with Thomson’s atomic model, where the not-
point-like helium nucleus oscillates around the heavier negatively charged X
particle, reflecting a more distributed atomic configuration.
The unique characteristics of dark atoms give rise to a ”warmer-than-cold dark
matter” scenario in the formation of large-scale structures, which, though requir-
ing additional exploration, aligns with data from precision cosmology [10]. The
relevance of this article is expressed by the need for further investigation into the
nuclear properties of dark atoms and the potential impacts of X-helium on nuclear
transformations. Understanding these interactions is crucial for quantifying the
role of dark atoms in primary cosmological nucleosynthesis, stellar evolution, and
other physical, astrophysical, and cosmological processes in the early universe [11].
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The varied results from direct dark matter detection experiments highlight the
complexities in interactions between dark matter particles and materials in un-
derground detectors. The X-helium hypothesis suggests that the formation of
low-energy bound states between dark atoms and nuclei in detector materials
could account for the positive findings of the DAMA/NaI and DAMA/LIBRA
experiments, which differ from the negative results observed in XENON100, LUX,
and CDMS [10, 12].
Due to the unscreened nuclear charge of dark atoms, the possibility of strong
nuclear interactions between XHe atoms and matter nuclei could disrupt the
bound state of dark atoms, potentially producing anomalous isotopes, whose
environmental abundance is highly constrained by experimental limits [8]. To
address this, the XHe hypothesis introduces a shallow potential well and a dipole
Coulomb barrier within the effective interaction potential between dark atoms
and nuclei, which prevents the fusion of nHe and X particles with ordinary matter
nuclei. This is crucial condition for the stability and viability of the X-helium
hypothesis.
Modeling the interaction between dark atoms and ordinary nuclei presents three-
body problem, lacking an exact analytical solution. Thus, to understand the physi-
cal implications of this scenario – defined by a dipole Coulomb barrier and shallow
well in the effective interaction potential – precise quantum mechanical numer-
ical model for this three-body system is being developed. The model aims to
reconstruct the effective interaction potential, allowing detailed analysis of the
properties and dynamics of the interactions between dark atoms, as composite
constituents of dark matter, and nuclei of ordinary matter.

3.2 The isolated dark atom system

It is well understood that dark atom, when exposed to an alternating electric field
from external nucleus, experiences the Stark effect, causing polarization of the
XHe atom. This polarization generates dipole Coulomb repulsion between the
dark atom and the nucleus, which, in turn, can lead to the establishment of bound
state between the X-helium and the nucleus of substance. This bound state arises
due to potential well that precedes the dipole Coulomb barrier in the total effective
interaction potential in XHe–nucleus system.
To reconstruct the effective interaction potential in the XHe–nucleus system with
accuracy, precise calculation of the Stark potential is crucial. This potential de-
termines the interaction between the polarized dark atom, functioning as XHe
dipole, and the charged heavy nucleus. The Stark potential significantly influences
both the depth of the potential well, which defines the low-energy bound state
between XHe and the nucleus of ordinary matter, and the height of the dipole
Coulomb barrier, which repels the dark atom from the nucleus and thus prevents
their fusion. To accomplish this, quantum mechanical calculations of the dark
atom’s dipole moment δ⃗ under the influence of an alternating external electric
field (via the Stark effect) are essential, as the Stark potential depends directly on
the dipole moment δ⃗ according to the relation:

USt = eZnHe(E⃗nuc · δ⃗), (3.1)
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where E⃗nuc denotes the strength of the external electric field generated by the
heavy charged nucleus of substance, and ZnHe represents the charge number of
the nHe nucleus.
In this article, we will examine the special case where the charge of the X particle
is -2, such that the X particle is O−− particle bound to 4He nucleus of primordial
helium, forming neutral OHe dark atom.
For accurate quantum mechanical calculation of the dipole moment of polarized
dark atom, it is necessary not only to obtain the helium wave functions in its
ground state within the OHe–nucleus system but also to determine the ground-
state wave function of helium within an isolated, non-polarized OHe dark atom.
Consequently, the initial step involves studying Ĥ0, the Hamiltonian operator of
isolated OHe dark atom, which is free from external influences. Using numerical
difference scheme, Ĥ0 is represented as a matrix, and its eigenvalues are computed
numerically. These eigenvalues yield the discrete energy levels of helium, EOHe,
within the isolatedOHe atom, while the eigenvectors corresponding to these states
represent the wave functions, Ψ, of helium in O-helium. This involves solving the
following one-dimensional Schrödinger equation:

Ĥ0Ψ(⃗r) = EOHeΨ(⃗r), (3.2)

or by presenting this expression in another form:

∆rΨ(⃗r) +
2mHe

h̄2

(
EOHe +

4e2

r

)
Ψ(⃗r) = 0, (3.3)

where r⃗ denotes the position vector of the helium nucleus,mHe refers to the mass
of the helium nucleus, and h̄ is the Planck constant. The coordinate system is
centered at the position of the O−− particle.
By numerically solving the one-dimensional Schrödinger equation (3.2) using
numerical difference scheme, with the helium radius vector range set to r =

|2.5 × 10−12 cm| and the number of iterations Niter = 2000, the first three
eigenvalues of the Hamiltonian operator, Ĥ0, were determined: E1,2,3num =

−1.585,−0.393,−0.042 MeV. Theoretical calculations for the first three energy lev-
els of helium in theO-helium dark atom yield E1,2,3OHe = −1.589,−0.397,−0.177 MeV
[22]. As observed, the first two calculated energy levels are consistent with the
theoretical values to the second decimal place. For the purposes of quantum
mechanical numerical calculation of the dipole moment of polarized OHe, it is
necessary to know only the wave function corresponding to the first, ground
energy level of helium within isolated O-helium atom.

3.3 Interaction potential of helium in the three-body
OHe-nucleus system

The three-body problem at hand involves three-body interaction within the XHe–
nucleus system. We focus on the particular case where the XHe dark atom resem-
bles hydrogen-like Bohr atom, namely O-helium. Here, the coordinate system has
its origin at the center of the O−− particle, which binds to the point-like helium
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nucleus via Coulomb forces, forming bound atomic system of composite dark
matter. The OHe dark atom is subjected to an inhomogeneous external electric
field generated by a third particle, namely, a nucleus characterized by charge num-
ber Znuc, neutron number Nnuc, and mass number A. This nucleus approaches
the dark atom gradually, engaging in both electromagnetic and strong nuclear
interactions.
The Hamiltonian for the point-like helium nucleus in the OHe – nucleus system
can be expressed as:

Ĥ = Ĥ0 + Û, (3.4)

where Ĥ0 represents the Hamiltonian of the isolated OHe dark atom, unaffected
by external forces, and Û corresponds to the interaction potential between helium
and the external nucleus of substance.
We define the vectors r⃗, R⃗OA, and R⃗HeA as follows: r⃗ represents the relative distance
vector between theO−− particle and the helium nucleus, R⃗OA is the position vector
of the external nucleus, and R⃗HeA denotes the vector pointing from the center of
the helium nucleus to the center of the external nucleus. These vectors are related
by the equation:

R⃗HeA = R⃗OA − r⃗. (3.5)

Next, let’s write down Ĥ0 and Û:

Ĥ0 = −
h̄2

2mHe
∆−

4e2

r
, (3.6)

Û = UCoulomb(|R⃗OA − r⃗|) +UNuc(|R⃗OA − r⃗|) +Urot(He−Na)
(|R⃗OA − r⃗|), (3.7)

here UNuc(|R⃗OA − r⃗|) signifies the nuclear interaction potential, formulated using
the Woods–Saxon potential.UCoulomb(|R⃗OA− r⃗|) describes the Coulomb potential
between the point-like helium nucleus and the not-point-like of the external
nucleus. The term Urot(He−Na) accounts for the centrifugal potential arising from
the interaction between helium and sodium nuclei.
The nuclear potential is calculated dependent on the spacing between the neutron
distribution surfaces of the interacting nuclei. Specifically, UNuc(|R⃗OA − r⃗|) is
defined by:

UNuc(|R⃗OA − r⃗|) = −
U0

1+ exp
(
|R⃗OA − r⃗|− RNnuc − RNHe

p

), (3.8)

where RNnuc and RNHe denote the root-mean-square radii of neutron distributions
in the heavy nucleus and helium, respectively, U0 is the depth of the potential
well (approximately 43 MeV for sodium), and p is the diffuseness parameter, set
to about 0.55 fm.
The radii RNnuc and RNHe are computed using the following expressions [14]:

RNnuc,He =

√
3

5
R20Nnuc,He +

7π2

5
a2Nnuc,He

√

1+
5b2nuc,He
4π

fm, (3.9)
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where bnuc,He denotes the deformation parameter for both the heavy nucleus
of the substance and the helium nucleus. For the sodium nucleus, this deforma-
tion parameter is assigned value of bNa = 0.447, while the helium nucleus is
considered spherically symmetric, giving it deformation parameter of zero. The
variable R0Nnuc,He represents the half-radius of the neutron distribution for both
the heavy nucleus of matter and the helium nucleus. This radius is calculated
based on the neutron number N and proton number Z of the respective nucleus
using the formula:

R0Nnuc,He = 0.953N
1/3
nuc,He + 0.015Znuc,He + 0.774 fm, (3.10)

and the parameter aNnuc,He is dimensional constant related to the proton and
neutron counts Z and N of respective nucleus, and it is determined according to
the following expression:

aNnuc,He = 0.446+ 0.072
Nnuc,He

Znuc,He
fm. (3.11)

The Coulomb interaction potential, UCoulomb(|R⃗OA − r⃗|), between the point-like
helium nucleus and the nucleus of heavy element, whose radius corresponds to
the root-mean-square radius of proton distribution Rpnuc , is given by:

UCoulomb(|R⃗OA − r⃗|) =


2e2Znuc

|R⃗OA − r⃗|
for |R⃗OA − r⃗| > Rpnuc ,

2e2Znuc

2Rpnuc

(
3−

|R⃗OA − r⃗|2

R2pnuc

)
for |R⃗OA − r⃗| <= Rpnuc ,

(3.12)
where the radius Rpnuc is defined according to the expression [14]:

Rpnuc =

√
3

5
R20pnuc +

7π2

5
a2pnuc

√

1+
5b2nuc

4π
fm, (3.13)

here, the parameter R0pnuc denotes the half-radius of the proton distribution
within the nucleus and is calculated as function of the charge number Znuc and
neutron number Nnuc for the heavy nucleus as follows:

R0pnuc = 1.322Z1/3nuc + 0.007Nnuc + 0.022 fm, (3.14)

the constant apnuc is dimensional parameter that also depends on the number of
protons and neutrons of the nucleus, expressed by the relation:

apnuc = 0.449+ 0.071
Znuc

Nnuc
fm. (3.15)

Urot(He−Na)
(|R⃗OA − r⃗|) is calculated by the formula (refer to formula 27 in [15]):

Urot(He−Na)
(|R⃗OA − r⃗|) =

h̄2c2J(He−Na)(J(He−Na) + 1)

2mHec2|R⃗OA − r⃗|2
, (3.16)
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in this context, J⃗(He−Na) represents the total angular momentum of the helium
and sodium nuclei in their interaction.
The total angular momentum of the helium-sodium interaction, J⃗(He−Na), is equal
to the intrinsic angular momentum of the sodium nucleus, I⃗Na = 3⃗/2. Since the
helium nucleus has intrinsic angular momentum of I⃗He = 0⃗ and because the
impact parameter of the sodium nucleus approaching the helium nucleus is zero,
the orbital angular momentum between the helium and sodium nuclei is also zero.
Thus, we obtain J⃗(He−Na) = 3⃗/2.
Accordingly, the Hamiltonian Ĥ for the helium nucleus within the OHe–nucleus
system is determined by the radius vectors r⃗ and R⃗OA. However, by setting R⃗OA
as fixed value and incrementally changing the external nucleus position (i.e., by
varying R⃗OA), set of Schrödinger equations dependent on r⃗ can be derived, each
equation corresponding to certain set position of the external nucleus relative to
the dark atom.
Thus, the Schrödinger equation to be solved takes the form:

ĤΨ(⃗r) = EΨ(⃗r), (3.17)

which, upon expanding Ĥ and applying relevant transformations, results in the
following expression:

∆Ψ(⃗r) +
2mHe

h̄2

(
E+

4e2

r
−UCoulomb(|R⃗OA − r⃗|) −UN(|R⃗OA − r⃗|)−

−Urot(He−Na)
(|R⃗OA − r⃗|)

)
Ψ(⃗r) = 0.

(3.18)

To numerically determine the eigenvalues of the Hamiltonian operator Ĥ, which
correspond to the energy levels of helium Ewithin the OHe–nucleus system for
each fixed position R⃗OA of the external nucleus, we approximate Ĥ using finite
difference operator in matrix form. This approach also allows the calculation of
the Hamiltonian’s eigenvectors, which represent the helium wave functions Ψ for
this system.
To achieve this, in addition to expressing the Laplace operator in matrix form, we
must construct the matrix representation of the interaction potential of the helium
nucleus within the OHe–nucleus system for each specific fixed value of R⃗OA:

UHe = −
4e2

r
+UCoulomb(|R⃗OA − r⃗|) +UN(|R⃗OA − r⃗|) +Urot(He−Na)

(|R⃗OA − r⃗|).

(3.19)
Figure 3.1 presents example of the reconstructed total interaction potential, UHe,
for helium within the OHe–Na system as function of the helium radius vector r⃗,
while keeping the radius vector R⃗OA of the external sodium nucleus fixed.
Figure 3.1 illustrates the Coulomb and nuclear interaction potentials between
the helium and sodium nuclei, also the centrifugal potential for helium–sodium
interaction at zero impact parameter,Urot(He−Na)

(|R⃗OA−r⃗|). Additionally, it shows
the Coulomb interaction potential between helium and theO−− particle, alongside
the total interaction potential for helium in the OHe–Na system.
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Fig. 3.1: Potentials of Coulomb (red dotted line), nuclear (green dotted line) and
centrifugal (green solid line) interaction between helium and the nucleus of Na,
the potential of Coulomb interaction between helium and O−− particle (black
dotted line) and the total interaction potential of the helium nucleus (blue dotted
line) in the OHe–Na system at fixed R⃗OA. The red circle marks the value of the
radius of the He nucleus. Original authors’ figure taken from [22].

Thus, the quantum mechanical numerical approach to solving the three-body
problem in the OHe–nucleus system involves resolving the Schrödinger equation
for the helium nucleus within the OHe–nucleus framework for each fixed external
nucleus position, R⃗OA. This requires expressing the Hamiltonian of the helium nu-
cleus in matrix form and performing numerical calculations of its eigenvalues and
eigenvectors, which represent the energy levels and wave functions (Ψ-functions)
of helium in the OHe–nucleus system, respectively.

3.4 Calculation of the dipole moment values of polarized dark
atom

When external nucleus is not present, the dark matter atom remains unpolarized,
with the helium energy level in the ground state of OHe around 1.6 MeV. How-
ever, as an external nucleus approaches, the varying electric field from this heavy
nucleus induces the Stark effect, causing polarization of the dark atom. Conse-
quently, OHe develops non-zero dipole moment and begins to interact with the
external nucleus as dipole. This interaction can be described by the Stark potential,
as shown in Equation (3.1). According to the dark atom model, dipole barrier is
expected to form within the effective interaction potential between OHe and the
heavy nucleus of substance, preventing the fusion of dark matter particles with
the nucleus. Furthermore, low-energy bound state between the dark atom and the
heavy nucleus should also emerge.
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In addressing the one-dimensional Schrödinger equation (SE) for the helium nu-
cleus in the OHe–nucleus system (see Equation (3.18)), it is essential to define
the range for the helium radius vector r⃗with the external nucleus position R⃗OA
held constant. Here, r⃗ acts as free parameter that determines the shape of the total
interaction potential for helium in the OHe–nucleus system, in which the corre-
sponding SE to be solved for each specified fixed location of the heavy nucleus. To
solve this set of SE – SE for each fixed position of the slowly approaching external
nucleus – the interval for the radius vector of the heavy nucleus, R⃗OA, must also
be determined.
By overlapping r⃗ with R⃗OA, helium would likely reside within the deep potential
well created by the heavy nucleus. Given that the helium nucleus is situated within
the dark atom – where OHe forms bound quantum mechanical system prior to
its interaction with the heavy nucleus begins – the ranges for r⃗ and R⃗OA should
be chosen that their boundaries to be close in proximity without overlapping.
This configuration ensures that the helium nucleus remains part of the dark atom
initially, gradually sensing the influence of the approaching nucleus. As the heavy
nucleus draws nearer, the probability of the helium nucleus tunneling through the
Coulomb barrier into the nucleus increases. Therefore, for the specified interval of
r⃗, defined by boundary points that are equal in magnitude yet opposite in sign, the
interval for R⃗OA is set to begin at considerable distance from the dark atom and to
end close to the right endpoint of the helium radius vector interval. In this case, the
radius vector for helium is represented as r⃗ = [−a;a], while the radius vector for
the external nucleus is expressed as R⃗OA = [c;b], where a, c, b > 0 and a ⩽ b < c.
Consequently, the fixed position of the external nucleus, R⃗OA, will consistently
take values within the interval [c;b], progressing from point c to point b. For each
point p∗ ∈ [c;b], the distance between the helium nucleus and the matter nucleus,
R⃗HeA = R⃗OA − r⃗, will vary within the interval R⃗HeA = [p∗ + a;p∗ − a]. As the
external nucleus approaches the dark matter atom, the polarization of OHe is
expected to increase in response to the nucleus’s proximity.
As the nucleus of the substance moves closer to dark atom, the ground state of
the helium nucleus within O-helium undergoes corresponding shifts. To calculate
changes in the dipole moment of the polarized dark atom, it is necessary to
calculate the shifts in the energy of the ground state and the corresponding wave
functions of the polarized dark atom.
By solving the set of Schrödinger equations for helium in the OHe–Na system for
various fixed positions of the heavy nucleus of matter R⃗OA, we have obtained set of
energy values of the ground state of helium corresponding to certain polarization
of the OHe atom at certain fixed position of the outer nucleus of matter and the
wave functions of helium corresponding to these ground states of the polarized
dark atom.
Utilizing the normalized ground-state wave function of helium in unpolarized
dark atom, ΨOHe, obtained by solving the Schrödinger equation for helium in the
isolatedO-helium dark atom, along with the normalized wave functions of helium
in the polarized dark atom for different ground-state energy values, ΨOHeNa, we
determined the spectrum of dipole moment values δ for the polarized OHe. The
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dipole moment δ corresponding to each ΨOHeNa was computed as follows:

δ =

∫
r

Ψ∗
OHe · r · ΨOHeNa · 4πr2dr. (3.20)

To accurately evaluate the integral in (3.20), precise determination of its integration
limits is required. Since we are calculating the dipole moments of the polarized
dark atom, it is crucial to account for the probability distribution of locating
the helium nucleus within the dark atom. To define the left and right bounds
of integration, we must identify the intersection points between the plot of the
squared modulus of the helium wave function and the plot of the total helium
potential within theOHe –Na system at fixed value of R⃗OA. For each fixed position
of the external heavy nucleus, this approach allows us to set the integration region
within the dark atom, effectively establishing the integration limits. These limits are
defined by the intersection points where the graphs of the total helium interaction
potential and the squared modulus of the wave function, associated with specific
ground-state energy level, meet.
Figure 3.2 illustrates the method for determining these integration limits necessary
for calculating the integral in (3.20). In the figure, the blue solid line represents the
total interaction potential of helium within the OHe –Na system for specific fixed
position of the sodium nucleus, R⃗OA, while the red solid line shows the squared
modulus of the helium ground-state wave function within the polarized dark
atom at this fixed R⃗OA. The black circles mark the intersection points of the two
curves, with the first two intersections from left to right indicating the integration
bounds for (3.20). In the example shown in Figure 3.2, the dark atom is negatively
polarized, as the probability density of locating helium to the left of the origin (or
the O−− particle) is greater than that on the right. Here, the sodium nucleus is
positioned close enough that the helium begins to experience the nuclear potential
(visible as potential well forming to the right of the Coulomb barrier), but not so
close as to result in significant tunneling of helium through the barrier.
By calculating the spectrum of dipole moment values, δ, for polarized OHe at
various positions of the sodium nucleus R⃗OA, we can illustrate how the dipole
moment of the polarized dark atom varies with the radius vector R⃗OA (as depicted
in Figure 3.3).
In Figure 3.3, red stars indicate the values of the dipole moment for the polarized
OHe atom, each corresponding to specific fixed values of R⃗OA within the helium
radius vector interval r = |1.1 × 10−12 cm|. From Figure 3.3, it can be observed
that when the sodium nucleus is distant from OHe, the dark atom behaves as
isolated system, with dipole moment approaching zero. As the sodium nucleus
moves closer to the O-helium atom, OHe becomes more polarized, resulting
in progressively larger negative dipole moment. This increase in polarization
occurs because the sodium nucleus exerts repulsive Coulomb force on helium,
encouraging the helium to shift leftward relative to the O−− particle. When the
sodium nucleus is in close proximity to the dark atom and R⃗OA nears the right
boundary of the helium radius vector interval r⃗, the nuclear force between helium
and sodium dominates over the Coulomb interaction, causing δ to approach above
zero.
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Fig. 3.2: The total potential of helium in the OHe–Na system for fixed position of
sodium R⃗OA (blue solid line), graph of the squared modulus of the wave function
of the ground state of helium in polarized dark atom for fixed R⃗OA (red solid line),
the intersection points of the graph of the total potential of helium and the graph
of the squared modulus of the wave function of the ground state of helium (black
circles). Original authors’ figure taken from [22].

3.5 Reconstruction the total effective interaction potential of the
OHe – Na system

To reconstruct the Stark potential form, as given in Formula (3.1), which describes
the electric interaction between the dipole of polarized dark atom and substance
nucleus, we employ the dipole moment values calculated through quantum me-
chanical methods. Additionally, to obtain the total effective interaction potential
for the OHe–Na system (the total interaction potential between the sodium nu-
cleus and the dark atom of O-helium), it is necessary also to reconstruct the form
of the nuclear interaction potential, this is achieved by using the Woods–Saxon
model for helium and sodium nuclei, along with the electric interaction potential,
UeXHe, between the unpolarized OHe dark atom and the sodium nucleus. The
latter potential, UeXHe, is derived by solving the self-consistent Poisson equation,
accounting for the screening effect of the O−− particle by the helium nucleus. This
screening effect becomes significant only at close distances to the dark atom, as
it decays exponentially (see Section 5.1 on the ”Approach of Reconstructing of
Interaction Potentials in the XHe–nucleus system” in [16]). In addition, in order
to reconstruct the shape of the total effective interaction potential of the sodium
nucleus with the dark atom, we must also take into account the potential of the
centrifugal interaction of the sodium nucleus with the dark atom of O-helium.
The centrifugal potential of the interaction of the OHe dark atom with the sodium
nucleus, denoted as Urot(OHe−Na)

, is determined by the total angular momentum
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Fig. 3.3: Graph of the dependence of the dipole moment of polarized OHe atom
(red stars) on the radius vector of the outer sodium nucleus. Original authors’
figure taken from [22].

of the system of interacting particles, J⃗(OHe−Na), as well as the distance between
the interacting particles, R. Ignoring the moments of inertia of the nuclei, it is
defined by the following expression (see formula 27 in [15]):

Urot(OHe−Na)
(R) =

h̄2c2J(OHe−Na)(J(OHe−Na) + 1)

2µc2R2
, (3.21)

where µ represents the reduced mass of the interacting particles.
Since the mass of OHe is entirely determined by the mass of the heavy particle
O−−, taken as 1 TeV, and the sodium nucleus has mass of approximately mNa ≈
21.4 GeV, which is significantly smaller in comparison with OHe’s mass, the
reduced mass of the system can be approximated by the sodium mass, µ ≈
mNa/c

2.
The total angular momentum of the interacting particles, J⃗(OHe−Na), is given by:

J⃗(OHe−Na)(ρ) = l⃗(OHe−Na)(ρ) + I⃗Na + I⃗OHe, (3.22)

here l⃗(OHe−Na)(ρ) denotes the orbital angular momentum, which depends on
the impact parameter ρ, I⃗Na represents the intrinsic angular momentum of the
sodium nucleus, and I⃗OHe signifies the spin of the OHe dark atom. The spin I⃗OHe
is defined as the sum of vectors of the spin of the O−− particle, I⃗O−− , and the
intrinsic angular momentum of the helium nucleus, I⃗He.
We consider the case of frontal collision between the sodium nucleus and the OHe
dark atom. In this head-on collision, where the sodium nucleus approaches with
zero impact parameter, ρ = 0, the orbital angular momentum of the interacting
particles also becomes zero, l⃗(OHe−Na)(0) = 0⃗. The intrinsic angular momentum
of the sodium nucleus is I⃗Na = 3⃗/2.
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Thus, for the scenario with an impact parameter ρ = 0, the total angular momen-
tum of system of theOHe dark atom and sodium nucleus, J⃗(OHe−Na), is expressed
as:

J⃗(OHe−Na) =
3⃗

2
+ I⃗O−− . (3.23)

If O−− is technibaryon, its spin, I⃗O−− , could be either 0⃗ or 1⃗, and if O−− belonged
to technilepton particle, its spin would be I⃗O−− = 1⃗/2 [17, 18]. if O−− takes the
form of ∆−−

ŪŪŪ
and includes new quarks from extended families, then I⃗O−− = 3⃗/2

[19].
As a result, summing up the potential of the Woods–Saxon nuclear interaction,
UeXHe, USt and Urot(OHe−Na)

, we obtain the total effective interaction potential of
the O-helium dark atom with the sodium nucleus (see Figure 3.4).
The OHe model suggests that the magnitude of the dipole Coulomb barrier in the
total effective interaction potential of the OHe–Na system should be sufficient to
prevent direct fusion between the dark atom and the sodium nucleus. Under the
conditions of the DAMA experiment, the relative velocity of the sodium nucleus
in the OHe–Na system is thermal, corresponding to normal room temperature
(around 300 K). This thermal motion corresponds to kinetic energy of roughly
∼ 2.6× 10−2 eV for the sodium nucleus. As result, the height of dipole Coulomb
barrier in the effective interaction potential of the OHe–Na system is expected to
be higher than this kinetic energy of sodium nucleus.
Finally, we can construct the total effective interaction potential of OHe with
the sodium nucleus in the OHe–Na system, for example, for the value of the
total angular momentum of the system of interacting particles J⃗(OHe−Na) = 3⃗,
which corresponds to the value of the spin of the O−− particle, I⃗O−− = 3⃗/2, as
shown in Figure 3.4. In general case, the shape of this total effective interaction
potential strongly depends on the value of the spin of the O−− particle, IO−− ,
however, in all cases, the shape of the total effective interaction potential between
sodium andOHe qualitatively corresponds to theoretical expectations. This allows
for extended range of the helium radius vector interval, r⃗, to get the depth of
potential well near ∼ 6 keV and positive potential barrier height that exceeds zero
as well as greater than the thermal kinetic energy of sodium ∼ 2.6× 10−2 eV. This
barrier height and depth of potential well align with theoretical predictions and
experimental data. Such positive potential barrier value playing critical role in
preventing the fusion of He and/or O−− particles with atomic nuclei, thereby
preserving the stability of the dark atom. The presence of this barrier in the total
effective interaction potential of the OHe–nucleus system, which ensures the
impossibility of direct fusion of dark atom with ordinary atomic nuclei of matter,
is fundamental requirement for sustaining the viability of the OHe dark atom
model.

3.6 Conclusions

The numerical model presented in this article is founded on quantum mechanical
numerical approximation to describe three-particle system, where interactions



i
i

“j” — 2024/12/10 — 17:17 — page 39 — #53 i
i

i
i

i
i

Title Suppressed Due to Excessive Length 39

Fig. 3.4: Graphs of Woods–Saxon nuclear potential (green dotted line), UeXHe (blue
dotted line), Stark potential (gray dotted line), centrifugal potential (purple dotted
line) and total effective interaction potential ofOHe with the nucleus of the sodium
(red dotted line) on the distance between the He nucleus, located in the Bohr orbit
of the OHe atom, and the Na nucleus for J(OHe−Na) = 3. Original authors’ figure
taken from [22].

occur through electric, centrifugal, and nuclear forces. This method entails solving
the Schrödinger equation for helium in theOHe–Na system for each fixed position
of the sodium nucleus relative to theO-helium atom. By considering the distinctive
features of nuclear and electromagnetic interactions within OHe–Na system, we
can precisely determine the polarization of dark matter atom, calculate the dipole
moments of polarizedOHe atom as function of the distance between the dark atom
and the sodium nucleus, and, thereby, accurately reconstruct the Stark potential,
which plays crucial role in shaping the effective interaction potential in the OHe–
Na system.
Thus, within the framework of the developed numerical model, the helium in-
teraction potential in the OHe–Na system has been reconstructed, allowing for
the solution of the Schrödinger equation for the helium nucleus in both isolated,
unpolarized dark atom and polarizedO-helium within theOHe–Na system. Then,
dipole moments of the polarized OHe atom were derived using the helium wave
functions for both isolated dark matter atom and polarized dark atom in the
OHe–Na system. After that, the Stark potential was computed, enabling the recon-
struction of the total effective interaction potential between the sodium nucleus
and the OHe dark atom in the OHe–Na system. This total effective potential
includes contributions from the Stark potential, nuclear potential, centrifugal po-
tential, and the electric interaction potential of unpolarized OHe dark atom with
the sodium nucleus and this total effective potential qualitatively coincides with
its theoretically expected form.
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To improve the precision of the effective interaction potential reconstruction and
achieve more accurate physical model of dark atom interaction with heavy nu-
cleus, as well as to explain the findings of direct dark matter detection experiments,
refinements to the quantum mechanical approach to the total effective interaction
potential reconstruction are planned. These improvements will involve determin-
ing the nuclear and electromagnetic potentials for interaction between X-helium
and ordinary matter nucleus, with accounting for the finite sizes of the interacting
particles by incorporating electric charge and nucleon distributions within the
nuclei. Additionally, the model will incorporate nuclei deformation by modeling
the nuclei as spherically asymmetric.
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Abstract. I review how the application of superconformal quantum mechanics and light-
front holography leads to new insights into the physics of color confinement and the
spectroscopy and dynamics of hadrons, as well as surprising supersymmetric relations
between the masses of mesons, baryons, and tetraquarks. Spontaneous chiral symmetry
breaking is automatically fulfilled by supersymmetric Light-Front Supersymmetric QCD.
The light-front holographic approach (HLFQCD) also predicts the behavior of the QCD run-
ning coupling and other observables from the nonperturbative color-confining domain to
the perturbative domain. I also review how one can determine the QCD running coupling to
high precision from the data of just a single experiment over the entire perturbative regime
by using the Principle of Maximum Conformality (PMC). The PMC, which generalizes the
conventional Gell-Mann-Low method for scale-setting in perturbative QED to non-Abelian
QCD, provides a rigorous method for achieving unambiguous scheme-independent, fixed-
order Standard Model predictions for observables consistent with the principles of the
renormalization group.

Povzetek: Autor predstavi uporabo superkonformne kvantne mehanike in holografije
“light-front” za opis gruč kvarkov v hadronih, kar omogoči nov vpogled v spektroskopijo in
dinamiko hadronov, pa tudi v presenetljive supersimetrične relacije med masami mezonov,
barionov in tetrakvarkov. Holografija “light-front” ponudi tudi napoved spremembe sklo-
pitvene konstante med kvarki in gluoni in drugih opazljivk od območja barvnega ujetja
do območja, kjer je teoria motenj uporabna. Uporaba načela največje skladnosti avtorju
omogoči, da lahko z veliko natančnostjo določi spreminjanje sklopitvene konstante med
kvarki in gluoni že na podlagi enega samega eksperimenta. To načelo, ki je splošitev pertur-
bativne kvantne elektrodinamike Gell-Mann-Low na neabelsko kvantno kromodinamiko,
zagotavlja metodo za neodvisne napovedi Standardnega modela skladno z načeli renor-
malizacijske grupe.

QCD, Light-Front, Holography, Supersymmetry, Principle of Maximum Confor-
mality

4.1 Color Confinement and Light-Front Holography

A central problem in hadron physics is to obtain a first approximation to QCD,
which not only has color confinement, but can also predict the spectroscopy of
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hadrons and the light-front wave functions which underly their properties and
dynamics. Guy de Téramond, Guenter Dosch, and I [1] have shown that a mass
gap and a fundamental color confinement scale can be derived from light-front
holography – the duality between five-dimensional anti-de Sitter (AdS) space
physical 3+1 spacetime using light-front time. The combination of superconformal
quantum mechanics [2, 3], light-front quantization [4] and the holographic embed-
ding on a higher dimensional gravity theory [5] (gauge/gravity correspondence)
has led to new analytic insights into the structure of hadrons and their dynam-
ics [1, 6–10]. This new approach to nonperturbative QCD dynamics, holographic
light-front QCD, has led to effective semi-classical relativistic bound-state equations
for arbitrary spin [13], and it incorporates fundamental properties which are not
apparent from the QCD Lagrangian, such as the emergence of a universal hadron
mass scale, the prediction of a massless pion in the chiral limit, and remarkable
connections between the spectroscopy of mesons, baryons and tetraquarks across
the full hadron spectrum [14–17].

4.2 Light-Front Theory and Holographic QCD

Light-Front Hamiltonian theory [4] provides a causal, frame-independent, and
ghost-free nonperturbative formalism for analyzing gauge theories such as QCD.
Remarkably, LF theory in 3+1 physical space-time is holographically dual to
five-dimensional AdS space, if one identifies the LF radial variable ζ with the
fifth coordinate z of AdS5 [1, 6–10]. If the metric of the conformal AdS5 theory
is modified by a dilaton of the form e+κ

2z2 , one obtains an analytically-solvable
Lorentz-invariant color-confining LF Schrödinger equations for hadron physics.
The parameter κ of the dilaton becomes the fundamental mass scale of QCD,
underlying the color-confining potential of the LF Hamiltonian and the running
coupling αs(Q2) in the nonperturbative domain. When one introduces super-
conformal algebra, the result is “Holographic LF QCD” which not only predicts a
unified Regge-spectroscopy of mesons, baryons, and tetraquarks, arranged as su-
persymmetric 4-plets, but also the hadronic LF wavefunctions which underly form
factors, structure functions, and other dynamical phenomena. In each case, the
quarks and antiquarks cluster in hadrons as 3C diquarks, so that mesons, baryons
and tetraquarks all obey a two-body 3C − 3̄C LF bound-state equation. Thus
tetraquarks are compact hadrons, as fundamental as mesons and baryons. “Holo-
graphic LF QCD” also leads to novel phenomena such as the color transparency of
hadrons produced in hard-exclusive reactions traversing a nuclear medium and
asymmetric intrinsic heavy-quark distributions Q(x) ̸= Q̄(x), appearing at high x
in the non-valence higher Fock states of hadrons [11, 12].
The light front holographic approach also incorporates the essential consequence of
spontaneous chiral symmetry breaking. All of the typical features of spontaneous
chiral symmetry breaking are automatically fulfilled by supersymmetric LFHQCD:
There is a mass- less boson (the pion in the chiral limit), and the parity doublets
(ρ,A1) and (N,N(1535)) have different masses. A detailed discussion is given in
ref. [20]
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Phenomenological extensions of the holographic QCD approach have also led
to nontrivial connections between the dynamics of form factors and polarized
and unpolarized quark distributions with pre-QCD nonperturbative approaches
such as Regge theory and the Veneziano model [21–23]. As discussed in the next
section, it also predicts the analytic behavior of the QCD coupling αs(Q2) in the
nonperturbative domain [24, 25].

4.3 The QCD Coupling at All Scales

The QCD running coupling can be defined [26] at all momentum scales from
any perturbatively calculable observable, such as the coupling αsg1(Q

2) which is
defined from measurements of the Bjorken sum rule. At high momentum trans-
fer, such “effective charges” satisfy asymptotic freedom, obey the usual pQCD
renormalization group equations, and can be related to each other without scale
ambiguity by commensurate scale relations [38]. The dilaton e+κ

2z2 soft-wall
modification [27] of the AdS5 metric, together with LF holography, predicts the
functional behavior in the smallQ2 domain [24]: αsg1(Q

2) = πe−Q
2/4κ2 .Measure-

ments of αsg1(Q
2) are remarkably consistent with this predicted Gaussian form.

The predicted coupling is thus finite at Q2 = 0.
The parameter κ, which determines the mass scale of hadrons in the chiral limit,
can be connected to the mass scale Λs controlling the evolution of the perturbative
QCD coupling [24, 25, 28]. This connection can be done for any choice of renor-
malization scheme, including the MS scheme, as seen in Fig. 4.1. The relation
between scales is obtained by matching at a scaleQ20 the nonperturbative behavior
of the effective QCD coupling, as determined from light-front holography, to the
perturbative QCD coupling with asymptotic freedom. The result of this perturba-
tive/nonperturbative matching at the analytic inflection point is an effective QCD
coupling which is defined at all momenta.
Recently [29], Guy de Teramond, Guenter Dosch, Alexandre Deur, Arpon Paul,
Tianbo Liu, Raza Sabbir Sufian and I have used analytic continuation to extend the
gauge/gravity duality nonperturbative description of the strong force coupling
into the transition, near-perturbative, regime where perturbative effects become
important. By excluding the unphysical region in coupling space from the flow of
singularities in the complex plane, we have derived a specific relation between
the scales relevant at large and short distances; this relation is uniquely fixed
by requiring maximal analyticity. The unified effective coupling model gives an
accurate description of the data in the nonperturbative and the near-perturbative
regions. The analytic determination of αs(Q2) over all domains increases the
precision and reliability of QCD predictions.

4.4 Superconformal Algebra and Supersymmetric Hadron
Spectroscopy

Another advance in LF holography is the application [7,8,30] of superconformal alge-
bra, a feature of the underlying conformal symmetry of chiral QCD. The conformal
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Fig. 4.1: (A). Prediction from LF Holography for the QCD running coupling
αsg1(Q

2). The magnitude and derivative of the perturbative and nonperturba-
tive coupling are matched at the scaleQ0. This matching connects the perturbative
scale ΛMS to the nonperturbative scale κwhich underlies the hadron mass scale.
(B). Comparison of the predicted nonperturbative coupling with measurements of
the effective charge αsg1(Q

2) defined from the Bjorken sum rule. See Ref. [28].
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Superconformal Algebra
2X2 Hadronic Multiplets

&%
'$ue &%

'$e ee
�M , LB + 1  B+, LB

-R†
�

&%
'$e ee
 B�, LB + 1

&%
'$e eu u
�T , LB

-R†
�

Figure 1: The supersymmetric quadruplet {�M ,  B+,  B�, �T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2 ⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, JP = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m2 =
Pn

i=1
m2

i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e�
1
2�

�m2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.
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Fig. 4.2: The 4-plet representation of mass-
degenerate hadronic states predicted by
superconformal algebra [1]. Mesons are
qq̄ bound states, baryons are quark – an-
tidiquark bound states and tetraquarks
are diquark-antidiquark bound states.
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of the same color.

!

!

!

!!

!!

!!
!!
!!

"

"

"

"

#

#

#

#

M2 !GeV2"

LM ! LB ! 1
Ρ, Ω

a2, f2

Ρ3, Ω3

a4, f4

$
3
2

!

$
1
2

%

, $
3
2

%

$
1
2

!

, $
3
2

!

, $
5
2

!

, $
7
2

!

$
11
2

!

0 1 2 3 4 5
0

1

2

3

4

5

6

⇢�� superpartner trajectories

Dosch, de Teramond, sjb

Fig. 4.3: Comparison of the ρ/ω meson
Regge trajectory with the J = 3/2 ∆

baryon trajectory. Superconformal alge-
bra predicts the degeneracy of the meson
and baryon trajectories if one identifies a
meson with internal orbital angular mo-
mentum LM with its superpartner baryon
with LM = LB + 1. See Refs. [7, 8].

group has an elegant 2×2 Pauli matrix representation called superconformal algebra,
originally discovered by Haag, Lopuszanski, and Sohnius [31]. The conformal
Hamiltonian operator and the special conformal operators can be represented as
anticommutators of Pauli matrices H = 1/2[Q,Q†] and K = 1/2[S, S†]. As shown
by Fubini and Rabinovici, [3], a nonconformal Hamiltonian with a mass scale and
universal confinement can then be obtained by shifting Q→ Q+ωK, the analog
of the dAFF procedure. In effect, one has obtained generalized supercharges of
the superconformal algebra [3]. This ansatz extends the predictions for the hadron
spectrum to a “4-plet” – consisting of mass-degenerate quark-antiquark mesons,
quark-diquark baryons, and diquark-antidiquark tetraquarks, as shown in fig. 4.2.
The 4-plet contains two entries Ψ± for each baryon, corresponding to internal
orbital angular momentum L and L + 1. This property of the baryon LFWFs is
the analog of the eigensolution of the Dirac-Coulomb equation which has both an
upper component Ψ+ and a lower component Ψ− = σ⃗·p⃗

m+E−VΨ
+.

LF Schrödinger Equations for both baryons and mesons can be derived from
superconformal algebra [7, 8, 30, 32]. The baryonic eigensolutions correspond
to bound states of 3C quarks to a 3̄C spin-0 or spin-1 qq diquark cluster; the
tetraquarks in the 4-plet are bound states of diquarks and anti-diquarks. The
quark-diquark baryons have two amplitudes LB, LB + 1 with equal probability,
a feature of “quark chirality invariance”. The proton Fock state component ψ+

(with parallel quark and baryon spins) and ψ− (with anti-parallel quark and
baryon spins) have equal Fock state probability – a feature of “quark chirality
invariance”. Thus the proton’s spin is carried by quark orbital angular momentum
in the nonperturbative domain. Predictions for the static properties of the nucleons
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are discussed in Ref. [33]. The overlap of the L = 0 and L = 1 LF wavefunctions
in the Drell-Yan-West formula is required to have a non-zero Pauli form factor
F2(Q

2) and anomalous magnetic moment [34]. The existence of both components
is also necessary to generate the pseudo-T-odd Sivers single-spin asymmetry in
deep inelastic lepton-nucleon scattering [35].
The predicted spectraM2(n, L) = 4κ2(n+L) for mesons, andM2(n, L) = 4κ2(n+

L+ 1) for baryons, is remarkably consistent with observed hadronic spectroscopy.
The Regge-slopes in n and L are identical. The predicted meson, baryon and
tetraquark masses coincide if one identifies a meson with internal orbital angular
momentum LM with its superpartner baryon or tetraquark with LB = LM − 1.
Superconformal algebra thus predicts that mesons with LM = LB+1 have the same
mass as the baryons in the supermultiplet. An example of the mass degeneracy of
the ρ/ωmeson Regge trajectory with the J = 3/2 ∆-baryon trajectory is shown in
Fig. 4.3. The value of κ can be set by the ρmass; only ratios of masses are predicted.
The combination of light-front holography with superconformal algebra thus leads
to the novel prediction that hadron physics has supersymmetric properties in both
spectroscopy and dynamics. The excitation spectra of relativistic light-quark me-
son, baryon and tetraquark bound states all lie on linear Regge trajectories with
identical slopes in the radial and orbital quantum numbers. Detailed predictions
for the tetraquark spectroscopy and comparisons with the observed hadron spec-
trum are presented in ref. [16].

4.5 Renormalization Scale Setting

A key problem in making precise perturbative QCD predictions is the uncertainty
in determining the renormalization scale µ of the running coupling αs(µ2). The
purpose of the running coupling in any gauge theory is to sum all terms involving
the β function; in fact, when the renormalization scale is set properly, all non-
conformal β ̸= 0 terms in a perturbative expansion arising from renormalization
are summed into the running coupling. The remaining terms in the perturbative
series are then identical to that of a conformal theory; i.e., the corresponding theory
with β = 0. There is no renormalization scale-setting ambiguity for precision tests
of quantum electrodynamics. The scale of the running QED coupling is set to
absorb all vacuum polarization diagrams; i.e. the β terms. The coefficients in the
perturbative QCD series then matches conformal theory; i.e. the corresponding
perturbative series with β = 0. This is the standard Gell-Mann Low scale-setting
procedure for high precision tests of QED, where all vacuum polarization con-
tributions are summed into the QED running coupling. The same scale-setting
procedure applies to the SU(2)EW theory of the electroweak interactions. An im-
portant analytic property of non-Abelian QCD withNC colors is that it must agree
analytically with Abelian QED in the NC → 0 limit, at fixed α̂s = CFαs and fixed

n̂f = T nf
CF

with CF =
N2C−1
2NC

and T = 1/2. This is the “Abelian correspondence
principle.” Thus the setting of the renormalization scale in QCD must agree with
Gell-Mann-Low scale setting for QED in the NC → 0 limit.
It has become conventional to simply guess the renormalization scale and choose
an arbitrary range of uncertainty when making perturbative QCD (pQCD) pre-
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dictions. However, this ad hoc assignment of the renormalization scale and the
estimate of the size of the resulting uncertainty leads to anomalous renormal-
ization scheme-and-scale dependences. In fact, relations between physical ob-
servables must be independent of the theorist’s choice of the renormalization
scheme, and the renormalization scale in any given scheme at any given order of
pQCD is not ambiguous. This was the motivation for the BLM (Brodsky-Lepage-
Mackenzie) [36] procedure for QCD scale-setting. It was then generalized to all
orders as the PMC (the Principle of Maximum Conformality. The Principle of Maxi-
mum Conformality (PMC) [40, 46], which generalizes the conventional Gell-Mann-
Low method for scale-setting in perturbative QED to non-Abelian QCD, provides
a rigorous method for achieving unambiguous scheme-independent, fixed-order
predictions for observables consistent with the principles of the renormalization
group.
The PMC scale-setting procedure sets the renormalization scale αs(Q2PMC) at ev-
ery order by absorbing the β terms appearing in the pQCD series. The resulting
pQCD series thus matches the corresponding conformal series with all β terms
set to 0. The problematic n! “renormalon” divergence of pQCD series associated
with the nonconformal terms does not appear in the conformal series and the
conformal series is independent of the theorist’s choice of renormalization scheme.
This also means that relations between any two perturbatively calculable observ-
ables are scheme-independent. These relations are called “commensurate scale
relations” [38, 46]. The PMC also satisfies the requirement that one must use the
same scale-setting procedure in all sectors of a Grand-Unified Theory of QED, the
electroweak interactions, and QCD [39]. The renormalization scale of the running
coupling depends dynamically on the virtuality of the underlying quark and
gluon subprocess and thus the specific kinematics of each event.
The resulting scale-fixed predictions for physical observables using the PMC
are also independent of the choice of renormalization scheme – a key requirement of
renormalization group invariance. The PMC predictions are also independent of
the choice of the initial renormalization scale µ0. The PMC sums all of the non-
conformal terms associated with the QCD β function, thus providing a rigorous
method for eliminating renormalization scale ambiguities in quantum field theory.
We have also showed that a single global PMC scale, valid at leading order,
can be derived from basic properties of the perturbative QCD cross section. We
have given a detailed comparison of these PMC approaches by comparing their
predictions for three important quantities Re+e, Rτ and ΓH→bb̄ up to four-loop
pQCD corrections [40]. The numerical results show that the single-scale PMCs
method, which involves a somewhat simpler analysis, can serve as a reliable
substitute for the full multi-scale PMCm method, and that it leads to more precise
pQCD predictions with less residual scale dependence. The PMC thus greatly
improves the reliability and precision of QCD predictions at the LHC and other
colliders [40]. As we have demonstrated, the PMC also has the potential to greatly
increase the sensitivity of experiments at the LHC to new physics beyond the
Standard Model.
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Predictions based on PMC scale setting satisfies the self-consistency conditions of
the renormalization group, including reflectivity, symmetry and transitivity [41].
The resulting PMC predictions satisfy all of the basic requirements of RGI.
The transition scale between the perturbative and nonperturbative domains can
also be determined by using the PMC [25, 42–44], thus providing a procedure
for setting the “factorization” scale for pQCD evolution. The running coupling
resums all of the {βi}-terms by using the PMC, which naturally leads to a more
convergent and renormalon-free pQCD series.
In more detail: the PMC scales are determined by applying the RGE of the QCD
running coupling. By recursively applying the RGE one establishes a pertur-
bative β-pattern at each order in a pQCD expansion. For example, the usual
scale-displacement relation for the running couplings at two different scales Q1
and Q2 can be deduced from the RGE, which reads

aQ2 = aQ1 − β0 ln
(
Q22
Q21

)
a2Q1 +

[
β20 ln2

(
Q22
Q21

)
− β1 ln

(
Q22
Q21

)]
a3Q1

+

[
−β30 ln3

(
Q22
Q21

)
+
5

2
β0β1 ln2

(
Q22
Q21

)
− β2 ln

(
Q22
Q21

)]
a4Q1 +

[
β40 ln4

(
Q22
Q21

)
(4.1)

−
13

3
β20β1 ln3

(
Q22
Q21

)
+
3

2
β21 ln2

(
Q22
Q21

)
+ 3β2β0 ln2

(
Q22
Q21

)
− β3 ln

(
Q22
Q21

)]
a5Q1 + · · · ,

where aQi = αs(Qi)/π, the functions β0, β1, · · · are generally scheme dependent,
which correspond to the one-loop, two-loop, · · · , contributions to the RGE, respec-
tively. The PMC utilizes this perturbative β-pattern to systematically set the scale
of the running coupling at each order in a pQCD expansion.
The coefficients of the {βi}-terms in the β-pattern can be identified by recon-
structing “degeneracy relations” [45, 46] among different orders. The degeneracy
relations, which underly the conformal features of the resultant pQCD series by
applying the PMC, are general properties of a non-Abelian gauge theory [47]. The
PMC prediction achieved in this way resembles a skeleton-like expansion [48, 49].
The resulting PMC scales reflect the virtuality of the amplitudes relevant to each
order, which are physical in the sense that they reflect the virtuality of the gluon
propagators at a given order, as well as setting the effective number (nf) of active
quark flavors. The momentum flow for the process involving three-gluon vertex
can be determined by properly dividing the total amplitude into gauge-invariant
amplitudes [50]. Specific values for the PMC scales are computed as a perturbative
expansion, so they have small uncertainties which can vary order-by-order. The
PMC scales and the resulting fixed-order PMC predictions are to high accuracy
independent of the initial choice of renormalization scale, e.g. the residual un-
certainties due to unknown higher-order terms are negligibly small because of
the combined suppression effect from both the exponential suppression and the
αs-suppression [45, 46].
When one applies the standard PMC procedures, different scales generally appear
at each order; this is called the PMC multi-scale approach which often requires
considerable theoretical analysis. To make the PMC scale-setting procedure sim-
pler and more easily to be automatized, a single-scale approach (PMC-s), which
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achieves many of the same PMC goals, has been suggested in Ref. [60]. This
method effectively replaces the individual PMC scale at each order by a single
(effective) scale in the sense of a mean value theorem; e.g. it can be regarded as
a weighted average of the PMC scales at each order derived under PMC multi-
scale approach. The single “PMC-s” scale shows stability and convergence with
increasing order in pQCD, as observed by the e+e− annihilation cross-section ratio
Re+e− and the Higgs decay-width Γ(H→ bb̄), up to four-loop level. Moreover, its
predictions are again explicitly independent of the choice of the initial renormal-
ization scale. Thus the PMC-s approach, which involves a simpler analysis, can
be adopted as a reliable substitute for the PMC multi-scale approach, especially
when one does not need detailed information at each order.
There are also cases in which additional momentum flows occur, whose scale
uncertainties can also be eliminated by applying the PMC. For example, there are
two types of log terms, ln(µ/MZ) and ln(µ/Mt) [61–64], for the axial singlet rAS
of the hadronic Z decays. By applying the PMC, one finds the optimal scale is
QAS ≃ 100 GeV [65], indicating that the typical momentum flow for rAS is closer to
MZ thanMt. The PMC can also be systematically applied to multi-scale problems.
The typical momentum flow can be distinct; thus, one should apply the PMC
separately in each region. For example, two optimal scales arise at the N2LO level
for the production of massive quark-anti-quark pairs (QQ̄) close to threshold [67],
with one being proportional to

√
ŝ and the other to v

√
ŝ, where v is the Q and Q̄

relative velocity.
The renormalization scale depends on kinematics such as thrust (1− T) for three
jet production via e+e− annihilation. A definitive advantage of using the PMC is
that since the PMC scale varies with (1 − T), one can extract directly the strong
coupling αs at a wide range of scales using the experimental data at single center-
of-mass-energy,

√
s =MZ. In the case of conventional scale setting, the predictions

are scheme-and-scale dependent and do not agree with the precise experimental
results; the extracted coupling constants in general deviate from the world average.
In contrast, after applying the PMC, we obtain a comprehensive and self-consistent
analysis for the thrust variable results including both the differential distributions
and the mean values [54]. Using the ALEPH data [56], the extracted αs are pre-
sented in Figure ??. It shows that in the scale range of 3.5 GeV < Q < 16 GeV
(corresponding (1 − T ) range is 0.05 < (1 − T) < 0.29), the extracted αs are in
excellent agreement with the world average evaluated from αs(MZ).
An essential property of renormalizable SU(N)]/U(1) gauge theories, is “Intrinsic
Conformality,” [66]. It underlies the scale invariance of physical observables and
can be used to resolve the conventional renormalization scale ambiguity at every
order in pQCD. This reflects the underlying conformal properties displayed by
pQCD at NNLO, eliminates the scheme dependence of pQCD predictions and
is consistent with the general properties of the PMC. We have also introduced
a new method [66] to identify the conformal and β terms which can be applied
either to numerical or to theoretical calculations and in some cases allows infi-
nite resummation of the pQCD series, The implementation of the PMC∞ can
significantly improve the precision of pQCD predictions; its implementation in
multi-loop analysis also simplifies the calculation of higher orders corrections in a
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general renormalizable gauge theory. This method has also been used to improve
the NLO pQCD prediction for tt̄ pair production and other processes at the LHC,
where subtle aspects of the renormalization scale of the three-gluon vertex and
multi gluon amplitudes, as well as large radiative corrections to heavy quarks at
threshold play a crucial role. The large discrepancy of pQCD predictions with the
forward-backward asymmetry measured at the Tevatron is significantly reduced
from 3 σ to approximately 1 σ.
The PMC has also been used to precisely determine the QCD running coupling
constant αs(Q2) over a wide range of Q2 from event shapes for electron-positron
annihilation measured at a single energy

√
s [68]. The PMC method has been

applied to a spectrum of LHC processes including Higgs production, jet shape
variables, and final states containing a high pT photon plus heavy quark jets, all of
which, sharpen the precision of the Standard Model predictions. Recently, the PMC
has been used to determine the QCD coupling over the entire range of validity
of perturbative QCD to high precision from the data of a single experiment: the
thrust and C-parameter distributions in e+e− annihilation at a single annihilation
energy

√
s−Mz [57]. We have also showed that a single global PMC scale, valid

at leading order, can be derived from basic properties of the perturbative QCD
cross section. We have given a detailed comparison of these PMC approaches by
comparing their predictions for three important quantities Re+e, Rτ and ΓH→bb̄
up to four-loop pQCD corrections [40]. The numerical results show that the single-
scale PMCs method, which involves a somewhat simpler analysis, can serve as a
reliable substitute for the full multi-scale PMCm method, and that it leads to more
precise pQCD predictions with less residual scale dependence.
The PMC provides first-principle predictions for QCD; it satisfies renormalization
group invariance and eliminates the conventional renormalization scheme-and-
scale ambiguities, greatly improving the precision of tests of the Standard Model
and the sensitivity of collider experiments to new physics. Since the perturbative
coefficients obtained using the PMC are identical to those of a conformal theory,
one can derive all-orders commensurate scale relations between physical observ-
ables evaluated at specific relative scales. The PMC thus can greatly increase the
sensitivity of experiments at the LHC to new physics beyond the Standard Model.
A detailed discussion of how the PMC eliminates renormaiization-scale and
scheme ambiguities is given in the review [58]. The QCD running coupling and
the definition of effective charges are discussed in the article [59].
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10. S. J. Brodsky, G. F. de Téramond and H. G. Dosch, “Light-front holography and super-
symmetric conformal algebra: A novel approach to hadron spectroscopy, structure, and
dynamics,” [https://arxiv.org/abs/2004.07756arXiv:2004.07756 [hep-ph]].

11. S. J. Brodsky, P. Hoyer, C. Peterson and N. Sakai, “The Intrinsic Charm of the Proton,”
Phys. Lett. B 93, 451-455 (1980) doi:10.1016/0370-2693(80)90364-0

12. S. J. Brodsky, J. C. Collins, S. D. Ellis, J. F. Gunion and A. H. Mueller, “Intrinsic Chevrolets
at the SSC,” DOE/ER/40048-21 P4.
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29. G. F. de Téramond et al. [HLFHS], Phys. Rev. Lett. 133, no.18, 181901 (2024)
doi:10.1103/PhysRevLett.133.181901 [arXiv:2403.16126 [hep-ph]].
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Abstract: The understanding of micro-quasars in our galaxy is one of the frontier
of high-energy astrophysics. Their models are based on a growing mass Black
Hole (BH) with a nearby spiralling binary companion star. Their main stage is the
feeding, by the companion star mass, of the accretion disk around the BH that
fuels also an orthogonal precessing X-gamma jets. The spiral precessing tail of
such micro-quasars, as the SS433 system, is a jet spraying matter and electrons at
relativistic speed. The up-down twin precessing jet is observed clearly along its
tails, spread and smeared within a year light distance. Very recently HESS, HAWC
and LHAASO surprisingly discovered , at a much far separated distance, the
resurgence of a twin trace, as a twin hard beam-gamma tail. It is starting at nearly
75 years light distance from the same SS433 source. The most standard model is
based on a shock wave particle re-accelleration along a Fermi process, far from
the SS433 system. The un-expected and also surprising re-collimation of this TeV
beam jet is difficult to understand, in such a planar Fermi shock process model. We
offer here a quite different model , based on known high energy nuclear physics,
able to explain at once both the disconnected as well as the aligned hard TeV jet
appearence. This model is assuming that SS433 ejected tens Pevatron hadron beam,
75 years ago in an explosive accreation disk stage. The ejecting had been both of a
tens Pev protons jet, but also, by photo-pion creation, a collinear secondary tens
PeV neutron jet. Its presence explain the collimated, separeted appearence of a
tens TeV electron secondary, after the boosted relativistic beta decay of the PeVs
neutron.

Povzetek: Raziskave mikrokvazarjev v naši galaksiji so eno izmed mejnih področij
visokoenergijske astrofizike. Modeli obravnavajo naraščanje mase črne luknje na
račun mase spremljevalke, ki kroži okoli črne luknje in polni akrecijski disk okoli
črne luknje in tudi pravokotni precesijski curek v rentgenskem in gama spektru.
Spiralno precesijski rep mikrokvazarjev, kot je sistem SS433, je curek, ki z rela-
tivistično hitrostjo izmetava snov in elektrone. Razpršen dvojni precesijski curek
(zgornji in spodnji), dolg kako svetlobno leto, je dolž repov lepo viden. Zadnje
raziskave observatorijev HESS, HAWC in LHAASO so odkrile na veliko večji
oddaljenosti ponovni izbruh kot dvojno sled trdega curka gama, ki je približno 75
svetlobnih let oddaljen od vira SS433. Nepričakovano in presenetljivo ponovno
fokusiranje tega curka pri energijah TeV je težko razložiti zgolj z ravninskim Fermi-

⋆⋆ Daniele.Fargion@uniroma1.it
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jevim modelom za te procese, ki so ga uporabljali doslej. Članek ponuja drugačen
model, ki temelji na znani visokoenergijski jedrski fiziki in lahko razloži ta pojav:
Privzamejo da je SS433 pred približno 75 svetlobnimi leti, v eksplozivni fazi akreci-
jskega diska, izstrelil curek hadronov z energijami v območju desetih PeV. Izmet je
vseboval curek protonov z energijami desetih PeV in tudi kolinearen sekundarni
curek nevtronov z enakimi energijami, ki je nastal s fotopionsko tvorbo. Prisotnost
tega nevtronskega curka pojasnjuje kolimiran ločen pojav sekundarnih elektronov
z energijami desetih TeV, ki nastanejo po razpadu beta nevtonov energije PeV.

5.1 Introduction: SS433 and its separated TeV beam

The micro-quasars are binary systems where a neutron star (NS), of a few or tens
solar masses Black Hole (BH), are bounded by gravity with an orbital star of a
comparable (or larger) mass, capturing the star mass by tidal forces. While such
a tail of mass is collapsing onto the NS ( or the BH), the same mass first feeds
an accreting disk around the NS or BH. This disk usually produce asymmetric
spinning charged flows and consequent huge currents that are building up ,
a toroidal power-full magnetic field. Such magnetic field may show fast time
variability that induce also huge electric spiral fields that accelerate, rotating,
the free charges . They spin along a twin disk-conical ring , above and below
the same accretion disk. These ultra-high energy charges are bounded spiraling
along the accretion disk. At the end, these relativistic particles are forced to be
aligned along the NS or BH poles axis. The best jet accelerator are localized very
nearby the NS or BH accretion disks and magnetic fields. The magnetic field line
shrinkage and the charge acceleration may finally produce the up-down charge
ejection, in a very twin collimated jet. Tidal forces among orbital star companion
and accretion disk, may also lead to a conical precession of the same jet. These
events in their primordial and in the late mass accretion phase, may shine in a thin
persistent, precessing jet ,. Its blazing may be observed rarely on axis, as Gamma
Ray Burst (GRB) or Soft Gamma Repeaters. [1]. The magnetic field lines along the
jet constrain and collimate the beam. The leptonic component of this jet is able, by
synchrotron radiation and by Inverse Compton Scattering (ICS), to shine in radio,
X and sometimes into gamma photon energy spectra, at energy edges as hard as
MeV, GeV, TeV and ,to PeV ones. These hard signals had been discovered since
nearly half a century and very recently in details.
As the micro quasar name suggest they are just a small scale (parsecs) system
of a much famous and larger quasar, made by million or billion solar mass BH,
hidden in galactic centers, called also Active Galactic Nuclei, (AGN), able to eject
much wider, longer and harder jet beam, even in Mega parsec sizes. The SS433
is a quite peculiar binary system containing a supergiant star that is overflowing
its Roche lobe with matter accreting on nearby BH. The separeted tens TeV beam
appearence was a discovered this year by Hess [2], confirmed also by HAWC and
LHAASO , more recently . Its presence and re-collimation at such far distance, is
puzzling .
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Here we consider the possibility that a rarest explosive flare episode in earliest
micro-quasar epochs may shine , at the same time, ultra-violet hot photons and
ultra relativistic energy (UHE) proton (on nuclei) jet. Their scattering and interac-
tion was leading to Delta ∆ photo-pion creation. This phenomena is in analogy ,
(in cosmic volumes and by thermal big bang radiation), of a similar phenomena ,
taking place between UHECR (Ultra High Energy Cosmic Ray) at 1020 eV energy
and infrared cosmic black body photon. The phenomena is known under the
author initial, as the ”GZK cut-off” in the CR spectra [3], and [4]. The Delta reso-
nance at ultra-relativistic energy (UHE) decay may produce neutral and charged
pion respectively with associated proton or neutron. The presence and the quite
dark surviving of such tens PeV neutron beam along SS433 flight is the key of
our model. The observed 75 years light distance of the UHE neutron decay, the
consequent electron radiiation , by ICS; as TeV gamma resurgence beam, is the
main key engine of present model.

5.1.1 Pevatron Neutron jet and its decay distances

The distance of an UHE ( about 25 PeV) neutron beta decay in flight is nearly 75
years light . Indeed:

Ln = 877(En/mn)s · c.;Ln = 75y · c(En/25PeV) (5.1)

A main question arises about the observed discontinuity in SS433 separated TeV
beam versus an expected continuity of the cosmic-ray spectra of the jet. The
observed cosmic ray spectra on Earth , up to GZK cut-off edges, decrease smoothly
by a power law, without any sudden peak or cut-off discontinuity. One would
imagine a neutron secondary jet spectra ruled by an un-disconnected signature in
their decay distances. Our model need and find a natural, tuned , nearly mono-
chromatic neutron energy. See for a SS433 system description. See for a description,
the following Figures below.

5.1.2 Delta resonance by proton-photon interaction

The GZK cut-off is defined by a peculiar threshold, so the UHE neutron jet formed
by tens PeV protons in SS433 jet, require a tuned scenario. Indeed the threshold for
the meson resonance is defined by the center of mass-energy for the ∆ formation
made by an UHE proton Ep scattering onto a hot thermal bath of photons Eγ is in
their ultra-relativistic approximation :

√
2 · Ep · Eγ = m∆ (5.2)

We remind, that baryon resonant Delta mass, m∆, has a value = 1232 MeV. This
equation defines the corresponding critical thermal photon energy Eγ , and there-
fore, the tuned accretion disk temperature and its luminosity needed to take place
for such a processes to occur . The ∆ decay may lead to a UHE proton with a
neutral pion, π0. This pion is decaying soon in a photon pair secondary. With
the same rate the ∆ baryon may also decay into a neutron and its pion charged
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Fig. 5.1: A simplified description of the separated TeV beam observed by Hess,
HAWC and LHAASO. The resurgence of the collimated gamma beam at 75y · c is
very puzzling.

companion, π+. The charged pion also decay soon into muon and its neutrino
and finally also the muon secondary itself will decay into electron and their two
needed neutrino flavors. The final electromagnetic secondaries (photon pairs,
electron pairs) shine and dissolve within a very near (parsec) distances from the
source. They cannot reach far distances and cannot play any role at 75y · c distance.
However a neutron beam is also created. The proton at Pevatron energy are bent
by the galactic magnetic fields. loosing their directionality and also smearing their
beam into wider spiral trajectory . The PeVs neutron beam, instead, may escape
and fly keeping directionality, with no losses, up to its beta decay.
The correlated photon energy to allow such a proton-pion , Delta resonance with a
Ep = 25 PeV proton must be:

Eγ = (m∆)
2/Ep = 30.35eV/(Ep/(25PeV)) (5.3)

One must also take care of a partial loss of energy for the final proton (or neutron)
secondary, because the pion secondaries in the Delta decay absorb part of the
primary energy. This loss is just at ten percent level. Therefore for a final 25 PeV
neutron, we must consider a primary proton at higher energy, nearly of 27.5 PeV.
Consequently, the interacting photon energy Eγ would lead to a resonance at

Eγ = (m∆)
2/Ep = 31.68eV/(Ep/(27.5PeV)) = 3.676 · 105Ko/(Ep/(27.5PeV))

(5.4)
This photon is 63.6 times larger than the peak solar one. Let us show in the
following figure the possible, present, parameters of the SS433 with their nominal
comparable mass of 10 solar masses, in a circular Keplerian orbit of 13 day period
( and 162 day precession time). The star companion radius, the BH accretion disk
size are shown approximated values , while the orbit distance is tuned for their
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assumed 10 solar mass each. This mutual distance D may be slightly re-calibrated
, for any different f binary masses , following the Keplerian (cubic root) law:

D = 146 · ((MBH/10Mo) + (MStar/10Mo))
1/3s · c (5.5)

Fig. 5.2: A simplified description of the inner SS433 binary , in approximated size,
system: an accretion disk on a BH and a companion star of comparable mass, both
of them, with a nominal ten solar mass, in their corresponding Keplerian circular
distance. The star radius and in particular, the accretion disk, are approximated
just for a comprehensive view, but they may be a little larger.

5.1.3 Temperature, photon density, SS433 flare luminosity

Let us assume for sake of simplicity that the accretion disk , in the figure assumed
about 0.8s · c size, extends a lttle more, with a radius comparable to our Sun or
better, to its spherical total surface ( occuring , for a disk radius Rdisk =

√
2 · RSun)

. Because, as shown above, the disk flare temperature required for the resonance
to arise is 63 times the solar one, the corresponding peak flare luminosity LFlare
would be (by scale Stephan Botzmann law), (63)4 times larger than our Sun., or

LFlare = 6.03 · 1040 · erg/s (5.6)

It should also remind here that this flare power (considering the additional out-
flow energy in mass ejection jet and mass loss inside the BH) require a much
larger mass- energy rate falling into the BH. We suggest an energy output (and
a corresponding mass collapse from the companion star to the BH) thousand
times larger, as : (dM/dt)tot · c2 > 6.03 · 1043 · erg/s . This output is not far from
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the usual SS433 observed one., but it requires a quite brighter, near a Nova like
(dM/dt)Nova > 10

44 · erg/s , explosive event. The total duration of such a huge
explosion may hold hours or a few days. For such a brief day duration, the SS433
precessing jet (162 day period) could be considered to be ”frozen” pointing in a
unique direction, as the observed TeV separated beam.

5.1.4 Delta resonance creation in SS433 by Nova-like event

As above estimate, the total mass in rapid capture may be as large as a part of
a thousand a solar mass. Thus such a high brightening might be due to a very
nearby tidal encounter of the companion star mass , or, more probably, due to
the capture of a large wind or even a planet (Juppiter like) in near orbit along the
companion star, suddenly falling onto the BH own gravity. Such a Nova like Burst
, 75-80 years ago, might be occurring at the end of War World II, when astronomy
could not be carefully and actively observing that sky region. Indeed the same
SS433 system nature had been discovered only on 1977. If our hypothesis of a
Nova-like flare is correct, a more care-full study of old the past sky photo-plate in
that direction , on those epochs, might, be luckly, finding traces of that expected
event.
The maximal cross section σ for a photo-pion resonance, has a peak value as the
following one:

σ∆ = 500µb (5.7)

Such a cross-section defines an isolated peak, well explaining the consequent,
nearly mono-chromatic, neutron beam energy. We verify therefore the self consis-
tence for such a thermal photon bath model able to reach an interaction probability
above its threshold. This the hot UV temperature fixed and considered above,
contained in a black body volume near the flaring ”over-Eddington” accretion
disk, defines also the same photon number density nTh=3.676·105Ko where and
along the jet ultra-relativistic proton propagation : The main interaction distance
the disk, Dj should be comparable with the same accretion disk radius, leading to
an approximated probability PPhoto−pion, for the photo-pion conversion into a
Delta (and a consequent neutron beam creation.

PPhoto−pion = σ∆ · nTh ·Dj = 48 >> 1 (5.8)

This order of magnitude guarantee a quite complete Delta resonance production
and a consequent realistic neutron beam formation, even at a far (hundred sec c
distance) from the same accreting SS433 disk. The self-consistent, neutron beam
energy, to fit the 75 y · c has a corresponding flare temperature, and the associated
thermal photon number density, leading to a large threshold , PPhoto−pion >> 1,
for the ∆ resonance production. All the puzzle pieces are all in agreement, offering
support to the present model thesis.

5.1.5 Larmor radius for PeV proton and TeV electrons

As we had proposed above, tens PeV neutron decay, 75yc far away, might become
source of the observed 25 TeV separated gamma beam. We may inquire to the role
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of the twin proton secondaries of the ∆ decay at comparable energies. These 25
PeV energetic proton, contrary to neutron ones, are bent. Their Larmor radius Rp
is constrained by the minimal galactic disk magnetic fields Bg , at least , of few
micro Gauss: .

Rp = (Ep/25PeV) · (Bg/(3 · µ ·Gauss))−1 · 26.4 · yc (5.9)

These spiral radius are nearly one third of the 75 TeV beam distance. Therefore
these proton components are diffused and smeared: they cannot play a role in
the separated TeV jet. Also the secondary electrons at nearly 25 TeV energy , the
parasite secondaries traces of the neutron beta decay, are even more confined along
the neutron beta trajectory, within a much smaller spirals of radius Re

Re = (Ee/25TeV) · (Bg/(3 · µ ·Gauss))−1 · 0.026.4 · yc (5.10)

Therefore the electron role is not able to survive hundreds years light, in absence
of the suggested primary 25 PeV energetic neutron beam.

5.1.6 Neutrons by photo-nuclear Giant Dipole Resonance

Recent UHECR model imagined lightest nuclei currier being fragmented by photo-
nuclear distruption, via the Giant Dipole Resonance , GDR., in concurrence with
”standard model foreseeing the proton or iron UHECR courier. The GDR process,
in analogy with the previous photo-pion one, is capable to lead among the frag-
ments,also to UHE neutrons. The lightest nuclei mudel was considered mainly
to filter or hide the otherwise Virgo cluster inevitable presence (and unobserved
signals) for proton in UHECR model. The GDR processes has a lower energy
threshold, but it is not acting on a proton or a neutron, but it regards only nuclei.
Here we just mention this additional opportunity windows. We also remind the
possibility that such neutron process extend, from few 1016 eV also to several
1019 eV energy (for wider accretion disk and lower thermal bath). In this extreme
scenario, we noted the very rare clustering of 4 UHECR events by AUGER and by
TA array detectors in last two decades, all of the overlapping within a narrow spot
of events at SS433 direction. Their few degrees collimation and their short time
(decades) period of recording, might be well consistent , as discussed elsewhere [5],
with such tens EeV energy neutron collimated flight . The GDR processes consid-
ered here does not sound as the most probable one for the neutron beam , but it
must be taken in consideration.

5.2 Conclusions

A past flare in SS433, could be the source of a 25 PeV neutron jet , possibly
explaining the puzzling separated twin, TeV , gamma beam at 75 years far distance.
The unobservable PeV neutron flight show its presence and its beam resurgence
as soon it decay at far distance and its electron may shine by synchrotron and ICS
radiation. its collimation is an advantage respect the standard model of a schock
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wave processes . This ultra-relativistic beta decay imply also additional interesting
consequences:
An early trigger explosive event, nearly 75/80 years ago, as powerfull as a Nova
star burst, for a duration of few hours or few days at SS433 system shine almost in
a fixed direction (not along a conical precessing jet volume). This event occurrence
is around the War World II end times. Such a Nova event ( to-day observed at
a rate of a dozen a year), could have been escaped detection, at those post war
times . Indeed the same nature of SS433 had been discovered much later, on 1977.
It could be possible and worth-full to inspect such luminosity variability, in oldest
astronomical photo-plate array in that direction and at those epochs, looking for
such a sudden variability signal.
The presence of such neutron PeV separated beam in SS433, may suggest also the
search in other micro-quasars system elsewhere, for such disconnected signatures.
Their statistics may define a corresponding neutrino spectra rate in PeV and
hundred TeV energy range,
The 25 PeV neutron beta decay and its primary 27 PeV proton-pion event, while
on axis toward us , may shine both of a brightest prompt (1− 2 ) PeV gamma burst
but also of a secondary (electron and muon ones) neutrino at (0.2−0.5) PeV energy
. Such a tuned energies are quite interesting , because they may reflect in the TeV
PeV apparent energy dis-continuity, in neutrino spectra . Such spectra feature
might be already hidden in the highest energy Ice-Cube neutrino data, assuming
that their observed origin is really astrophysical and not , as some suggested, a
charmed atmospheric noise. .
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Abstract. In recent years, the number of publications devoted to the study of the influence
of Dark Matter on the Solar System has increased significantly. Observational evidence
indicates the existence of possible focusing effects of Dark Matter in the vicinity of the
Earth, which affects the results of measurements of parameters characterizing the state
of the ionosphere and stratosphere. Such data can shed light on many processes in the
Solar System, since it is accumulated over relatively long periods of time under known
conditions, and the volume of this data will only increase. Over the years of research, a
number of unexplained anomalies in the behavior of these parameters have been observed,
the sources of which have not been identified. In most recent publications, the effects
that Dark Matter can have on the ionosphere are associated with the influence of Dark
Photons and Axion-like particles, due resonant conversion into electromagnetic waves in
the magnetic field in ionized plasma, and due coupling. In this work, we use the galactic
reference frame and consider a set of ionospheric parameters and solar wind parameters
measured on the Earth’s surface or near the Earth, and construct vectors of changes in these
parameters at different times and in different directions in order to determine possible
inhomogeneities in the behavior of these parameters due to distribution of hidden mass in
the Solar System in spacetime. It is shown that for the selected parameters, the difference
vectors calculated since 1986 have clearly defined directions that are not determined by
the Sun at certain time intervals, and the directional vectors are consistent between the
parameters.

Povzetek V zadnjih letih se je znatno povečalo število publikacij, ki preučujejo vpliv temne
snovi na Osončje. Merjenja nakazujejo, da zgoščevanje temne snovi v bližini Zemlje vpliva
na parametre, ki označujejo stanje ionosfere in stratosfere. Ta merjenja lahko osvetlijo
številne procese v Osončju, saj se zbirajo v razmeroma dolgih časovnih obdobjih pod zna-
nimi pogoji. Raziskave kažejo številne nepojasnjene anomalije v izmerjenih parametrih.
Zadnje publikacije povezujejo vpliv temne snovi na ionosfero preko temnih fotonov in
delcev, podobnih aksionom, ki prožijo elektromagnetne valove v magnetnem polju ion-
izirane plazme. V tem prispevku uporablja avtor galaktični sistem. Preučuje ionosferske
parametre ter parametre sončnega vetra, izmerjene na površini Zemlje ali v njeni bližini,
ter konstruira vektorje sprememb teh parametrov, izmerjenih v različnih časih in smereh,
da bi ugotovil ali se parametri spreminjajo zaradi sprememb porazdelitve temne snovi v
Osončju. Za določene parametre je ugotovljeno, da imajo razlike vektorjev, ki jih določajo
od leta 1986, jasno določene smeri, ki ob določenih časovnih intervalih niso odvisne od
Sonca, pri čemer so smerni vektorji enaki za različne parametre.
⋆⋆ aharahashyan@sfedu.ru
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6.1 Introduction

The detection and study of Dark Matter has been a hot topic in cosmology, astro-
physics and particle physics for many decades. During the observations in each of
the research areas, a substantial amount of evidence has been collected that cannot
be explained within the framework of traditional approaches [1]. The research
area is constantly expanding and has already gone beyond the classical domains,
with increasing attention being paid to the search for the effects of Dark Matter in
the Solar System. In recent years, interdisciplinary research has revealed a number
of new anomalies within the Solar System [2-4], and new explanations have been
proposed [2-5] using effects associated with the influence of Dark Matter. The
zones of interest that are attracting increased attention include the ionosphere,
stratosphere, solar corona, and near-Earth space in general [2-12]. The complexity
of studying these regions is related to their proximity to each other and the pres-
ence of numerous layers with fundamentally different characteristics. These layers
are in constant interaction, particularly the adjacent ones, are interdependent, and
subject to external effects caused by solar activity, cosmic rays, interplanetary
space radiation, and noise induced by human activity. However, such diversity
and complexity provide great opportunities to track the development of these
processes at different stages and to conduct cross-analysis. Over a long period
of observation of the Earth’s ionosphere, significant amounts of data have been
accumulated on the processes occurring there and in the neighboring layers. The
state of the ionosphere is described by many parameters, some of which are not
specific to the ionosphere only, and relate to the adjacent layers or even inter-
planetary space. While many processes are largely determined by the 11-year
solar cycle, a significant number of anomalies have been discovered over time.
These include stratospheric temperature December-January variations, lack of
correlations between those stratospheric temperature variations and solar UV and
EUV emission, total electron content (TEC) planetary correlation and unexpected
seasonal differences, that are not related to Earth-Sun distance, correlation be-
tween earthquakes and TEC, and unexpected trends in solar cycles[2-6]. Some of
these anomalies can be attributed to gravitational Dark Matter focusing [6], and
to the influence of Dark Photons and Axion-like particles [7-10], due resonant
conversion into electromagnetic waves in the magnetic field in ionized plasma,
and due coupling. Since there are many Dark Matter candidates, and they have a
strong theoretical background, while their properties vary significantly and each
type has its own unique interactions, we will focus on finding more anomalies that
can provide the information required to determine the most probable candidate.

6.2 Data and Methods

This paper studies a set of parameters characterizing the state of the ionosphere,
solar wind, plasma, interplanetary magnetic field and magnetosphere, as well as
solar activity proxies and energetic particle fluxes. The study includes a frequency-
time domain analysis of the original signals, as well as a number of derived
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parameters calculated using a framework for the analysis of spatio-temporal
characteristics.
The collected dataset included data from January 1, 1986 to January 1, 2024, in
1-hour increments. It included data from various satellites as well as data from
ground stations. The data was extracted from the OMNIWeb service, developed
by SPDF NASA Goddard Space Flight Center. The OMNIWeb service provides
aggregated information on solar wind, plasma, ionospheric indices and particle
fluxes from various sources, a full list of data sources is presented on the service’s
web page.
The set of parameters for which calculations and further research were carried out
included: F10.7 (sfu = 10-22W m-2 Hz-1) - solar radio flux at 10.7 cm (2800 MHz),
AP (nT) - average level for geomagnetic activity, Dst (nT) - Disturbance Storm
Time, Scalar B (nT) - Interplanetary Magnetic Field (IMF) B value, SW Plasma
Temperature (K), SW Proton Density (N/cm3), SW Plasma Speed (km/s), PCN
- Polar Cap index at Northern Pole, Proton fluxes at >1 MeV, >2 MeV, >4 MeV,
>10 MeV, >30 MeV, >60 MeV (1/(cm**2-sec-ster)), SSN - sunspot number, Plasma
Beta, Ey (mV/m) - y component of the electric field, Flow pressure (nPa).
Since the parameters considered in this study were measured at different periods
of time, with different instrument, and under different conditions, some in Earth
orbit and some on the surface, time alignment and normalization procedures
were applied to them. These procedures were carried out by the data provider
OMNIWeb. The full description is provided by the OMNIWeb developers, there-
fore, we will only highlight the most relevant excerpts here. For the instruments
orbiting the Moon, the IMF and plasma observations are usually collected within
15 minutes upstream of the magnetosphere, and for the most instruments this time
is within several minutes. In contrast, the ISEE 3, Wind, and ACE spacecraft are
often positioned about an hour upstream. Since their data is to be integrated with
the data from spacecraft much closer to Earth, such as IMP 8, it is necessary to
apply a time shift to the hour-upstream data at a higher resolution considering the
expected arrival time at Earth. In this paper hourly-averaged data is used, some
instruments provide data with much higher resolution, so time shifts and nor-
malization were applied before averaging. The performed adjustment utilizes the
known positions of these spacecraft along with observed solar wind flow speeds
from the datasets being modified. The data obtained by spacecraft in geocentric
and Lagrange point L1 orbits have been compared and cross-normalized by the
data provider.
The coordinates and trajectories of celestial objects were calculated using the
NASA Navigation and Ancillary Information Facility (NAIF) SPICE Toolkit im-
plementation for MATLAB (MICE). The following files were used as a kernel: the
leap seconds file naif0012.tls, the ephemerides file de440t.bsp, and the orientations
file pck00011.tpc.
To carry out the calculations, the Galactic Inertial Reference Frame was used, with
an observer point located at the position of the Sun (heliocentric). The galactic
north pole is at RA = 12h 51.4m, Dec = +27°07’ (2000.0), the galactic center at
RA = 17h 45.6m, Dec = -28°56’ (2000.0). The inclination of the galactic equator to
Earth’s equator is 63°. In the chosen coordinate system, we calculate the vectors
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that characterize the movement of the Earth relative to the Sun over a year PVA(t),
over six months PVSA(t), and over an hour PVH(t):

PVA(t) = PosEarth(t+ shiftA) − PosEarth(t), (6.1)

PVSA(t) = PosEarth(t+ shiftSA) − PosEarth(t), (6.2)

PVH(t) = PosEarth(t+ shiftH) − PosEarth(t). (6.3)

The calculated vectors are normalized nPVA(t) = PVA(t)/
∣∣PVA(t)

∣∣, nPVSA(t) =
PVSA(t)/

∣∣PVSA(t)
∣∣, nPVH(t) = PVH(t)/

∣∣PVH(t)
∣∣ and used as basis vectors.

We introduce a set of vectors characterizing changes in the chosen parameter p
over a specified period of time shifts, in relation to other moments in time using
previously calculated basis vectors and forward finite differences ∆s [p] (t) =

p(t+ shifts) − p(t), where s is the index, defining the period:

DVA(p, t) = ∆A [p] (t) · nPVA(t), (6.4)

DVSA(p, t) = ∆SA [p] (t) · nPVSA(t), (6.5)

DVH(p, t) = ∆H [p] (t) · nPVH(t). (6.6)

We will not apply the orthogonalization procedure to the vectors in order to
maintain consistent time reference points for events for all three vectors.
Since the chosen coordinate system is heliocentric and the observer point is iden-
tical to the Sun position, the spatial coordinates of the Sun in this coordinate
system are equal to (0, 0, 0). However, the Sun also moves in time. If we plot the
trajectory of the Sun when its spatial coordinates are zero and its time coordinates
are changing, we get the trajectory illustrated in Figure 1 as a thick yellow line.
Since the planets of the Solar System objects move relative to the Sun in both space
and time, they will have helix orbits. Here, the Earth’s trajectory is shown as a
helix line.
The resulting vector of changes will be calculated as the sum of three vectors,
where each vector characterizes the difference for the corresponding periods,
along the axis in 4-dimensional space, similar to the gradient vector:

DV(p, t) = DVA(p, t) +DVSA(p, t) +DVH(p, t). (6.7)

To analyze the frequency-time characteristics of the original parameters, as well as
the calculated vectors, we will use cross wavelet analysis, and after performing
the cross-wavelet transform (XWT), we will analyze the wavelet semblance (WS).
A waveletψ(x) is a time-dependent function, typically an oscillatory process, local-
ized in both frequency and time. Assuming that we have two time-dependent sig-
nalsu(t) and v(t), we define the cross-wavelet transform asXWTuvψ = CWTuψ CWT

v∗
ψ ,

where * denotes the complex conjugate. Then, we will calculate a wavelet phase
correlation:

WS = cos(θ), WS ∈ [−1, 1] , (6.8)

where θ = tan−1(ℑ(XWTuvψ )/ℜ(XWTuvψ )) is the local relative phase.
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Fig. 6.1: Visualization of vectors DVA (red), DVSA (green), DVH (blue), calculated
for B parameter, relative to the Earth’s orbit.

In this paper, we use the complex Morlet wavelet:

ψ(x) =
1√
π · fb

e2π·i·fc·xe

−x2

fb . (6.9)

Possible phase shifts and periodic dependencies throughout the entire dataset will
be considered based on auto-correlation and cross-correlation functions.

6.3 Results and Discussion

A number of selected calculated difference vectors DV graphs are presented in
the Figure 2. The results are provided in the Galactic coordinate system, with the
Sun indicated by a yellow circle. Blue circles, accompanied by numbers, indicate
the beginning of each month. The vectors themselves are indicated by colored
arrows, a specific parameter is indicated by color within each individual subfig-
ure. Vector lengths are not to scale. For Proton Fluxes, vectors are grouped into
distinct clusters, the lengths of vectors outside the clusters being negligibly small
compared to vectors within the clusters. The positions of clusters in time between
different energy levels are practically identical. The most pronounced clusters are
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observed in mid-March, the second half of April - May, mid-July, mid-October -
mid-November.
If we compare the vectors for Dst with those for Proton Fluxes, we can see that the
vectors with the greatest magnitude for Dst are observed in mid-March, early May,
and the period from September to January. The directions of the vectors for these
periods are opposite to the directions of the vectors for proton fluxes. Since the Dst
index is usually negative, with the lowest values representing the strongest storms,
a negative correlation is clearly visible. Similar behavior of vectors, with positive
or negative correlation, is observed for most of the parameters considered. It is
important to note that although the most pronounced clusters generally coincide,
each parameter has unique sets of vectors that are inherent only to it. However,
there are a number of exceptions for which most directions are different from those
considered earlier, as well as from most other parameters, in particular SW plasma
temperature and F10.7.
For the initial parameters, as well as for the obtained difference vectors and their
individual projections, auto-correlation functions and cross-correlation functions
were calculated. Some of the results are presented in Figures 3, 4. Auto-correlation
functions for the initial parameters provided very limited information on the
periodicity of the processes, with only annual variations and the 11-year solar
cycle clearly visible. While cross-correlation functions revealed a number of phase
shifts between different parameters, the dependencies were most clearly visible
when calculating the correlation between the projections of the difference vectors,
as well as their magnitudes (Figure 4).
The number of phase shift components is very high per plot, and each combination
of parameters has its own frequency spectrum, there are most common shifts, not
directly related to 11-years solar cycle and annual modulations, that are shared
between many parameters. These include approximately: 2 years, 2.55 years, 3
years, 4.5 years, 14 years, 17.15 years, 25 years, most are observed in Figure4a.
Although, some pairs produce different patterns: 13.54 years shift in Figure4b;
6.03 years and 6.61 years in Figure4c; 4.89 years, 6.02 years and 17.92 years shifts
in Figure 4d, with an approximately 11 years between them (note the sign). Con-

(a) (b)
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(c) (d)

(e) (f)

Fig. 6.2: Difference vectorsDV in relation to the Earth’s orbit: Proton Flux >1 MeV
(a), Proton Flux >1 MeV [orange], >10 MeV [green], >60 MeV [blue] (b), Dst (c),
Dst [orange] and all Proton Fluxes (d), SW Plasma Temperature (e), F10.7 (f).

sidering that all cross-correlations were calculated using zero-padding, the actual
correlation is higher.
The dependence of solar radio flux F10.7 on the sunspot number was analyzed
using wavelet transform and semblance analysis. This dependence is well studied,
and both parameters have an extremely high correlation with each other. At the
same time, it is also known about the presence of a phase lag at individual time
intervals. The results are provided in Figure 5. Red color represents the semblance
close to 1, and blue color represents the semblance close to -1. The figure Figure 5a
clearly shows that throughout the entire dataset under consideration, the SSN and
F10.7 show an extremely high degree of positive correlation, with the exception
of a number of areas shown in blue, where there is a clearly pronounced anti-
correlation. There is no obvious periodic pattern, however, the anomalies can be
divided into 2 groups by duration. Since there are multiple trends present in the
data, we will use the differenced time series and the fact that they are signed, to
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Fig. 6.3: Auto-correlation functions: Ey [blue], Dst [orange], Flow pressure [yellow],
SSN [purple], F10.7 [green], SW plasma temperature [light blue] (left); Cross-
correlation between Ey and Proton Flux >60 MeV (right).

reduce the effects of possible overlaps and mitigate the random occurrence. By
averaging the semblance of the original data with the semblance coefficients of
the differenced data, we can improve the resolution and localize the centers of
the anomalies with greater accuracy, while simultaneously removing the unstable
anomalies, as shown in Figure 5b,c. Figure 5b shows the averaged semblance
coefficient when averaging is carried out between the semblance coefficients of
the original data and the averaged semblance coefficient of the modulus of the
difference vectors without taking into account the sign. Wide areas of medium-low
correlation, alternating with wide areas of medium-high correlation, are caused by
the ascending and descending trends of solar cycles. When the sign is also taken
into account during averaging, we obtain the results shown in Figure 5c. It can
be seen that despite the averaging procedures, using differenced time series with
varying periods, and eliminating trends, almost all anomalies are still present,
their positions have not changed, and the boundaries have become more defined
as a result of the above procedures. Although determining the origins of these
anomalies is beyond the scope of this study, an interesting observation is that
these anomalies are present at frequencies in the expected range for Dark Photon
models, within the kinetic mixing parameter limits corresponding to the Earth and
Jupiter region [13], and also in the frequency band for certain models of Axion-like
particles [10]. However, it is important to note that Figure 5 provides the wavelet
frequencies, not the frequencies of the original data.

6.4 Conclusions

In this paper, we investigated parameters characterizing the state of the ionosphere,
solar wind, plasma, interplanetary magnetic field and magnetosphere, as well as
proxies for solar activity and energetic particle fluxes. The frequency-time analysis
was conducted for the original observational data and derived parameters, calcu-
lated using a framework for analyzing spatio-temporal characteristics. Calculated
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(a) (b)

(c) (d)

Fig. 6.4: Cross-correlation functions: |DV |Ey and |DV |ProtonFlux>60MeV (a),
DVA,FlowPressure and DVA,Dst (b), DVA,SW ProtonDensity and DVA,F10.7 (c),
DVA,PlasmaBeta and DVA,F10.7 (d).

difference vectors had clearly defined directions that are not determined by the
Sun at certain time intervals, and were consistent between different parameters.
Some parameters provide specific vectors that are unique to them while still being
consistent to most of the data. Time delay components unrelated to the 11-year
solar cycle are observed in the cross-correlation functions for the differenced data,
but are absent or difficult to detect in the cross-correlation functions for the original
data, and are not present in the auto-correlation functions. A number of localized
anomalies were identified in the relationship of F10.7 with SSN, which are ob-
served in the frequency band expected for a Dark Photon and some models of
Axion-like particles. It is shown that these anomalies are not due to the solar cycle,
as well as annual, semi-annual and hourly variations. It is planned to analyze the
identified anomalies with higher resolution and using an extended set of wavelet
types.
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(a)

(b)

(c)

Fig. 6.5: Wavelet semblance for SSN and F10.7: WS(SSN, F10.7) (a), averaged
WS(SSN, F10.7) and WS(SSN, |DV |F10.7), WS(SSN, |DV |s,F10.7) (b), averaged
WS(SSN, F10.7) andWS(SSN, |DV |F10.7),WS(SSN, sign · |DV |F10.7) (c).
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Abstract. BSM physics, on which the now standard inflationary cosmology with baryosyn-
thesis and dark matter/energy is based, inevitably leads to cosmological scenarios beyond
this standard model, involving specific model dependent choice of models and parameters
of BSM physics. Such model dependent cosmological predictions may have already found
confirmations in the positive results of direct dark matter searches by DAMA/NaI and
DAMA/LIBRA experiments, interpretation of the results of Gravitational Wave experi-
ments in terms of Primordial Black Hole merging, observation of Stochastic Gravitational
Wave background by Pulsar Timing Arrays, indications of early galaxy formation in the
observations of James Webb Space Telescope and searches for cosmic antihelium in the
AMS02 experiment. We discuss the open questions in studies of these signatures of BSM
cosmology.

Povzetek Standardni kozmološki model, na katerem temelji zdajšnja standardna inflacijska
kozmologija z barionsintezo in temno snovjo ter temno energijo, vodi v nove kozmološke
scenarije, ki presegajo ta standardni model. Novi scenariji vključujejo specifične, od modela
odvisne parametre, ki pa so morda že naššli potrditve v novih merjenjih; v neposrednih
merjenjih temne snovi z eksperimentoma DAMA/NaI in DAMA/LIBRA; v interpretaciji
rezultatov merjenj gravitacijskih valov (gre za scenarij združitve primordijalnih črnih lukenj,
za opazovanje stohastičnega ozadja gravitacijskih valov z mrežami za merjenje delovanja
pulzarjev, za indikacije o zgodnji tvorbi galaksij pri opazovanjih vesoljskega teleskopa
James Webb ter pri iskanju kozmičnega antihelija z eksperimentom AMS02). Prispevek
razpravlja o odprtih vprašanjih signalov, ki zahtevajo nov model BSM, ki bo pojasnil odprta
vprašanja.

7.1 Introduction

The now Standard cosmology involves inflation, baryosynthesis and dark mat-
ter/energy [1–3, 3–5, 7–9]. These necessary elements of the modern cosmological
paradigm imply physics Beyond the Standard Model (BSM) of fundamental inter-
actions. To probe this physics its model dependent cosmological consequences can
be used as cosmological messengers [10–12]. Such messengers lead to deviations
from the standardΛCDM cosmology. Observational evidence for such messengers

⋆⋆ khlopov@sfedu.ru
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would remove the conspiracy of the deviations from the standard cosmology [13].
Positive hints to such deviations need more detailed analysis of the open questions
on physical basis and observable features of the corresponding BSM messengers.
Here we discuss the open problems of the analysis of these hints presented at the
XXVII Bled Workshop ”What comes beyond the Standard models?”.
If model dependent messengers of BSM physics are confirmed, it would strongly
reduce the set of BSM models and their parameters. Therefore, any approach to
the unified description of Nature [14, 15] should inevitably include together with
physical basis for inflation, baryosynthesis and dark matter also BSM cosmological
signatures, which find observational support.
We consider open questions of the dark atom interpretation of the results of the
direct searches of dark matter (Section 7.2.1). We discuss the Axion Like Particle
(ALP) models and the footprints of their physics in stochastic gravitational wave
background (SGWB) and favored by James Webb Space Telescope (JWST) early
galaxy formation. We consider open problems of ALP physics and cosmology
in the scenarios of creation and evolution the primordial objects of macroscopic
antimatter in our Galaxy, specifying their role as possible sources of antihelium
component of cosmic rays (Section 7.3). In the conclusive Section 7.4 we put
the signatures and significance of the discussed messengers of BSM physics and
cosmology in the context of cosmoparticle physics.

7.2 Open problems of dark matter physics and cosmology

During the last few decades the mainstream of dark matter studies was stimu-
lated by the miracle of Weakly Interacting Massive particles (WIMPs) explaining
the cosmological dark matter. Indeed, the frozen out amount of particles with
mass in the hundred GeV range with annihilation cross section of the order of
ordinary weak interaction could naturally explain the observed dark matter by
their predicted contribution into the cosmological density. Theoretical basis for
WIMP studies was found in supersymmetry (SUSY), which could naturally predict
neutral WIMP-like candidate as stable lightest SUSY particle. It put experimental
direct WIMP searches in the correspondence with the search for SUSY particles at
the LHC. However, SUSY particles were not detected at the LHC in the hundred
GeV range. This lack of positive evidence for SUSY particles can indicate very high
energy SUSY scale [16]. Then SUSY cannot be used to solve the internal problems
of the Standard model (the divergence of Higgs boson mass and the origin of
the energy scale of the electroweak symmetry breaking). It implies a non-SUSY
solution of these problems. It inevitably draws attention to non-WIMP candidates
for dark matter, originated from non-SUSY physical basis.

7.2.1 Dark atom probe in direct dark matter searches

The results of the underground direct dark matter search look controversial. Posi-
tive results of DAMA/NaI and DAMA/LIBRA experiments are presented with
increasingly high statistics [17]. It seems to be in sharp contradiction with negative
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results of other groups (see [1] for review and references). However, the strat-
egy of most of these groups is aimed to the WIMP search. Though the results of
DAMA/NaI and DAMA/LIBRA experiments, taken separately admit their WIMP
interpretation [17], confrontation with publications of other groups strongly favors
non-WIMP interpretation of these positive results and appeals to consider them as
the experimental evidence for dark atom nature of dark matter [1, 12, 18, 19].
The dark atom hypothesis assumes existence of stable particles with negative
even electric charge −2n. Such particles should be generated in excess over their
antiparticles and bind with n primordial helium-4 nuclei, created in Big Bang
Nucleosynthesis, in neutral nuclear interacting atom like states.
Multiple charged stable states can be related with the composite nature of Higgs
boson. If Higgs boson constituents are charged, their composite multiple charged
states can exist. By construction Higgs boson constituents possess electroweak
charges. It can not only provide prediction of stable −2n charged particles, but
also can give rise to their excess over positively charged antiparticles owing to
electroweak sphaleron transitions, which balance this excess with baryon asym-
metry. Such balance takes place in Walking Technicolor model (WTC) and the
excess of −2n charged particles as the constituents of dark atoms determines the
relationship between dark matter density in the form of dark atoms and baryon
density. The only parameter of dark atom model is the mass of the stable −2n

charged particles. This parameter can be determined under the assumption that
dark atoms explain all the observed dark matter density [20–22].
It was shown in [20–22] that the excess of −2n charged particles balanced with
baryon excess can be generated in the case of any new particle family, which
possess electroweak charges. It makes possible to balance with baryon asymmetry
the excess of -2 charged (ŪŪŪ) clusters of stable antiquarks Ū with the charge
−2/3. Such a new stable generation is predicted as the 5th generation in the
approach [15]. The excess generated by the sphaleron balance depends on the
mass of multiple charged particles. It can explain the observed dark matter, if the
mass of stable multiple charged particles doesn’t exceed few TeV. It puts upper
limit on the mass of multiple charged particles, at which dark atoms can explain
the observed density of dark matter, and challenges their experimental search at
the LHC [21].
The problems of dark atom structure and interaction are more close to the nuclear,
than to atomic physics. Instead of small nuclear interacting core covered by large
leptonic (electronic) shell, multiple charged lepton-like core of dark atom is closely
covered by nuclear interacting helium shell of nuclear size.
The structure of dark atom and its properties tend to a nuclearite (Thomson like
atom) – to a specific superheavy neutral nuclear matter species.
Bohr-like OHe atom description can be appropriate only for a double charged
particle (n = 1) bound with primordial helium nucleus. Even in this case radius of
the helium Bohr orbit is nearly equal to the size of this nucleus. The −2n charge
particle forms atn > 1 Thomson-likeXHe atom withn helium nuclei. −2n charged
lepton is situated in this atom within an n-α-particle nucleus. It makes XHe dark
atoms more close to O-nuclearites [23], in which electric charge of nuclear matter
is compensated by negative charge of heavy leptons.
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Evolution of these species formed in the period of Big Bang Nucleosynthesis is
the open problem of dark atom scenario. XHe atoms are formed in the medium
enriched by free helium nuclei and their binding with XHe can lead to production
of anomalous isotopes, which is now the object of our thorough investigation.
The role of the Bose-Einstein nature of α particles is of particular interest in this
investigation.
Negative results of direct WIMP searches find natural qualitative explanation by
the Dark atom hypothesis. Dark atom nuclear interaction in the terrestrial matter
causes their slowing down, which results in negligible nuclear recoil in the dark
atom collisions within underground detectors [1, 12, 18].
Local dark atom concentration is determined at each level of terrestrial matter by
the balance between the incoming cosmic flux of dark atoms and their diffusion
towards the center of Earth. Such concentration is adjusted to the incoming cosmic
flux. At the 1 km depth the equilibrium is maintained at the timescale of less than
1 hour. Since the incoming flux possess annual modulations due to the Earth’s
orbital motion around the Sun, the dark atom concentration experiences annual
modulation within the matter of the underground detector. If dark atoms can form
low energy (few keV) bound states with nuclei of detector, the energy release in
such binding should possess annual modulation. It can explain the signal, detected
in DAMA/NaI and DAMA/LIBRA experiments, assuming that the dark atom
number density in the detector is adjusted to the incoming flux, that there is a 3
keV bound state of dark atom with sodium nucleus and that the rate of radiative
capture to this bound state is determined by the E1 transition with the account for
isospin symmetry breaking factor (given by the ratio of the neutron and proton
mass difference to the nucleon mass). Under these assumptions the results of
DAMA/NaI and DAMA/LIBRA can be explained and it challenges the analysis
of these experimental data [17] in the framework of the dark atom hypothesis.
The basic open problem of the dark atom hypothesis is related to the proper
quantum-mechanical description of the nuclear interaction of dark atoms. In the
lack of small parameters, used in the ordinary atomic physics, the numerical meth-
ods of continuous approach to the description of three body problem of dark atom
constituents+nucleus were developed [24]. These methods were elaborated for
interaction of nuclei with both Bohr-like and Thomson-like dark atoms [25, 26]
(see [22] for recent review and references). Development of the proper quantum
mechanical description of dark atom interaction with nuclei is necessary for anal-
ysis of dark atom formation of anomalous isotopes after BBN, of effects of dark
atom capture by stars and effects in stellar nucleosynthesis, as well as for the proof
of dark atom interpretation of DAMA/NaI and DAMA/LIBRA results.

7.2.2 Dark Matter in Axion-Like Particle Models

Axion-Like Particle (ALP) models go far beyond the original axion models and
their relationship with the Peccei-Quinn solution for the problem of strong CP
violation in QCD. ALP can be reduced to a simple model of a complex pseudo-
Nambu-Goldstone field

Ψ = ψ exp iθ
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with broken global U(1) symmetry [1, 11]. The potential V = V0 + δV leads to
spontaneous breaking of the U(1) symmetry by the term

V0 =
λ

2
(Ψ∗Ψ− f2)2, (7.1)

which retains continuous (phase) degeneracy of the ground state

Ψvac = f exp(iθ) (7.2)

and to manifest breaking of the residual symmetry by the term

δV(θ) = Λ4(1− cos θ) (7.3)

with Λ≪ f, leading to a discrete set of degenerated ground states, corresponding
to

θvac = 0, 2π, 4π, ...

In the result of the symmetry breaking by the term (7.3) an ALP field ϕ = fθ is
generated with the mass

mϕ = Λ2/f. (7.4)

In the axion models the term (7.3) is generated by instanton transitions. In ALP
models, it is present in the theory initially. When Hubble parameter decreases
down to the value of the ALP mass, given by the Eq. (7.4), H = mϕ = Λ2/f, coher-
ent oscillations of the ALP field start, The ALP field energy density is proportional
to θ2i , where θi is the amplitude of ALP field oscillations, given by the initial local
value of the phase, when the oscillation starts.
The ALP field represents the Bose-Einstein condensate of ALP Bose-gas in its
ground state. Therefore. in spite of a very small mass, ALP in the condensate
are nonrelativistic and, if they dominate at the matter dominated stage, can play
the role Cold Dark matter, reproducing the Standard ΛCDM scenario of Large
Scale Structure formation. However, ALP physics can lead to strong deviations
of the Standard cosmological paradigm and to creation of strong primordial
inhomogeneities of different kinds, discussed in the next section 7.3, .

7.3 BSM cosmology from ALP physics

If the first phase transition takes place after reheating, the correlation radius is
small and ALP strings are formed. The string network is converted into unstable
walls-surrounded by strings structure after the second phase transition. ALP
energy density distribution represents the replica of this structure and preserves
large scale correlations in the nonhomogeneity of the ALP energy density [1].
Evolution of this primordial inhomogeneity, its role in structure formation and
observational signatures of the corresponding scenario are the open questions of
this direction of the ALP studies. The question of the relationship of this large
scale structure and formation of axion stars [27] is of special interest.
After the first phase transition, if it takes place at the inflationary stage, the phase
has a fixed value within the Hubble radius at each e-folding. Quantum fluctuations
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lead to variations in phase between disconnected regions. These fluctuations are
given by

δθ =
Hinfl

2πf
, (7.5)

where Hinfl is Hubble parameter at the inflationary stage [1]. After the second
phase transition the local value of phase determines the amplitude θ− θvac of the
ALP field oscillations. If at the e-folding, corresponding to the observed part of
the Universe, θ < π θvac = 0. In regions, where the fluctuations (7.5) moved the
phase at successive steps of inflation to values greater than π, θvac = 2π. At the
border of domains with θvac = 2π and surrounding regions with θvac = 0 along
the closed surfaces with θ = π closed domain walls are formed in the course of
the second phase transition.
If the field Ψ interacts with quarks and leptons with nonconservation of the baryon
and lepton numbers, decay of the field fθ generate baryon asymmetry in its motion
to the ground state. If θ < π, baryon excess is generated, while the antibaryon
excess is generated in domains with θ > π (see Fig. 7.1).

θ60

π

0

matter

matter
anti

θ

θ

i

i
θ60

θ60

−δθ

+δθ

Fig. 7.1: Phase fluctuations at inflationary stage can cross π. It leads to formation of
closed domain walls. If the ALP field is unstable relative to decays to quarks and
leptons with baryon and lepton number nonconservation, as it is the case in the
model of spontaneous baryosynthesis [28], crossing π and 0, results in formation
of antibaryon domains in baryon asymmetric Universe [1]

The open question in the scenario with the first phase transition at the inflationary
stage is the necessity to suppress large scale fluctuations, excluded by the observed
CMB isotropy. One of the possible solution can be a large amplitude ϕ of the
complex ALP field (7.2.2) at the stage of inflation, corresponding to the modern
horizon, and its decrease down to the broken symmetry value f (see Eq.(7.2)) at
successive inflationary stages.

7.3.1 PBH, SGWB and JWST signatures of ALP physics

Inflation provides homogeneous and isotropic initial conditions for evolution of
causally disconnected regions within the observed cosmological horizon. However,
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such evolution can lead to qualitative difference of conditions in different regions.
Formation of closed domain walls, related with the difference in the ground
states of the ALP field gives several examples of such kind. Pending on the two
fundamental scales of the ALP physics, f and Λ it can lead to three possibilities.
The interval of mass M of domain walls, collapsing in primordial black holes
(PBH) [16, 29], is given by

Mmin = f
(mPl
Λ

)2
≤M ≤Mmax = f

(mPl
f

)2 (mPl
Λ

)2
. (7.6)

Here the minimal massMmin is determined by the condition that the gravitational
radius of wall rg = 2M/m2Pl exceeds the width of wall d ∼ f/Λ2. The maximal
mass corresponds to the condition that the wall as a whole enters horizon before
it starts to dominate within it. Small walls with massM <Mmin form oscillons,
while large walls with mass M >Mmax separate the region of their dominance
from the other part of the Universe,
At the appropriate value of f and Λ the ALP mechanisms can provide formation
of PBHs with stellar mass, and even larger, up to the values corresponding to
the seeds for Super Massive Black Holes in Active Galactic nuclei (AGN) [30–32].
Their mass can easily exceed the limit of pair instability and the LIGO/VIRGO
detected gravitational wave signal from coalescence of black holes with masses
M > 50M⊙ naturally puts forward the question on their primordial origin [33, 34].
One can consider recent discovery of Stochastic Gravitational Wave Background
(SGWB) by Pulsar Timing Arrays (PTA) [35] as another evidence of ALP physics.
Large closed domain walls with mass M > Mmax separate the region of their
dominance from the surrounding Universe. Formation of these walls is accompa-
nied by gravitational wave background radiation, which can reproduce the PTA
data [36]. In the ALP model, the contour of the future domain wall is created,
when the phase crosses π. The values of phase at the stages of inflation, preceding
the this crossing, approach to π. In the result the ALP energy density in the regions
surrounding future domain wall is much larger, than the average one for the ALP
field. Therefore, when the wall separates from the other part of the Universe the
region, where it dominates, the ALP density in the surrounding regions is much
higher than the average in the Universe and the galaxy formation in these regions
can take place much earlier, than in the rest of the Universe and can happen at the
redshifts z > 10, as indicated by the data of JWST [37]. In that way ALP physics
can simultaneously explain the PTA and JWST data [38]. The open questions
in this scenario are generation of GW background from the domain walls and
evolution of the regions of the enhanced ALP density. In particular, the question is
of special interest whether black hole formation is possible in their central part, or
the enhanced ALP density itself plays the role of AGN seeds in the early galaxies.
Evolution of wall dominated regions is also of special interest. Their appearance
in the Lemaitre-Friedman-Robertson-Walker Universe, supported by inflational
scenario, is the effect of fluctuations at the inflationary stage, resulted in the strong
deviation of some regions from isotropy and homogeneity. The influence of such
regions on the evolution of surrounding regions needs special study.
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7.3.2 Antimatter domains in baryon asymmetric Universe

Baryon asymmetry of the Universe reflects the absence in the observed Universe
of macroscopic antimatter in the amount comparable with the amount of baryonic
matter. In the now standard cosmological paradigm baryon asymmetry is related
to baryosynthesis, in which baryon excess is created in very early Universe. If
baryosynthesis is inhomogeneous, in the extreme case the sign of the baryon excess
can change, giving rise to antimatter domains, produced in the same process, in
which the baryon asymmetry is created [28, 39–43]. Such antimatter domains are
surrounded by matter. They should be sufficiently large to survive to the present
time and to give rise to antimatter objects in the Galaxy. It implies also effect of
inflation in addition to nonhomogeneous baryosynthesis. Such combination of
inflation and nonhomogeneous baryosynthesis can take place in the ALP model
of spontaneous baryosynthesis [28] at the specific choice of its parameters.
This choice determines the properties of antimatter domains, their evolution and
the forms of celestial antimatter objects in baryon asymmetrical Universe. The
minimal mass of the surviving domain is determined by its annihilation with the
surrounding matter. The upper limit on the possible amount of antimatter in our
Galaxy follows from the observed gamma background [43, 44]. These limits give
the interval of massM of antimatter in our Galaxy

103M⊙ ≤M ≤ 105M⊙, (7.7)

which is typical for globular clusters. Symmetry of electromagnetic and nuclear
interactions of matter and antimatter would make celestial antimatter objects look-
ing like matter ones. Globular clusters are situated in the halo of our Galaxy, where
matter gas density is low. It seemed to favor the hypothesis of antimatter globular
cluster in our Galaxy, which may be rather faint gamma source. If antibaryon
density is much higher, than the baryonic density, specific ultra-dense antibaryon
stars can be formed [45],
Therefore, studies of possible forms of macroscopic antimatter objects in our
Galaxy are challenging, involving evolution of antibaryon domains in baryon
asymmetrical universe [46, 47] in the context of models of nonhomogeneous
baryosynthesis.
The idea of antimatter globular cluster inspired to look for an appropriate galactic
Globular cluster as its possible prototype. The observed properties of the M4
globular cluster were used for this purpose [48], but such approach implies strong
correction. Indeed, chemical evolution within the isolated antimatter domain can-
not be the same as that for the ordinary matter. At rather wide range of antibaryon
density one can expect that primordial nucleosynthesis in the domain should
lead to production of primordial antihelium. However, products of anti-stellar
nucleosynthesis can neither come to the domain from other parts of the Galaxy,
nor remain in domain being produced by antimatter stars within it. It makes
highly improbable enrichment of antimatter object by metallicity, while all the
observed galactic globular clusters don’t have metallicity below the Solar one.
It demonstrates strong mixture of products of stellar nucleosynthesis over the
Galaxy, which is not possible for the chemical evolution of antimatter within the
isolated region of antibaryon domain.
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Primordial metallicity can be produced in domains with high antibaryon density.
In the context of spontaneous baryosynthesis based on ALP physics such high den-
sity antibaryon domains can correspond to crossing π. It should be accompanied
by massive domain walls at their border. Such walls with the mass

M >Mmax = f
(mPl
f

)2 (mPl
Λ

)2
=
(mPl
f

)2
Mmin

would dominate in the corresponding region, separating it from the rest of the
Universe. In such scenario only domains surrounded by walls withM <Mmax

can leave the antibaryon domain observable. It puts an open question, whether
such domains are sufficiently large to survive in the matter surrounding and what
is the result of the domain wall evolution.
The sensitivity of AMS02 experiment is far below the predicted flux of cosmic
antihelium from astrophysical sources [49]. Since 2017 a suspected antihelium-4
event is demonstrated at seminars, but remains unpublished. The unprecedented
sensitivity of AMS02 experiment makes the collaboration especially responsible
for publication of its results. That is why all the possible background interpretation
of such candidates should be checked before the discovery of cosmic antihelium-4
is announced.
In any case to confront AMS02 searches the prediction for composition and spec-
trum of cosmic antinuclei from antimatter objects in our Galaxy should be made.
Such prediction inevitably involves the account for propagation of antinuclei in
galactic magnetic fields [50] as well as for the inelastic processes in such propaga-
tion.

7.4 Conclusions

The results of DAMA experiments, LIGO-VIRGO-KAGRA, PTA and JWST data,
possible existence of antihelium component of cosmic rays increase the hints to
new physics phenomena. Their confirmation will manifest deviations from the
standard cosmological model. BSM cosmology, involving Warmer-than-Cold dark
matter scenario of nuclear interacting dark atoms of dark matter, or primordial
strong nonhomogeneities of energy and/or baryon density, can give rise to new
scenarios of galaxy formation and evolution. We have outlined here the open
questions in the proposed BSM models and scenarios. Answers to these questions
need special studies and will deserve discussion at future Bled Workshops.
In the context of cosmoparticle physics, confirmation of the existence of cosmologi-
cal messengers of new physics would provide a sensitive probe for BSM cosmology
and for specific choice of BSM models and their parameters, on which the BSM
scenario is based. In this case only such models, which predict the detected devia-
tions from the standard cosmological paradigm can pretend to be realistic. The
hints to the cosmological messengers of BSM physics may appeal to reanalysis of
the observational constraints and interpretation of the edges of such constraints
in the terms of the BSM cosmology. The observed accelerated expansion of the
modern Universe may challenge our paradigm of UNIverse, putting us into a baby
universe separated from the mother multiverse and appealing to development of
special methods to study such cosmology.
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8 Quark mass matrices inspired by a numerical
relation
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Abstract. In 1981, Yoshio Koide noticed that the square root values of the charged lepton
masses satisfy the relation

Q =
me +mµ +mτ

(
√
me +

√
mµ +

√
mτ)2

≈ 2

3

Inspired by this relation, we introduce tentative mass matrices, using numerical values,
and find matrices that display an underlying democratic texture.

Povzetek: Leta 1981 je Yoshio Koide opazil, da mase nabitih leptonov ustrezajo relaciji.
Q =

me+mµ+mτ
(
√
me+

√
mµ+

√
mτ)2

≈ 2
3

Avtorica uporabi to relacijo pri iskanju simetrij masnih matrik, za katere pričakuje,
da bodo skoraj podobne demokratičnim masnim matrikam.

8.1 Introduction

A numerical relation involving the lepton masses have intrigued people ever since
it was published by Yoshio Koide [1] in the beginning of the 1980-ies.
Inspired by this relation, in this article we look for mass matrices with a form that
agree with the Koide formula. From initial matrices for the square roots of particle
masses, we then derive mass matrices for up- and down quarks, and investigate
how the two charge sectors are related.

8.2 The Koide relation

In 1981, using the mass valuesme = 0.510998946 MeV ,mµ = 105.6583745 MeV ,
mτ = 1776.86 MeV , Yoshio Koide noticed that the square root values of the
charged lepton masses satisfy the relation

Q =
me +mµ +mτ

(
√
me +

√
mµ +

√
mτ)2

= 0.6666617 ≈ 2

3
(8.1)

This is tantalizing, since it seems to echo the neat rational quantum numbers, like
e.g. the electric charges of the elementary particles. Many attempts have been made

⋆⋆ astri.kleppe@gmail.com
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to interpret the relation (8.1), hoping to squeeze some insight out of it. Denoting
the square roots of the lepton masses as

m1 =
√
me

m2 =
√
mµ

m3 =
√
mτ,

and taking T = m1 + m2 + m3 as a fixed number, we can interpret the set
(m1,m2,m3) as a partition of this number T , which in principle can be expressed
as a sum of any three other numbers, where the extreme cases are T = A+A+A

and T = 0+ 0+ T . The three partitions can also be perceived as the eigenvalues of
3×3 matrices, and if we compare the quantity Q = Trace(M2)/(Trace(M))2 for
these three cases, we see that

Q(A,A,A) =
Trace(A2)

(Trace(A))2
=

3A2

(3A)2
=
1

3

Qlepton =
2

3

Q(0,0,T) =
Trace(T2)

(0+ 0+ T)2
= 1,

(8.2)

so the partition corresonding to the charged lepton sector lies right between the
two extremes (A,A,A) and (0, 0, T), which might be interpreted as the lepton
mass spectrum having maximal amount of “structure”.

It should be noted that for the square roots of the running charged lepton masses at
MZ around 91 GeV, the results no longer give the exact Koide formula. The relation
is however still of interest, because the Koide relation suggests that investigating
the square roots of particle masses works as a kind of scale compression. This
lessens the overwhelming impact of the largest masses, which tend to make the
smallest masses irrelevant.

8.2.1 Matrix invariants

A 3×3 matrixM has the invariants

Trace(M) = m1 +m2 +m3
C2(M) = m1m2 +m1m3 +m2m3
Det(M) = m1m2m3

(8.3)
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Now let
√
M be a matrix whose eigenvalues are the weighted square roots of the

lepton masses, (x1, x2, x3) = (
√
me,

√
mµ,

√
mτ)/N. Defining N = Trace(

√
M)/3,

we can express the matrix invariants for the charged leptons as

Trace(
√
M) = 3N

C2(
√
M) ≈ 3

2
N2

Det(
√
M) ≈ N3

18

(8.4)

Again comparing the matrix invariants of the observed particle mass spectra,
where m1 ≪ m2 ≪ m3, with invariants for the extreme spectra (0, 0, T) and
(A,A,A), we get

Trace(0, 0, T) = T, Trace(A) = 3A

C2(0, 0, T) = 0, C2(A) = 3A
2

Det(0, 0, T) = 0, Det(A) = A3,

8.3 Mass states and flavour states

When we talk about mass matrices, it is the form, or texture, of the mass matrices
that we are looking for, in the hope to find a clue to the mechanism behind the
hierarchical fermion mass spectra.
The mass matrices whose form we want to investigate appear in the mass La-
grangian Lmass = ψ̄Mψ. These mass matrices live in the weak basis, meaning
that they are not in themselves measurable, but related to the measurable mass
eigenstates by unitary rotation matrices U,

Lmass = ψ̄Mψ = ψ̄U†UMU†Uψ = ψ̄physDψphys (8.5)

where ψ and ψphys = Uψ denote the flavour states and the physical states, respec-
tively, and D = diag(m1,m2,m3) is the diagonal mass eigenmatrix containing
the masses of the physical particles of a given charge sector.

Our picture that massive up quarks and massive down quarks live in differ-
ent mass bases, is based on the experimental fact that the Cabbibo-Kobayashi-
Maskawa (CKM) mixing matrix VCKM [3] connecting the mass basis of the up-
quarks with the mass basis of the down-quarks, deviates from the unit matrix. The
mixing matrix appears in the charged current Lagrangian

Lcc = −
g

2
√
2
ψ̄Lγ

µVψ ′
LWµ + h.c. (8.6)

where ψ and ψ ′ are fermion fields with charges Q and Q− 1, correspondingly.
It can be argued that flavour states merely exist in our imagination, since they are
not directly measurable. This line of thought is however defied by the neutrinos,
which as far as we know always appear as flavour states. Neutrinomass states
never appear on the scene - in the sense that they never take part in interactions,
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but merely propagate in free space. The observed neutrinos νe, νµ, ντ are flavour
states, but we nontheless perceive them as “physical”, because they are the only
neutrinos that ever appear in interactions, i.e. they are the only neutrinos that we
“see”.

8.4 Democratic mass matrices

We can perceive (A,A,A) and (0, 0, T) as mass eigenvalues of the unit matrix

A



1 0 0

0 1 0

0 0 1




and the democratic matrix

T

3



1 1 1

1 1 1

1 1 1


 ,

respectively, and the relations (8.2) allow us to guess that a relevant mass matrix
for the leptons would be somewhere in between these matrices.
The democratic matrix [4] [5] represents a situation where at a zeroth level, all
the particles within a given charge sector have the same Yukawa couplings. The
argument for this assumption is that in Standard Model, all fermions get their
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masses from the Yukawa couplings by the Higgs mechanism, and since the cou-
plings to the gauge bosons of the strong, weak and electromagnetic interactions
are identical for all the fermions in a given charge sector, it seems like a natural
assumption that they should also have identical Yukawa couplings.
In the weak basis the democratic matrix M0 is totally flavour symmetric, in the
sense that the (weak) flavours ψi of a given charge are indistinguishible (“absolute
democracy”). This is contrary to experimental data, but it is reasonable to assume
that actual mass matrices that represent physical particles, have some kind of
modified democratic texture, since the mass spectrum (0, 0, 3N) of the democratic
matrix

M0 = N



1 1 1

1 1 1

1 1 1




reflects the experimental situation with one very heavy and two much lighter
fermions. But in order to get correct, non-zero masses, the initial democratic matrix
must clearly be modified. A first step towards a more realistic mass spectrum is to
introduce an extra parameter while keeping the trace constant, for example like

M1 = N



1 1 X

1 1 X

X X 1


 (8.7)

which has the mass spectrum N(0, 1
2
(3−

√
1+ 8X2), 1

2
(3+

√
1+ 8X2)). A similar

matrix,

M2 = N



1 1 X

1 1 X

X X 1


 (8.8)

has three non-zero eigenvalues, N(1 − X, 1 − X, 2X + 1), but two of them are
degenerate.
In order to obtain three physical, non-degenerate, non-zero masses, we introduce
yet another parameter, and still keeping the trace constant, we write

M3 = N



1 Y X

Y 1 X

X X 1


 (8.9)

which has the mass spectrum N(1 − Y, 1
2
(3 + Y −

√
8X2 + (Y − 1)2), 1

2
(3 + Y +√

8X2 + (Y − 1)2)).
Let us assume that this represents the (square roots of the masses of the) leptons,
so Trace(

√
Mlepton) = 3Nlepton, where N = 17.716

√
MeV , and X and Y are

dimensionless coefficients. The matrix invariants are

C2(
√
Ml) = N

2(3− Y2 − 2X2) and Det(
√
Ml) = N

3(1− Y)(1+ Y − 2X2),

which for (x1, x2, x3) = (
√
me,

√
mµ,

√
mτ)/N, gives

x1 = (1− Y)

x2 = (2+ Y −
√
Y2 + 8X2)/2

x3 = (2+ Y +
√
Y2 + 8X2)/2,

(8.10)
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i.e
Y = 1−

√
me/N

2X2 = 1+ Y −

√
mµmτ

N2
= 2−

√
me

N
−

√
mµmτ

N2

(8.11)

With the lepton mass values me = 0.51099 MeV , mµ = 105.6584 MeV , mτ =

1776.86 MeV , we get the numerical values for the coefficients

Y = 0.9597

X = 0.538

Inserting these values into the matrix invariants, we get C2(
√
M) = N2× 1.500027

and Det(
√
Ml) = N

3/17.95, which is reasonably close to C2(
√
M) = 3N2/2 and

and Det(
√
M) = N3/18.

We can add complexity to the matrix, e.g. by multiplication with the matrix


eiα 0 0

0 1 0

0 0 1




and its conjugate, and obtain the final mass matrix

√
Ml = N



eiα 0 0

0 1 0

0 0 1





1 Y X

Y 1 X

X X 1





e−iα 0 0

0 1 0

0 0 1


 = N




1 Yeiα Xeiα

Ye−iα 1 X

Xe−iα X 1


 (8.12)

8.5 Quarks

The possibility that quarks display a pattern similar to the Koide formula, has of
course been examined by many authors [2].
Our approach is to look for relations similar to (8.1) in the quark sector, and use
these relations as a basis for new ansätze of the mass matrices of the down- and
up-setors, respectively, with the ultimate goal og get a notion of how the mass
matrices are related in the weak basis.
Here we use the following mass values for the up- and down sectors [7], [9].

mu(Mz) = 1.24 MeV, mc(Mz) = 624 MeV, mt(Mz) = 171550 MeV

md(Mz) = 2.69 MeV, ms(Mz) = 53.8 MeV, mb(Mz) = 2850 MeV
(8.13)

and taking the square roots, we get

Qd = md+ms+mb
(
√
md+

√
ms+

√
mb)2

≈ 3/4
Qu = mu+mc+mt

(
√
mu+

√
mc+

√
mt)2

∼ 8/9
(8.14)

For all the charged fermion sectors, we use the parametrization Tr(
√
M) = KN

whereM is a 3 × 3 matrix, and K is an integer. This gives us

Tr(
√
M)d = 4N

2C2(
√
M)d ≈ 4N2

Det(
√
M)d ≈ N3/6

(8.15)
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and
Tr(

√
M)u = 9N

2C2(
√
M)u ∼ 9N2

Det(
√
M)u ∼ N3/10

(8.16)

The quark masses are however not as well established as the lepton masses, which
in addition are the only ones that satisfy an exact Koide relation.
There are many possible choices for matrices with a given trace. Following the
uncertain indications from the mass relations à la Koide, for the square root of the
down quark masses we can for example have matrices of the form

√
Md = Nd



1 A B

A 1 B

B B 2


 ,

√
M

′
d = Nd



0 A B

A 1 B

B B 3


 , or

√
M

′′
d = Nd



0 A B

A 0 B

B B 4




where Trace(
√
Md) = 4Nd, Nd = (

√
md +

√
ms +

√
mb)/4 = 15.59

√
MeV , and

A and B are dimensionless coefficients. With the democratic form as a guiding line,
we choose to study the first matrix. In the case of the up sector, we again follow
the indications from the relations for the square root of the up quark masses

√
Mu = Nu



1 D E

D 1 E

E E 7


 , or

√
M

′
u = Nu



2 D E

D 2 E

E E 5


 , or

√
M

′′
u = Nu



3 D E

D 3 E

E E 3




Our point of departure is a mass matrix for the square roots of the down quark
masses, with a nearly democratic texture. Using numerical mass values and a
numerical mixing matrix, we derive a matrix for (the square roots of) the up quark
masses from our matrix ansatz for the down sector.
With a similar matrix ansatz for the up quarks, we then derive a mass matrix for
the down sector. This finally gives us two sets of quark mass matrices, which we
study in order to find credible mass matrices for both charge sectors.

8.6 An ansatz for the down quarks

Our initial ansatz is the matrix representing the square roots of the down quark
masses,

√
Md = Nd



1 A B

A 1 B

B B 2


 (8.17)

where Trace(
√
Md) = 4Nd, Nd = (

√
md +

√
ms +

√
mb)/4 = 15.59

√
MeV , and

A and B are dimensionless coefficients. The matrix invariants read

Tr(
√
Md) = Nd4

2C2(
√
Md) = N

2
d(5−A

2 − 2B2)

Det(
√
Md) = N

3
d(2+ 2AB

2 − 2A2 − 2B2) = 2N3d(1−A)(1+A− B2),

and the dimensionless eigenvalues read

(x1, x2, x3) = (1−A,
1

2
(A+ 3−

√
8B2 + (1−A)2),

1

2
(A+ 3+

√
8B2 + (1−A)2)),
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from which we calculate the dimensionless coefficients

A = 0.8952

B = 1.0438

The diagonalizing matrix for the matrix (8.17) is

Ud =




1√
2

− 1√
2

0

1
2

√
1−A+S
S

1
2

√
1−A+S
S

− 2B√
S(1−A+S)

1
2

√
A−1+S
S

1
2

√
A−1+S
S

2B√
S(A−1+S)




where S =
√
8B2 + (1−A)2.

Using the definition of the weak mixing matrix VCKM = UuU
†
d, together with

U†
dUd = 1, we get

Uu = VCKMUd

and using the numerical mixing matrix

VCKM =



0.97373 0.2243 0.00382

0.221 0.975 0.0408

0.0086 0.0415 1.014


 (8.18)

together with the numerical expression of Ud obtained by inserting the numerical
values A = 0.8952 and B = 1.0438, we get a numerical expression for Uu. This
allows us to numerically calculate the mass matrix of the up sector.
We are operating at a completely phenomenological level, no theory, just investi-
gating what diagonalization matrix for the up sector that comes together with the
diagonalization matrix for the down sector, when we use the ansatz (8.17) for the
down sector.
So the diagonal mass matrices for the up quarks and the down quarks, respectively,
are tied together by the mixing matrix. The numerical value of the (square root)
mass matrix for the up sector is

√
M

(derived)

u = NuU
†
udiag(x1, x2, x3)Uu,

where (x1, x2, x3) = (
√
mu,

√
mc,

√
mt)/Nu andNu = (

√
mu+

√
mc+

√
mt)/9

√
MeV .

With the numerical values (x1, x2, x3) = (0.0299407, 0.508895, 8.46116)
√
MeV , the

derive the numerical mass matrix for the (square roots) of the up sector,

√
M

(derived)

u = Nu



2.2142 2.0834 2.6529

2.2607 2.1377 2.4936

3.0262 3.0675 4.648


 ,

Since
√
M = U†diag(

√
m1,

√
m2,

√
m3)U, where U and U† diagonalize

√
M, we

get the regular mass matrixM = (
√
M)2:

(
√
M)2 = (U†diag(

√
m1,

√
m2,

√
m3)U)

2 = U†diag(m1,m2,m3)U =M,
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So the derived mass matrix for the up sector is

M(derived)
u = N2u



17.6407 17.204 23.3998

17.3842 16.9283 22.918

27.7008 27.119 37.281


 (8.19)

where N2u has dimensionMeV .
Inserting numerical values for A and B in the down sector mass matrix (8.17), we
get

M
(ansatz)
d = N2d



2.8908 2.8798 4.0657

2.8798 2.8908 4.0657

4.0657 4.0657 6.179


 , (8.20)

and when we rescaleM(derived)
u , and compare the matrices for both charge sectors,

M(derived)
u = 5.97×N2u



2.95 2.8798 3.92

2.9 2.83 3.84

4.64 4.54 6.24


 , M(ansatz)

d = N2d



2.8908 2.8798 4.0657

2.8798 2.8908 4.0657

4.0657 4.0657 6.179


 ,

(8.21)
we see that they have similar texture.

8.6.1 An alternative ansatz

We now consider another down quark matrix ansatz,

√
Md = Nd



2 A B

A 2 B

B B 2


 (8.22)

whereNd = (
√
md+

√
ms+

√
mb)/6 = 10.3924

√
MeV . From the matrix invariants

C2(
√
Md) = N

2
d(12−A

2 − 2B2) and Det(
√
Md) = N

3
d2(2−A)(2+A− B2)

we get the dimensionless eigenvalues

(x1, x2, x3) = (2−A,
1

2
(A+ 4−

√
A2 + 8B2),

1

2B
(A+ 4+

√
A2 + 8B2))

Inserting numerical values from (8.13), we get

A = 1.8428

B = 1.4248

Nd = 10.39
√
MeV

Inserting the numerical values for A and B in Ud, and using Uu = VCKMUd, we
find the numerical expression for

√
Mu = U†

udiag(
√
m1,

√
m2,

√
m3)Uu, which

gives the matrices

Mu
(derived) = N2u



25.797 25.278 21.1

25.469 24.93 20.72

25.37 24.95 21.124


 and M

(ansatz)
d = N2d



9.426 9.4 8.325

9.4 9.426 8.325

8.325 8.325 8.06




(8.23)
which have similar, nearly democratic structure.
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8.7 An ansatz for the up quarks

We can play the game the other way round, by introducing a matrix ansatz for the
square roots of the up-quark masses, from which we derive a matrix for the down
sector.
We first consider the matrix

√
Mu = Nu



2 D E

D 2 E

E E 5


 (8.24)

where Nu = (
√
mu +

√
mc +

√
mt)/9 = 49.09

√
MeV , and D and E are dimen-

sionless coefficients. From the matrix invariants

Tr(
√
Mu) = 9Nu

2C2(
√
Mu) = N

2
u(24−D

2 − 2E2)

Det(
√
Mu) = N

3
u(20+ 2DE

2 − 5D2 − 4E2) = N3u(2−D)(5(1+D) − 2E2)

we have that x1 = (2−D), and the dimensionless eigenvalues

(x1, x2, x3) = (2−D,
1

2
(D+ 7−

√
8E2 + (3−D)2),

1

2
(D+ 7+

√
8E2 + (3−D)2))

where
D = 1.97006

E = 2.7879

Nu = 49.09
√
MeV

Following a similar procedure as before, using Ud = V†
CKMUu, using the diago-

nalization matrix

Uu =




1√
2

− 1√
2

0

1
2

√
S−D+3
S

1
2

√
S−D+3
S

− 2E√
S(S−D+3)

1
2

√
S+D−3
S

1
2

√
S+D−3
S

2E√
S(S+D−3)


 (8.25)

and again inserting the mass matrix for the square roots of the weighted mass
values,(x1, x2, x3) = (

√
md,

√
ms,

√
mb/Nd, withNd = (

√
md +

√
ms +

√
mb)/4,

we get the mass matrix for the square roots of the down quarks in the weak basis:

√
M

(derived)

d = NdU
†
d



0.10482 0 0

0 0.47053 0

0 0 3.42465


Ud = Nd



0.956 0.774 0.977

0.921 0.908 0.916

1.072 1.168 2.136


 ,

(8.26)
which gives

M
(derived)
d = N2d



2.674 2.583 3.729

2.699 2.607 3.688

4.391 4.384 6.68


 and M(ansatz)

u = N2u



15.654 15.653 25.01

15.653 15.654 25.01

25.01 25.01 40.545




(8.27)
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which we relate to (8.19) and (8.20).
When we compare the derived mass matrix for the down sector to the downscaled
matrix for the up quark masses:

M
(derived)
d = N2d



2.674 2.583 3.729

2.699 2.607 3.688

4.391 4.384 6.68


 and M(ansatz)

u = 6×N2u



2.582 2.583 4.13

2.583 2.582 4.13

4.13 4.13 6.69


 ,

(8.28)
we find that they have similar texture.

8.7.1 An alternative ansatz

We now consider an alternative ansatz for the up sector,

√
Mu = Nu



3 D E

D 3 E

E E 3


 (8.29)

where Trace(
√
Mu) = 9Nu, Nu = (

√
mu +

√
mc +

√
mt)/9 = 49.09

√
MeV , and

D and E are dimensionless coefficients. The matrix invariants are

C2(
√
Mu) = N

2
u(27−D

2 − 2E2) and Det(
√
Mu) = N

3
u(3−D)(9+ 3D− 2E2)

which gives the dimensionless eigenvalues

(x1, x2, x3) = (3−D,
1

2
(D+ 6−

√
D2 + 8E2),

1

2
(D+ 6+

√
D2 + 8E2))

Inserting numerical values from (8.13), we get

D = 2.97

E = 2.608

Nu = 49.09
√
MeV

Following the same procedure as above, we get the matrix

M
(derived)
d = N2d



4.081 4.019 3.481

4.103 4.04 3.416

4.113 4.137 3.84




which we compare to

M(ansatz)
u = N2u



24.623 24.622 23.394

24.622 24.623 23.394

23.394 23.394 22.6


 (8.30)

The mass matrix from the ansatz and the derived matrix are again of similar
texture, which is close to democratic.
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If we instead use Nd = (
√
md +

√
ms +

√
mb)/6, we get

M(ansatz)
u = N2u



24.623 24.622 23.394

24.622 24.623 23.394

23.394 23.394 22.6


 and M(6)

(derived)
d = Nd(6)

2



9.18 9.04 7.83

9.23 9.09 7.69

9.25 9.31 8.64


 ,

(8.31)
a result that consistent with the matrices (8.23).
The above procedures can be repeated with the quark masses mq(2GeV) [10],
leading to similar results.

8.8 Discussion

The ansatz for the square roots of the up quark masses

√
Mu(3, 3, 3) = Nu



3 D E

D 3 E

E E 3




with D = 2.97 and E = 6.08, gives the regular up quark matrix

M(ansatz)
u = N2u



24.623 24.622 23.394

24.622 24.623 23.394

23.394 23.394 22.6


 ,

which is similar to the up quark matrix that we derive from the matrix

√
Md(2, 2, 2) = Nd



2 A B

A 2 B

B B 2




which, with A = 1.8428 and B = 1.4248 inserted, is

Mu
(derived) = N2u



25.797 25.278 21.1

25.469 24.93 20.72

25.37 24.95 21.124




We therefore perceive that the pair of matrices
√
Mu(3, 3, 3) and

√
Md(2, 2, 2) as

belonging together, in the sense that from a matrix of the form ∼
√
Mu(3, 3, 3) for

the up quarks, we derive a matrix for the down quarks of the form ∼
√
Mu(2, 2, 2)

- and vice versa.
In the same way, from the matrix

√
Md(1, 1, 2) = Nd



1 A B

A 1 B

B B 2




we get

M
(ansatz)
d = N2d



2.8908 2.8798 4.0657

2.8798 2.8908 4.0657

4.0657 4.0657 6.179



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which is similar to the down quark matrix derived from the up sector matrix,

√
Mu(2, 2, 5) = Nu



2 D E

D 2 E

E E 5


 ,

namely

M
(derived)
d = N2d



2.674 2.583 3.729

2.699 2.607 3.688

4.391 4.384 6.68




Therefore we also perceive the matrices
√
Md(1, 1, 2) and

√
Mu(2, 2, 5) as belong-

ing together.
Higher powers of this type of matrices, with diagonal (X,X, Y) will asymptotically
go towards matrices with the texture

√
M ∼ N




F F− ϵ G

F− ϵ F G

G G H




which have a mass spectrum of the type (ϵ, 1
2
(H+2F−ϵ±

√
(H+ ϵ− 2F)2 + 8G2))).

Moreover, the (square root) quark mass matrices of the type

√
M ∼ N



H D E

D H E

E E H


 ,

with eigenvalues (H−2, 1
2
(D+2H±

√
D+ 8E2)), give rise to matrices with a more

democratic texture.

8.9 Appendix

• The diagonalizing matrix for the matrix (8.17)

√
Md = Nd



1 A B

A 1 B

B B 2




is

Ud =




1√
2

− 1√
2

0

1
2

√
1−A+S
S

1
2

√
1−A+S
S

− 2B√
S(1−A+S)

1
2

√
A−1+S
S

1
2

√
A−1+S
S

2B√
S(A−1+S)




where S =
√
8B2 + (1−A)2.

• The diagonalizing matrix for the matrix (8.22)

√
Md = Nd



2 A B

A 2 B

B B 2



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is

Ud =




1√
2

− 1√
2

0

2B√
2S(S+A)

2B√
2S(S+A)

−
√
S+A
2S

2B√
2S(S−A)

2B√
2S(S−A)

√
S−A
2S




where S =
√
8B2 +A2.

• The ansatz (8.24) for the up sector:

√
Mu = Nu



2 D E

D 2 E

E E 5




has the diagonalization matrix

Uu =




1√
2

− 1√
2

0

1
2

√
S−D+3
S

1
2

√
S−D+3
S

− 2E√
S(S−D+3)

1
2

√
S+D−3
S

1
2

√
S+D−3
S

2E√
S(S+D−3)


 (8.32)

where S =
√
3−D)2.

• The ansatz (8.24) for the up sector

√
Mu = Nu



3 D E

D 3 E

E E 3




has the diagonaization matrix

Uu =




1√
2

− 1√
2

0

1
2

√
S−D
S

1
2

√
S−D
S

− 2E√
S(S−D)

1
2

√
S+D
S

1
2

√
S+D
S

2E√
S(S+D)


 (8.33)

where S =
√
D2 + 8E2.

8.10 Conclusion

Inspired by the Koide relation, we investigate two types of mass matrices for the
square roots of the quark masses, and then derive the regular mass matrices. We
evaluate the numerical form for the mass matrices, well aware that one cannot
asign exact values to the light quark masses.
The matrices are

√
M = N



K A B

A K B

B B P


 (8.34)
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where K, P are integers, and N = (
√
m1 +

√
m2 +

√
m3)/(2K + P), where mj are

quark masses, and

√
M = N



K A B

A K B

B B K


 (8.35)

where K is an integer, andN = (
√
m1+

√
m2+

√
m3)/(3K). Starting from a matrix

of the form (8.34) for the down sector, the matrix that we numerically derive for
the up sector, has a texture similar to (8.34) (and vice versa starting from the up
sector). Likewise, starting from a matrix of the form (8.35) for the down sector, we
numerically derive a similar matrix for the up sector, and vice versa starting with
an ansatz for the up sector.
Both (8.34) and (8.35) display an unbroken flavour symmetry for the first two fami-
lies, and the mass matrices derived from (8.35) moreover have a nearly democratic
structure.
The (unsurprising) conclusion is that the mass matrices for the two sectors tend to
have textures that are similar, but different enough to ensure a mixing matrix that
is consistent with data.
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Abstract. Our goal is to consider Axion-like particle (ALP) model to investigate the be-
haviour of space-time in the vicinity of the domain wall, induced by axion-like field. Here
we present first-step approximation in our analysis and discuss the applicability of thin-shell
approximation.

Povzetek Avtorji želijo razumeti obnašanje prostora in časa v bližini domenske stene. Upora-
bijo model delcev, podobnim axionom. V prispevku predstavijo prvo približno analizo
modela in razpravljajo o pristopu, ki so ga uporabili.

9.1 Introduction

Axion-like models have become popular candidates for dark matter and present
intriguing opportunities for linking particle physics with cosmology. The search
for dark matter components has led to investigations into various hypothetical
particles beyond the Standard Model (SM). Originally envisioned as an extension
of the Peccei-Quinn (PQ) mechanism [1] to address the strong CP problem in
Quantum Chromodynamics (QCD), hese pseudo-Nambu-Goldstone bosons have
been proposed in different frame- works involving quantum gravity [2–4]. ALPs
have garnered significant interest as potential dark matter constituents as despite
their inherently feeble masses (ma ≲ 1 keV), non-thermal production mechanisms
in the early universe could have yielded a population of ALPs that persists today,
potentially constituting the majority of cold dark matter (CDM). The appeal of
ALPs as dark matter candidates lies in their ability to circumvent the limitations of
the standard freeze-out mechanism, that affect weakly interacting massive particles
(WIMPs) in their dark matter candidature. The low mass of ALPs allows them
to remain in thermal equilibrium with the bath of particles in the early universe
for an extended period and this period evades the issue of WIMPs becoming too
sluggish to interact efficiently after freeze-out, leading to an underabundance of
relic WIMPs compared to the observed dark matter density [5–8].

⋆⋆ morrowindman1@mail.ru
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Exploring the theoretical background and experimental limitations on ALP proper-
ties is crucial for understanding their potential role in cosmology. Recent advance-
ments in directly observing gravitational waves (GWs) are driving significant
progress [9–11]. Direct GW observations are anticipated to provide important
insights into high-energy physics due to their weak interaction with matter, pre-
serving the characteristics of astrophysical or cosmological events [12–16]. Over the
past decades, experimental sensitivities for the direct detection of GWs have signif-
icantly improved and numerous new GW observatories are planned worldwide
and within this framework, it is imperative to explore various potential sources of
GWs and determine the extent to which new physics can be inferred from future
observations [17–19]. Improved experimental sensitivities for GW detection have
led to the planning of numerous new GW observatories worldwide. Among the
potential cosmological sources of GWs are topological defects like cosmic strings
and domain walls that could have formed in the early universe [20]. Domain walls
are sheet-like topological defects that could form in the early universe when a
discrete symmetry is spontaneously broken. Given that discrete symmetries are
pervasive in high-energy physics beyond the Standard Model (SM), many new
physics models predict the formation of domain walls in the early universe. By
examining their cosmological evolution, we can derive several constraints on these
models, even if their energy scales exceed those probed by laboratory experiments.
Many models of ALP fields, for example, have been considered with regards to
creation of domain walls in the early universe [21, 22].
Typically the formation of domain walls is considered problematic in cosmology, as
their energy density can quickly dominate the total energy density of the universe
which one might take as a contradiction to current observational data. While
the formation of domain walls is usually considered problematic in cosmology
due to their energy density potentially dominating the total energy density of
the universe, their instability might prevent this if the discrete symmetry is only
approximate and explicitly broken by a small parameter in the theory. In such
cases, the collisions and annihilation of domain walls could produce a significant
amount of GWs, potentially resulting in a stochastic GW background in the present
universe. Observations of relic GWs can offer insights into the early universe and
high-energy physics. ALP fields have been shown to contribute to the formation
of closed domain walls in scenarios involving an inflationary universe, potentially
impacting the nHz stochastic GW background detected by pulsar timing array
facilities and early galaxy formation observed by the James Webb Space Telescope
[23].

9.2 Thin shell approximation

In this section we will review and discuss the approach of infinitely thin domain
wall. For extended analysis, please, see [15] and [24].
Let us denote wall’s surface as Σ, which is 3-dimensional spacelike or timelike
(this would affect ϵ, it would be +1 [spacelike] or −1 [timelike]) hyper-surface
embedded in a 4-dimensional spacetime (M, gµν). We put subscripts ± to denote
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the value on each side of the hypersurface Σ. Following aforementioned papers:

[A]±A+ −A−, (9.1)

{A}±A+ +A−, (9.2)

A
1

2
{A}±. (9.3)

Let ξµ be the normal unit vector to the Σ, we can define the induced metric hµν
and the extrinsic curvature Kµν as

hµνgµν − ϵξµξν, (9.4)

Kµνh
α
µ∇αξν = Dµξν. (9.5)

• First junction condition is:
[hµν]

± = 0. (9.6)

• Second condition is:

[Kµν]
± = 8πϵ

(
−Sµν +

1

2
Shµν

)
. (9.7)

• Shell equation of motion:

SµνK
µν

= [Tµνξ
µξν]±. (9.8)

• Shell energy conservation:

DµS
µ
ν = −[Tµαξ

µhαν ]
±. (9.9)

Sµν is the energy momentum tensor of matter fields on Σ and S = hµνSµν. For
pure tension surface Sµν = −σhµν. Tµν is the energy momentum tensor in the
region M− {Σ}.
The paper [24] also contains line element in general form:

ds2 = −e2α(t,r)dt2 + e2β(t,r)dr2 + R2(t, r)dΩ2. (9.10)

They consider the motion of a spherical shell in this spacetime described by

t = tξ(τ), χ = χξ(τ), (9.11)

where τ is proper time associated with the shell trajectory in the radial direction.
The coordinate components of the radial tangent vector vµ is given by

vµ =

(
dtξ

dτ
,
dχξ

dτ
, 0, 0

)
= (t,τ, χ,τ, 0, 0). (9.12)

Further calculations are based on:

vµv
µ = −1, (9.13)

ξµξ
µ = 1, (9.14)

ξµvµ = 0. (9.15)
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Following [24], second junction yields:

[ξµ∂µ lnR]± = −4πσ, (9.16)
[
ξµ(v

µ
,τ + Γ

µ
λσv

λvσ)
]±

= −4πσ (9.17)

We set EMT of cosmological fluids in the form:

T±µν = (ρ± + p±)u
±
µu

±
ν + p±g

±
µν. (9.18)

Equation of motion is as follows:

{
ξµ(v

µ
,τ + Γ

µ
λσv

λvσ) + 2ξµ∂µ lnR
}±

= −
2

σ

[
(p+ ρ)(uµξ

µ)2 + p
]±
. (9.19)

If we consider the same fluid within and outside the shell, then it is much simpler:{
ξµ(v

µ
,τ + Γ

µ
λσv

λvσ) + 2ξµ∂µ lnR
}±

= 0, (9.20)

if one assume the smooth crossing of the wall by fluid ([uµξµ]± = 0).
Equation of motion of the thin shell could be written as [15]:

ar,ττ√
1+ a2r2τ

+
4a,τr,τ√
1+ a2r2τ

+
2
√
1+ a2r2τ
ar

= 6πσ, (9.21)

which can also be rewritten in terms of cosmic time as follows:

r̈+ (4− 3a2ṙ2)Hṙ+
2

a2r
(1− a2ṙ2) = 6πσ

(1− a2ṙ2)3/2

a
. (9.22)

One may notice that equation of motion (9.22) could be utilized in two cases with
regards to wall’s energy density. The first case is wall’s energy density is negligible,
i.e. one can put σ = 0. And the second case is wall’s density is considerable, but
not arbitrarily big, since there is no corresponding transformation for equation
(9.22), i.e. there is no limit of big σ, which makes it inapplicable for consideration
of wall-dominated Universe in this framework.

9.3 Axion-like field in Kantowski-Sachs metric

We start by considering a space-time with line element given by

ds2 = A(t, r)2dt2 − X(t, r)2dr2 − Y(t, r)2dΩ2, (9.23)

where dΩ2 = dθ2 + sin2 θdϕ2. One may notice abuse of symbols in our paper,
we denote axion-like scalar field with both θ and ϕ symbols as well as angular
coordinates. But there is no explicit utilization of angular coordinates in our analy-
sis, thus, there would be no misunderstanding. Following [15], we set A(t, r) = 1,
corresponding to gauge symmetry. ALP Lagrangian is set to be

L =
1

2
gµν∂µϕ∂νϕ−Λ4

[
1− cos

(
ϕ

f

)]
. (9.24)
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We also take into account anisotropy of the space time via energy-momentum
tensor of cosmological fluid:

Tµν = diag[1,ω,−(ω+ δ),−(ω+ γ)]ρ, (9.25)

whereω = p/ρ.
As a first step in our analysis we consider limit r→ ∞, i.e. what a distant observer
could detect. In that case line element (9.23) could be rewritten as

ds2 = dt2 − X(t)2dr2 − Y(t)2dΩ2, (9.26)

which is Kantowski-Sachs space time [25]. Here we assume that Y is finite as
r→ ∞. We also set common border condition for the scalar field ϕr(t,∞) = 0.

Now let us write down system of Einstein’s field equations using line element
(9.26), Lagrangian (9.24) and cosmological fluid’ energy-momentum tensor (9.25):

2ẊẎ

XY
+
Ẏ2

Y2
+
1

Y2
=
1

2
ϕ̇2 +Λ4

[
1− cos

(
ϕ

f

)]
+ ρ, (9.27)

2Ÿ

Y
+
Ẏ2

Y2
+
1

Y2
= −

1

2
ϕ̇2 +Λ4

[
1− cos

(
ϕ

f

)]
−ωρ, (9.28)

Ẍ

X
+
ẊẎ

XY
+
Ÿ

Y
= −

1

2
ϕ̇2 +Λ4

[
1− cos

(
ϕ

f

)]
− (ω+ δ)ρ, (9.29)

Ẍ

X
+
ẊẎ

XY
+
Ÿ

Y
= −

1

2
ϕ̇2 +Λ4

[
1− cos

(
ϕ

f

)]
− (ω+ γ)ρ. (9.30)

Equation of motion of the scalar field is as follows:

ϕ̈+

(
Ẋ

X
+ 2

Ẏ

Y

)
ϕ̇+

Λ4

f
sin

(
ϕ

f

)
= 0. (9.31)

Equations (9.29) and (9.30) immediately yield γ = δ and now we are given with
four independent equations and six variables. We need to make two assumptions
to make system solvable.

To make progress now, we assume the following relation between X and Y:

Y = Xn, (9.32)

which has been commonly utilized in some previous works by other researchers
[26, 27]. Furthermore, it is usually assumed that scalar field is proportional to
average scale factor taken in some power [28, 29]

ϕ ∝ a(t)l = (XY2)l/3, (9.33)
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One can then check that relations (9.33) and (9.32) leads to the following relation
between the scalar field and metric’s potential

ϕ̇

ϕ
=
l

3
(2n+ 1)

Ẋ

X
. (9.34)

We now utilize (9.34) in (9.31), which leads us to arrive at

ϕ̈+
3ϕ̇2

lϕ
+
Λ4

f
sin

(
ϕ

f

)
= 0. (9.35)

Let us now perform the following variable substitution ϕ = fθ and switch from
time derivative to the derivative with respect to mθt = tΛ2/f (represented by
prime). We obtain

θ ′′ +
3

l

θ ′2

θ
+ sin θ = 0. (9.36)

At this point, we could refer to θ as a phase and we could then plot the numerical
solution of (9.36) for different values of l. We set initial conditions for θ as follows

θin = π− 0.01, θ ′
in = 0. (9.37)

This allows us to see the evolution of the scalar field, which we have shown in
Figure (3.1).

l=-0.5

l=-1

l=-1.5

l=-2

l=-2.5

l=-3

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

2.5

3.0

mθt

θ

Fig. 9.1: The plot of the solution of (9.36) for different values of of l, where the
interesting observation is the impact of l changing slowly for l < −2.

The equation of state parameter, given by the usual definition

ωθ =
pθ

ρθ
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is plotted in Fig.(9.2) 1

l=-0.5

l=-1

l=-1.5

l=-2

l=-2.5

l=-3

0 2 4 6 8 10

-1.0

-0.5

0.0

0.5

1.0

mθt

ω
θ

Fig. 9.2: The plot of the equation of state parameter for the scalar field. We see that
scalar field could behave differently depending on the value of l and in particular,
if l = −1.5 then scalar field behaves like non-relativistic matter.

From the Einstein equations (9.27)-(9.30), we find that equation of state parameter
for cosmological fluid ω ≈ const ∼ −1 and skewness parameter δ = γ ≈ 1 for any
value of l.

9.4 Conclusion

In this study, we explored the cosmological behavior of a scalar field with an axion-
like potential in a non-standard spacetime background. The metric we examined
was generally that of an inhomogeneous and anisotropic spacetime, which, in
the limit of a distant observer, resembled a standard Kantowski-Sachs metric.
Specifically focusing on this scenario, we analyzed the dynamics of the scalar field
in such a setting.
In the model for a distant observer, the parameters of skewness, represented by
δ and γ, tended towards minus one, resulting in negligible angular pressures
and causing the energy density of the cosmological fluid to align radially. This
anisotropic nature suggests that the fluid could support cosmic expansion in
specific directions while exhibiting dust-like behavior in angular dimensions.

1 Note that the parameter has also been scaled appropriately with regards to the differential
equation with θ variable.
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10 Do we understand the internal spaces of second
quantized fermion and boson fields, with gravity
included?
The relation with strings theories

N.S. Mankoč Borštnik

Department of Physics, University of Ljubljana
SI-1000 Ljubljana, Slovenia

Abstract. The article proposes the description of internal spaces of fermion (quarks and
leptons and antiquarks and antileptons) and boson (photons, weak bosons, gluons, gravi-
tons and scalars) second quantized fields in an unique way if they all are massless. The
internal spaces are described by “basis vectors” which are the superposition of odd (for
fermions) and even (for bosons) products of the operators γa. For an arbitrarily symmetry
SO(d−1, 1) of the internal spaces, it is the number of fermion fields (they appear in families
and have their Hermitian conjugated partners in a separate group) equal to the number of
boson fields (they appear in two orthogonal groups), manifesting a kind of supersymmetry,
which differ of the string supersymmetry. On the assumption that fermions and bosons are
active (they have momenta different from zero) only in d = (3 + 1) ordinary space-time,
bosons present vectors if they carry the space index µ = (0, 1, 2, 3), and present scalars if
they carry the index σ ≥ 5. The author discusses this theory’s latest achievements, with a
trial to understand whether the extension to strings or to odd-dimensional spaces can lead
to new kind of supersymmetry. This model, named spin-charge-family theory, manifests in
a long series of papers the phenomenological success of the theory in elementary particle
physics and cosmology.

Povzetek: Članek predlaga enoten opis notranjih prostorov brezmasnih fermionov (kvarkov
in leptonov ter antikvarkov in antileptonov) in bozonov (fotonov, šibkih bozonov, gluonov,
gravitonov in skalarjev) v drugi kvantizaciji. Notranji prostori so opisani z ”bazičnimi
vektorji”, ki so superpozicija lihih (za fermione) in sodih (za bozone) produktov operaterjev
γa. Za izbrano simetrijo SO(d − 1, 1) notranjih prostorov je število fermionskih ”bazičnih
vektorjev” (pojavijo se v družinah, njihovi hermitsko konjugirani partnerji pa tvorijo ločeno
grupo) enako številu bozonskih ”bazičnih vektorjev” (pojavijo se v dveh ortogonalnih gru-
pah), kar manifestira neko vrsto supersimetrije, ki se razlikuje od supersimetrije pri strunah.
Ob predpostavki, da so fermioni in bozoni aktivni (imajo od nič različne gibalne količine)
samo v d = (3 + 1) prostoru-času, so bozoni vektorji, če nosijo indeks µ = (0, 1, 2, 3) in so
skalarji, če nosijo indeks σ ≥ 5. Avtor predstavi zadnje dosežke te teorije, v katerih poskuša
ugotoviti, ali razširitev ”bazičnih vektorjev” v strune ali v lihe dimenzionalne prostore lahko
vodi do nove vrste supersimetrije. Fenomenološko uspešnost teorije spina-nabojev-družin
potrjujejo številne objave v uglednih revijah fizike osnovnih delcev in kozmologije.
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10.1 Introduction

The proposed article discusses how all the fermion and boson fields can be treated
uniquely if they all start as massless fields. One can, namely, describe the internal
spaces of fermions and bosons by “basis vectors” which are products of nilpotents
and projectors, chosen to be the eigenvectors of the Cartan subalgebra members of
the Lorentz algebra in internal spaces of fermions and bosons [1–11].

Nilpotents are the superposition of an odd number of operators γa’s (
ab

(k):=

1
2
(γa + ηaa

ik
γb) , (

ab

(k))2 = 0); projectors are the superposition of an even num-

ber of operators γa’s (
ab

[k]:= 1
2
(1 + i

k
γaγb) , (

ab

[k])2 =
ab

[k]), with the properties :

Sab
ab

(k)= k
2

ab

(k) , Sab
ab

[k]= k
2

ab

[k] with k2 = ηaaηbb.
“Basis vectors” of fermions, chosen to be the algebraic products of an odd number
of nilpotents (at least one, the rest are projectors), and of bosons, chosen to be
the algebraic products of an even number of nilpotents (or only of projectors) are
correspondingly eigenvectors of all d(d−1)

2
Cartan subalgebra members.

Fermion “basis vectors” appear in 2
d
2
−1 irreducible representations — families —

each family having 2
d
2
−1 members. All the fermion “basis vectors” are mutually

orthogonal, while the “basis vectors” fulfil together with their Hermitian con-
jugated partners, appearing in a separate group, the Dirac second quantization
postulates for fermions, therefore, explaining the Dirac’s postulates for fermions.
Fermion “basis vectors” and their Hermitian conjugated partners have together
2d−1 members.
Boson “basis vectors” appear in two orthogonal groups, each of the two groups
with 2

d
2
−1× 2d2−1 members have their Hermitian conjugated partners within the

same group.
Correspondingly, the number of fermion “basis vectors” is equal to the number of
boson “basis vectors” manifesting a kind of supersymmetry, which differ from the
one offered by string theories 1, requiring the doubling of so far observed fermions
and bosons.
Following the Grassmann algebra, the theory proposes two kinds of operators γa,
namely γa’s and γ̃a’s [1–4].
Operators γa are used to describe the internal spaces of fermions, γ̃a determine
the quantum numbers of families. The operators γa describe the internal space of
bosons as well 2.

1 The supersymmetry usually requires that to each fermion there exists a superpartner with
the same charges but with spin zero; and for each spin 1 boson there exist a superpartner
with the same charges but with spin 1/2.

2 It is not difficult to reproduce the Dirac matrices in any d = 2n dimensional space, but it
is no need for this; the “basis vectors” are much more appropriate to work with, what it
will be demonstrated in what follows. Let us point out that Dirac matrices were designed
for massive fermions; while “basis vectors” describing internal spaces for fermions
anti-commute, the Dirac matrices do not [26]. The families do not appear in the Dirac
formulations of internal spaces of fermions.
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The operators γa and γ̃a fulfil the following commutation relations: {γa, γb}+ =

2ηab = {γ̃a, γ̃b}+ , {γa, γ̃b}+ = 0 , (a, b) = (0, 1, 2, 3, 5, · · · , d) , (γa)† = ηaa γa , (γ̃a)† =
ηaa γ̃a , making fermions and bosons second quantized fields since fermion “basis
vectors” including odd products of nilpotents correspondingly anti-commute and
boson “basis vectors” including even products of nilpotents commute [1–4, 7–10].
Although the multiplication of the fermion “basis vectors” by a γa generates the
boson “basis vectors”, and the multiplication of the boson “basis vectors” by a
γa generates the fermion “basis vectors”, these two kinds of “basis vectors” have
completely different properties: Not only that the fermion “basis vectors” anti-
commute while the boson “basis vectors” commute; the fermion “basis vectors”
appear in 2

d
2
−1 families, each family having 2

d
2
−1 members, together with their

Hermitian conjugated partners, which appear in a separate group, they have
2× 2d2−1× 2d2−1 members; the boson “basis vectors” appear in two orthogonal
groups, each of the two groups with 2

d
2
−1× 2d2−1 members have their Hermitian

conjugated partners within the same group; the algebraic multiplication of one of
fermion “basis vectors” with one of the Hermitian conjugated partner generates
one of the Clifford even “basis vectors”; the algebraic multiplication of one of
boson “basis vector” algebraically applying on a fermion “basis vector” generates
a fermion “basic vector”, demonstrating that since fermion “basis vectors” carry
a half-integer value of the Cartan subalgebra members (Sab = ± i

2
or Sab = ±1

2
,

the same is true for S̃ab = ± i
2

or S̃ab = ±1
2

), the boson “basis vectors” carry an
integer value of the Cartan subalgebra members, determined by Sab = Sab + S̃ab.
These, explained above, are valid in even dimensional spaces. In odd dimensional
spaces [9], d = (2n + 1), n ≥ 0, there are two different kinds of “basis vectors”:
One kind behaves as they do in 2n even dimensional spaces; the second kind with
the same number of “basis vectors” as the first one behaves completely different
— the anti commuting “basis vectors” appear in two orthogonal groups, each
with their Hermitian conjugated partners in their group; the commuting “basis
vectors” appear 2

2n
2

−1 families, each family having 2
2n
2

−1 members, while their
Hermitian conjugated partners appear in a separate group. The second kind offers
the presence of the Fadeev-Popov ghosts [22].
The proposed “basis vectors”, describing the internal spaces of fermions and
bosons in a tensor product with the basis in ordinary space-time determine creation
and annihilation operators, which explain the Dirac’s second quantized postulates.
Under the assumption that fermions and bosons are active (have non zero mo-
menta) in d = (3+ 1) while manifesting the internal space in d = 2(2n+ 1) (the
experiments and observations require n = 3), the theory offers the explanations of
all the assumptions of the Standard model for fermions (quarks and leptons and
antiquarks and antileptons), requiring the existence of a right handed neutrinos
and left handed anti-neutrinos and of families; the theory explains the existence of
photons, weak bosons and gluons, requiring the existence of gravitons.
The theory explains the existence of scalar fields as it is Higgs boson, predicting
new scalar fields, which caused the inflation at the Big Bang, explains several
cosmological observations.
We briefly discuss the case that the point fermion and boson fields are extended
to strings, describing the fermion and boson fields in space-time d = (3 + 1) as
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tensor products of the “basis vectors” and basis in ordinary space-time extended
to strings [11]. This article presents shortly also a possibility that the internal space
of a string, which has d = (1 + 1), Sect. 11.2.1, is used. This part is new and yet
to be discussed. The longer version will be discussed in a separate article in this
proceedings.
Sect. 10.2 presents the properties of “basis vectors” of fermions and bosons. We
show how to construct the internal spaces of fermions and bosons, and also
demonstrate that the internal spaces of bosons (photons, gravitons, gauge fields,
scalar fields) are expressible as algebraic products of the fermion “basis vectors”
and their Hermitian conjugated partners, Sect. 10.6, [10], meaning that we do not
have to know bosons’ internal spaces since they can be presented by algebraic
products from fermions’ ones.
In Subsect. 10.2.1 “basis vectors” for fermions and bosons in d = 2(2n + 1)-
dimensional internal spaces from the point of view of d = (3+ 1) are discussed.
Subsect. 10.2.2 presents the relations among the Clifford odd and the Clifford even
“basis vectors”.
Subsect. 10.2.3 discusses relations among fermions and their vector and scalar
gauge fields under the assumptions that all the gauge fields are active (have non
zero momentum) only in d = (3+ 1).
Subsect. 10.2.4 discusses the case with d = (13+ 1), which offers the explanation
of all the assumptions of the Standard model, with the families included, requires
the existence of right handed neutrinos and the left handed antineutrinos, the dark
matter, predicts the fourth family to the observed three, offers the explain for the
inflation after Bing Bang and explains also several cosmological observations.
Sect. 10.3 presents creation and annihilation operators for fermion and boson fields
in d = (3+ 1).
Sect. 11.2.1 discusses the possibility to extend ordinary space-time to strings, as
well as the offer of the extension of an even dimensional space to one dimension
more.
In Sect. 11.3, we shortly overview the whole talk, pointing out the open questions.

10.2 “Basis vectors” describing internal spaces of anticommuting
fermion and commuting boson second quantized fields

This section is a short overview of the reference [7] (and the references [1, 3])
presenting the “basis vectors” of fermion internal spaces, while the presentation of
the “basis vectors” describing the internal spaces of boson internal spaces follows
references [1, 8, 10].
We could start with the Grassmann algebra [1, 8] which offers 2 × 2d anticom-
muting operators in d-dimensional space [13], θa and pθa = i ∂

∂θa
[1], fulfill-

ing the relations {θa, θb}+ = 0 , { ∂
∂θa

, ∂
∂θb

}+ = 0 , {θa,
∂
∂θb

}+ = δab , (a, b) =

(0, 1, 2, 3, 5, · · · , d) .
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We shall rather use two kinds of the Clifford algebra elements (operators), γa and
γ̃a, expressible with θa’s and their Hermitian conjugate momenta pθa = i ∂

∂θa
[1],

γa = (θa +
∂

∂θa
) , γ̃a = i (θa −

∂

∂θa
) ,

θa =
1

2
(γa − iγ̃a) ,

∂

∂θa
=
1

2
(γa + iγ̃a) ,

(10.1)

offering together 2 · 2d operators: 2d are superposition of products of γa and 2d of
γ̃a, with the properties

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,

{γa, γ̃b}+ = 0 , (a, b) = (0, 1, 2, 3, 5, · · · , d) ,
(γa)† = ηaa γa , (γ̃a)† = ηaa γ̃a . (10.2)

Both kinds offer the description of the internal spaces of fermions with the “basis
vectors” which are superpositions of odd products of either γa’s or γ̃a’s and fulfil
correspondingly, the anti-commuting postulates of second quantized fermion
fields, as well as the description of the internal spaces of boson fields with the
“basis vectors” which are superposition of even products of either γa’s or γ̃a’s and
fulfil correspondingly the commuting postulates of second quantized boson fields.
Since there are not two kinds of anti-commuting fermions, and not two corresponding
kinds of their gauge fields, the postulate of Eq. (11.3) gives the possibility that only one of
the two kinds of operators are used to describe fermions and their gauge fields, namely γa’s.

Postulating how does γ̃a operate on γa, reduces the two Clifford subalgebras, γa

and γ̃a, to the one described by γa [1, 3, 12]

{γ̃aB = (−)B i Bγa} |ψoc > , (10.3)

with (−)B = −1, if B is (a function of) odd products of γa’s, otherwise (−)B = 1 [3],
the vacuum state |ψoc >will be defined in Eq. (10.10).
The operators γ̃a’s can after the postulate, Eq. (11.3), be used to describe the
quantum numbers of each of the 2

d
2
−1 irreducible representations (with 2

d
2
−1

members each, representing “families” of fermions) of the Lorentz group with the
infinitesimal generators Sab 3 by S̃ab 4. We shall see [8] that the quantum numbers
of each irreducible representation of the Lorentz group in the internal space of
bosons are equal to Sab (= Sab + S̃ab) 5.
We shall arrange all the “basis vectors” describing internal spaces of fermion
and boson second quantized fields to be the eigenstates of the Cartan subalgebra

3 Lorentz group has in the internal space of fermions the generators Sab = i
4
(γaγb−γbγa))

4 S̃ab = i
4
(γ̃aγ̃b − γ̃bγ̃a).

5 One can prove (or read in App. I of Ref. [7]) that the relations of Eq. (11.2) remain valid
also after the postulate, presented in Eq. (11.3).
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members of the Lorentz algebra, chosen to be

S03, S12, S56, · · · , Sd−1 d ,
S̃03, S̃12, S̃56, · · · , S̃d−1 d ,
Sab = Sab + S̃ab . (10.4)

In even-dimensional spaces there are d
2

members of the Cartan subalgebra,
Eq. (11.4) 6.

We define [1, 3] in even dimensional spaces d
2

nilpotents,
ab

(k), each nilpotent is a

superposition of an odd number of γa’s, and projectors,
ab

[k], each is a superposition
of an even number of γa’s,

ab

(k): =
1

2
(γa +

ηaa

ik
γb) , (

ab

(k))2 = 0 ,

ab

[k]: =
1

2
(1 +

i

k
γaγb) , (

ab

[k])2 =
ab

[k], (10.5)

each nilpotent and projector is chosen to be the eigenvector of one of d−1
2

members
of the Cartan subalgebra

Sab
ab

(k)=
k

2

ab

(k) , S̃ab
ab

(k)=
k

2

ab

(k) ,

Sab
ab

[k]=
k

2

ab

[k] , S̃ab
ab

[k]= −
k

2

ab

[k] , (10.6)

with k2 = ηaaηbb, pointing out that the eigenvalues of Sab on projectors ex-
pressed with γa differ from the eigenvalues of S̃ab on projectors expressed with
γa. Taking into account Eq. (11.2) one finds the relations

γa
ab

(k) = ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k) = −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) ,

ab

(k)
ab

(−k) = ηaa
ab

[k] ,
ab

(−k)
ab

(k)= ηaa
ab

[−k] ,
ab

(k)
ab

[k]= 0 ,
ab

(k)
ab

[−k]=
ab

(k) ,

ab

(−k)
ab

[k] =
ab

(−k) ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

[k]
ab

(−k)= 0 ,
ab

[k]
ab

[−k]= 0 ,

ab

(k)
†

= ηaa
ab

(−k) , (
ab

(k))2 = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,

ab

[k]
†

=
ab

[k] , (
ab

[k])2 =
ab

[k] ,
ab

[k]
ab

[−k]= 0 . (10.7)

More relations are presented in App. A of Ref. [11].
We define [1, 3, 8] in even dimensional spaces the “basis vectors” of fermion and boson
second quantized fields as algebraic, ∗A, products of nilpotents and projectors so that each
product is an eigenvector of all d

2
Cartan subalgebra members, Eq. (11.4).

Fermion“basis vectors” must be products of an odd number of nilpotents, at least
one, the rest are projectors; boson “basis vectors” must be products of an even

6 In odd-dimensional spaces there are d−1
2

members of the Cartan subalgebra.
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number of nilpotents, the rest are projectors 7.

We recognize: Half of 2d different products of γa’s are odd, and half of them are
even. The Clifford odd “basis vectors” appear in 2

d
2
−1 irreducible representations,

we call them families, each family having 2
d
2
−1 members (obtainable from any

other member by Sab; the family member of any other family is obtainable by S̃ab).

Since the Hermitian conjugated partner of a nilpotent
ab

(k)

†
is ηaa

ab

(−k), it follows
that the Hermitian conjugated partners of the Clifford odd “basis vectors” with an
odd number of nilpotents must belong to a different group of 2

d
2
−1 members in

2
d
2
−1 families.

The Clifford even “basis vectors” with an even number of nilpotents have their
Hermitian conjugated partners within the same group; projectors are self adjoint,

Sac transforms
ab

(k) ∗A
cd

(k ′) into
ab

[−k] ∗A
cd

[−k ′], while S̃ac transforms
ab

(k) ∗A
cd

(k ′)

into
ab

[k] ∗A
cd

[k ′], what follows if taking into account Eq. (10.7). Since the number
of the Clifford odd products of γa’s is equal to the number of the Clifford even
products of γa’s, there must be another group of the Clifford even “basis vectors”
with 2

d
2
−1 × 2d2−1 members.

We learn [8, 10] that one group of the Clifford even “basis vectors” transforms
the family members of the Clifford odd “basis vectors” among themselves, while
the second group of the Clifford even “basis vectors” transform any member of a
family to the same member of another families.
Let us clear up that the algebraic application, ∗A, of the Clifford even “basis
vectors”, we name them either IÂm†

f if they are of the first kind or IIÂm†
f if they

are of the second kind, on the Clifford odd “basis vectors”, we name them b̂m
′†

f‘ ,
transforms the Clifford odd “basis vectors” into the Clifford odd “basis vectors”,
meaning that while the Clifford odd “basis vectors” carry the half integer values
of the Cartan subalgebra members eigenvalues, ± i

2
or ±1

2
, carry the Clifford

even ”basis vectors” the eigenvalues of the Cartan subalgebra members (±i, 0) or
(±1, 0), in agreement with Sab = (Sab + S̃ab) [8, 10].

10.2.1 “Basis vectors” in d = 2(2n + 1)-dimensional internal spaces from the
point of view of d = (3 + 1)

This part overviews several papers with the same topic ( [7–10] and references
therein).

i. The Clifford odd “basis vectors”

7 An odd product of nilpotents anti-commute with another product of an odd number
of nilpotents, explaining the anti-commutation postulates for fermions. To the creation
operators, which are tensor products of the “basis vectors” and the basis in ordinary
space, determine anti-commutativity the “basis vectors”. Correspondingly the even
products of nilpotents explain the commutation postulates for boson fields.
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Let us start in d = 2(2n + 1) with the “basis vector” b̂1†1 which is the product of
only nilpotents, all the rest members belonging to the f = 1 family follow by the
application of Sab, presented on the left-hand side of Eq. (10.8). Their Hermitian
conjugated partners, b̂mf = (b̂m†

f )† , are presented on the right-hand side 8.

b̂1†1 =
03

(+i)
12

(+)
56

(+) · · ·
d−1 d

(+) , b̂11 =
03

(−i)
12

(−) · · ·
d−1 d

(−) ,

b̂2†1 =
03

[−i]
12

[−]
56

(+) · · ·
d−1 d

(+) , b̂21 =
03

[−i]
12

[−]
56

(−) · · ·
d−1 d

(−) ,

· · · · · ·

b̂2
d
2

−1†
1 =

03

(+i)
12

[−]
56

[−] . . .
d−3 d−2

[−]
d−1 d

[−] , b̂2
d
2

−1

1 =
03

(−i)
12

[−]
56

[−] . . .
d−3 d−2

[−]
d−1 d

[−] ,

· · · , · · · . (10.8)

All the members on the left hand side are orthogonal among themselves, and
all the members of the right hand side are orthogonal among themselves, due to
Eq. (10.7) 9. The anti-commutation relations among the “basis vectors” and their
Hermitian conjugated partners fulfil the anti-commutation relations postulated by
Dirac for the second quantized fermion fields, Eq. (10.11).

It is easy to reproduce all the matrices postulated by Dirac for all Sab, although
it is not needed; the application of any Sab on any of the members of any of the
families is very simple. 10

The application of S̃ab, they do not appear among the Dirac operators, are equally
simple. The application of γa’s, as well as of γ̃a’s, on these states needs presenta-
tion of the Clifford even “basis vectors”, since they change the Clifford odd “basis

8 The algebraic product mark, ∗A, among nilpotents and projectors is skipped.
9

b̂m†
f ∗A b̂m‘†

f‘ = 0 , b̂mf ∗A b̂m‘
f‘ = 0 , ∀m,m ′, f, f‘ . (10.9)

Any member of 2
d
2
−1 families follow by the application of S̃ab.

Choosing the vacuum state equal to

|ψoc >=

2
d
2

−1∑
f=1

b̂mf ∗A b̂
m†
f | 1 > , (10.10)

for one of the membersm, which can be anyone of the odd irreducible representations f
it follows that the Clifford odd “basis vectors” obey the relations

b̂mf ∗A |ψoc > = 0. |ψoc > ,

b̂m†
f ∗A |ψoc > = |ψmf > ,

{b̂mf , b̂
m ′
f‘ }∗A+|ψoc > = 0. |ψoc > ,

{b̂m†
f , b̂m

′†
f‘ }∗A+|ψoc > = 0. |ψoc > ,

{b̂mf , b̂
m ′†
f‘ }∗A+|ψoc > = δmm

′
δff‘|ψoc > . (10.11)

10 Let be pointed out that the Dirac’s matrices were constructed for the massive fermions,
correspondingly they do not anticommute [26] .
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vectors” into the Clifford even “basis vectors” [8, 10].

ii. The Clifford even “basis vectors”

The Clifford even “basis vectors” appear in two orthogonal groups, named IÂm†
f

and IIÂm†
f . Each group has 2

d
2
−1× 2d2−1 members 11.

The generators Sab and S̃ab generate from the starting “basis vector” of each group
all the 2

d
2
−1× 2

d
2
−1 members. Each group contains the Hermitian conjugated

partners within the same group; 2
d
2
−1 members of each group are products of

only (self-adjoint) projectors, with all the eigenvalues of the Cartan subalgebra
members, Sab = (Sab + S̃ab), presented in Eq. (11.4), equal zero.

IÂ1†1 =
03

(+i)
12

(+) · · ·
d−1d

[+] , IIÂ1†1 =
03

(−i)
12

(+) · · ·
d−1d

[+] ,

IÂ2†1 =
03

[−i]
12

[−]
56

(+) · · ·
d−1d

[+] , IIÂ2†1 =
03

[+i]
12

[−]
56

(+) · · ·
d−1d

[+] ,

IÂ3†1 =
03

(+i)
12

(+)
56

(+) · · ·
d−3d−2

[−]
d−1d

(−) , IIÂ3†1 =
03

(−i)
12

(+)
56

(+) · · ·
d−3d−2

[−]
d−1d

(−) ,

. . . . . . (10.12)

The Clifford even “basis vectors” belonging to two different groups are orthogonal
due to the fact that they differ in the sign of one nilpotent or one projector or the
algebraic product of a member of one group with a member of another group gives

zero according to the third and fourth lines of Eq. (10.7):
ab

(k)
ab

[k]= 0,
ab

[k]
ab

(−k)= 0,
ab

[k]
ab

[−k]= 0.

IÂm†
f ∗A IIÂm†

f = 0 = IIÂm†.f ∗A IÂm†
f . (10.13)

The members of each of these two groups have the property.

iÂm†
f ∗A iÂm

′†
f‘ → {

iÂm†
f‘ , i = (I, II)

or zero .
(10.14)

For a chosen (m, f, f‘) there is only one m ′ (out of 2
d
2
−1) which gives a nonzero

contribution.
Two “basis vectors”, iÂm†

f and iÂm
′†

f ′ , the algebraic product, ∗A, of which gives
non zero contribution, “scatter” into the third one iÂm†

f‘ , for i = (I, II).

10.2.2 The relations among the Clifford odd and the Clifford even “basis
vectors”

The algebraic application, ∗A, of the Clifford even “basis vectors” IÂm†
f on the

Clifford odd “basis vectors” b̂m
′†

f‘ and the Clifford odd “basis vectors” b̂m†
f on

11 The members of one group can not be reached by the members of another group by either
Sab’s or S̃ab’s or both.
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IIÂm†
f gives

IÂm†
f ∗A b̂m

′†
f‘ → {

b̂m†
f‘ ,

or zero ,
(10.15)

b̂m†
f ∗A IIÂm

′†
f‘ → {

b̂m†
f‘‘ ,

or zero ,
(10.16)

while

b̂m†
f ∗A IÂm

′†
f‘ = 0 , IIÂm†

f ∗A b̂m
′†

f‘ = 0 , ∀(m,m‘, f, f‘) . (10.17)

Eq. (11.10) demonstrates that IÂm†
f , applying on b̂m

′†
f‘ , transforms the Clifford

odd “basis vector” into another Clifford odd “basis vector” of the same family,
transferring to the Clifford odd “basis vector” integer spins or gives zero.
Scattering of the Clifford odd “basis vector” b̂m†

f on IIÂm
′†

f‘ transforms the Clifford
odd “basis vector” into another Clifford odd “basis vector” b̂m†

f‘‘ belonging to the
same family memberm of a different family f‘‘.

Both groups of Clifford even “basis vectors” manifest as the gauge fields of the corre-
sponding fermion fields: One concerning the family members quantum numbers, the other
concerning the family quantum numbers.

The Clifford even “basis vectors” can be represented as algebraic products of the
Clifford odd “basis vectors” and their Hermitian conjugated partners [10]:
Knowing the Clifford odd “basis vectors” b̂m†

f of one family (any one) we are able
to generate all the Clifford even IÂm

′†
f‘ “basis vectors”

IÂm†
f = b̂m

′†
f‘ ∗A (b̂m

′′†
f‘ )† . (10.18)

Knowing the Clifford odd “basis vectors” b̂m†
f of one family member (any one) of

all families we are able to generate all the Clifford even IIÂm
′†

f‘ “basis vectors”

IIÂm†
f = (b̂m

′†
f‘ )† ∗A b̂m

′†
f‘ ′ . (10.19)

10.2.3 Relations among fermions and their vector and scalar gauge fields
under the assumptions that all the gauge fields are active (have non
zero momentum) only in d = (3 + 1)

We will learn in Sect. 10.3 that all the Clifford even “basis vectors” have to carry
the space index α which is equal to µ = (0, 1, 2, 3) if they describe the vector
component of the “basis vectors”, and they are equal to σ = (5, 6, ...) if describing
the scalar components of the “basis vectors”.

Let us start with few examples.

a. The d = (1+ 1) is very simple. We present it since we shall use it when trying to
extend point fermion and boson fields into strings.
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We have, in this case, two Clifford odd and two Clifford even eigenvectors of the
Cartan subalgebra members

Clifford odd

b̂1†1 =
01

(+i) , b̂11 =
01

(−i) ,

Clifford even
IA1†1 =

01

[+i] , IIA1†1 =
01

[−i] . (10.20)

The two Clifford odd “basis vectors” are Hermitian conjugated to each other. The

choice is made that b̂1†1 =
01

(+i) is the “basis vector”, and the second Clifford odd
object is its Hermitian conjugated partner. There is only one family (2

d
2
−1 = 1) with

one member. The vacuum state, Eq.(10.10), is for this choice equal to |ψoc >=
01

[−i].

The eigenvalue S01 of b̂1†1 (=
01

(+i)) is i
2

.
Each of the two Clifford even “basis vectors” is self adjoint ((I,IIA1†1 )† = I,IIA1†1 ),
with the eigenvalues S01 equal to 0.
We find, according to Eqs. (11.13, 11.14, 10.7), that

IA1†1 = b̂1†1 ∗A (b̂1†1 )† , IIA1†1 = (b̂1†1 )† ∗A b̂1†1 .

b. The case with d = 2(2n+ 1), with n = 1, is more illustrative. App. 10.6 presents
the Clifford odd and even “basis vectors” in Table 10.1.
We have in this case 16 odd “basis vectors”; 4 families with 4members each, and
16 their Hermitian conjugated partners.
Each family can represent the internal spaces of “positron” with positive “charge”,
S56 = 1

2
, and of an “electron” with negative “charge”, S56 = −1

2
, as can be seen

in Table 10.1. The “basis vectors” of the “positron” and “electron” are related by
the charge conjugation operator 12, which includes in d = (5+ 1) operators γ0γ5,
transforming b̂1†f into b̂1†f , of each family f.
The Clifford even “basis vectors” appear in Table 10.1 in two orthogonal groups,
each group has 16members, their Hermitian conjugated partners appear within
the same group. The eigenvalues of the Cartan subalgebra members Sab = (Sab+

S̃ab) are equal to either (±i, 0) or (±1, 0).
In Tables (2, 3, 4, 5) of Ref. [10], all the 32Clifford even “basis vectors” are expressed
as the algebraic products of the Clifford odd “basis vectors” and their Hermitian
conjugated partners. Two of these tables, Tables (10.2, 10.3), are presented also in
App. 10.6 of this contribution.
We will learn in Sect. 10.3 that all the Clifford even “basis vectors” have to carry
the space index α which is equal to µ = (0, 1, 2, 3) if they describe the vector
component of the “basis vectors”, and they are equal to σ = (5, 6) if describing the
scalar components of the “basis vectors”.

Let us illustrate these two groups of the Clifford even “basis vectors”:

12 In Ref. [23], the discrete symmetry operators for fermion fields in d = 2(2n + 1) with the
desired properties in d = (3 + 1) are discussed.
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Sixteen IAm†
f transform family members of any of 4 families among themselves.

One can check that the Clifford even “basis vectors” can be written as the algebraic
products of the Clifford odd “basis vectors” and their Hermitian conjugated
partners, Eqs. (11.13, 11.14); IÂm†

f = b̂m
′†

f‘ ∗A (b̂m
′′†

f‘ )†.
To describe “photons”, the “basis vectors” IÂm†

f must not carry any non zero
eigenvalues of the Cartan subalgebra members, Eq. (11.4), since the “photons” can
give to “fermions” (to “electrons” and “positrons” in our case) only the spin offered
by their space index µ. Table 10.2 presents “basis vectors” for four “photons”,
marked in Table 10.2 with ⃝. All are selfadjoint operators, offering to “basis
vectors” of “electrons” and “positrons” no spin and no charge.
The remaining four Clifford even “basis vectors”, appearing in the Hermitian
conjugated pairs (marked either by △ or by •), would be allowed only if “fermions”
and “bosons” have the non zero momenta in all six dimensions 13.
To describe “gravitons”, the “basis vectors” IÂm†

f must be able to offer the internal
spin S12, (±1), (with S03, (±i)), together with the spin offered by their space index
µ, while S56 eigenvalue must be equal to zero (must be described by a projector, not
to be able to change the charge of “electrons” and “positrons”). Table 10.3 presents
“basis vectors” for four “gravitons”, appearing in two Hermitian conjugated pairs,
marked in Table 10.3 either by ‡ or by ⊙⊙.
The remaining four Clifford even “basis vectors”, IÂm†

f , appearing again in the
Hermitian conjugated pairs (marked either by ⋆⋆ or by ⊗), would be allowed only
if “fermions” and “bosons” have the non zero momenta in all six dimensions 14.

Sixteen IIAm†
f transform a family member m (any member) of a family f to the

same family memberm of all 4 families. One can check that the Clifford even “basis
vectors” can be written as the algebraic products of the Clifford odd “basis vectors”
and their Hermitian conjugated partners, Eq. (11.14); IIÂm†

f = (b̂m
′†

f‘ )† ∗A b̂m
′′†

f‘ .
In Tables (4,5) of Ref. [10] all the sixteen members are presented.
Also IIAm†

f carry the space index α when taking part in creation operators. The
space indexαmust be µ = (0, 1, 2, 3) when representing vector fields and σ = (5, 6)

when representing scalars 15.

If fermions and bosons are active (have non zero momenta) only in d = (3 + 1)

“gravitons” and “photons” IIAm†
f are only possible.

Let us present here one case among the 32 cases, presented in Table 5 of Ref. [10].

IIÂ4†1 (≡
03

[−i]
12

[−]
56

[−]) = (b̂1†4 )† ∗A b̂1†4 (≡
03

(−i)
12

(−)
56

(−) ∗A
03

(+i)
12

(+)
56

(+)).

This can easily be checked if taking into account Eq. (11.2) or Eq. (10.7).

13 The Clifford even “basis vectors” including two nilpotents,
03

(±i)
56

(±1), would transform
“electrons” into “positrons” and back, changing spin S03 and charge.

14 These Clifford even “basis vectors”, they include two nilpotents
12

(±1)
56

(±1), would trans-
form “electrons” into “positrons” and back, changing the spin S12 and charge.

15 In Ref. ( [7], and reference therein) the role of the scalars in the realistic case d = (13 + 1),
suggested by experiments while representing Higgs’s scalars, is explained.
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One can check also that b̂1†4 ∗A IIÂ4†1 = b̂1†4 . The “basis vector” IIÂ4†1 with S03 = S12 =

S56 = 0 can transfer to an “electron” or “positron” only its space momentum while it
cannot change their internal properties.

10.2.4 The case with d = 2(2n + 1), with n = 3, is what the experiments
suggest

We have learned so far that to know all the 2
d
2
−1 × 2d2−1 members of the Clifford

even “basis vectors” IÂm†
f we need to know all the members of one (any one)

family (one irreducible representation) of the Clifford odd “basis vectors” b̂m†
f ,

Eq. (11.13) (and their Hermitian conjugated partners).
To know all the 2

d
2
−1 × 2d2−1 members of the Clifford even “basis vectors” IIÂm†

f

we need to know one family member (any one) of all the families, Eq. (11.14) (and
their Hermitian conjugated partners).
Before generating the Clifford even “basis vectors” as the algebraic products, ∗A,
of members of the Clifford odd “basis vectors”, representing quarks and leptons
and antiquarks and antileptons, let us shortly overview the properties of one
irreducible representation of quarks and leptons appearing together with the anti-
quark and antileptons in Table 10.4 of App. 10.7.

In the even dimensional space d = (13+ 1) ( [14], App. A), one irreducible repre-
sentation of the Clifford odd “basis vectors” if analysed from the point of view of
the subgroups of the group SO(13, 1) (including SO(7, 1)× SO(6), while SO(7, 1)
breaks into SO(3, 1) × SO(4), and SO(6) breaks into SU(3) × U(1)) contains the
Clifford odd “basis vectors” describing internal spaces of quarks and leptons
and antiquarks and antileptons, manifesting at low energies the quantum num-
bers assumed by the standard model before the electroweak break. Since SO(4)
contains two SU(2) subgroups, SU(2)I and SU(2)II, with the hypercharge of the
standard model Y = τ23 + τ4 (with τ23 belonging to SU(2)II and τ4 originating
in SO(6), breaking to SU(3)×U(1)), one irreducible representation includes the
right-handed neutrinos and the left-handed antineutrinos, which are not in the
standard model scheme 16.

In Table 10.4, one can read the quantum numbers of the Clifford odd “basis
vectors” representing quarks and leptons and antiquarks and antileptons if taking
into account that all the nilpotents and projectors are eigenvectors of one of the
Cartan subalgebra members, (S03, S12, S56, . . . ,S13 14), with the eigenvalues ± i

2
or

16 For an overview of the properties of the vector and scalar gauge fields in the spin-charge-
family theory, the reader is invited to reed Refs. ( [5, 7, 8, 24, 25] and the references therein).
The reader can find in Table 10.4 that “basis vectors” of quarks have identical content of
SO(7, 1) as “basis vectors” of leptons (and antiquarks as antiletons); they differ only in
the SU(3)×U(1).
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±1
2

, while for (S03,S12,S56, · · · ,S13 14) the eigenvalues for
ab

(±i) are ±i, and for
ab

(±) are ±1, and for
ab

[±i] and
ab

[±] the eigenvalues are zero 17.
Taking into account that the third component of the standard model weak charge,
τ13 = 1

2
(S56 − S78), of the third component of the second SU(2)II charge (not

appearing in the standard model) τ23 = 1
2
(S56 + S78), of the colour charge [τ33 =

1
2
(S9 10 − S11 12) and τ38 = 1

2
√
3
(S9 10 + S11 12 − 2S13 14)], of the “fermion charge”

τ4 = −1
3
(S9 10 + S11 12 + S13 14), of the hyper charge Y = τ23 + τ4, and of the

electromagnetic charge Q = Y + τ13, one reproduces all the quantum numbers of
quarks, leptons, and antiquarks, and antileptons.

Let us represent internal spaces (that is the “basis vectors”) of photons, gravitons,
weak bosons and coloured bosons in the way we learned in the cases iv.b, that is as
algebraic products of the Clifford odd “basis vectors” (represented in Table 10.4 as
uciR , d

ci
R , u

ci
L , d

ci
L for quarks of colour ci, as ūc̄iL , d̄

c̄i
L , ū

c̄i
R , d̄

c̄i
R for antiquarks of the

opposite colour, as νR, eR, νL, eL for leptons, ν̄L, ēL, ν̄R, ēR for the corresponding
antileptons, their Hermitian conjugated partners will be written as ( )†).

Starting from photons we need to have in mind that photons can give to quarks
and leptons only momentum in ordinary space, but cannot change internal spaces
of quarks and leptons.
Let us look in Table 10.4 for uc1R , first line ( [10], Eq. (46)). The photon IÂ†

ph ūc̄1
R

→ūc̄1
R

interacts with ūc̄1
R 39th

as follows

IÂ†
ph ūc̄1

R
→ūc̄1

R

(≡
03

[+i]
12

[+]
56

[−]
78

[+]
9 10

[−]
11 12

[+]
13 14

[+] ) ∗A ūc̄1R 39th(≡
03

(+i)
12

[+]
56

(−)
78

(+)
9 10

[−]
11 12

(+)
13 14

(+) )

→ ūc̄1R 39th(≡
03

(+i)
12

[+]
56

(−)
78

(+)
9 10

[−]
11 12

(+)
13 14

(+) ) , IÂ†
ph ūc̄1

R
→ūc̄1

R

= uc̄1R 39th ∗A (uc̄1R 39th)
†.

(10.21)

Similarly, one finds photons interacting with the rest of quarks and electrons and
antiquarks and positrons 18.

Having in mind that bosons have an even number of nilpotents, and taking uc1R
from the first and the second line of Table 10.4, we find that the “basis vector” of
17 Let us remind the reader the difference between eigenvectors of Sab and S̃ab: Applying

on a nilpotent they both give the same eigenvalue, while they give opposite eigenvalue if
applying on a projector, Eq. (11.7).

18 The break of symmetry, discussed in Ref. [7], but not yet really understood in this new
way of presenting the internal space of boson fields, prevents neutrinos to interact with
photons. Let us add that photons can not directly interact with another photons since the
algebraic products of different selfadjoint operators are zero, but can interact with other
boson fields, for example, with gravitons [10]. However, algebraic product of the “basis
vector” which is a product of projectors by itself is the same “basis vector” back.
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the “graviton” IÂ†
gruc1

R↑→uc1R↓ applies on uc1R1st as follows

IÂ†
gr uc1

R↑→uc1R↓ (≡
03

(−i)
12

(−)
56

[+]
78

[+]
9 10

[+]
11 12

[−]
13 14

[−] ) ∗A uc1R 1st(≡
03

(+i)
12

[+]
56

[+]
78

(+)
9 10

(+)
11 12

[−]
13 14

[−] )

→ uc1R 2nd(≡
03

[−i]
12

(−)
56

[+]
78

(+)
9 10

(+)
11 12

[−]
13 14

[−] ) , IÂ†
gr uc1

R↑→uc1R↓ = uc1R 2nd ∗A (uc1R 1st)
† ,

(10.22)

Similarly we can find the “basis vectors” of all gravitons transforming the spins
S03 and S12 in internal spaces of quarks and leptons. The gravitons carry in addi-
tion the momentum in ordinary space time.

Looking for the weak bosons, which transform dc1L 5th (presented in Table 10.4 in
5th line) to uc1

L 7th
(presented in Table 10.4 in 7th line), we find

IÂ†
w1dc1

L
→uc1

L

(≡
03

[−i]
12

[+]
56

(+)
78

(−)
9 10

[+]
11 12

[−]
13 14

[−] ) ∗A dc1L 5th(≡
03

[−i]
12

[+]
56

(−)
78

(+)
9 10

(+)
11 12

[−]
13 14

[−] )

→ uc1L 7th(≡
03

[−i]
12

[+]
56

[+]
78

[−]
9 10

(+)
11 12

[−]
13 14

[−] )(≡
03

[−i]
12

[+] , IÂ†
w1dc1

L
→uc1

L

= uc1L 7th ∗A (dc1L 5th)
† .

(10.23)

We can find equivalently the weak bosons “basis vectors” which cause transfor-
mations among other weak pairs.

Let us look for the ‘basis vectors” of gluons, transforming colour charges of quarks,
for example, of dc1

L 5th
(presented in Table 10.4 in 5th line) to dc3L 21st (presented in

Table 10.4 in 21st line)

IÂ†
gl dc1

L
→dc3

L

(≡
03

[−i]
12

[+]
56

[−]
78

[+]
9 10

(−)
11 12

[−]
13 14

(+) ) ∗A dc1L 5th(≡
03

[−i]
12

[+]
56

(−)
78

(+)
9 10

(+)
11 12

[−]
13 14

[−] )

→ dc3L 21st(≡
03

[−i]
12

[+]
56

(−)
78

(+)
9 10

[−]
11 12

[−]
13 14

(+) ) , IÂ†
gl dc1

L
→dc3

L

= dc3L 21st ∗A (dc1L 5th)
† .

(10.24)

Let us conclude this section by repeating what we have learned in it: This section
presents the internal degrees of freedom as the Clifford odd “basis vectors” for
fermion fields and as the Clifford even “basis vectors” for boson fields for internal
spaces d = 2(2n + 1), n = 0, 1 and for n = 3. The creation operators for both
fields are tensor products of “basis vectors” and basis in ordinary space-time. The
Clifford even “basis vectors” of boson fields carry in addition the space index α,
Sect. 10.3.
There is the same number of the “basis vectors” of fermion and boson fields,
manifesting a kind of supersymmetry. While fermion fields appear in families
and have their Hermitian conjugated partners in a separate groups, appear boson
“basis vectors” in two orthogonal groups, with their Hermitian conjugated partners
within each group.
There is the break of symmetries which makes the number of observed families of
fermions and their observed gauge fields reduced [7]. But the assumption that the
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fermion and boson fields have non zero momenta only in d = (3+ 1) breaks the
Lorentz symmetry; the rotations Mms = Lms + Sms, m = (0, 1, 2, 3, s = (5, 6, ...),
(Sms can be replaced by S̃ms and Sms), for example, can not go.

To extend point fields to strings, we can use the “basis vectors” for the extended
part, presented in Eq. (11.18). For the extension of the fermion fields we can have

b̂1†1 =
01

(+i) and for its Hermitian conjugated partner b̂11 = (b̂1†1 )† =
01

(−i). For the

two boson fields we have IA1†1 =
01

[+i] and IIA1†1 =
01

[−i] 19.

Sect. 11.2.1 discusses a possible extension of point fields to strings.

10.3 Creation and annihilation operators for fermion and boson
fields in d = (3 + 1)

To define the creation operators for fermion or boson fields, besides the “basis
vectors” defining the internal spaces of fermions and bosons, the basis in ordi-
nary space in momentum or coordinate representation is needed. Let us shortly
overview Ref. [10], Sect. 3. (The extended version is presented in Ref. [7] in Sub-
sect. 3.3 and App. J.)
The momentum basis is continuously infinite

|⃗p > = b̂†
p⃗
| 0p > , < p⃗ | =< 0p | b̂p⃗ ,

< p⃗ | p⃗ ′ > = δ(p⃗− p⃗ ′) =< 0p |b̂p⃗ b̂
†
p⃗ ′ | 0p > ,

pointing out

< 0p |b̂p⃗ ′ b̂
†
p⃗
| 0p > = δ(p⃗ ′ − p⃗) , (10.25)

with the normalization < 0p | 0p >= 1. While the quantized operators ^⃗p and ^⃗x
commute {p̂i , p̂j}− = 0, {x̂k , x̂l}− = 0, it follows for {p̂i , x̂j}− = iηij. One corre-
spondingly finds

< p⃗ | x⃗ >=< 0p⃗ | b̂p⃗ b̂
†
x⃗|0x⃗ >= (< 0x⃗ | b̂x⃗ b̂

†
p⃗ |0p⃗ >)

†

< 0p⃗ |{b̂
†
p⃗ , b̂

†
p⃗ ′ }−|0p⃗ >= 0 , < 0p⃗ |{b̂p⃗, b̂p⃗ ′ }−|0p⃗ >= 0 , < 0p⃗ |{b̂p⃗, b̂

†
p⃗ ′ }−|0p⃗ >= 0 ,

< 0x⃗ |{b̂
†
x⃗, b̂

†
x⃗ ′ }−|0x⃗ >= 0 , < 0x⃗ |{b̂x⃗, b̂x⃗ ′ }−|0x⃗ >= 0 , < 0x⃗ |{b̂x⃗, b̂

†
x⃗ ′ }−|0x⃗ >= 0 ,

< 0p⃗ |{b̂p⃗, b̂
†
x⃗}−|0x⃗ >= e

ip⃗·⃗x 1√
(2π)d−1

, < 0x⃗ |{b̂x⃗, b̂
†
p⃗}−|0p⃗ >= e

−ip⃗·⃗x 1√
(2π)d−1

.

(10.26)

The creation operators for either fermion or boson fields must be tensor products,
∗T , of both contributions, the “basis vectors” describing the internal space of
fermions or bosons and the basis in ordinary momentum or coordinate space.

19 Let us repeat that knowing the fermion “basis vectors” allows us to find both kinds

of “boson fields”, IA1†1 = b̂1†1 ∗A (b̂1†1 )† =
01

(+i) ∗A
01

(−i)=
01

[+i], and IIA1†1 = (b̂1†1 )† ∗A

b̂1†1 =
01

(−i) ∗A
01

(+i)=
01

[−i].
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The creation operators for a free massless fermion field of the energy p0 = |⃗p|,
belonging to a family f and to a superposition of family membersm applying on
the extended vacuum state including both spaces, |ψoc > ∗T |0p⃗ >, can be written
as

b̂s†f (p⃗) =
∑
m

csmf(p⃗) b̂
†
p⃗ ∗T b̂m†

f . (10.27)

The creation operators b̂s†f (p⃗) and their Hermitian conjugated partners annihi-
lation operators b̂sf(p⃗), creating and annihilating the single fermion states, re-
spectively, fulfil when applying the vacuum state, |ψoc > ∗T |0p⃗ >, the anti-
commutation relations for the second quantized fermions, postulated by Dirac
(Ref. [8], Sect.3), explaining the Dirac’s second quantization postulates for fermions.

< 0p⃗ |{b̂
s ′
f‘ (p⃗ ′) , b̂s†f (p⃗)}+ |ψoc > |0p⃗ > = δss

′
δff ′ δ(p⃗

′ − p⃗) · |ψoc > ,

{b̂s
′
f‘ (p⃗ ′) , b̂sf(p⃗)}+ |ψoc > |0p⃗ > = 0 · |ψoc > |0p⃗ > ,

{b̂s
′†
f ′ (p⃗ ′) , b̂s†f (p⃗)}+ |ψoc > |0p⃗ > = 0 · |ψoc > |0p⃗ > ,

b̂s†f (p⃗) |ψoc > |0p⃗ > = |ψsf(p⃗) > ,

b̂sf(p⃗) |ψoc > |0p⃗ > = 0 · |ψoc > |0p⃗ > ,

|p0| = |⃗p| . (10.28)

The creation operators for boson gauge fields must carry the space index α, de-
scribing the α component of the boson field in the ordinary space [10], Eq. (24)).
We, therefore, add the space index α as follows

iÂm†
fα (p⃗) = iĈmfα(p⃗) ∗T iÂm†

f , i = (I, II) , (10.29)

with iĈmfα(p⃗) = iCmfα b̂†p⃗, with b̂†
p⃗

defined in Eqs. (11.15, 10.26). We treat free
massless bosons of momentum p⃗ and energy p0 = |⃗p| and of particular “basis
vectors” iÂm†

f ’s which are eigenvectors of all the Cartan subalgebra members. The
creation operators for boson gauge fields commute.

10.4 Points in ordinary space-time extended to strings;
representations of fermions and bosons in odd dimensional
spaces

One possibility to achieve renormalizability of the proposed theory might be,
learning from string theories [18, 19], by extending the points in ordinary space-
time to strings. A second possibility might be to find out what can offer the
internal odd-dimensional spaces, manifesting two groups of anti-commuting
“basis vectors” and two groups of commuting “basis vectors”, as mentioned in
Sect. 11.1 and explained in Ref. [9, 22]. One of the two groups of either anti-
commuting or commuting “basis vectors” manifest a kind of Fadeev-Popov ghost.

Let us start with the first possibility: extending the points in ordinary space-time
to strings.
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Let us try to extend the fermion and boson fields, expressed as tensor products,
∗T , of the “basis vectors” describing the internal spaces of fermion and boson
fields and the basis in ordinary space-time to strings, in the hope of achieving
renormalizability for the theory of free massless fermion and boson fields. As we
discussed in Sect. 10.2, the number of “basis vectors” which represent internal
spaces of fermions and the number of their Hermitian conjugated partners (both
together have 2× 2d2−1× 2d2−1), equals to the number of “basis vectors” represent-
ing the internal spaces of bosons, appearing in two orthogonal groups, 2d−1 20,
manifesting a kind of supersymmetry. (This is, however, not the usual kind of
supersymmetry requiring that each fermion has a partner with the same charge
among bosons, and vice versa.
We shall see that a trial to extend point particles in ordinary space-time to strings in
a “stringy way” requires to introduce the strings time, besides the ordinary space-
time and correspondingly also the corresponding “basis vectors” in d = (1+ 1) in
a string.
We assume that fermion and boson fields are active (having non-zero momenta)
only in d = (3 + 1) 21, while we choose d = 2(2n + 1) in the internal space. The
observations suggest n = 3.
Let us first assume a simple starting action, simplifying the action in Ref ( [7] and
in the references therein) for free massless fermion fields, and the corresponding
free massless boson fields in d = 2(2n+ 1)-dimensional space, having non zero
momenta only in d = (3 + 1), while taking into account the creation operators
for fermion and boson fields expressed by the corresponding “basic vectors”,
Eqs. (11.16, 11.17) 22.

A =

∫
d4x

1

2
(ψ̄ γαp0αψ) + h.c.+∫

d4x
∑

i=(I,II)

iF̂mfαβ
iF̂mfαβ ,

p0α = pα −
∑
mf

IÂm†
f

ICmfα −
∑
mf

IIÂm†
f

IICmfα ,

iF̂mfαβ = ∂α
iÂm†
fβ − ∂β

iÂm†
fα + εfm

′′f ′′mfm ′f‘iÂm†
fα

iÂm
′†

f‘β ,

i = (I, II) . (10.30)

20 One group of boson “basis vectors”, while applying to any of members of fermion
families, forms a member of the same family. The second group of boson “basis vectors”,
when applying to a particular member of a family transforms this member into the same
member of another family, Subsect. 10.2.4.

21 This assumption is not needed, but it seems meaningful.
22 The fermion states ψ are defined by b̂s†f (⃗x, x0) =∑

m b̂m†
f

∫+∞
−∞ dd−1p

(
√
2π)d−1 c

ms
f (p⃗) b̂†

p⃗
e−i(p

0x0−εp⃗·⃗x), applying on the vac-

uum state |ψoc > ∗T |0p⃗ >. The boson states are defined by IÂm†
fµ (⃗x, x0) =∫+∞

−∞ dd−1p

(
√
2π)d−1

IÂm†
fµ (p⃗) e−i(p

0x0−εp⃗·⃗x)|p0=|p⃗|, with the vacuum state equal to | 1 > .
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ψ represent 2
d
2
−1 members of one family of all the 2

d
2
−1 families, and ψ̄ =

(ψ)†γ0 their 2
d
2
−1 × 2

d
2
−1 Hermitian conjugated partners (multiplied by γ0).

iÂm†
f

iCmfα, i = (I, II), represent two orthogonal groups of “basis vectors” in a
tensor product with basis in ordinary space-time, extended by the space index
α = µ for vectors and α ≥ 5 for scalars in ordinary space-time, each with 2

d
2
−1×

2
d
2
−1 members 23. The assumed action, Eq. (10.30), needs further studies, since the

studies so far were mainly done by Eqs. (100, 101) of the reference [7].
Let us repeat: The description of the internal spaces of fermion and boson fields
with the odd and even Clifford algebra objects, respectively, offers an equal number
of fermions and bosons, demonstrating a (kind of) supersymmetry. However, none
of the “basis vectors” of the boson fields, obtained by the application of γa on
the fermion “basis vectors” (the application from the left-hand side generates
IIÂm†

f , the application from the right-hand side generates IÂm†
f ) do carry the

same internal charges as the fermion “basis vectors” 24.
We represent in Sect. 10.2 the “basis vectors” of fermion and boson fields for any
d = 2(2n+ 1), in particular also for d = (13+ 1) 25.
We demonstrated the “basis vectors” for the corresponding vector and scalar
gauge fields observed so far, Subsect. 10.2.4: Photons, gravitons, weak bosons and
gluons. 26

23 The assumption that all the fermion and boson fields are active (have non zero momen-
tum) only in d = (3 + 1) ordinary space-time mean that the derivative with respect to xα
gives zero.

24 The quantum numbers of uc1L , presented in Table 10.4 in the seventh line uc1L (≡
03

[−i]
12

[+]

|
56

[+]
78

[−] ||
9 10

(+)
11 12

[−]
13 14

[−] , are: S12 = 1
2

, S03 = − i
2

, τ13 = 1
2
(S56 − S78) = 1

2
, τ23 =

1
2
(S56 + S78) = 0, τ33 = 1

2
(S9 10 − S11 12) = 1

2
, τ38 = 1

2
√
3
(S9 10 + S11 12 − 2S13 14) = 1

2
√
3

.
For the corresponding boson “basic vector” obtained by multiplication of uc1L from the

left-hand side by γ9 one obtains: γ9 uc1L
03

[−i]
12

[+] |
56

[+]
78

[−] ||
9 10

(+)
11 12

[−]
13 14

[−] leading to
03

[−i]
12

[+] |
56

[+]
78

[−] ||
9 10

[−]
11 12

[−]
13 14

[−] . Having all the quantum numbers equal zero, this boson
represents a photon. Having all the members of the algebraic product equal to projectors,
and taking into account that for Clifford even “basis vectors” Sab = (Sab + S̃ab), which
gives zero for the projectors, the product of projectors only means that such an object
can not change the internal space of Clifford odd “basis vectors”, what photons do not.
Photons can give to fermions only the momentum in the ordinary space time, Eq. (10.21).

25 Let us repeat that the choice d = (13+ 1) offers to describe all the quarks and antiquarks
and leptons and antileptons observed so far, predicts the existence of the right-handed
neutrinos and left-handed antineutrinos and another weak field; requires the existence
of families of quarks and leptons and the existence of the dark matter; announces the
existence of a fourth family to the observed three; explains the existence of the scalar
fields as the Higgs boson; predicts new scalar fields that gave rise to inflation of the
universe after the Big Bang, offers the explanation for many a cosmological observation.

26 There are additional gauge fields which can not be observed since this would break
Lorentz invariance if requiring Lorentz transformations of the kindMas, a = (0, 1, 2, 3)

and s ≥ 5 due to the assumption that all the fields have non zero momentum only in
d = (3 + 1). Without additional break of symmetry there could exist gauge fields, which
change more than only one kind of charge at the same time.



i
i

“j” — 2024/12/10 — 17:17 — page 130 — #144 i
i

i
i

i
i

130 N.S. Mankoč Borštnik

We can obtain gravitino if we extend points in ordinary space-time to strings.
Describing strings with “basis vectors” being the eigenvectors of the Cartan subal-
gebra members S01, S̃01,S01 = (S01 + S̃01), on a string (σ, τ), we have, in this case,
two Clifford odd — one“basis vector” and one Hermitian conjugated partner —
and two Clifford even objects, Eq. (11.18),

Clifford odd

b̂1†1s =
01

(+i)s , b̂11s =
01

(−i) ,

Clifford even
IA1†1s =

01

[+i]s ,
IIA1†1s =

01

[−i]s .

Index s points out that these “basis vectors” belong to the strings extensions and
not to the “basis vectors” representing internal spaces of fermion and boson fields.
The two Clifford odd “basis vectors” in the above equation are Hermitian con-

jugated to each other. Let us make a choice that b̂1†1s ≡
01

(+i)s is the “basis vector”

(applying on the vacuum state, Eq. (10.10), |ψocs >=
01

[−i]s). There is only one

family (2
d
2
−1 = 1) with one member. The eigenvalue S01 of b̂1†1s(=

01

(+i)s) is i
2

.
Each of the two Clifford even “basis vectors” is self adjoint ((I,IIA1†1s)† = I,IIA1†1s),
with the eigenvalues S01 equal to 0.

The internal space of photons

(like it is IÂ†
ph ūc̄1

R
→ūc̄1

R

(≡
03

[+i]
12

[+]
56

[−]
78

[+]
9 10

[−]
11 12

[+]
13 14

[+] ), Eq.(10.21)), extended by a

tensor product, ∗T ′ , with a string b̂1†1s(≡
01

(+i)s), can represent anticommuting grav-
itinos since the photon carries the space-time index µ.
The extensions of all the other “basis vectors” of space-time — either the Clifford
odd ones describing the internal spaces of fermions, or Clifford even ones describ-
ing the internal spaces of bosons — by the tensor product, ∗T ′ with the two self
adjoint “basis vectors” describing the internal space on the string, iA1†1s, i = (I, II),
do not change commutation properties. The extended “basis vectors” remain
commuting or anti-commuting.
The extensions of “basis vectors” of space-time by the tensor product, ∗T ′ , with
b̂1†1s do change the commutation relations: The commuting ones become anti-
commuting, the anti-commuting become commuting.
The meaning of the 2

14
2

−1 “basis vectors” in tensor extension by b̂1†1s needs further
study.
The extension of point fields in d = (3 + 1) ordinary space-time (with “basis
vectors” determined in d = (13+ 1)) to strings needs the corresponding change of
the action, presented in Eq. (10.30), which is under consideration.
In a separate paper of this proceedings the author discusses the content of the
“basis vectors” after the “basis vectors” describing the internal spaces of fermions
(b̂m†
f ) and bosons (I,IIAm†

f ) in d = (13+ 1) are extended by a tensor products with
the string’s “basis vectors” of fermions (b̂1†1s) and bosons (I,IIA1†1s) presented in
Eq. (11.18).
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It follows:

b̂m†
f ∗T ′

I,IIA1†1s
represent the anti-commuting “basis vectors” of fermions in the internal space
SO(d−1, 1), having the Hermitian conjugated partners in a separate group; the pro-

jectors
01

[±i]s, namely, do not change anti-commutativity of fermion “basis vectors”.

I,IIAm†
f ∗T ′

I,IIA1†1s
represent the commuting “basis vectors” of bosons in the internal space SO(d−

1, 1), appearing in two orthogonal groups; the projectors
01

[±i]s, namely, do not
change commutativity of boson “basis vectors”.

I,IIAm†
f ∗T ′ b̂1†1s

represent the anticommuting “basis vectors” of new fermions, with the quantum

numbers of bosons in the internal space SO(d − 1, 1); the nilpotents b̂1†1s ≡
01

(+i)s,
namely, changes commutativity of boson “basis vectors” keeping their quantum
numbers unchanged.

b̂m†
f ∗T ′ b̂1†1s

represent the commuting “basis vectors” of new bosons with the quantum num-

bers of fermions in the internal space SO(d− 1, 1), b̂1†1s ≡
01

(+i) change the anticom-
mutativity of b̂m†

f .

This does not look as the usually desired supersymmetry, requiring that each
fermion (in our case one of 2

d
2
−1 members appearing in 2

d
2
−1 families, having

their Hermitian conjugated partner in a separate group) has a supersymmetric
partner with the same charges and with the spin 0. It does not look either that any
boson field (in our case any one of two groups each with 2

d
2
−1×2d2−1 members)

has a supersymmetric partner with the same charges and with the spin 1
2

.

There is another possibility to achieve the supersymmetric partners to the “ba-
sis vectors” presented fermions and bosons in 2(2n + 1) dimensional internal
spaces of fermions and bosons. It will be discussed in a separate contribution
to the Bled Proceeding 2024. One can namely go to an odd dimensional space
d = 2(2n + 1) + 1. As discussed in the article [9] there are two groups of “basis
vectors” in odd dimensional spaces;

One group determines the anti-commuting “basis vectors” of 2
d−1
2

−1 fermions ap-
pearing in 2

d−1
2

−1 families with their 2
d
2
−1 ×2d2−1 Hermitian conjugated partners

appearing in a separate group, as well as two orthogonal groups each with 2
d
2
−1

×2d2−1 of “basis vectors”, with their Hermitian conjugated partners within the
same group.
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The second group determines anti-commuting “basis vectors” appearing in two
separate orthogonal groups each with 2

d
2
−1 ×2d2−1 of “basis vectors”, with their

Hermitian conjugated partners within the same group, as well as the commuting
“basis vectors” of “fermions” appearing in families with their Hermitian conju-
gated partners in a separate group.

Also these two groups might demonstrate a kind of supersymmetry.
Let us finish this section by pointing out that the proposed theory offers:
Photons with “basis vectors” including only projectors; gravitons with “basis
vectors” having two nilpotents only in SO(3, 1) of SO(13, 1), all the rest are projec-
tors; weak bosons with ”basis vectors” which have two nilpotents only in SO(4)
manifesting as SU(2)× SU(2) of SO(13, 1); and gluons “basis vectors” with two
nilpotents in SU(3)×U(1) of SO(13, 1), all the rest are projectors.
All the observed gauge fields, either vectors or scalars, are presented by only two
nilpotents all the rest are projectors. There are breaks of symmetries [7] which
make choices.

The extension of the “basis vectors” to strings in the context of renormalizability,
as well as the offer of odd-dimensional spaces needs further studies.

10.5 Conclusions

This contribution presents the “basis vectors” of internal spaces of fermion and
boson second quantized fields, Sect. 10.2, manifesting that fermion “basis vectors”,
written as products of an odd number of nilpotents (at least one, the rest of
projectors), anti-commute, while boson “basis vectors”, written as products of an
even number of nilpotents (or of only projectors), commute, explaining the second
quantization postulates of Dirac for fermions and bosons.
Each nilpotent and projector is chosen to be the eigenvector of one of the mem-
bers of the Cartan subalgebra, Eq. 11.4; correspondingly are the “basis vectors”
eigenvectors of all the Cartan subalgebra members; they offer a transparent and
elegant way to find the Dirac matrices in any even dimensional space and the
corresponding matrices for the boson fields 27. However, knowing the states and
operators, Sab, S̃ab,Sab = (S̃ab + Sab), IÂm†

f ,
IIÂm†

f , the matrix representation is not needed.
We demonstrated that the number of fermion “basis vectors” and their Hermi-
tian conjugated partners are equal to the number of “basis vectors” of bosons,
appearing in two orthogonal groups, manifesting a (kind of) supersymmetry.
Representing the corresponding creation and annihilation operators for fermion
and boson fields as tensor products, ∗T , of “basis vectors” and basis in ordinary
27 The usual presentation of Dirac matrices in higher dimensional spaces is much more

complicated and much less transparent. The same is true for the usual group presentations
for either fermions or bosons. The Dirac matrices in d = (3+ 1) are designed for massive
fermions, they do not anticommute. Dirac, having no γ̃a, does not include families of
fermions; although he could, since he has 2d products of odd and even possibilities of
products of γa.



i
i

“j” — 2024/12/10 — 17:17 — page 133 — #147 i
i

i
i

i
i

10 Internal spaces of second quantized particles 133

space-time, Eqs. (11.16, 11.17) — the boson fields have to obtain the space index —
the creation and annihilation operators manifest properties of the second quantized
anti-commuting fermion fields and commuting boson fields, Sect. 10.3.
We assumed in this talk that fermions and bosons have non zero momenta only
in d = (3 + 1), while the involved internal space needs to be d = (13 + 1) to be
able to offer the observed properties of quarks and leptons and antiquarks and
antileptons, appearing in families, as well as the corresponding vector (if the space
index α is (0, 1, 2, 3)) and scalar (if the space index α is ≥ 5) boson fields.
We presented “basis vectors” for fermion and boson fields in any d = 2(2n+ 1),
Sect. 10.2, in particular in d = (1+ 1) while searching for the “basis vectors” for
the strings, for d = (5 + 1) while manifesting how do the “basis vectors” work
in a simple case with fermions representing only “positrons” and “electrons”
appearing in families and with bosons representing “photons” and “gravitons”,
and in d = (13 + 1) manifesting “basis vectors” which explain the appearance
of the observed quarks and leptons and antiquarks and antileptons appearing in
families and of photons, weak bosons, gluons, and a second kind of weak bosons
(not yet observed) and gravitons (not yet observed), Subsect. 10.2.1. There are two
kinds of boson “basis vectors”; one kind transforms the family members of any
family among themselves, the second kind transforms any of the family members
into the same family member of all the families.
Does the description of the second quantized fermion and boson fields with the
“basis vectors”, bringing a new understanding of the second quantized fermion
and boson fields, bring also a new understanding of cosmology? It is at least
a very promising suggestion. Let us assume that at Big Bang, all the fermion,
vector and scalar boson fields were massless, with the “basis vectors” in internal
space determined by SO(13, 1); fermion, vector and scalar gauge fields have non
zero momenta only in d = (3 + 1) of ordinary space-time; all the scalar gauge
fields with the space index α ≥ 5 (with non-zero momentum only in d = (3+ 1))
contribute to inflation. The Lorentz transformations of the kindMms = Lms+Sms

(orMms = Lms + Sms),m = (0, 1, 2, 3), s ≥ 5 are not possible (since Lms can not
be performed).
As discussed in ( [7] and the references therein), the condensate breaks symmetry,
so that the second weak SU(2)II bosons, interacting with the condensate, become
at low energies massive; all the rest gauge fields (SU(2)I, SU(3), U(1), gravity) [7],
do not interact with the condensate, remaining therefore massless up to the elec-
troweak break, which is caused by scalar fields with the space index α = (5, 6, 7, 8).
After the electroweak break there are photons, gluons and gravitons which keep
their masslessness [10].
We demonstrate that the “basis vectors” for boson second quantized fields can also
be expressed as algebraic products of fermion “basis vectors” and their Hermitian
conjugated partners; consequently, we need only to know the fermion “basis
vectors”.
In this contribution, the trial to extend the points in ordinary space-time to strings
is presented in Sect. 11.2.1. The internal space of strings, that is their “basis vectors”,
were added in a tensor product, ∗T ′ , to the “basis vectors” of fermions and bosons
describing the d = (13+ 1) internal space. The tensor products of the fermion and
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boson “basis vectors” with the bosons self adjoint “basis vectors” on the string
leads to the anti-commuting creation and annihilation operators for fermions
and commutation operators for bosons, suggesting that at low energies only the
internal spaces of the second quantized fields with the “basis vectors” describing
the d = (13 + 1) internal space are important. The tensor product of the “basis
vectors” of fermions and bosons describing the d = (13+ 1) internal space with
the Clifford odd basis vectors on a string gives to the commuting “basis vectors”
in d = (13 + 1) the anti-commuting partners with the same charges, and to the
anti-commuting “basis vectors” in d = (13+ 1) the commuting partners with the
same charges. This, might be an interesting part, needs further studies.
There is another possibility to achieve the supersymmetric partners to the “basis
vectors” presented fermions and bosons in 2(2n+ 1)-dimensional internal spaces
of fermions and bosons, Sect. 11.2.1.
In an odd dimensional space d = 2(2n + 1) + 1 there are two groups of “basis
vectors” [9]: One group determines the anti-commuting “basis vectors” of 2

d−1
2

−1

fermions appearing in 2
d−1
2

−1 families, with their 2
d−1
2

−1 ×2d−1
2

−1 Hermitian con-
jugated partners appearing in a separate group, as well as two orthogonal groups
each with 2

d−1
2

−1 ×2d−1
2

−1 of “basis vectors”, with their Hermitian conjugated
partners within the same group.
The second group determines anti-commuting “basis vectors” appearing in two
separate orthogonal groups each with 2

d−1
2

−1 ×2d−1
2

−1 of “basis vectors”, with
their Hermitian conjugated partners within the same group, as well as the com-
muting “basis vectors” of “fermions” appearing in families with their Hermitian
conjugated partners in a separate group.
Also these two groups might demonstrate a kind of supersymmetry, suggesting to
be used to achieve renormalizability.
We want to understand whether the elegant and simple description of the inter-
nal degrees of freedom of fermions and bosons with the Clifford odd and even
“basis vectors” manifesting a kind of supersymmetry — offering explanations
for so many observed properties of fermion and boson second quantized fields,
explaining as well the second quantization postulates for fermion and boson fields,
offering expressions for boson “basis vectors” (their internal spaces) as algebraic
products of fermion “basis vectors” and their Hermitian conjugated partners,
offering explanations for cosmological observations with inflation included — can
be related to strings, or it offers a new way to understand renormalizability on all
levels of energy.

10.6 Useful tables

These Tables are mainly taken from Refs. [8, 10] and are meant to illustrate
Sects. (10.2,10.2.3 10.2.1,10.2.2).
The case with d = (5 + 1) is meant to learn how Clifford odd and Clifford even
“basis vectors” illustrate internal spaces of fermions and bosons, Table 10.1.
Fermions, in this case “electrons” with a negative “charge”, S56 = −1

2
, and

“positrons” with a positive “charge”, S56 = 1
2

, appear in 16 odd “basis vectors”
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(with one or three nilpotents), in 4 families with 4 members in each family, having
16 Hermitian conjugated partners.
Bosons, in this case “photons” and “gravitons”, appear in two orthogonal groups;
each group has 16 members, and their Hermitian conjugated partners appear
within the same group. The eigenvalues of the Cartan subalgebra members Sab =

(Sab + S̃ab) are equal to either (±i, 0) or (±1, 0). “Photons” are products of only
projectors, “gravitons” have two nilpotents with S03 equal to (±i) and S12 equal
to (±1).
Tables (10.2, 10.3), manifest that the Clifford even “basis vectors” can be expressed
as products of the Clifford odd “basis vectors” and their Hermitian conjugated
partners. Let us remind the reader that projectors are self adjoint operators, while

the Hermitian conjugated partner to
ab

(±i) are
ab

(∓i) and to
ab

(±1) are
ab

(∓1), Eq. (10.7).

10.7 One family representation of Clifford odd “basis vectors” in
d = (13 + 1)

This appendix, is following App. D of Ref. [10]. In the even dimensional space
d = (13 + 1) ( [14], App. A), one irreducible representation of the Clifford odd
“basis vectors” if analysed from the point of view of the subgroups of the group
SO(13, 1) (including SO(7, 1)×SO(6), while SO(7, 1) breaks into SO(3, 1)×SO(4),
and SO(6) breaks into SU(3) × U(1)) contains the Clifford odd “basis vectors”
describing internal spaces of quarks and leptons and antiquarks and antileptons,
manifesting at low energies the quantum numbers assumed by the standard model
before the electroweak break. Since SO(4) contains two SU(2) subgroups, SU(2)I
and SU(2)II, with the hypercharge of the standard model Y = τ23 + τ4 (with τ23

belonging to SU(2)II and τ4 originating in SO(6), breaking to SU(3)×U(1)), one
irreducible representation includes the right-handed neutrinos and the left-handed
antineutrinos, which are not in the standard model scheme 28. An overview of the
properties of the vector and scalar gauge fields in the spin-charge-family theory can
be found in Refs. ( [5, 7, 8, 24, 25] and the references therein). The reader can find
in Table 10.4 that “basis vectors” of quarks have identical content of SO(7, 1) as
“basis vectors” of leptons (and antiquarks as antiletons); they differ only in the
SU(3)×U(1) part.

28 The handedness is defined as follows

Γ (d) =
∏
a

(
√
ηaaγa) ·

{
(i)

d
2 , for d even ,

(i)
d−1
2 , for d odd .

(10.31)
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Table 10.1: This table, taken from [8], represents 2d = 64 “basis vectors”, which
are the eigenstates of the Cartan subalgebra members, Eq. (11.4). Half of them
are the Clifford odd “basis vectors” with the odd number of nilpotents (one or
three), the other half are the Clifford even “basis vectors” with the even number of
nilpotents (two or none). They are divided into four groups. The first group, odd I,
represents b̂m†

f , appearing in 2
d
2
−1 = 4 families (f = 1, 2, 3, 4), each family having

2
d
2
−1 = 4 family members (m = 1, 2, 3, 4). The second group, odd II, contains

Hermitian conjugated partners of the first group (for each family separately),
b̂mf = (b̂m†

f )†. Either odd I or odd II are products of an odd number of nilpotents
(one or three) and of projectors (two or none). The family quantum numbers of
b̂m†
f (the eigenvalues of (S̃03, S̃12, S̃56)) appear for the first odd I group above

each family, the quantum numbers of the “family” members (S03, S12, S56) are
written in the last three columns. For the Hermitian conjugated partners of odd I,
presented in the group odd II, the quantum numbers (S03, S12, S56) are presented
above each group of the Hermitian conjugated partners, the last three columns tell
eigenvalues of (S̃03, S̃12, S̃56). The two groups with the even number of nilpotents
(two or none), even I and even II, have their Hermitian conjugated partners within
its groups. The quantum numbers f, that is the eigenvalues of (S̃03, S̃12, S̃56), are
written above column of four members, the quantum numbers of the members,
(S03, S12, S56), are written in the last three columns. The quantum numbers of the
even “basi vectors” are (S03,S12,S56), determined by Sab = Sab + S̃ab.

′′basis vectors ′′ m f = 1 f = 2 f = 3 f = 4

(S̃03, S̃12, S̃56) → ( i
2
,− 1
2
,− 1
2

) (− i
2
,− 1
2
, 1
2

) (− i
2
, 1
2
,− 1
2

) ( i
2
, 1
2
, 1
2

) S03 S12 S56

odd I b̂
m†
f

1
03

(+i)
12
[+]

56
[+]

03
[+i]

12
[+]

56
(+)

03
[+i]

12
(+)

56
[+]

03
(+i)

12
(+)

56
(+) i

2
1
2

1
2

2 [−i](−)[+] (−i)(−)(+) (−i)[−][+] [−i][−](+) − i
2

− 1
2

1
2

3 [−i][+](−) (−i)[+][−] (−i)(+)(−) [−i](+)[−] − i
2

1
2

− 1
2

4 (+i)(−)(−) [+i](−)[−] [+i][−](−) (+i)[−][−] i
2

− 1
2

− 1
2

(S03, S12, S56) → (− i
2
, 1
2
, 1
2

) ( i
2
, 1
2
,− 1
2

) ( i
2
,− 1
2
, 1
2

) (− i
2
,− 1
2
,− 1
2

) S̃03 S̃12 S̃56

03 12 56 03 12 56 03 12 56 03 12 56

odd II b̂m
f

1 (−i)[+][+] [+i][+](−) [+i](−)[+] (−i)(−)(−) − i
2

− 1
2

− 1
2

2 [−i](+)[+] (+i)(+)(−) (+i)[−][+] [−i][−](−) i
2

1
2

− 1
2

3 [−i][+](+) (+i)[+][−] (+i)(−)(+) [−i](−)[−] i
2

− 1
2

1
2

4 (−i)(+)(+) [+i](+)[−] [+i][−](+) (−i)[−][−] − i
2

1
2

1
2

(S̃03, S̃12, S̃56) → (− i
2
, 1
2
, 1
2

) ( i
2
,− 1
2
, 1
2

) (− i
2
,− 1
2
,− 1
2

) ( i
2
, 1
2
,− 1
2

) S03 S12 S56

03 12 56 03 12 56 03 12 56 03 12 56

even I IAm
f

1 [+i](+)(+) (+i)[+](+) [+i][+][+] (+i)(+)[+] i
2

1
2

1
2

2 (−i)[−](+) [−i](−)(+) (−i)(−)[+] [−i][−][+] − i
2

− 1
2

1
2

3 (−i)(+)[−] [−i][+][−] (−i)[+](−) [−i](+)(−) − i
2

1
2

− 1
2

4 [+i][−][−] (+i)(−)[−] [+i](−)(−) (+i)[−](−) i
2

− 1
2

− 1
2

(S̃03, S̃12, S̃56) → ( i
2
, 1
2
, 1
2

) (− i
2
,− 1
2
, 1
2

) ( i
2
,− 1
2
,− 1
2

) (− i
2
, 1
2
,− 1
2

) S03 S12 S56

03 12 56 03 12 56 03 12 56 03 12 56

even II IIAm
f

1 [−i](+)(+) (−i)[+](+) [−i][+][+] (−i)(+)[+] − i
2

1
2

1
2

2 (+i)[−](+) [+i](−)(+) (+i)(−)[+] [+i][−][+] i
2

− 1
2

1
2

3 (+i)(+)[−] [+i][+][−] (+i)[+](−) [+i](+)(−) i
2

1
2

− 1
2

4 [−i][−][−] (−i)(−)[−] [−i](−)(−) (−i)[−](−) − i
2

− 1
2

− 1
2
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Table 10.2: This table is taken from Ref. [10]. The Clifford even “basis vectors”,
IÂm†
f , belonging to zero momentum in internal space, S12 = 0, for d = (5 + 1),

are presented as algebraic products of the f = 1 family “basis vectors” b̂m
′†

1 and
their Hermitian conjugated partners (b̂m

′′†
1 )†, presented in Table 10.1: b̂m

′†
1 ∗A

(b̂m
′′†

1 )†. The two IÂm†
f which are Hermitian conjugated partners, are marked

with the same symbol (either △ or •). The symbol ⃝ presents selfadjoint members.
The Clifford even “basis vectors” IÂm†

f are products of one projector and two
nilpotents or three projectors (they are self-adjoint), the Clifford odd “basis vectors”
and their Hermitian conjugated partners are products of one nilpotent and two
projectors or of three nilpotents. The Clifford even and Clifford odd objects are
eigenvectors of all the corresponding Cartan subalgebra members, Eq. (11.4).
There are 1

2
× 2 62−1 × 2 62−1 algebraic products of b̂m

′†
1 ∗A (b̂m

′′†
1 )†. The rest 8 of 16

members have IÂm†
f with S12 = +1 (four) and with S12 = −1 (four), presented in

Table 10.3. The members b̂m
′†

f together with their Hermitian conjugated partners
of each of the four families, f = (1, 2, 3, 4), offer the same IÂm†

f with S12 = 0 as
the ones presented in this table. The table is taken from Ref. [10, 11].

S12 symbol IÂm†
f

= b̂
m ′†
f‘

∗A (b̂
m ′′†
f‘

)†

0 △ IÂ2†
1

= b̂
2†
1

∗A (b̂
4†
1

)†

03
(−i)

12
[−]

56
(+)

03
[−i]

12
(−)

56
[+] ∗A

03
(−i)

12
(+)

56
(+)

0 ⃝ IÂ4†
1

= b̂
4†
1

∗A (b̂
4†
1

)†

03
[+i]

12
[−]

56
[−]

03
(+i)

12
(−)

56
(−) ∗A

03
(−i)

12
(+)

56
(+)

0 • IÂ1†
2

= b̂
1†
1

∗A (b̂
3†
1

)†

03
(+i)

12
[+]

56
(+)

03
(+i)

12
[+]

56
[+] ∗A

03
[−i]

12
[+]

56
(+)

0 ⃝ IÂ3†
2

= b̂
3†
1

∗A (b̂
3†
1

)†

03
[−i]

12
[+]

56
[−]

03
[−i]

12
[+]

56
(−) ∗A

03
[−i]

12
[+]

56
(+)

0 ⃝ IÂ1†
3

= b̂
1†
1

∗A (b̂
1†
1

)†

03
[+i]

12
[+]

56
[+]

03
(+i)

12
[+]

56
[+] ∗A

03
(−i)

12
[+]

56
[+]

0 • IÂ3†
3

= b̂
3†
1

∗A (b̂
1†
1

)†

03
(−i)

12
[+]

56
(−)

03
[−i]

12
[+]

56
(−) ∗A

03
(−i)

12
[+]

56
[+]

0 ⃝ IÂ2†
4

= b̂
2†
1

∗A (b̂
2†
1

)†

03
[−i]

12
[−]

56
[+]

03
[−i]

12
(−)

56
[+] ∗A

03
[−i]

12
(+)

56
[+]

0 △ IÂ4†
3

= b̂
4†
1

∗A (b̂
2†
1

)†

03
(+i)

12
[−]

56
(−)

03
(+i)

12
(−)

56
(−) ∗A

03
[−i]

12
(+)

56
[+]
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Table 10.3: The Clifford even “basis vectors” IÂm†
f , belonging to transverse mo-

mentum in internal space, S12 = 1, the first half of IÂm†
f , and S12 = −1, the second

half of IÂm†
f , for d = (5+1), are presented as algebraic products of the f = 1 family

“basis vectors” b̂m
′†

1 and their Hermitian conjugated partners (b̂m
′′†

1 )†: b̂m
′†

1 ∗A
(b̂m

′′†
1 )†. Two IÂm†

f which are the Hermitian conjugated partners are marked with
the same symbol (⋆⋆, ‡, ⊗, ⊙⊙). The Clifford even “basis vectors” IÂm†

f are prod-
ucts of one projector and two nilpotents, the Clifford odd “basis vectors” and their
Hermitian conjugated partners are products of one nilpotent and two projectors
or of three nilpotents. The Clifford even and Clifford odd objects are eigenvec-
tors of all the corresponding Cartan subalgebra members, Eq. (11.4). There are
1
2
× 2 62−1 × 2 62−1 algebraic products of b̂m

′†
1 ∗A (b̂m

′′†
1 )† with S12 equal to ±1. The

rest 8 of 16members present IÂm†
f with S12 = 0. The members b̂m

′†
f together with

their Hermitian conjugated partners of each of the four families, f = (1, 2, 3, 4),
offer the same IÂm†

f with S12 = ±1 as the ones presented in this table. (And
equivalently for S12 = 0.)

S12 symbol IÂm†
f

= b̂
m ′†
f‘

∗A (b̂
m ′′†
f‘

)†

1 ⋆⋆ IÂ1†
1

= b̂
1†
1

∗A (b̂
4†
1

)†

03
[+i]

12
(+)

56
(+)

03
(+i)

12
[+]

56
[+] ∗A

03
(−i)

12
(+)

56
(+)

1 ‡ IÂ3†
1

= b̂
3†
1

∗A (b̂
4†
1

)†

03
(−i)

12
(+)

56
[−]

03
[−i]

12
[+]

56
(−) ∗A

03
(−i)

12
(+)

56
(+)

1 ⊙⊙ IÂ1†
4

= b̂
1†
1

∗A (b̂
2†
1

)†

03
(+i)

12
(+)

56
[+]

03
(+i)

12
[+]

56
[+] ∗A

03
[−i]

12
(+)

56
[+]

1 ⊗ IÂ3†
4

= b̂
3†
1

∗A (b̂
2†
1

)†

03
[−i]

12
(+)

56
(−)

03
[−i]

12
[+]

56
(−) ∗A

03
[−i]

12
(+)

56
[+]

−1 ⊗ IÂ2†
2

= b̂
2†
1

∗A (b̂
3†
1

)†

03
[−i]

12
(−)

56
(+)

03
[−i]

12
(−)

56
[+] ∗A

03
[−i]

12
[+]

56
(+)

−1 ‡ IÂ4†
2

= b̂
4†
1

∗A (b̂
3†
1

)†

03
(+i)

12
(−)

56
[−]

03
(+i)

12
(−)

56
(−) ∗A

03
[−i]

12
[+]

56
(+)

−1 ⊙⊙ IÂ2†
3

= b̂
2†
1

∗A (b̂
1†
1

)†

03
(−i)

12
(−)

56
[+]

03
[−i]

12
(−)

56
[+] ∗A

03
(−i)

12
[+]

56
[+]

−1 ⋆⋆ IÂ4†
3

= b̂
4†
1

∗A (b̂
1†
1

)†

03
[+i]

12
(−)

56
(−)

03
(+i)

12
(−)

56
(−) ∗A

03
(−i)

12
[+]

56
[+]
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i |aψi > Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, Γ(7,1) = (−1) 1 , Γ(6) = (1) − 1

of (anti)quarks and (anti)leptons

1 uc1
R

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] 1 1

2
0 1

2
1
2

1
2

√
3

1
6

2
3

2
3

2 uc1
R

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] 1 − 1

2
0 1

2
1
2

1
2

√
3

1
6

2
3

2
3

3 dc1
R

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] 1 1

2
0 − 1

2
1
2

1
2

√
3

1
6

− 1
3

− 1
3

4 dc1
R

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] 1 − 1

2
0 − 1

2
1
2

1
2

√
3

1
6

− 1
3

− 1
3

5 dc1
L

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] -1 1

2
− 1
2

0 1
2

1
2

√
3

1
6

1
6

− 1
3

6 dc1
L

−
03

(+i)
12
(−) |

56
(−)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] -1 − 1

2
− 1
2

0 1
2

1
2

√
3

1
6

1
6

− 1
3

7 uc1
L

−
03

[−i]
12
[+] |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] -1 1

2
1
2

0 1
2

1
2

√
3

1
6

1
6

2
3

8 uc1
L

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] -1 − 1

2
1
2

0 1
2

1
2

√
3

1
6

1
6

2
3

9 uc2
R

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] 1 1

2
0 1

2
− 1
2

1
2

√
3

1
6

2
3

2
3

10 uc2
R

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] 1 − 1

2
0 1

2
− 1
2

1
2

√
3

1
6

2
3

2
3

11 dc2
R

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] 1 1

2
0 − 1

2
− 1
2

1
2

√
3

1
6

− 1
3

− 1
3

12 dc2
R

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] 1 − 1

2
0 − 1

2
− 1
2

1
2

√
3

1
6

− 1
3

− 1
3

13 dc2
L

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] -1 1

2
− 1
2

0 − 1
2

1
2

√
3

1
6

1
6

− 1
3

14 dc2
L

−
03

(+i)
12
(−) |

56
(−)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] -1 − 1

2
− 1
2

0 − 1
2

1
2

√
3

1
6

1
6

− 1
3

15 uc2
L

−
03

[−i]
12
[+] |

56
[+]

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] -1 1

2
1
2

0 − 1
2

1
2

√
3

1
6

1
6

2
3

16 uc2
L

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] -1 − 1

2
1
2

0 − 1
2

1
2

√
3

1
6

1
6

2
3

17 uc3
R

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) 1 1

2
0 1

2
0 − 1√

3
1
6

2
3

2
3

18 uc3
R

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) 1 − 1

2
0 1

2
0 − 1√

3
1
6

2
3

2
3

19 dc3
R

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
[−]

11 12
[−]

13 14
(+) 1 1

2
0 − 1

2
0 − 1√

3
1
6

− 1
3

− 1
3

20 dc3
R

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
[−]

11 12
[−]

13 14
(+) 1 − 1

2
0 − 1

2
0 − 1√

3
1
6

− 1
3

− 1
3

21 dc3
L

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) -1 1

2
− 1
2

0 0 − 1√
3

1
6

1
6

− 1
3

22 dc3
L

−
03

(+i)
12
(−) |

56
(−)

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) -1 − 1

2
− 1
2

0 0 − 1√
3

1
6

1
6

− 1
3

23 uc3
L

−
03

[−i]
12
[+] |

56
[+]

78
[−] ||

9 10
[−]

11 12
[−]

13 14
(+) -1 1

2
1
2

0 0 − 1√
3

1
6

1
6

2
3

24 uc3
L

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
[−]

11 12
[−]

13 14
(+) -1 − 1

2
1
2

0 0 − 1√
3

1
6

1
6

2
3

25 νR

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) 1 1

2
0 1

2
0 0 − 1

2
0 0

26 νR

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) 1 − 1

2
0 1

2
0 0 − 1

2
0 0

27 eR

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) 1 1

2
0 − 1

2
0 0 − 1

2
−1 −1

28 eR

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) 1 − 1

2
0 − 1

2
0 0 − 1

2
−1 −1

29 eL

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) -1 1

2
− 1
2

0 0 0 − 1
2

− 1
2

−1

30 eL −
03

(+i)
12
(−) |

56
(−)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) -1 − 1

2
− 1
2

0 0 0 − 1
2

− 1
2

−1

31 νL −
03

[−i]
12
[+] |

56
[+]

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) -1 1

2
1
2

0 0 0 − 1
2

− 1
2

0

32 νL

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) -1 − 1

2
1
2

0 0 0 − 1
2

− 1
2

0

33 d̄c̄1
L

03
[−i]

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
(+) -1 1

2
0 1

2
− 1
2

− 1
2

√
3

− 1
6

1
3

1
3

34 d̄c̄1
L

03
(+i)

12
(−) |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
(+) -1 − 1

2
0 1

2
− 1
2

− 1
2

√
3

− 1
6

1
3

1
3

35 ūc̄1
L

−
03

[−i]
12
[+] |

56
(−)

78
[−] ||

9 10
[−]

11 12
(+)

13 14
(+) -1 1

2
0 − 1

2
− 1
2

− 1
2

√
3

− 1
6

− 2
3

− 2
3

36 ūc̄1
L

−
03

(+i)
12
(−) |

56
(−)

78
[−] ||

9 10
[−]

11 12
(+)

13 14
(+) -1 − 1
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i |aψi > Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, Γ(7,1) = (−1) 1 , Γ(6) = (1) − 1

of (anti)quarks and (anti)leptons
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Table 10.4: The left-handed (Γ (13,1) = −1, Eq. (10.31)) irreducible representation of one
family of spinors — the product of the odd number of nilpotents and of projectors, which
are eigenvectors of the Cartan subalgebra of the SO(13, 1) group [3, 4], manifesting the
subgroup SO(7, 1) of the colour charged quarks and antiquarks and the colourless leptons
and antileptons — is presented. It contains the left-handed (Γ (3,1) = −1) weak (SU(2)I)
charged (τ13 = ± 1

2
), and SU(2)II chargeless (τ23 = 0) quarks and leptons, and the right-

handed (Γ (3,1) = 1) weak (SU(2)I) chargeless and SU(2)II charged (τ23 = ± 1
2

) quarks and
leptons, both with the spin S12 up and down (± 1

2
, respectively). Quarks distinguish from

leptons only in the SU(3)×U(1) part: Quarks are triplets of three colours (ci = (τ33, τ38)

= [( 1
2
, 1

2
√
3
), (− 1

2
, 1

2
√
3
), (0,− 1√

3
), carrying the ”fermion charge” (τ4 = 1

6
). The colourless

leptons carry the ”fermion charge” (τ4 = − 1
2

). The same multiplet contains also the left
handed weak (SU(2)I) chargeless and SU(2)II charged antiquarks and antileptons and the
right handed weak (SU(2)I) charged and SU(2)II chargeless antiquarks and antileptons.
Antiquarks distinguish from antileptons again only in the SU(3)×U(1) part: Antiquarks
are anti-triplets carrying the ”fermion charge” (τ4 = − 1

6
). The anti-colourless antileptons

carry the ”fermion charge” (τ4 = 1
2

). Y = (τ23+ τ4) is the hyper charge, the electromagnetic
charge is Q = (τ13 + Y).
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5. N.S. Mankoč Borštnik, D. Lukman, ”Vector and scalar gauge fields with respect to
d = (3 + 1) in Kaluza-Klein theories and in the spin-charge-family theory”, Eur. Phys. J. C
77 (2017) 231.
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10. N. S. Mankoč Borštnik, ”Can the “basis vectors”, describing t he internal spaces of
fermion and boson fields with the Clifford odd (for fermion) and Clifford even (for
boson) objects, explain interactions among fields, with gravitons included?” [arxiv:
2407.09482].
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23. N.S. Mankoč Borštnik, H.B. Nielsen, ”Discrete symmetries in the Kaluza-Klein-like

theories”, doi:10.1007/ Jour. of High Energy Phys. 04 (2014) 165 [arXiv:1212.2362].
24. G. Bregar, M. Breskvar, D. Lukman, N.S. Mankoč Borštnik, ”Families of Quarks and
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11 A trial to understand the supersymmetry relations
through extension of the second quantized fermion
and boson fields, either to strings or to odd
dimensional spaces

N.S. Mankoč Borštnik1, H.B. Nielsen2

1Department of Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
2Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark

Abstract. The article studies the extension of the internal spaces of fermion and boson
second quantized fields, described by the superposition of odd (for fermions) and even (for
bosons) products of the operators γa, to strings and odd dimensional spaces.
For any symmetry SO(d − 1, 1) of the internal spaces, it is the number of fermion fields
(they appear in families and have their Hermitian conjugated partners in a separate group)
equal to the number of boson fields (they appear in two orthogonal groups), manifesting a
kind of supersymmetry, which differs from the usual supersymmetry.
The article searches for the supersymmetry arising from extending the “basis vectors”
of second quantized fermion and boson fields described in d = 2(2n + 1) (in particular
d = (13 + 1)) either to strings or to odd-dimensional spaces (d = 2(2n + 1) + 1).

Povzetek: Članek proučuje razširitev notranjih prostorov fermionskih in bozonskih polj
v drugi kvantizaciji v strune in v sodo razsežne prostore. Notranji prostori so opisani z
”bazičnimi vektorji”, ki so superpozicija lihih (za fermione) in sodih (za bozone) produktov
operaterjev γa. Za vsako simetrijo SO(d− 1, 1) notranjih prostorov je število fermionskih
polj (pojavijo se v družinah in imajo svoje hermitsko konjugirane partnerje v ločeni skupini)
enako številu bozonskih polj (pojavijo se v dveh ortogonalnih skupinah), kar kaže neko
vrsto supersimetrije, ki pa se razlikuje od običajne supersimetrije. Članek proučuje lastnosti
”bazičnih vektorjev” fermionskih in bozonskih polj v dugi kvantizaciji za d = 2(2n + 1)

(posebej za d = (13 + 1)) po njihovi razširitvi bodisi na strune bodisi na lihe dimenzije
(d = 2(2n + 1) + 1).

11.1 Introduction

The contribution, appearing in this proceedings, with the title “Do we understand
the internal spaces of second quantized fermion and boson fields, with gravity
included?” and in the references therein [1–11], shortly presents the properties of
fermion and boson fields treated uniquely if they all start as massless fields.
The spin-chargge-family theory, describing the internal spaces of fermion and boson
second quantized fields by “basis vectors” which are the superposition of products
of an odd number of γa (for fermions) and even number of γa (for bosons),
requires the same number of fermion and boson “basis vectors”. Arranging the
“basis vectors” to be the eigenvectors of the (chosen) Cartan subalgebra members
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(equal to d
2

for an even d) of the Lorentz algebra in internal spaces of fermions and
bosons, the theory offers an elegant description of the second quantized fermion
and boson fields, explaining the second quantization postulates.
The author, with the collaborators [1–11], arrange the “basis vectors” to be the

products of nilpotents (
ab

(k):= 1
2
(γa + ηaa

ik
γb) , (

ab

(k))2 = 0 ) and projectors (
ab

[k]:=

1
2
(1 + i

k
γaγb) , (

ab

[k])2 =
ab

[k] ), with the properties Sab
ab

(k)= k
2

ab

(k) , Sab
ab

[k]= k
2

ab

[k]

with k2 = ηaaηbb; Sab = i
2
γaγb.

“Basis vectors” of fermions, chosen to be the algebraic products of an odd number
of nilpotents (at least one, the rest are projectors), and “basis vectors” of bosons,
chosen to be the algebraic products of an even number of nilpotents (or only of
projectors) are correspondingly eigenvectors of all the d

2
Sab Cartan subalgebra

members of one irreducible representation of fermions.
Fermion “basis vectors” appear in 2

d
2
−1 irreducible representations — families

— each family having 2
d
2
−1 members, including in d = 2(2n + 1) fermions and

antifermions. All the fermion “basis vectors” are mutually orthogonal, while the
“basis vectors” fulfil together with their Hermitian conjugated partners, appear-
ing in a separate group, the Dirac second quantization postulates for fermions.
Fermion “basis vectors” and their Hermitian conjugated partners have together
2d−1 members.
Boson “basis vectors” appear in two orthogonal groups, each of the two groups
with 2

d
2
−1× 2d2−1 members have their Hermitian conjugated partners within the

same group. There are two kinds of “basis vectors” of boson fields (the ordinary
theory does not have two kinds): One kind transforms family members within the
family (anyone), and the other transforms any member of a family to the same
member of another (or the same) family.
The number of fermion “basis vectors” is equal to the number of boson “basis
vectors” manifesting a kind of supersymmetry, which differ from the one offered
by string theories [18, 19].
In this contribution, the authors using the spin-charge-family theory to represent
properties of fermion and boson fields, discuss the extension of the “basis vectors”
in d = 2(2n+ 1) to strings and to odd-dimensional spaces in order to see which
kind of supersymmetry the extension offers.
The vacuum state is constructed from only “basis vectors” of bosons, with spins
and charges equal to zero. There are also all fermion and boson “basis vectors”
present, all with the momentum equal to zero, if fermions and bosons are not
active.
Charges and spins of the vacuum with all the “basis vectors” of fermions and
bosons with no momenta present are zero. Any contribution to the vacuum
can be written as the algebraic product of a Hermitian conjugated “basis vec-
tor” ((‘‘basis vector ′′)†) algebraically, ∗A, multiplied by another “basis vector”
(‘‘basis vector ′′). All the members of one family have the same contribution to the
vacuum state and each family has its own contribution to the vacuum state.



i
i

“j” — 2024/12/10 — 17:17 — page 145 — #159 i
i

i
i

i
i

11 Supersymmetry relations and strings 145

Let us shortly repeat the Sect. 2 from the contribution of one of the two authors
(N.S.M.B.) in this proceedings (entitled “Do we understand the internal spaces of
second quantized fermion and boson fields, with gravity included?”).
Starting with the Grassmann algebra [1, 8], offering for the description for the in-
ternal degrees of freedom of fermions and bosons 2× 2d anticommuting operators
in d-dimensional space [13], θa and the derivatives with respect to θa, ∂

∂θa
[1],

fulfilling the relations {θa, θb}+ = 0 , { ∂
∂θa

, ∂
∂θb

}+ = 0 , {θa,
∂
∂θb

}+ = δab , (a, b) =

(0, 1, 2, 3, 5, · · · , d) we find two kinds of the operators γa and γ̃a

γa = (θa +
∂

∂θa
) , γ̃a = i (θa −

∂

∂θa
) ,

θa =
1

2
(γa − iγ̃a) ,

∂

∂θa
=
1

2
(γa + iγ̃a) ,

(11.1)

offering together 2 · 2d operators: 2d are superposition of products of γa and 2d of γ̃a, with
the properties

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,

{γa, γ̃b}+ = 0 , (a, b) = (0, 1, 2, 3, 5, · · · , d) ,
(γa)† = ηaa γa , (γ̃a)† = ηaa γ̃a . (11.2)

Postulating how does γ̃a operate on γa,

{γ̃aB = (−)B i Bγa} |ψoc > , (11.3)

with (−)B = −1, if B is (a function of) odd products of γa’s, otherwise (−)B = 1 [3],
with the vacuum state |ψoc >, the two Clifford subalgebras, γa and γ̃a reduce to the one
described by γa [1, 3, 12], while γ̃a can be used to describe the quantum numbers of the
irreducible representations of the superposition of odd products of γa. It is useful to
arrange all the “basis vectors” describing internal spaces of fermion and boson
second quantized fields to be the eigenstates of the Cartan subalgebra members of
the Lorentz algebra,

S03, S12, S56, · · · , Sd−1 d ,
S̃03, S̃12, S̃56, · · · , S̃d−1 d ,
Sab = Sab + S̃ab , (11.4)

and write the “basis vectors”, describing internal spaces of fermions and boson
second quantized fields, to be the products of nilpotents and projectors

ab

(k): =
1

2
(γa +

ηaa

ik
γb) , (

ab

(k))2 = 0 ,

ab

[k]: =
1

2
(1 +

i

k
γaγb) , (

ab

[k])2 =
ab

[k] . (11.5)

Each nilpotent and projector is chosen to be the eigenvector of one of d
2

(for d
even) members of the Cartan subalgebra.
The products of an odd number of nilpotents anti-commute, at least one is needed,
the rest are projectors. They appear in 2

d
2
−1 irreducible representations, repre-

senting families; each family has 2
d
2
−1 members which are obtainable from any
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other member by Sab; the family member of any other family is obtainable by S̃ab

which determine the quantum numbers of a family.
The Hermitian conjugated partners of nilpotents belong to a different group of
2
d
2
−1 members in 2

d
2
−1 families.

The objects of odd number of nilpotents offers the “basis vectors”, b̂m†
f , describing

the internal space of fermions, which together with the Hermitian conjugated part-
ners, (b̂m†

f )† =b̂mf fulfil the postulates of Dirac for the second quantized fermion

fields, when applying on the vacuum state, |ψoc >=
∑2

d
2

−1

f=1 b̂mf ∗A b̂
m†
f | 1 >, with

m any of the members.
All the odd “basis vectors” are orthogonal among themselves, and all the members
of their Hermitian conjugated partners are orthogonal among themselves,

b̂m†
f ∗A b̂m‘†

f‘ = 0 , b̂mf ∗A b̂m‘
f‘ = 0 , ∀m,m ′, f, f‘ . (11.6)

The products of an even number of nilpotents commute. They appear in two
orthogonal groups, IÂm†

f and IIÂm†
f , each group has 2

d
2
−1× 2

d
2
−1 members

with the Hermitian conjugated partners within the same group. They fulfil the
postulates of Dirac for the second quantized boson fields. Their eigenvalues of the
Cartan subalgebra members, Sab = (S̃ab + Sab). Correspondingly, the nilpotents
carry the Cartan subalgebra eigenvalue ±i or ±1 (since

Sab
ab

(k)=
k

2

ab

(k) , S̃ab
ab

(k)=
k

2

ab

(k) ,

Sab
ab

[k]=
k

2

ab

[k] , S̃ab
ab

[k]= −
k

2

ab

[k] , (11.7)

with k2 = ηaaηbb), while application of Sab = (S̃ab+Sab) on any projector gives
zero.
The Clifford even “basis vectors” belonging to two different groups are orthogonal.

IÂm†
f ∗A IIÂm†

f = 0 = IIÂm†.f ∗A IÂm†
f . (11.8)

The members of each of these two groups have the property.

iÂm†
f ∗A iÂm

′†
f‘ → {

iÂm†
f‘ , i = (I, II)

or zero .
(11.9)

Half of 2d different products of γa’s are odd, and half of them are even, manifesting
a kind of “supersymmetry”, distinguishing from the ordinary supersymmetry.

The algebraic application, ∗A, of even “basis vectors” IÂm†
f on odd “basis vectors”

b̂m
′†

f‘ and the odd “basis vectors” b̂m†
f on IIÂm†

f gives

IÂm†
f ∗A b̂m

′†
f‘ → {

b̂m†
f‘ ,

or zero ,
(11.10)

b̂m†
f ∗A IIÂm

′†
f‘ → {

b̂m†
f‘‘ ,

or zero ,
(11.11)
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while

b̂m†
f ∗A IÂm

′†
f‘ = 0 , IIÂm†

f ∗A b̂m
′†

f‘ = 0 , ∀(m,m‘, f, f‘) . (11.12)

If we know the odd “basis vectors” b̂m†
f , we are able to generate all the Clifford

even iÂm
′†

f‘ , i = (I, II) “basis vectors”

IÂm†
f = b̂m

′†
f‘ ∗A (b̂m

′′†
f‘ )† . (11.13)

IIÂm†
f = (b̂m

′†
f‘ )† ∗A b̂m

′†
f‘ ′ . (11.14)

We overviewed so far the properties if the internal spaces of fermion and boson
second quantized fields. Describing the second quantized fermion and boson
fields with nonzero momenta in d = (3 + 1), we represent fermion and boson
fields by a tensor product, ∗T , of the “basis vectors” representing internal spaces
and the basis in ordinary space, b̂†

p⃗
,

|⃗p > = b̂†
p⃗
| 0p > , < p⃗ | =< 0p | b̂p⃗ ,

< p⃗ | p⃗ ′ > = δ(p⃗− p⃗ ′) =< 0p |b̂p⃗ b̂
†
p⃗ ′ | 0p > ,

pointing out

< 0p |b̂p⃗ ′ b̂
†
p⃗
| 0p > = δ(p⃗ ′ − p⃗) , (11.15)

with the normalization < 0p | 0p >= 1.

For the fermion creation operators for a free massless fermion field of the energy
p0 = |⃗p|, belonging to a family f and to a superposition of family members m
applying on the extended vacuum state including both spaces, |ψoc > ∗T |0p⃗ >,
we have

b̂s†f (p⃗) =
∑
m

csmf(p⃗) b̂
†
p⃗ ∗T b̂m†

f . (11.16)

The creation operators b̂s†f (p⃗) and their Hermitian conjugated partners annihi-
lation operators b̂sf(p⃗), creating and annihilating the single fermion states, re-
spectively, fulfil when applying the vacuum state, |ψoc > ∗T |0p⃗ >, the anti-
commutation relations for the second quantized fermions, postulated by Dirac
(Ref. [8], Sect.3), explaining the Dirac’s second quantization postulates for fermions,
Eq. (28) in this proceedings of the author N.S.M.B..

The even “basis vectors” have to carry the space index α which is equal to µ =

(0, 1, 2, 3) if they describe the vector component of the “basis vectors”, and they
are equal to σ = (5, 6, ...) if describing the scalar components of the “basis vectors”

iÂm†
fα (p⃗) = iĈmfα(p⃗) ∗T iÂm†

f , i = (I, II) , (11.17)

with iĈmfα(p⃗) = iCmfα b̂†p⃗, with b̂†
p⃗

defined in Eqs. (11.15). We treat free massless
bosons of momentum p⃗ and energy p0 = |⃗p| and of particular “basis vectors”
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iÂm†
f ’s which are the eigenvectors of all the Cartan subalgebra members. The

creation operators for boson gauge fields commute, explaining the Dirac’s second
quantization postulates for bosons.

In Table 4 in the contribution of the author N.S.M.B. in this proceedings (NSMB)
we can find how do one family of the “basis vectors” of quarks and leptons and
anti-quarks and anti-leptons look like. The spin-charge-family requires the existence
of the right-handed neutrinos and left-handed anti-neutrions. We can read that the
SO(7, 1) content of SO(13, 1) are the same for quarks and leptons, and the same for
anti-quarks and anti-leptons. Quarks and leptons differ only in the last product, in
the SU(3)×U(1) content.
The quantum numbers of uc1L , presented in Table 4 (called NSMB from now on

in this contribution) in the seventh line uc1L (≡
03

[−i]
12

[+] |
56

[+]
78

[−] ||
9 10

(+)
11 12

[−]
13 14

[−] ,
are: S12 = 1

2
, S03 = − i

2
, τ13 = 1

2
(S56 − S78) = 1

2
, τ23 = 1

2
(S56 + S78) = 0,

τ33 = 1
2
(S9 10 − S11 12) = 1

2
, τ38 = 1

2
√
3
(S9 10 + S11 12 − 2S13 14) = 1

2
√
3

.

A photon “basic vector” IIÂ†
phuc1

L
→uc1

L

can be found by the multiplication of uc1L

from the left-hand side by γ9: γ9 uc1L → 03

[−i]
12

[+] |
56

[+]
78

[−] ||
9 10

[−]
11 12

[−]
13 14

[−] . The

photon “basis vector” IIÂ†
phuc1

L
→uc1

L

(≡
03

[−i]
12

[+] |
56

[+]
78

[−] ||
9 10

[−]
11 12

[−]
13 14

[−] ), having
all the members of the algebraic product equal to projectors, which obey for even
“basis vectors” the relation Sab = (Sab + S̃ab), and has correspondingly all the
quantum numbers equal zero, can not change the internal space quantum numbers
of an odd “basis vectors”, what photons do not. Photons can give to fermions only
the momentum in the ordinary space-time.

Let us point out again that knowing all the odd “basis vectors” describing the inter-
nal spaces of fermions we are able to write all the even “basis vectors” describing
two groups of bosons, Eqs. (11.13, 11.14).

The photon “basis vector” IIÂ†
phuc1

L
→uc1

L

(≡
03

[−i]
12

[+] |
56

[+]
78

[−] ||
9 10

[−]
11 12

[−]
13 14

[−] ) can

be written as (uc1
L 7th

)† ∗A uc1L 7th or as (ūc̄1
R 39th

)† ∗A ūc̄1R 39th .
The photon IÂ†

ph ūc̄1
R

→ūc̄1
R

can be represented as ūc̄1
R 39th

∗A (ūc̄1
R 39th

)†.

One can find in Eqs. (22,23,24) of (NSMB) the “basis vectors” for gravitons
(IÂ†

gruc1
R↑→uc1R↓ = uc1

R2nd
∗A (uc1R1st)

†), weak bosons (IÂ†
w1dc1

L
→uc1

L

= uc1
L 7th

∗A
(dc1L 5th)

†) and gluons (IÂ†
gldc1

L
→dc3

L

= dc3L 21st ∗A (dc1
L 5th

)†).

In all these case the numbers, 1st, 5th, 7th, 21st and 39th tell the lines in Table
4 in (SNMB) where the odd “basis vectors” of quarks, leptons, antiquarks and
anti-leptons are presented.

11.2 Extensions of points in ordinary space time to strings,
extensions of “basis vectors” to odd-dimensional spaces.

The description of the internal spaces of fermion and boson second quantized
fields with the “basis vectors” which are products of an odd and an even number
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of nilpotents, the rest are projectors, all are eigenvectors of the Cartan subalgebra
members, offers an equal number of fermion and boson “basis vectors”, demon-
strating a (kind of) supersymmetry. Both, the extension of points in ordinary
space-time to strings, and the extension of “basis vectors” to odd-dimensional
spaces, might help (following the literature [9, 18, 19, 22]) to achieve renormaliz-
ability of the proposed spin-charge-family theory.
To extend the points in ordinary space-time to strings we must define the “basis
vectors” on a string with coordinates (σ, τ).
We have, in this case, two odd and two even “basis vectors” the eigenvectors of
the Cartan subalgebra members S01, S̃01,Sab = (S01 + S̃01).

Clifford odd

b̂1†1s =
01

(+i)s , b̂11s =
01

(−i)s ,

Clifford even
IA1†1s =

01

[+i]s ,
IIA1†1s =

01

[−i]s . (11.18)

The two nilpotent“basis vectors” are Hermitian conjugated to each other. Making

a choice that b̂1†1 =
01

(+i)s is the “basis vector”, the second odd object is then its
Hermitian conjugated partner. There is only one family (2

d
2
−1 = 1) with one

member. The vacuum state is for this choice equal to |ψocs >=
01

[−i]s | 1 >= (
01

(+i)s

)† ∗A
01

(+i)s | 1 >. There is only one family (2
d
2
−1 = 1) with one member (2

d
2
−1 = 1).

The eigenvalue S01 of b̂1†1s(=
01

(+i)s) is i
2

.
Each of the two Clifford even “basis vectors” is self adjoint ((I,IIA1†1s)† = I,IIA1†1s),
with the eigenvalues S01 = (S01 + S̃01) equal to 0, since S01

01

[±i]s= ±i
01

[±i]s and

S̃01
01

[±i]s= ∓i
01

[±i]s. It follows that

IA1†1s = b̂
1†
1s ∗A (b̂1†1s)

† , IIA1†1s = (b̂1†1s)
† ∗A b̂1†1s.

To find the “basis vectors” for second quantized fermion and boson fields extended
to strings, we need to make a tensor product ,∗T ‘, of “basis vectors” of internal
space in d = 2(2n+ 1) and “basis vectors” on a string.
The extension to strings will be discussed in Subsect. 11.2.1.

We can achieve a kind of a supersymmetric partners to the “basis vectors” pre-
sented fermions and bosons in 2(2n+ 1)-dimensional internal spaces of fermions
and bosons in an odd dimensional space d = 2(2n+1)+1 . We can find in this case
two groups of “basis vectors” [9]: One group determines the anti-commuting “ba-
sis vectors” of 2

d−1
2

−1 fermions appearing in 2
d−1
2

−1 families, with their 2
d−1
2

−1

×2d−1
2

−1 Hermitian conjugated partners appearing in a separate group, as well as
two orthogonal groups each with 2

d−1
2

−1 ×2d−1
2

−1 of “basis vectors”, with their
Hermitian conjugated partners within the same group.
The second group determines anti-commuting “basis vectors” appearing in two
separate orthogonal groups each with 2

d−1
2

−1 ×2d−1
2

−1 of “basis vectors”, with
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their Hermitian conjugated partners within the same group, as well as the com-
muting “basis vectors” of “fermions” appearing in families with their Hermitian
conjugated partners in a separate group.
This kind of a supersymmetry will be discussed in Subsect. 11.2.2.
Both kinds of searching for the renormalizability need further discussions, on
which we are not yet really prepared.

11.2.1 Extension of “basis vectors” in d = 2(2n + 1) to strings

We might define the “basis vector” of a gravitino as a tensor product, ∗T ‘ , of a pho-

ton “basis vector” IÂ†
phuc1

L
→uc1

L

(≡
03

[−i]
12

[+] |
56

[+]
78

[−] ||
9 10

[+]
11 12

[−]
13 14

[−] ) (which has

spins and charges in internal space equal to zero), for example, with b̂1†1s(≡
01

(+i)s)

on a string: b̂1†1gravitino(≡
03

[−i]
12

[+] |
56

[+]
78

[−] ||
9 10

[+]
11 12

[−]
13 14

[−] ∗T ‘
01

(+i)s). This is an
anti-commuting object and could manifest gravitino if the photon “basis vector”
IÂ†
phuc1

L
→uc1

L

is in a tensor product with basis in ordinary space-time, carrying the
space index µ = (0, 1, 2, 3).
The extensions of all the other “basis vectors” — either the ones with an odd
number of nilpotents describing the internal spaces of fermions, or with an even
number of nilpotents describing the internal spaces of bosons — by the tensor
product, ∗T ′ , with the two commuting self adjoint “basis vectors” describing
the internal space on the string, iA1†1s, i = (I, II), do not change commutation
properties: The extended “basis vectors” keep commutation properties of the
“basis vectors” of fermions and bosons.
The extensions of “basis vectors” describing fermions and bosons by the tensor
product, ∗T ′ , with the nilpotent b̂1†1s do change the commutation relations: The
commuting ones become anti-commuting, the anti-commuting become commut-
ing.
Let us try to see general properties of tensor products, ∗T ′ , of the “basis vectors”
with an odd number of nilpotents (describing the internal spaces of the second
quantized fermion fields) b̂m†

f and of the “basis vectors” with an even number of
nilpotents (describing the internal spaces of the second quantized boson fields)
I,IIAm†

f with the “basis vectors” of a string.

There are four possibilities:

i.
b̂m†
f ∗T ′

IA1†1s
represents the anti-commuting “basis vectors” extended with a string offering the
description of the internal spaces of fermions in d = 2(2n+ 1).

ii.
I,IIAm†

f ∗T ′
IA1†1s
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represents the commuting “basis vectors” extended with a string offering the
description of the internal spaces of bosons in d = 2(2n+ 1). Since IIA1†1s defines

the vacuum state |ψocs >=
01

[−i]s | 1 > for b̂1†1s, only IA1†1s is used in a tensor product
∗T ′ .

iii.
I,IIAm†

f ∗T ′ b̂1†1s

represents the anti-commuting “basis vectors” extended with a string offering the
description of the internal spaces of anti-commuting objects with the quantum
numbers of bosons in d = 2(2n+ 1).

iv.
b̂m†
f ∗T ′ b̂1†1s

represents the commuting “basis vectors” extended with a string offering the de-
scription of the internal spaces of bosons with the quantum numbers of fermions
in d = 2(2n+ 1).

We recognize the supersymmetry:

Each I,IIAm†
f ∗T ′ IA1†1s and each b̂m†

f ∗T ′ IA1†1s has a supersymmetric partner in
either I,IIAm†

f ∗T ′ b̂1†1s or in b̂m†
f ∗T ′ b̂1†1s.

The extension of the 2
d
2
−1 “basis vectors” with an odd number of nilpotents

appearing in 2
d
2
−1 families with their Hermitian conjugated partners in a separate

group, and of the “basis vectors” of an even number of nilpotents appearing in
two orthogonal groups, in a tensor extension by b̂1†1s needs further studies to be
understood.

11.2.2 “Supersymmetry” in odd dimensional spaces

Let us come to the second possibility to find out what kind of symmetry the inter-
nal odd-dimensional spaces d = (2(2n+ 1) + 1) offer. They namely manifest two
groups of anti-commuting “basis vectors” and two groups of commuting “basis
vectors”, as discussed in the article [9].

“Basis vectors” of the first part of each of the two groups have properties as we
presented for 2(2n+ 1)-dimensional spaces
— the anti-commuting “basis vectors” with an odd number of nilpotents b̂m†

f ap-
pear in families, their Hermitian conjugated partners form a separate group b̂mf
— the commuting “basis vectors” with an even number of nilpotents appear in two
orthogonal groups, I,IIAm†

f , each group have the Hermitian conjugated partners
within the same group.

“Basis vectors” of the second part of each of the two groups have completely differ-
ent properties than the first part
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— the anti-commuting“basis vectors” appear in two orthogonal groups, with the
Hermitian conjugated partners within the same group
— the commuting “basis vectors” appear in families and have their Hermitian
conjugated partners in a separate group.

Let us try to understand the properties of the second part of the “basis vectors”.

These “basis vectors” and their Hermitian conjugated partners can be obtained
from the first part by the application of S0d on the two groups of the first part.

Applying S0d = i
2
γ0γd (having the even number of γa) on b̂m†

f does not change
the oddness of the new object γ0γdb̂m†

f . However, γ0b̂m†
f represent now IIAm

′†
f‘ ,

while γd multiplying IIAm
′†

f‘ , keep the oddness unchanged.

The application of the even operator S0d = i
2
γ0γd on an object with an even num-

ber of nilpotents IIAm†
f does not change the evenness of the object γ0γd IIAm†

f .
However, γ0 IIAm†

f represent indeed b̂m
′†

f‘ while γd multiplying b̂m
′†

f‘ , keep the
evenness unchanged.

We can conclude that odd dimensional spaces, d = 2(2n+ 1) + 1,

i. offer the anti-commuting 2
d−1
2

−1 “basis vectors” b̂m†
f appearing in 2

d−1
2

−1

families, with their Hermitian conjugated 2
d−1
2

−1 × 2
d−1
2

−1 partners, b̂mf , in a
separate group, and

ii. the commuting 2×2d−1
2

−1 × 2d−1
2

−1 “basis vectors” iAm†
f , i = (I, II), appear-

ing in two orthogonal groups with their Hermitian conjugated partners within the
same group.

iii. They offer as well the anti-commuting 2
d−1
2

−1× 2d−1
2

−1 “basis vectors” iAm†
f

appearing in two orthogonal groups with their Hermitian conjugated partners
within the same group, and

iv. the commuting 2
d−1
2

−1 “basis vectors” b̂m†
f appearing in 2

d−1
2

−1 families,
with their Hermitian conjugated 2

d−1
2

−1 × 2
d−1
2

−1 partners, b̂mf , in a separate
group.

Also this case needs further studies to be understood.

11.3 Conclusions

The description of the internal spaces of fermions and bosons in d = 2(2n+1) with
the “basis vectors” with odd and even numbers of nilpotents, respectively, offers
a kind of supersymmetry, existing in equal number of anti-commuting fermions
and of commuting bosons. This is not the usual supersymmetry.
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One way to achieve renormalizability of the proposed spin-charge-family theory
might be, following the literature [9, 18, 19, 22], to extend the “basis vectors” in
d = 2(2n+ 1) with the tensor product ∗T ′ with the “basis vectors” and Hermitian
conjugated partners of strings, b̂1†1s and IA1†1s:

b̂m†
f ∗T ′

IA1†1s , I,IIAm†
f ∗T ′

IA1†1s ,

b̂m†
f ∗T ′ b̂1†1s ,

I,IIAm†
f ∗T ′ b̂1†1s .

The second way is to extend the “basis vectors” in d = 2(2n+1) into “basis vectors”
in d = (2(2n+ 1) + 1). Again we have four possibilities:

The anti − commuting b̂m†
f , the commuting I,IIAm†

f ,

the commuting γd b̂m†
f , the anti − commuting γd I,IIAm†

f .

We can conclude that each of the two possibilities offering a kind of supersymmetry
seems meaningful. The extension of the “basis vectors” in d = 2(2n + 1) with
the tensor product ∗T ′ to strings suggests that at low enough energies only b̂m†

f

∗T ′ IA1†1s and I,IIAm†
f ∗T ′ IA1†1s can be observable.

The extension of the “basis vectors” in d = 2(2n+ 1) to the odd-dimensional space
only anti-commuting b̂m†

f and commuting I,IIAm†
f .

Not all of them, as we realize from the observations.

It might be that nature does not need the supersymmetry “to make the theory
renormalizable and anomaly-free.
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8. N. S. Mankoč Borštnik, ”How Clifford algebra helps understand second quantized
quarks and leptons and corresponding vector and scalar boson fields, opening a new
step beyond the standard model”, Reference: NUPHB 994 (2023) 116326 , [arXiv:
2210.06256, physics.gen-ph V2].
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11. N. S. Mankoč Borštnik, H.B. Nielsen, ”Can the “basis vectors”, describing the internal
space of point fermion and boson fields with the Clifford odd (for fermions) and
Clifford even (for bosons) objects, be meaningfully extended to strings?”, Proceedings
to the 26rd Workshop ”What comes beyond the standard models”, 10 - 19 July, 2023,
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14. N. S. Mankoč Borštnik, ”How Clifford algebra can help understand second quantization
of fermion and boson fields”, [arXiv: 2210.06256. physics.gen-ph V1] ,
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12 Time-Independent Special Theory of Relativity
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Abstract. In the process of Albert Einstein establishing the theory of special relativity,
the principle of relativity is completely based on a geometrical description. On the other
hand, the electro-magnetic theory is purely algebraic and complicated. Minkowski’s work
extended it for 4-dimensional space-time which is purely algebraic as well.
However, we can understand Einstein's ideas much simpler and more phenomenally in
section 1. Such a description of special relativity will facilitate research in spintronics to con-
sider the relativistic effect. Besides, it leads to an unknown special orthogonal group in real
space, not the indefinite orthogonal group SO(1,3) in section 2. Furthermore, long-standing
controversies of displacement current will be solved in section 3. In this talk we discuss the
‘complete’ geometric special relativity and its new Lie group in real space. Furthermore,
our discussions are based on footnotes [1], [2], [3] and [4].

Povzetek: V tem prispevku razpravlja avtor o ”celostni” geometrijski posebni teoriji el-
ativnosti in njeni novi Liejevi grupi v realnem prostoru. Posebna teorija relativnosti Al-
berta Einsteina temelji na geometrijskem opisu. Elektromagnetna teorija pa je algebrska in
zapletena. Minkowskega delo je razširilo opis na tirirazsežni prostor-čas, ki je prav tako
popolnoma algebrski. V prvem poglavju prispevka avtor pokaže, kako lahko razumemo
Einsteinove ideje enostavneje in bolj fenomenološko. Takšen opis posebne teoije relativnosti
olajša raziskave v spintroniki, ko želimo upoštevati relativistični efekt. V drugem poglavju
obravnava avtor posebno ortogonalno grupo v realnem prostoru, ki ni ortogonalna grupa
SO(1,3). V tretjem poglavju rešuje avtor dolgoletne spore o izpodrivnem toku.

12.1 Another Derivation of Special Relativity Different from
Einstein

12.1.1 Relativistic Aberration

Firstly, let us think of an observer when in the static system as shown in Figure 1
and inertia system ’ in Figure 2. A ray of light to the observer leans to the x ′ axis
by the aberration based on the principle of the constancy of the speed of light, as the
velocity of the observer v approaches to the velocity of light.

⋆⋆ euichi@gmail.com,euichi@gmail.com,Mizutani5567@aichi-c.ac.jp,mizutani5567@aichi-
c.ac.jp
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The formula of relativistic aberration is

cosϕ
′
=

cosϕ− v/c

1− (v/c) cosϕ
, (1.1)

where ϕ and ϕ
′

are angles between the ray of light and the x axis in and ’, and c is
the velocity of light. Since ϕ = π/2, in this case as shown in Figure 1, it results in:

cosϕ
′
= −v/c , (1.2)

cos
(
π− ϕ

′
)
= cos θ = v/c . (1.3)

It corresponds to what Figure 2 shows. Discussing special relativity from a geo-
metrical viewpoint, relativistic aberration plays a key role.

12.1.2 Relativistic Coulomb Force

We know that the Coulomb force between an electron and a positron moving with
relativistic speed is considerably reduced. It will be explained by the aberration
we discussed above. As shown in Figure 3, when the pair of electron and positron
travel horizontally at relativistic speed, an observer detects the electric field E by
the relativistic aberration.
Since only the vertical component of the electric field is active for the electron,
relativistic Coulomb force F’ from the observer’s viewpoint is

F
′
= qE⊥ , (1.4)

where q is a quantity of electric charge, E is a vertical component of E expressed
by the static system. Since E⊥ = Esinθ from Figure 2, Eq. 1.4 is

F
′
= qE sin θ . (1.5)



i
i

“j” — 2024/12/10 — 17:17 — page 158 — #172 i
i

i
i

i
i

158 Euich Miztani

From Eq. 1.3, Eq. 1.5 is

F
′
= qE

√
1− cos2 θ = qE

√
1− (v/c)

2
. (1.6)

That corresponds to the original equation by Einstein in [1].

12.1.3 Relativistic Electro-magnetic Field

Relativistic magnetic flux density B
′

x, B
′

y and B
′

z are expressed by

B
′

x = Bx , (1.7)

B
′

y = β
(
By +

v

c2
Ez

)
, (1.8)

B
′

z = β
(
Bz −

v

c2
Ey

)
, (1.9)

and the electric field E
′

x, E
′

y and E
′

z are expressed by

E
′

x = Ex . (1.10)

E
′

y = β(Ey − vBz) , (1.11)

E
′

z = β (Ez + vBy) , (1.12)

where β = 1/

√
1− (v/c)

2. Let us discuss those equations from a geometric view-
point. Firstly, let us think of the magnetic flux:

B
′

x = Bx , (1.7)

B
′

y = β
(
By +

v

c2
Ez

)
, (1.8)
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B
′

z = β
(
Bz −

v

c2
Ey

)
. (1.9)

In the original paper by Albert Einstein [1], those equations of 1.7 to 1.12 are
derived from very complicated algebraic expansions. However, contrarily, let us
derive them by simple geometry. As shown in Figure 4, an observer moves at a
speed v along the +y-axis and detects the declined magnetic flux Bz of the static
system.

Expressing the magnetic flux by the co-ordinates of the inertia system,

Bz = B
′

y sin θ+ B
′

z cos θ . (1.13)

Since sin θ =

√
1− (v/c)

2 and cos θ = v/c from Figure 2 and Eq.1.3, Eq.1.13 is
expanded as

Bz =

√
1− (v/c)

2
B

′
z +

v

c
B

′

y . (1.14a)

Since β = 1/

√
1− (v/c)

2, Eq. 1.14a is expanded as

Bz =
1

β
B

′

z +
v

c
B

′

y . (1.14b)

Bz denotes a vector of the declined magnetic flux density of the static system, B’z
the vertical component and B’y the horizontal by the inertia system. Since B’y is
horizontal to the direction of the observer moving at the speed of v, By = B

′

y by
the ‘constancy of the speed of light’ claimed by Einstein in [1]. So that Eq. 1.13 is
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Bz =
1

β
B

′

z +
v

c
By . (1.15)

By the way, since B’y (or By ) is perpendicular to B’z , it seems to the observer as if
it is an electric field. Considering B’y (or By ) as an electric field, then substituting
Maxwell’s equation B = E/c to correct the magnitude gap between B and E , Eq.
1.15 is

Bz =
1

β
B

′

z +
v

c2
Ey . (1.16)

Solving it for B
′

z,

B
′

z = β
(
Bz −

v

c2
Ey

)
. (1.17)

It corresponds to the original equation 1.9 by Einstein in [1].
Secondly, let us think of B’y in the same way:
Remark. We discuss them in the left-hand system.
As shown in Figure 5, By is

By = B
′

y sin θ+ B
′

z cos θ . (1.18)

From Figure 2 and Eq. 1.3,

By =

√
1− (v/c)

2
B

′
y +

v

c
B

′

z =
1

β
B

′

y +
v

c
B

′

z . (1.19)

Since B’z is parallel to the direction of the moving observer, B
′

z = Bz by the
constancy of the speed of light. So that Eq. 1.19 is

By =
1

β
B

′

y +
v

c
Bz . (1.20)

Since B’z (or Bz ) is perpendicular to B’y , it seems to the observer as if it is an
electric field. Substituting Maxwell’s equation B = E/c to correct the magnitude
gap between B and E , Eq. 1.21 is

By =
1

β
B

′

y +
v

c2
Ez . (1.21)

Solving it for B’y ,

B
′

y = β
(
By −

v

c2
Ez

)
. (1.22)

However, it does not correspond to the original equation 1.8 by Einstein. To solve
the problem let us introduce Fleming‘s left-hand rule or the left-handed system
applied to the Lorentz force F = q(E+ v× B). This is assuming that the observer
is in the inertia system and then paying attention to each direction of the vectors
By , B’y , B’z for the co-ordinates. Let us set the rule in the co-ordinates as shown in
Figure 6. Then, let us see the co-ordinates from the different viewpoint as shown in
Figure 7. Although the Lorenz force is negative (-F’x ) in the co-ordinates of Figure
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6, it is positive (+F’x ) from the different viewpoint in the co-ordinates of Figure 7.
However, they are equivalent to each other. So that let us unify all the settings of
the co-ordinates by positive direction (+F’x ) from now on.

Again, let us reconsider equations 1.21 and 1.22 from the latter viewpoint of the
co-ordinate settings. The revised equation is

By =
1

β
B

′

y +
v

c2
(−Ez) . (1.23)
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Solving it by B’y ,

B
′

y = β
(
By +

v

c2
Ez

)
. (1.24)

It eventually corresponds to the original equation of 1.8 by Einstein.
Now let us similarly reconsider the series of equations 1.13 to 1.17:Since Figure 4
is redrawn as shown in Figure 8, those vectors therefore need to be corrected as
follows: Eq. 1.13 is revised as

−Bz = −B
′

z sin θ+ (−B
′

y) cos θ . (1.25)

Multiplying both sides of the equation by -1, it eventually corresponds to Eq. 1.13.

Next, let us think of a relativistic electric field:
As shown in Figure 9, the equation of an electric field of the static system Ey is

−Ey = −E
′

y sin θ+ (−E
′

z) cos θ . (1.26)

Multiplying both sides of each equation by -1,

Ey = E
′

y sin θ+ E
′

z cos θ . (1.27)

From Eq. 1.3,

Ey =
1

β
E

′

y +
v

c
E

′

z . (1.28)

E’y denotes the horizontal component and E’z the vertical one by the inertia
system. Since E’z is parallel to the direction of the moving observer, E

′

z = Ez by
the constancy of the speed of light. So that Eq. 1.28 is

Ey =
1

β
E

′

y +
v

c
Ez . (1.29)
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Since E’z (or Ez ) is perpendicular to E’y , it seems to the observer as if it is a
magnetic flux. Substituting Maxwell’s equation E = cB to correct the magnitude
gap between B and E , Eq. 1.29 is

Ey =
1

β
E

′

y + vBz . (1.30)

Solving it for E’y ,

E
′

y = β (Ey − vBz) . (1.31)

It corresponds to the original equation of 1.11 by Einstein.

As shown in Figure 10, let us think of E’z in the same way: The equation of Ez is

Ez = E
′

z sin θ+ (−E
′

y) cos θ . (1.32)

From Eq. 1.3,

Ez =
1

β
E

′

z −
v

c
E

′

y . (1.33)

Since E
′

y = Ey is horizontal to the direction of the moving observer, E
′

y = Ey, by
the constancy of the speed of light. Therefore, Eq. 1.33 is

Ez =
1

β
E

′

z −
v

c
Ey . (1.34)

Since E
′

y (or Ey ) is perpendicular to E
′

z , it seems to the observer as if it is a
magnetic flux. Substituting Maxwell’s equation E = cB to correct the magnitude
gap between B and E , Eq. 1.34 is
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Ez =
1

β
E

′

z − vBy . (1.35)

Solving it for E
′

z ,

E
′

z = β(Ez + vBy) . (1.36)

It corresponds to the original equation of 1.12 by Einstein.

At last, the original equations of 1.7 and 1.10 are easily verified by the constancy
of the speed of light as shown in Figure 11:

Incidentally, what happens and what does it mean from our viewpoint if v =c
(then sin θ = 0 and cos θ = 1)? It phenomenally suggests that the magnetic flux
totally declines by the relativistic aberration as shown in Figure 12. It then totally
corresponds to Maxwell’s equations.
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12.2 The Derivation of a New Lorentz Group SO(3) in Real
Space

12.2.1 The New Lorentz Group SO(3) in Real Space

From our discussions, it is apparent that there are rotations of electric field E and
magnetic field B in the inertia system. It naturally seems to be SO(3,R) in the
Euclidean space, not the indefinite orthogonal group SO(1,3) in the Minkowski
space. Let us remember that we do not use the Lorentz transformation at all. We
can derive the rotation group in the same way as we have discussed in section 1.
Let us examine relativistic aberration again. We can denote as follows:

sinϕ(= cos θ) = v/c , (2.1)

cosϕ(= sin θ) =
√
1− (v/c)

2
= 1/β , (2.2)

where ϕ is the angle between the ray of light and the y-axis in ’ as shown in Figure
14. Since ϕ is clockwise, it is in the inverse rotation of θ. In this section, we mainly
use ϕ for descriptive purposes.
Firstly, let us think of the specific case of Figure 12. Multiplying both sides of

Eq.1.9 by
√
1− (v/c)

2, then
√
1− (v/c)

2
B

′

z = Bz −
v
c2
Ey. When v = c, LHS =√

1− (v/c)
2
B

′

z = B
′

z cos
(
π
2

)
= 0 and RHS = By + c

C

(
1
C
Ez
)
= By + 1

C
Ez. ∴ By =

− 1
C
Ez.

Eq. 1.17 is Ey = vBz and Eq. 1.18 is Ez = −vBy when v = c in the same manner.
From the results,

(
By
Bz

)
=
1

c

(
0 1

1 0

)(
Ey
−Ez

)
and

(
Ey
Ez

)
= v

(
0 1

1 0

)(
−By
Bz

)
.

They are equivalent to
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(
By
Bz

)
=
1

c

(
0 −1

1 0

)(
Ey
Ez

)
and

(
Ey
Ez

)
= v

(
0 1

−1 0

)(
By
Bz

)
.

Then, they are naturally related to SO(2,R):

(
By
Bz

)
=
1

c

(
cos
(
π
2

)
− sin

(
π
2

)

sin
(
π
2

)
cos
(
π
2

)
)(

Ey
Ez

)
and

(
Ey
Ez

)
= v

(
cos
(
π
2

)
sin
(
π
2

)

− sin
(
π
2

)
cos
(
π
2

)
)(

By
Bz

)
.

Based on the facts above, let us discuss equations 1.7 to 1.12 in the same way.
Initially, let us think of the magnetic flux density. Solving Eq. 1.9 for Bz , the
expansion is denoted by equations 2.1 and 2.2 as follows:

Bz =
1

β
B

′

z +
v

c2
Ey = B

′

z cosϕ+
1

c
Ey sinϕ .

Since E/c = B = B ′ by the constancy of the speed of light,

Bz =
1

β
B

′

z +
v

c2
Ey = B

′

z cosϕ+ B
′

y sinϕ . (2.3)

Likewise, solving Eq. 1.8 for By, the expansion is

By =
1

β
B

′

y −
v

c2
Ez = B

′

y cosϕ−
1

c
Ez sinϕ .

Since E/c = B = B
′

by the constancy of the speed of light,

By = B
′

y cosϕ− B
′

z sinϕ . (2.4)

Denoting equations 2.3 and 2.4 by 2-by-2 matrix,
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(
Bz
By

)
=

(
cosϕ sinϕ
− sinϕ cosϕ

)(
B

′

z

B
′

y

)
=

(
cosϕ sinϕ
− sinϕ cosϕ

)(
0 1

1 0

)(
B

′

y

B
′

z

)

=

(
sinϕ cosϕ
cosϕ − sinϕ

)(
B

′

y

B
′

z

)
. (2.5)

Multiplying both sides of Eq. 2.5 by
(
0 1

1 0

)
,

LHS =

(
0 1

1 0

)(
Bz
By

)
=

(
By
Bz

)
, and

RHS =

(
0 1

1 0

)(
sinϕ cosϕ
cosϕ − sinϕ

)(
B

′

y

B
′

z

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)(
B

′

y

B
′

z

)
.

∴

(
By
Bz

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)(
B

′

y

B
′

z

)
. (2.6)

Then, multiplying both sides of Eq. 2.6 by
(

cosϕ − sinϕ
sinϕ cosϕ

)−1

,

(
B

′

y

B
′

z

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)−1(
By
Bz

)
=

(
cosϕ sinϕ
− sinϕ cosϕ

)(
By
Bz

)
. (2.7)

Secondarily, let us think of the electric field Ey . Solving Eq.1.11 for Ey , the
expansion is

Ey =
1

β
E

′

y + vBz = E
′

y cosϕ+ vBz .

Since B = B
′
= E

′
/c,

E
′

y cosϕ+ vBz = E
′

y cosϕ+
v

c
E

′

z = E
′

y cosϕ+ E
′

z sinϕ . (2.8)

Likewise, solving Eq. 1.12 for Ey , the expansion is

Ez =
1

β
E

′

z − vBy = E
′

z cosϕ− vBy .

Since B = B’=E ′/c,

Ez = E
′

z cosϕ−
v

c
E

′

z = E
′

z cosϕ− E
′

z sinϕ . (2.9)

Denoting equations 2.8 and 2.9 by 2-by-2 matrix,
(
Ey
Ez

)
=

(
cosϕ sinϕ
−sinϕ cosϕ

)(
E

′

y

E
′

z

)
. (2.10)

Multiplying both sides of Eq. 2.10 by
(

cosϕ sinϕ
− sinϕ cosϕ

)−1

,

(
E

′

y

E
′

z

)
=

(
cosϕ sinϕ
− sinϕ cosϕ

)−1(
Ey
Ez

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)(
Ey
Ez

)
. (2.11)
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The rotation matrices of equations 2.7 and 2.11 can naturally make a special orthog-
onal group SO(2,R). We could consider it as a new Lorentz group. Furthermore,
including the equations 1.7 and 1.10, the matrices of 2.7 and 2.11 are also denoted
as SO(3,R), as follows:



B

′

y

B
′

y

B
′

y


 =



1 0 0

0 cosϕ − sinϕ
0 sinϕ cosϕ




−1

Bx
By
Bz


 , (2.12)



E

′

y

E
′

y

E
′

y


 =



1 0 0

0 cosϕ − sinϕ
0 sinϕ cosϕ





Ex
Ey
Ez


 . (2.13)

12.2.2 Application for Spintronics —— The spin of electron or magnetic body
in the static and inertia system

As shown in Figure 15, the spin in the magnetic field leans as it speeds. The
angle between the spin axis (or magnetic body’s axis) and the horizon is naturally
denoted by sinϕ = cos θ = v/c as we have discussed.

12.3 Discussion of Ampère-Maxwell Equation in the Inertia
System (Derivation of Displacement Current from
Relativistic Helix)

12.3.1 Magnetic Helix — Relativistic Ampère-Maxwell Law from a Geometric
Viewpoint

As shown in Figure 16, a magnetic field in the static system κ is around the observer
on the x-axis. However, as shown in Figure 17, it will converge on to the line in the
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x-axis drawing a helix in the inertia system κ ′. Figure 18 shows when the observer
travels at nearly the speed of light. Figure 19 shows when at the speed of light.

Let us think of the magnetic flux H around the observer in the inertia system κ ′ as
shown in Figures 17 to 19. The original magnetic flux H in the y-z plane converges
on to the x-axis as the observer’s speed is close to the speed of light. Since the
magnetic flux in κ ′ consists of two components of vector δHy in the y-z plane and
parallel to the x-axis as shown in Figures 20 and 21, curlHx in κ ′ is

curlHx =

√
1− (v/c)

2
H

′

x − (v/c)curlH
′

x . (3.1)

Since (v/c)curlH
′

x is vertical to
√
1− (v/c)

2
curlH

′

x, it could be considered as an
electric flux density D

′
in the manner of our discussions in the former sections.

Then, from H = cD (from B = 1
c
E, B = µ0H, D = ϵ0E and c = 1/

√
ϵ0µ0, where

µ0 is permeability of vacuum, ϵ0 permittivity of vacuum),
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curlHx =

√
1−

(v
c

)2
curlH

′

x − v
∂D

′

x

∂x
=

√
1−

(v
c

)2
curlH

′

x −
∂x

∂t

∂D
′

x

∂x

=

√
1−

(v
c

)2
curlH

′

x −
∂D

′

x

∂t
. (3.1)

Since D
′

is equivalent to D by the constancy of the speed of light,

curlHx =

√
1−

(v
c

)2
curlH

′

x −
∂Dx

∂t
. (3.2)

Therefore, the relativistic Ampère-Maxwell law is,

jx = curlHx =

√
1−

(v
c

)2
curlH

′

x −
∂Dx

∂t
,

∴ jx +
∂Dx

∂t
=

√
1−

(v
c

)2
curlH

′

x , (3.3)

where jx is the electric current density. Likewise, jy +
∂Dy
∂t

=

√
1−

(
v
c

)2
curlH

′

y,

jz +
∂Dz
∂t

=

√
1−

(
v
c

)2
curlH

′

z holds. Therefore,

j+
∂D

∂t
=

√
1−

(v
c

)2
curlH ′ . (3.4)

As we have seen in the results with Figures 17 and 18, the displacement current
cannot generate a magnetic field. From this point of view, since the observer moves,
the phenomenon also suggests an electro-magnetic induction.
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Furthermore, since the propagation rate of the electro-magnetic wave is always c,
the equation of helix from the moving observer in κ ′ is

x = −vt , (3.5)

y = r

√
1− (v/c)

2 cosωt , (3.6)

z = r

√
1− (v/c)

2 sinωt . (3.7)

Now we should decide accurately the value of the angular velocity ω in the
equations 3.6 and 3.7. Though it might beω = c/r by the formula of the angular
speed, it could be greater than the speed of light if the radius is microscopic. It
contradicts the principle of the constancy of the speed of light. Therefore,ω = c

also in the inertia system. The replacement ofω = c/r with ω = cwill be also a
‘renormalization’. Therefore, equations 3.6 and 3.7 are

y = r

√
1− (v/c)

2 cos (c)t , (3.8)

z = r

√
1− (v/c)

2 sin(c)t . (3.9)

From another viewpoint, to simplify this discussion, let us pay attention to the
electrons travelling in the electric lead and the magnetic field which the electrons
generate as shown in Figures 22 and 23. An observer is always in the static system
κ and observes the magnetic helix.
Remark. The directions of the electric current and the electrons in the electric lead
are opposite to each other.
Paying attention to the Remark, since the observer is always in the static system κ

and the whole helix and electrons move at a speed of v, the relativistic Ampère-
Maxwell equation for the observer in κ is

curlH
′

x =

√
1− (v/c)

2
Hx −

(v
c

)
curlHx , (3.10)

Since (v/c)curlHx is vertical to
√
1− (v/c)

2
curlHx, it could be considered as D

in the manner of our discussions in the former sections. Then, from H = cD (from
B = 1

c
E, B = µ0H, D = ϵ0E and c = 1/

√
ϵ0µ0),

curlH
′

x =

√
1−

(v
c

)2
curlHx − v

∂Dx

∂x
=

√
1−

(v
c

)2
curlHx −

∂x

∂t

∂Dx

∂x

=

√
1−

(v
c

)2
curlHx −

∂Dx

∂t
. (3.11)

Therefore, the relativistic Ampère-Maxwell law is,

jx = curlH
′

x =

√
1−

(v
c

)2
curlHx −

∂Dx

∂t
,
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∴ jx +
∂Dx

∂t
=

√
1−

(v
c

)2
curlHx . (3.12)

This derivation will be more faithful to the Ampère-Maxwell equation. The helical
equations from the viewpoint of the observer in the static system κ are

x ′ = −vt ′ , (3.13)

y ′ = r
√
1− (v/c)

2 cos(c)t ′ , (3.14)

z ′ = r
√
1− (v/c)

2 sin(c)t ′ . (3.15)

12.3.2 The Lorentz Covariance in the Minkowski Space

Our discussion in subsection 3.1 eventually gives the time-dependent results from
the time-independent discussions The relativistic helical equations are explicitly
time-dependent. To scrutinize the results, let us think of the Minkowski metric
and check to see if it is Lorentz covariant.
Again, the relativistic helical equations (RHEs) from the viewpoint of the observer
in the static system κ are

x ′ = −vt ′ , (3.13)

y ′ = r
√
1− (v/c)

2 cos (c)t ′ , (3.14)

z ′ = r
√
1− (v/c)

2 sin(c)t ′ . (3.15)

When v = 0, equations 3.13, 3.14 and 3.15 are

x ′ = 0 , (3.16)
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y ′ = r cos (c)t , (3.17)

z ′ = r sin(c)t . (3.18)

They are RHEs describing a circle of magnetic helix in the static system. See also
Figure 24.
To simplify, let r = 1 (unit circle). Then, equations 3.16, 3.17 and 3.18 are

x = 0 , (3.19)

y = cos (c)t , (3.20)

z = sin(c)t . (3.21)

We can therefore decide the metric sp in the static system as shown in Figure 24.

Likewise, we can decide the metric s
′

p in the inertia system as shown in Figure 25.
Since dsp is an infinitesimal arc,

dsp = cdt = 1ω = cdt . (3.22)

From Eq. 3.22, the Minkowski metricms in the static system is

m2s = −c2(dt)2 + c2(dt)2 = 0 . (3.23)

From equations 3.13, 3.14 and 3.15 (see also Figure 25), ds
′

p in the inertia system is
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ds
′

p = cdt
′
=

√√√√(vdt ′)
2
+

(√
1−

(v
c

)2
ω

′
dt

′

)2

=

√√√√v2 (dt ′)2 +
(√

1−
(v
c

)2
)2

(ct ′)
2

=

√
v2(dt ′)2 +

(
1−

(v
c

)2)
c2(dt ′)2 . (3.24)

From Eq. 3.24,m
′

s in the inertia system is

m
′

s

2
= −c2

(
dt

′
)2

+ v2(dt ′)2 + c2
(
1−

(v
c

)2)
(dt ′)

2

= −c2
(
dt

′
)2

+ v2
(
dt

′
)2

+ c2
(
dt

′
)2

− v2
(
dt

′
)2

= 0 . (3.25)

From equations 3.23 and 3.25,

m2s = m
′

s

2
. (3.26)

Thus, RHEs are Lorentz covariant.
Remark. Any spin in the real space disappears at relativistic speed as we have
discussed. However, another spin in the internal space is not influenced at all by
the relativistic speed. For example, we know the fact that the non-relativistic Pauli
equation is for spin 1/2 particles as well as the relativistic Dirac equation for 1/2
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ones. The spin in the internal space is always the same. In other words, it strongly
suggests that the internal space is not a subspace of our space.

12.4 Conclusions

As we have discussed, electric and magnetic fields orientated perpendicular to an
electron travelling at relativistic speed will be leaned by the relativistic aberration,
as shown in Figure 15.
Similarly, the spin angle of an electron or magnetic body will be affected. In
spintronics, in the inertia system, the rotation group in the Euclidean space SO(3,R)
will be useful.
Additionally, the long-standing controversies of the displacement current origi-
nally starting from Maxwell’s hypothesis are solved. It is also Lorentz covariant.
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13 Fluctuating Lattice, Several Scales

H.B. Nielsen

Niels Bohr Institute, Copenhagen

Part I: Fluctuating Lattice, Relation between Scales
Part II: Approximate Minimal SU(5), Fine Structure Constants

Abstract. In part I: We find a series physical scales such as 1) Planck scale, 2) Minimal
approximate grand unification SU(5), 3) the mass scale of the see saw model right handed
or Majorana neutrinos, some invented scale with many scalar bosons, etc., and get the loga-
rithms of these energy scales fitted by a quantity q related to the dimensions of to the scales
related dimensionalities of coefficients in Lagrangian densities, or some generalization of
this q to something similar in the various cases of the scales. The logarithm of the energies
behave as a straight line versus the dimension related number q. This is being explained by
an ontologically existing lattice, which fluctuates in lattice constant a from place to place in
space time or more precisely, it fluctuates quantum mechanically.
In Part II: We find a fitting of the three fine structure constants in the Standard Model by
means of a no-susy and SU(5)-like - but only accurately SU(5) symmetric in the classical
approximation - by means of three other parameters for each of which, however, we have
speculative predictions: Quantum corrections due to the lattice which are three times as
large as naive quantum corrections, because the lattice is supposed to lie in layers, one layer
for each fermion-family; criticality of the unified coupling, using the standard model group
S(U(2)×U(3)); the unification scale is fitted not the scale-system of part I.

Povzetek: Prvi del: Avtor naniza energijske skale, ki se pojavljajo v modelih za opis os-
novnih delcev v fiziki: Planckova skala, skala približne združitve vseh treh interakcij v
modelu SU(5), skala, ko je logaritem energije kot funkcija parametra q (ki je povezan z
razsežnostjo sistema) premica. Nihanje mreže v prostoru in času autor razume kot kvant-
nomehansko nedoločenost.
Drugi del: Kvantno nihanje mreže, ki se pojavi v treh plasteh (za vsako družino predvidi
avtor po eno plast), je trikrat večje od naivne kvantne korekcije. Autor uporabi pri tem
grupo S(U(2)×U(3)).

13.1 Overall Introduction

This article is composed of two parts, the first(review of [2]), in section 13.2, of
which fits a series of energy scales, or we could say physical phenomena leading to
a parameter (with dimension energy after we put c = h̄ = 1) and thus potentially
a/the “fundamental” energy scale, while the other part(review of [1]) section 13.3
could be considered an attempt to “rescue” grand unification SU(5) by interpreting
it by being only an (accidental) classical approximation.
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The overall plan will be so that we first discuss the many energy scales, in section
13.2, which we seek to unite by means of the model, which is a really existing
lattice fluctuating in size.
Next comes the rescue of the Grand Unification in section 13.3 by allowing it to
be only a classical approximation; but then after that we return in section 13.4
to the attempt to unify the energy scales in the light that it is really very much
needed because giving up the usually used susy to make SU(5) GOT work points
to lower unification energy scale than even the susy SU(5) unification, so that now
the distance even in logarithm between the Planck scale and the unification scale
has become so large that it is hard to see how to make them compatible. Thus the
call for our attempt to unify the scales by our fluctuating lattice has got even more
strong, than with usual susy unification.

13.2 Introduction for first part: Energy Scales or Fluctuating
lattice

Several seemingly “fundamental” scales like the Planck scale, the see-saw scale,
and the unification scale, are not so equal to each other as we would have expected
in a philosophy of their being only one “fundamental energy scale”.
To cure this fact we bring forward the idea of a truly existing lattice, which has
wildly different sizes, of say the link length, in different places and/or in dif-
ferent components of a superposition. Really we think of the lattice as being
superposition of all possible deformations (which could be made by coordinate
transformations/reparametrizations), so we can say we have in mind quantum
fluctuations in reparametrizations, the gauge group of gravity.
In the tables in which we list the various energy scales we have attached to each
scale a number q or n = 4− q, and the meaning is that n should mean the power
to which the inverse link size 1/a be raised in order to give weighting coming in
in the calculation of the energy scale in question. In fact this means that for all the
energy scales we have

“energy scale” ≈ n
√
< (1/a)n > (13.1)

If the distribution in the fluctuating lattice had been very narrow this n would
make no difference, but assume and fit a very broad distribution being a Gaussian
distribution in lna,

P(lna)d lna =
1

2πσ
exp(−

1

2σ
(ln(a) − ln(a0 counting)2)d ln(a) (13.2)

where the spread σ = 5.5 turns out, a rather large spread, when we have in mind
that it is a spread in the logarithm. In first approximation we might think of a
completely flat distribution in the logarithm. If there was scalings symmetry and
we got the Haar measure distribution for the group of scalings with different
factors, then we would get such a flat distribution in the logarithm ln(a). Actually
you might think of (13.2) as a scaling symmetric distribution only weakly broken.
For the purpose of comparing with the Pvolume(ln(a)) below we might write
using that density of hypercubes per unit four volume compared the one per
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density per four volume of a hypercube in the lattice is 1/a40 counting. Using that
we can write for the number of hypercubes in an infinitesimal region

P(lna)d lna =
1
2πσ

exp(− 1
2σ

(ln(a) − ln(a0 counting)2)
a40 counting

d4xd ln(a). (13.3)

13.2.1 Density definitions etc.

First let us be a bit more specific about how we think of this fluctuating lattice:

• Lattice in layers We imagine, that the lattice can lie in several layers compared
to a simple Wilson lattice. An idea about having layers is best gotten by
imagining, that we take a number , e.g. 3, Wilson lattices and have in nature
all of them. Then for each four volume of the size of a hypercube in the lattice
in space time we shall not have as in a simple Wilson lattice just one lattice
site, but rather 3. We call this, that there are 3 layers. If the lattice fluctuate in
size of the links and thus this size also varies of course from place to place in
the Minkowski space time, we can in principle ask for such a number of layers
in average for each size of link a. That is to say we can define a “numbers
of layers for a small a region ” = “ numbers of sites(or hypercubes) in the
four volume of one single hypercube provided we count only hypercubes in a
range of sizes a given by say the infinitesimal d ln(a)”

Player(ln(a))d ln(a) = “ numbers of hyper cubes with link-size

a ′ ∈ {a ′|a ≤ a ′ ≤ a ∗ exp(d ln(a))} per four

volume a4 of the hypercubes for a” (13.4)

= “Layer density”(a)d ln(a) (13.5)

• Density in Space Time Usually we consider of course densities per 4-volume
of Minkowski (or the curved space time) space and then there is place in
every layer for having 1/a4 four-cubes. So if the density of say sites per place
for a four cube in one of layers say is per interval in the logarithm d ln(a) is
“Layer density”(a)d ln(a) (and there are 1/a4 per (unit length)4), then the
density of sites per four volume in Minkowski space time is

Pvolume(ln(a))d4xd ln(a) = “Layer density”(a)/a4d4xd ln(a)
= Player(ln(a))/a4d4xd ln(a)

with ansatz (13.2) : = 1
2πσ

exp(− 1
2σ

(ln(a) − ln(a0 counting)2)/a4d4xd ln(a)
= 1
2πσ

exp(− 1
2σ

(ln(a) − ln(a0 counting) + 4σ)2+
+42/2 ∗ σ− 4 ln(a0 counting))d4xd ln(a)
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Calling

ln(a0) = ln(a0 counting) − 4σ
or a0 = a(0 counting) exp(−4σ)
then Pvolume(ln(a))d4xd ln(a) =
= 1
2πσ

exp(− 1
2σ

(ln(a) − ln(a0))2 − 42σ/2
−4 ln(a0))d4xd ln(a) =

= 1
2πσ

exp(− 1
2σ

(ln(a) − ln(a0))2 − 8σ− 4 ln(a0))d4xd ln(a)
= 1
2πσ

exp(− 1
2σ

(ln(a) − ln(a0))2)/a40 ∗ exp(−8σ)d4xd ln(a)
= 1
2πσ

exp(− 1
2σ

(ln(a) − ln(a0))2)/a20 counting/a
2
0d
4xd ln(a)

But if we should normalize properly this Pvolume(ln(a)) properly we should
have had like in (13.3) that the division with a20 countinga

2
0 should be replaced

by a40 counting. Thus the normalized Pvolume(ln(a)) looks rather

P
(N)
volume(ln(a))d ln(a)d4x/a40 counting =

a20 counting

a20
Pvolume(ln(a))

d ln(a)d4x/a40 counting (13.6)

= exp(8σ)Pvolume(ln(a))

d ln(a)d4x/a40 counting (13.7)

This means that when we average over the distribution of the link length a or
this link length a to some power ap say the answer is not the same as if we do it
just averaging over links or hypercubes by their number. In fact denoting the two
different averages < .. >counting and < ... >volume we find

< ap >counting=

∫
1

2πσ
exp(−

1

2σ
(ln(a) − ln(a0 counting))2) ∗ apd ln(a)

=

∫
1

2πσ
exp(−

1

2σ
((ln(a) − ln(a0 counting))2 − 2pσ ∗ ln(a)))d ln(a)

=

∫
1

2πσ
exp(−

1

2σ
(ln(a) − ln(a0 counting − σ ∗ p)2+

+ p2σ/2+ p ∗ ln(a0 counting))d ln(a)

= ap0 couning exp(p2σ/2)

so that p
√
< ap >counting =a0 counting exp(pσ/2)

while < ap >volume=a
p
0 ∗ exp(p2σ/2),

and p
√
< ap >volume =a0 exp(pσ/2).

Of course

< ap >volume=
< ap/a4 >counting

< a−4 >counting

As checked: =
ap−40 counting exp((p− 4)2σ/2)

a−40 counting exp((−4)2σ/2)

=ap0 counting exp(p(p− 8)σ/2)

=ap0 exp(p2σ/2).
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Also:

⟨ap+b⟩counting
⟨ap⟩counting

=

ab0 counting exp((p+ b)2 − p2)σ/2)

=ab0 counting exp(b(2p+ b)σ/2)

so that b

√
< ap+b >counting

< ap >counting
=a0 counting exp(2pσ/2) ∗ exp(bσ/2)

=a0 p exp(bσ/2)

=
√
a0 pa0 p+b

where a0 p =Peak of Player(ln(a)) ∗ ap

=Peak of exp(−
1

2σ
(ln(a) − ln(a0 counting)2 + p ln(a))

=a0 counting exp(pσ)

so especially a0 =a0 p=−4 = a0 counting exp(−4σ)
(13.8)

Let us especially learn that considering two averages of powers of the link variable
in succession you get an increase by a factor

< ap+1 >counting

< ap >counting
= a0 counting exp((p+ 1/2)σ). (13.9)

So the effective energy scale when you work with powers of the link variable of
the order of p is about a0 counting ∗ exp(pσ). So what we have to do to evaluate
what the typical power is for the type of physics connected to the energy scale we
want.
Basically our procedure is to represent the quantity, which we call the energy scale,
as a root of or just the coefficient in the action or a ratio of such action related
quantities, and then argue that this combination must - assuming no big (or small)
numbers in other coupling or parameters - that it should behave as the average of
some power of the link length a, i.e. as say

< (1/a)n >counting=< a
−n >counting

As just a repetition we used in the tables below also a to the power n of 1/a
equivalent number q = 4− n,a notation inspired by considering the scales “see-
saw” and “scalars” which are scales at which we postulate/speculate that there are
“a lot of” respectively fermion and boson masses. In fact we know that ignoring
the interactions for simplicity the fermion and boson actions in field theory are

Sfermion =

∫
LD(x)d4x =

∫
ψ̄(x)(iγµ∂µ −m)ψ(x)d4x+ ... (13.10)

Sscalar boson =

∫
L(x)d4x =

∫
(
1

2
ηµν∂µϕ∂νϕ−

1

2
m2ϕ2)d4x+ ... (13.11)

and that the mass m of the particle occurs in different powers mq for the two,
namely q = 1 for fermions and q = 2 for bosons. For dimensional reasons these



i
i

“j” — 2024/12/10 — 17:17 — page 181 — #195 i
i

i
i

i
i

13 Fluctuating Lattice, Several Energy Scales 181

mass terms then - including the extra 1/a4 factor from number of hyper cubes
going as 1/a4 in a unit space time - have link a dependensies

mass term a dependence ∝ (1/a)4−q. (13.12)

and so we have here n = 4− q.

13.2.2 Our tables

Let us first deliver the table of the energy scales I included in the very workshop
talk:
When we have to do with the quantities related to the scale being terms in la-
grangians in a field theory,we have immediately a factor 1/a4 which means a −4

in the power.
It shall turn out from our fitting that the step in the energy scale per unit step
in the power is a factor 251, which must then be identified with our step factor
exp(σ).

Table of “Fundamental ?” Energy Scales

Name Energy value n of (1/a)n q Coef. dim. Fit Lagrangian d.
Planck scale 1.22 ∗ 1019 6 -2 -2 2.44 ∗ 1018GeV 1

2κ
R

reduced Planck 2.43 ∗ 1018GeV 6 -2 -2 2.44 ∗ 1018GeV 1
2κ
R

Min. SU(5) app. 5.3 ∗ 1013GeV 4 0 0 3.91 ∗ 1013 GeV − 1
16πα

F2µν
Susy SU(5) 1016 GeV 4 0 0 3.91 ∗ 1013 GeV - 1

16α
∗ F2µν

See-saw 1011 GeV 3 1 1 1.56 ∗ 1011GeV mRψψ

Fermion extrapolate 104GeV 0 4 4 104 GeV “1”

Using c = h̄ = 1,

“Reduced Planck” =
1√

GNewton ∗ 8π = 2.43 ∗ 1018GeV (13.13)

“unified (approximate) SU(5)” = “where lines closest”

= (say)5.3 ∗ 1013GeV (13.14)

“see-saw” ∼ “typical right handed neutrino mass”

∼ 1011GeV. (13.15)

The ‘scales” scalars and Fermion extrapolate also called “fermion tip” scale) are
my inventions and need explanation later. (κ = 8πG = 8πGNewton).
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Name [Coefficient] “Measured” value Text ref. n

coming from Eff. q inmq term Our Fitted value Lagangian dens. by
status 1/an

Planck scale [mass2] in kin.t. 1.22 ∗ 1019GeV (??) 6
Gavitational G q=-2 2.44 ∗ 1018GeV R

2κ

wellknown κ = 8πG

Redused Planck [mass2] in kin.t. 2.43 ∗ 1018GeV (13.13) 6
Gravitational 8πG q=-2 2.44 ∗ 1018GeV R

2κ

wellknown κ = 8πG

Minimal SU(5) [1] 5.3 ∗ 1013GeV (13.14) 4
fine structure const.s αi q=0 3.91 ∗ 1013GeV F2

16πα

only approximate Fµν = ∂µAν − ∂νAµ
Susy SU(5) [1] 1016GeV (??) 4

fine structure const.s q=0 3.91 ∗ 1013GeV F2

16πα

works Fµν = ∂µAν − ∂νAµ

Inflation H [1]? 1014GeV (??) 4
CMB, cosmology q=0? 3.91 ∗ 1013GeV λϕ4

“typical” number V = λϕ4

Inflation V1/4 concistence ? 1016GeV (??) 5
CMB, cosmology q=-1? 9.96 ∗ 1015GeV consistency

“typical” V = λϕ4?

See-saw [mass]in non− kin. 1011GeV (13.15) 3
Neutrino oscillations q=1 1.56 ∗ 1011GeV mRψ̄ψ

modeldependent mR right hand mass

Scalars [mass2]in non− kin. seesaw
44 to 560

(??, ??) 2

small hierarchy q=2 1.56GeV
250

m2sc|ϕ|
2

invented by me breaking seesaw
scalars

Fermion tip ‘‘[mass4]in non− kin. ′′ 104GeV (??) 0
fermion masses q=4 104GeV “1”
extrapolation quadrat fit

Monopole ‘‘[mass5]in non− kin. ′′ 28GeV (??) -1
dimuon 28 GeV q=5 40GeV mmonopol

∫
ds

invented S ∝ a
String 1/α ′ ‘‘[mass6]in non− kin. ′′ 1Gev (??) -2

hadrons q=6 0.16GeV Nambu Goto
intriguing S ∝ a2

String Thagedorn ‘[mass6] in non-kin.” 0.170GeV (??) -2
hadrons q=6 0.16GeV Nambu Goto

intriguing

Domain wall “[mass7] in non-kin.” 8MeV (??) -3
dark matter q=7 0.64MeV twobrane vol.

far out
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Next let me deliver the full table (from [2]) with scales which we now have found,
including cases of scales judged by very good will:
Important to notice in this table is the very good fitting of our formula

“energy scale” = 104GeV ∗ 250n (13.16)

which is compared with the in the third column of the table. The fitted value is
the lower one inside each block.

After the Bled I found several new scales that in fact quite remarkably fitted
in rather well. In the recent articel arXiv:2411.03552 [hep-ph] [2] I extended the
table of scales fitting to by the scales “monopoles” and “strings” for which we
what would be with the fluctuating lattice the scales for monopole masses and
for the string tension or say the Regge slope in the Veneziano model, when one
estimate the actions for a single monopole or for a single string in our scheme.
Quite surprisingly the string scale turning out is the one for hadronic strings with
which historically string theory were first proposed. The monopole mass scale
turns out not so far from the mass of two-muon resonance [55] with 28 GeV mass,
which is one of the very few peaks found not belonging to the Standard Model in
LHC.
Our fitting of the curve of scales by a linear function as function of the power n
may be presented as

“energy scale” = 104GeV ∗ 250n (13.17)

or logGeV(“energy scale”) = 4+ 2.40 ∗ n(+logGeV) (13.18)

or lnGeV(“energy scale”) = 9.21+ 5.53 ∗ n(+ lnGeV) (13.19)

Different “Energy-scales” versus n = 4 -(±)“Coupling dimension”
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My Speculations on GUT SU(5): Approximate

• There is a physically existing lattice, and the Plaquette action happens classi-
cally to be SU(5) symmetric.

• Quantum corrections break the classical SU(5) symmetry of the lattice action.
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• Because the lattice lies in three layers, the quantum correction SU(5) breaking is
just a factor 3 bigger than true quantum correction. The factor 3 is the number
of families.

We shall return to this model of an only approximate grand unification SU(5) in
the second part 13.3.
Take at First that our Energy Scales (4 of them, when I gave the talk; now ≈
9) are Observed Phenomenologically on Logarithmic Plot as function of the
Coupling Constant Dimension [GeVdim] a bit modified to be a power of 1/a
expected relevant lie on Straight line
Since the power n to which the inverse link length a comes into the action S for
the Lagrangian densities for the different sort of physics related to the different
(fundamental?) energy scales, (1/a)n, is linearly related to the dimension of the
coefficient [“coefficient”]

n = 4− (±)Dim(‘‘Coefficient ′′), (13.20)

linearity - i.e. straight line - of the logarithm of the energy scales as function of n
means also, that we observed straight line for the relation of Dim(“coefficient”)
to logarithm(“energy scale”)

13.2.3 Fluctuating Lattice

“Fluctuating lattice” (in superposition of) being dense somewhere and rough
somewhere and often deformed

Densities of, say, Sites in Fluctuating Lattice with several Layers can be defined
relative to the hypercube four-volume a4 or with respect to a four volume unit
m4 say:
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For the distribution of different densities of links or of sites in a fluctuating lattice
with shall distinguish:

#layers = (say) #sites per a4 (13.21)

density/m4 = #sites perm4 (13.22)

density/m4 = #layers ∗ a−4 (13.23)

Ansatz:

Probability: (13.24)

P(ln(1/a))d ln(1/a)d4x ∝

∝ exp(−
(ln(1/a) − ln(104GeV))2

2σ
) d ln(1/a)d4x (13.25)

where 104GeV is our “fitted” value; σ is a spreading to be fitted.

Distribution of Contribution for one of the to Scales associated actions versus
ln(a)

One of the actions associated with the candidates for fundamental scales as e.g.
the Einstein-Hilbert-action 1

2κ
R
√
−gd4xwith (1/a)n proportional contribution get

of the form:

S =

∫
L(x)d4x ∝

∝
∫

exp(
−(ln(1/a)) − ln(104GeV))2

2σ
)(1/a)nd ln(1/a)

= exp(
−(ln(1/a) − ln(104GeV))2 + n ∗ 2σ ∗ ln(1/a)

2σ
)d ln(1/a)

An Action depends on the spread σ like:

S =

∫
L(x)d4x ∝

∝
∫

exp(−
(ln(1/a)) − ln(104GeV) − n ∗ σ)2 + (n ∗ σ)2

2σ
)d ln(1/a)

=

∫
exp(−

(ln(1/a)) − ln(104GeV))2 + (n ∗ σ)2
2σ

)d ln(1/a)

=

∫
exp(−

(ln(1/a)) − ln(104GeV))2

2σ
)d ln(1/a) ∗ exp(n2σ/2)

where only the last factor exp(n2 ∗ σ/2) depends on n. This was for an action
S ∝ (1/a)n.
Interpreting the factor exp(n2σ/2) as correcting then factors (1/a) we get (1/a)eff =
(1/a)∗exp(nσ).(because a step inn2σ/2 is say (n+1)2σ/2−n2σ/2 = (2n+1)σ/2 ≈
nσ).



i
i

“j” — 2024/12/10 — 17:17 — page 187 — #201 i
i

i
i

i
i

13 Fluctuating Lattice, Several Energy Scales 187

The Effect of the in ln(1/a) Broadened Distribution is 1/a→ (1/a)eff = exp(nσ)∗
(1/a)

We shall interpret correction to the effective 1/a (= the inverse of the link size)
as a correction of the “energy scale”. So the effect of the spreading with Gauss
distribution in the logarithm ln(1/a) with a width given by σ as

Replace “energy scale” → “energy scale” ∗ exp(n ∗ σ) (13.26)

So 250 = exp(σ/2)(where 250 from our empirical fit)

and thus σ = 5.5. (13.27)

13.2.4 Conclusion of Energy Scales and Fluctuating Lattice Part/First Part

• We presented an empirical straight line fit to three wellknown energy scales,
valid to crude order of magnitude accuracy,

“energy scale” = 104GeV ∗ 250n (13.28)

or “energy scale” = 104GeV ∗ 2504−(±)dim(coefficient) (13.29)

(where dim(coefficient) is the dimension in energy units of the coefficient
multiplying in the Lagrangian density the field (product), and (±) = +1 for
the term with the coefficient being a mass term like in the case of the “see-
saw”and the “scalars scale”, while in the case of “Plack scale” where it is
the Einstein Hilbert action, which is a kinetic term carrying a dimension 2
coefficient (±) = −1 )

(13.29)

We explain this empirical fit with a speculated “fluctuating lattice” with a fluctua-
tion distribution being a Gauss distribultion in the logarithm of the statistically
fluctuating link length a, i.e. a Gauss distribution in ln(1/a):

P ∝ exp(−
(ln(1/a) − ln(104GeV)2

2 ∗ 5.5 ) (13.30)

Last moment development After the talk I found several new ideas for new scales
(mainly) of the type that one considers a brane of some dimension D, meaning
a space time extension of dimension D + 1, and thus having an action, which
using dimensionless parameters to make coordinates on the brane-time-track, a
coefficient of dimension like aD+1 being [energy−D−1], so that d = −D− 1. Very
interesting it seems that for a string = (D=1)brane the tension of the strings pointed
to by our extrapolated fit to d = −2 get very close to the tension of the string by
which hadrons can crudely be fitted, and which were the historically starting point
of string theory.
A plot with the extended system of scales is found in [2] and is reproduced in the
figure (3).
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13.3 Approximate GUT SU(5)

part II: Approximate SU(5), Fine Structure
Constants

Abstract for Second part: “Approximate SU(5), Fine structure constants”

Abstract. We suggest a model with a physical lattice for the gauge groups in the Standard
Model with link variables taking values in the according to O´Raifeartaigh Standard
Modelgroup, S(U(2) × U(3)), and it is so similar to SU(5), that in what we can call the
classical approximation, it gives the same ratios between the three fine structure constants.
But including quantum fluctuations we get deviation from the GUT prediction, because
there is not true SU(5) and thus the true SU(5) quantum fluctuations are lacking, unless
they belong to the Standard Model group. The remarkable thing is, that apart from just a
factor 3 the deviations caused by these quantum fluctuations reproduce within uncertainties
in the very accurately measured finestructure constants fit the data. The factor 3 we seek to
explain by postulating that the truly existing lattice is really lying in three layers (as if we
had three copies of the Standard model group, i.e. SMG× SMg× SMG).

13.3.1 Introduction to approximate SU(5)

Fit the three Fine Structure Constants in the Standard Model with three Parame-
ters, Derivable in Our Theory.
Shall fit with

• q = “number of families” ∗ π/2.
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• α5 uncorrected = α5 critical (unifying coupling (ours)).
• We shall put our replacement for unification energy scale µU into aline of four

different energy scales, fitting a line in the logarithm of the energy scale versus
dimension of related couplings.

Relation to First Part above.: Several “Fundamental” Scales, Their logarithms
Fitted on a Line as function of Dimension of the Coefficient in Lagrangian Term
Related
Since our replacement for the unification coupling scale is even more deviating
from the Planck scale than more popular unifications with susy, we give up that
the various “ fundamental scales found, see saw, unification (or approximate
unification) and Planck scale, should be at the same energy. Rather we allow them
to vary in a systematic way with the dimensionality of the related coefficients in
the Lagrangian in the quantum field theory.
We interpret this fitting with a model of a truly existing lattice (probably irregular)
which is fluctuating both in size and local shape, in a way corresponding to a
fluctuation in the reparametrization gauge of general relativity. We though assume
that it is somehow cut off so that the distribution of the link length say fluctuate
on a logarithmic scale much like a Gaussian distribution in the logarithm.
When one asks for different powers of the link-length for different purposes or
different types of interactions, one gets the dominant link length to be somewhat
different. This gives different scales for different purposes or lagrange terms:
Planck scale, Unification scale, See saw scale,and then a scale related to the fermion
masses (to be explained).
Crossing in one point of Minimal SU(5) Running (inverse) Fine structure con-
stants not perfect.
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Our prediction of Deviation from SU(5).

Our formulas to be fitted:
The three standard model fine structure constants (inverted):

1

α1 SU(5)(µU)
=

1

α5 uncor.
− 11/5 ∗ q (13.31)

1

α2
(µU) =

1

α5 uncor.
− 9/5 ∗ q (13.32)

1

α3(µU)
=

1

α5 uncor.
− 14/5 ∗ q, (13.33)

where the one parameter 1
α5 uncor.

, is essentially the unified coupling, although
we do not have unification proper.
We work with two related “ unified” couplings, α5 uncor. and α5 cor.

1

α5 cor.
=

1

α5 uncor.
− 24/5 ∗ q. (13.34)
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The other parameter q we believe to have calculated in our model with its 3
families of fermions and in a Wilson lattice in a lowest order approximation:

q = ‘‘#families ′′ ∗ π/2 = 3 ∗ π/2 = 4.712385. (13.35)

Our formulas in “corrected form”:
Using this notation we could equally well use the formulation

1

α1 SU(5)(µU)
=

1

α5 cor.
+ 13/5 ∗ q (13.36)

1

α2(µU)
=

1

α5 cor.
+ 3 ∗ q (13.37)

1

α3(µU)
=

1

α5 cor.
+ 2 ∗ q. (13.38)

Table of Fitting the Three parameters

Parameter Formula From α’s Theory Deviation Section
q q=1/α2(µU) − 1/α3(µU) 4.618 4.712385 -0.094±0.05 ??, ??

1/α5 uncor.(µU) see above 51.705 45.927 5.778± 3.5 ??
ln( µU

MZ
) ln(µU

mt
) = 2

3
∗ ln(EPl red

Mt
) 27.04 24.76 2.28± 1 ??

or 0.02
In the third line we now replace the top mass mt with a mass value gotten by
extrapolating from the whole spectrum of quarks and leptons, which is about
10TeV and the agreement got very good indeed.

13.3.2 Model

We assume ANTI-GUT: Diagonal subgroup breaking

Gfull = SMG× SMG× SMG (13.39)

where SMG = S(U(1)×U(3)) (13.40)

= (R× SU(2)× SU(3))/Zapp (13.41)

where

Zapp = {(r,U2, U3)|

∃n ∈ Z[(r,U2, U3) = (2π,−1, exp(i2π/3)1)n]
}

SMGas observed = {(g, g, g)|g ∈ SMG} ⊂ Gfull (13.42)

Action: Trace of in 5× 5 embedding of SMG
It is our crucialassumption that we have a lattice theory with plaquette-action
given proportional to the trace of the representative of the plaquette group element
UPl(2) in the/a “smallest” representation - taken here as the representation in the
five-plet SU(5) representation 5:
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ρ(Upl(2) : 5→ 5 (13.43)

or ρ(Upl(2)) ∈ UnitaryMarix(5× 5) (13.44)

We have once pointed out that the very standard model group SMG is selected
as the one having with appropriate definition the smallest relative to the group
faithful representation.

13.3.3 Fitting

We predict two differences between 1/αs in Absolute number
Taking our q = 3π/2 as just given in our model, and we predict the differ-
ences from a to be fitted “unified” inverted coupling 1/α5 uncor. at a to be fitted
“unification scale” µU, we really only provide one predicted parameter at first.
Really we predict the two independent differences, say 1/α2 − 1/α3 = q and
1/α2 − 1/α1 SU(5) = 2/5 ∗ q at the “unification scale”.
E.g. select the scale by having the ratio of the two differences the predicted one;
then the absolute size is a true prediction.
We got q = 4.6 by the fine structure constant data and the 3π/2 = 4.712.
Inverse Fine structure constants at the µU-scale

Figure About Critical Coupling

Explaing figure:The axis is the axis of inverse fine structure constants; The group
names U(1), SU(2) and Su(3) are the by renormalization group to the replacement
of unification scale µU extrapolated experimental inverse fine structure constants
for these groups respectively. The two SU(5) inverse fine structure constants are
respectively with and without the quantum fluctuation contribution.
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Helping Approximations to justify Critical Coupling

To justify that the above figure implies that the unified coupling represented by the
inverse fine structure constant has indeed the critical value (for a phase transition,
presumably between confinement or not) we make use of the following three
approximations/assumptions:(see next slide)

The approximations or assumptions

• The critical couplings for a true SU(5) lattice theory and for the Standard
Model group deviate only little, because the standard model group can be
considered an attenuation of the SU(5) one.

• We can trust a rather simple formula for the critical couplings for the SU(N)
groups,

1

αN
=
N

2

√
N+ 1

N− 1
α−1
U(1)crit (13.45)

where α−1
U(1)crit = 0.2± 0.015 (13.46)

found in an article with Laperashvili and others [83].
• The critical coupling for the Standard Model group S(U(3)×U(2)) should be

compared to couplings with equally many quantum fluctuation contributions
as it has itself.

And then the assumption of the model which is not only an approximation:
We compare the “ unified couplings” not to simply the critical one but the by a
factor 3 weakened one, so that we have multiplied the critical inverse finestruc-
ture constant for the Standard Model group by 3, to compare it with the unified
couplings.(the 3 is again the number of families)
A reference to larisa et al.

References

1. Larisa Laperashvili, Dmitri Ryzhikh “[SU(5)]3 SUSY unification” arXiv:hep-
th/0112142v1 17 Dec 2001

13.4 Gravity Problem; Return to First Part again

Return to Part I: on the scales in fluctu-
ating lattice model
Really I believe that gauge symmetries could be due to very huge fluctuations in
those degrees of freedom which are the gauge-monsters.
If a lattice were connected to a coordinate system in general relativity, but the
gauge not fixed but allowed to fluctuate, we should get a lattice fluctuating relative
to what we would consider the fixed geometry.
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Fluctuating Lattice Imposed by General relativity

Contributions as function of ln scale in fluctuating lattice:

Figure 6: Shifted Scales Depending on Weighting with (1/a)n weight factor

On the abscissa we have the logarithm ln(1/a) of energy 1/a, and for several
cases of weighting with powers of the 1/a we have on the ordinate the logarithm
of the contribution density to the average of these powers of 1/a. In the Gauss
distribution assumption, which we use the logarithm of the distribution density
as function of the ln(1/a) is a parbola (pointing downward) and for the various
powers of 1/a shown the weighted distribution becomes again a now displaced
parabola. It is the displacement component along the abscissa here, which repre-
sents the change in effective energy scale, which is the central effect discussed in
the first part of this paper.
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The plot of scales versus weighting power n

We present 4 energy scales of physical interest together with lattice link size a de-
pendent factor coming into the expression in the action or Lagrangian relevant for
the scale in question. It is essentially the dimension of the term in the Lagrangian
density without counting the coefficient (so it is rather trivially related to this
coefficient). We took:

• 0 (1/a)0 This scale is the scale of maximal number of “active”/effectively
massless families. (Needs more explanation below.). Below extrapolation ∼

10TeV .
• 3 (1/a)3 The see-saw neutrino mass scale
• 4 (1/a)4 The our “unification scale”,at which the Yang Mills theories are

supposed to be given by the truly existing fluctuating lattice.
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• 6 (1/a)6 The Planck scale, related to the Einstein-Hilbert-action.

Figure 9: Fitting Weyl Fermion masses by number after mass by Philosophy
of Fluctuating Lattice: In order to make an as good as possible extrapolation
to where the series of masses of the fermions in the Standard Model we should
assume how this series of masses is related to some ansatz formula for their density
on say the logarithm of mass axis. Inspired by our ideas of a fluctuating lattice
with a Gaussian combined with a connection of the number of fermions with
relative to that scale negligible mass being proportional to the layer density at the
scale, we suggested: The number of a fermion counted from the heaviest, the next
heaviest, etc. should be approximately proportional to the square of the distance
in logarithm from the “extrapolated tip” of the mass region, which we callmmnl
to the mass of the fermion. On this plot we see as function of the logarithm of
masses the number in the series counted from the heaviest down according to
mass. We have let the axis denoting the number in the series point down. So the
curve is to be fitted by a (half) parabola.

Quark formmnl = 104GeV

mmnl = “maximum number of layers” is the energy scale at which density of the
distributuion of inverse lattice sizes 1/a is the biggest.
We fit to this density being proportional to the number of Weyl fermions relative
to the scale being light/massless. Since the last column diff2/n fits a constant 1.12
to about 0.1 we have good fit for the 10 TeV.
Name number n Massm log10 GeVm diff=4− logm diff2 diff2/n

top 3± 1 172.76 ± 0.3 GeV 2.2374± 0.0008 1.7626 3.1066± 0.003 1.0355 ± 0.001 ±0.4
bottom 9± 0.3 4.18± 0.0079GeV 0.6212±0.001 3.3788 11.416± 0.01 1.268± 0.001±0.03
charm 17 or 15 1.27± 0.02 0.10382± 0.009 3.8962 15.180± 0.07 0.893 ± 0.004 ± 0.06
strange 25 or 23 0.095±0.006 GeV -1.0223±0.003 5.0223 25.223 ±0.03 1.009±0.001±0.1
down 31 4.79± 0.16 MeV -2.3197±0.01 6.3197 39.939± 0.06 1.288 ± 0.002

up 37 2.01± 0.14 MeV -2.6968±0.03 6.6968 44.847± 0.4 1.212± 0.01

Leptons formmnl = 104GeV
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mmnl = “maximum number of layers” is the energy scale at which density of the
distribution of inverse lattice sizes 1/a is the biggest.
We fit to this density being proportional to the number of Weyl fermions relative
to the scale being light/massless. Since the last column diff2/n fits a constant 1.19
to about 0.1 we have good fit for the 10 TeV.

Name number n Massm log10 GeVm diff=4− logm diff2 diff2/n

τ 13 or 19 1.77686±0.00012 0.2496± 0.00003 3.7503 14.065± 0.0003 1.082 ± 0.00002 ±0.4
mu 21 or 27 105.6583745± 2.4 ∗ 10−6MeV −0.9761...± 10−8 4.9761 24.761± 10−7 1.179± 4 ∗ 10−9 ± 0.3

electron 41 0.51099895069±1.6 ∗ 10−10 -3.2915± 4 ∗ 10−10 7.2916 53.167± 10−8 1.297± 10−11

Explaining the tables fitting Fermion Masses to Fluctuating Lattice
In the two foregoing tables - one for quarks, the second one for the charged leptons
– you have in first column the name of the fermion, then its number in the series
of fermions counted as Weyl fermions and after mass, the heaviest first then the
lighter and lighter ones. A quark flavour corresponds to two Weyl per particle
and it has three colors,so there is under each flavour 6 Weyl and we represent
a flavour by the middle one of these 6. So the top quark gets the representative
number n = 3 ( the middle between 0 and 6. We use logarithmic scale and care for
the logarithm - we use log of basis 10 for slightly easier calculation - of the ratio of
the fermion mass to the scale we test with as mmld = “ maximum layer density
point on the energy scale”.
Because our best fit mmld = 104GeV = 10TeV the log of it is just the 4 in the
column 4− log10m (= diff).Since we want to fit the number of layers as a square
function of the logarithm of the masses, we shall square what in the table is called
diff and which is just the log of the ratio mentioned.
If the Fermion masses were indeed arranged so as to make the number of (Weyl)fermions
with mass under a given scale be proportional to the a quadratic function in the
log dropping down from a maximum as we go more and more belowmmnl point,
then the ratio in the last column diff2/n should be constant.
If we would have liked to fit with a Gaussian of the logarithm of the masses, we
should instead of the number n have used log 45−n

45
, which for the first small n is

approximately proportional to n itself.(45 is the number of Weyl particles in SM).

13.4.1 Seesaw

What to take for the Seesaw neutrino scale?

Name Seesaw-scale Comments
Steven King 3.9 ∗ 1010GeV lowest mass;susy
Grimus and Lavoura 1011GeV

Davidson and Ibarra ≥ 109GeV
“statisic” (my own) 1.4 ∗ 109GeV
Mohapatra 1014 to 1015 GeV very crude guess
Modernized Takanishi and me(own) 1.2 ∗ 1015GeV
Average of most trustable 1011GeV
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13.5 Conclusion

13.5.1 Conclusion for Part I: Fluctuating Lattice, several Energy Scales

We have found for several energy scales, meaning energies constructed from vari-
ous phenomena, such as gravitation for the Planck scale, See-saw right handed
neutrino mass scale from neutrino oscillations, a “unification scale” from extrapo-
lating by renormalization group the measured fine structure constants etc., that
they fit very well to the hypothesis that there exist in Nature physically a lattice,
that fluctuates with a very broad distribution in size of say the link a. Actually
the broadness of the fluctuation of the natural logarithm ln(a) is given by the
width σ = 5.5, which is so broad that looking powers of the a, i.e. a−n you get a
step by a factor 251 for each step by 1 in the power in the effective value of a, i.e.
−n
√
< a−n > .

If this is the right way to look at the energy scales then rather than believing that
the fundamental scale of Nature is the Planck scale we should take it to be the one
we called “the fermion tip” scale, which is 104GeV . So the fundamental physics
would be nearer than we used to think!

13.5.2 Conclusion for Part II on Approximate SU(5) GUT

We had a successful agreement with the values of the fine structure constants
in a minimal (i.e. no susy!) approximate GUT SU(5) “unification” at the scale
µU = 5.13 ∗ 1013GeV (compared susy-models a very low energy scale, but not far
at all from the scale needed for see-saw neutrinos to fit the neutrino oscillations).
We have three parameters predicted by our theory:

• q = 3 ∗ π/2 is a parameter going into the deviation from full GUT-SU(5).
• The replacement for the unification coupling α5 uncor. or α5 cor.,whichever

one of them we want to think of, or rather the thirds of one of them, should
correspond to the critical value,in the sense that it should be at borderline of
two phases of the vacuum.

• The replacement for the unification scale µU goes into a series of “fundamental
scales” fitted on a line.

• We related four different physical/“fundamental” scales by a line relating the
energy scale to their dimension of the related Lagrange density term.
2.5 orders of magnitude per dimension of the Lagrange term coefficient.
The four scales are:

– A scale related to the fermion mass distribution of formal dimension of
coupling [GeV4].

– The See saw scale, coupling dimension [GeV ],
– Approximate Grand unification scale, coupling dimension [1],
– Planck i.e. gravity scale, coupling dimension [GeV−2]

But since the conference virtually in Bled we added:

Added later Scales:
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• “scalars” is a scale only in my fantasy at which there should be a lot of scalar
boson masses. associated with that presumably also some non-zero expectation
values breaking dreamt about symmetries yet to be discovered spontaneously.
Such breakings of symmetries by the ratio of this “scalars”scale to the “see
saw” scale which is the 1/250 could be the weak breaking responsible for the
small hierarchy problem, that the ratio between the fermion masses in the
Standard Model typically are large by by factors not so different from 250.

• A “monopole” scale also dreamt up of masses of presumably bound states of
some monopoles for the standard model group being confined by their SU(3)
part of the monopolic charge. Actually a candidate for having found them is a
dimuon-resonance, which is about the only new physics surviving from the
LHC [55], also by reanalysis seen in LEP [56].

• A string theory with the energy scale given by our fluctuating lattice turns
out to agree surprizingly well with the string theory for hadrons, that were
historically the first string theory application.

• The energy scale for “2-branes” with Goto (Nambu) action would get from
our fluctuating lattice a scale of tension not violently different from what Coin
Froggatt and I get from phenomenological fitting of dark matter as pearls of
new vacuum encapsulated by the “2-branes”.
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Abstract. We argue that we could make a scenario of deriving quantum mechanics, as a
random dynamics project, in the sense of it being almost unavoidable. The basic idea is
based on the weak value formulation.

Povzetek: Avtorja predstavita scenarij, po katerem projekt naključne dinamike neizogibno
vodi do kvantne mehanike, če uprabita formulacijo šibke vrednosti.

Keywords: non-Hermitian Hamiltonian, inflation, weak value
PACS: 11.10.Ef, 01.55 +b, 98.80 Qc.

14.1 Introduction

Random dynamics is a projects of calculations in which one or several laws of
nature are not assumed, but hoped to be derived. Indeed it would be very nice if
we could realize a theory as fundamental as possible. More fundamental theories
should have less conditions supposed at first. For example, we are usually accus-
tomed to using real actions in many kinds of theories, but using real actions by
itself means imposing on actions one common restriction that each action has to
be real. If we hope for more fundamental theories, we have to be free of such a re-
striction. Based on such insight, the complex action theory (CAT) was initiated [1].
In the CAT, not only many falsifiable predictions [1–4] but also various topics
such as the Higgs mass [5], quantum mechanical philosophy [6–8], some fine-
tuning problems [9, 10], black holes [11], de Broglie-Bohm particles and a cut-off
in loop diagrams [12], the complex coordinate and momentum formalism [13], the
momentum relation [14, 15], and the harmonic oscillator model [16] were studied.
Even if a given action is complex, which means a given Hamiltonian is non-
normal1, we could effectively obtain a Hermitian Hamiltonian after a long time
development [22]. This is a very nice property by which the CAT could be viable.
Here, to say that more accurately, we note that we need to introduce a modified

⋆⋆ Speaker at the workshop “What comes beyond the Standard Models” in Bled 2024.
1 The Hamiltonian H is generically non-normal, so it is not restricted to the class of PT-

symmetric non-Hermitian Hamiltonians that were studied in Refs. [17–21].
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inner product [22, 23] such that a given non-normal Hamiltonian becomes normal
with regard to it. In this article, however, we ignore it for simplicity because we do
not need it for the main purpose of this article. We have two types of the CAT. One
type is the future-not-included theory, where only a past state |i(ti)⟩ at the initial
time ti is given. The other type is the future-included theory, where not only a past
state |i(ti)⟩ but also a future state |f(tf)⟩ at the final time tf is given. Even though
the future-not-included CAT has many intriguing properties [15], it is not favored
from a point of view of Feynman path integral [24]. Therefore, we think that the
future-included theory is more important than the future-not-included theory.
In the future-included theory2, we have studied the construction of the so called
weak value [26, 27] of an operator O that is the ratio which would look in the
Heisenberg representation

Oweak value(t) =
⟨f|O(t)|i⟩

⟨f|i⟩ , (14.1)

where |i⟩ and |f⟩ are an initial state at the initial time ti and a final state at the
final time tf, respectively. The weak value has been investigated in the real action
theory (RAT). For details, see Ref. [28] and references therein. This is the expression,
which we used and suggested as giving an average useful in our complex action
theory [1]. Indeed, regarding it as an expectation value leads to obtaining the
Heisenberg equation, Ehrenfest’s theorem, and a conserved probability current
density [29, 30].
Thus the weak value has nice properties, but it has a serious problem: it is generally
not real but complex even for HermitianO, though it has to be real if it is expected
to work as an observable. To resolve this problem, in Refs. [31, 32], we proposed a
theorem that states that, provided that an operatorO is Hermitian, the weak value
of O becomes real and time-develops under an effectively obtained Hermitian
Hamiltonian for the past and future states selected such that the absolute value of
the transition amplitude from the past state to the future state is maximized. We
call this way of thinking the maximization principle. We proved this theorem in
the case of non-normal Hamiltonians Ĥ [31] and in the RAT [32]. The maximization
principle is reviewed in Refs. [33, 34]. We also found, in the periodic CAT, that a
variant type of the maximization principle can select the period [35].
The weak value in the Heisenberg representation (14.1) is expressed better in the
Schrödinger representation

Oweak value(t) =
⟨f| exp(− i

h̄
H(tf − t))O exp(− i

h̄
H(t− ti))|i⟩

⟨f| exp(− i
h̄
H(tf − ti))|i⟩

, (14.2)

where H is a given non-normal Hamiltonian, and the states |i(t)⟩ and |f(t)⟩ are
supposed to time-develop according to the Schrödinger equations ih̄ d

dt
|i(t)⟩ =

H|i(t)⟩ and ih̄ d
dt

|f(t)⟩ = H†|f(t)⟩, respectively. Rewritten in functional integral

2 Recently, in the context of quantum gravity, an example of the future-included CAT
was derived based on the group field theory coupled to a scalar field, and its possible
implication was discussed [25].
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formulation, this weak value becomes, say with the understood boundary values
at the initial and final states,

Oweak value(t) =

∫
O(t) exp( i

h̄
S[hist])Dhist∫

exp( i
h̄
S[hist])Dhist

, (14.3)

where hist stands for the history of the fields and Dhist is the functional integration
measure.
Now the main point of this manuscript is to call attention to that if we took the
action S[hist] to be purely imaginary, so that iS[hist] was purely real, then the weak value
in the functional integral formulation could be considered an ordinary probability formula
for the average of the variable O(t). If we let

Σ|O(t) = O ′⟩⟨O(t) = O ′| (14.4)

be the sum over a set of products of eigenstates with the eigenvalues ofO(t) being
O ′, then this operator would be a projection operator on the eigenstates of O(t).
For example, in the Heisenberg picture, the “probability” for the eigenvalue of
O(t) being O ′, PO(t)=O ′ , would be

PO(t)=O ′ = Σ⟨f|O(t) = O ′⟩⟨O(t) = O ′|i⟩. (14.5)

For the weak value being a good replacement for the usual quantum mechanics
average of an operator formula, these weights should be positive or zero. We have
not yet shown that, but we made some theorems about reality [31, 32], which we
explained above. To deduce that this distribution should at least be real is not
obvious at all to start with. If we took i to be real as our playing assumption which
is of course not true, then we could ensure the reality easily for any Hermitian
O ′. So, in this absurd case, the weak value would look like a probability formula,
except that the probabilities could be negative. But the crux of the matter is that
the weak value formally looks like a probability distribution. So, if we achieved some
speculative model providing us some probability distribution - from some graph
theory or whatever -, we could claim that now we want to write that as a weak
value theory formally, and then we could play in the CAT to describe our world
under the wild assumption that S is purely imaginary. We consider some system
of dynamical variables such as fields that makes up a complete set of variables,
and have some theory for their distribution. Even though our theory has no
quantum mechanics, we can just declare the exponentiated purely imaginary
action exp( i

h̄
S[hist]) to give distribution in the quantum mechanics lacking theory

we start with. So, if one could invent a model-speculation that could provide complex
numbers to come into the probability, then we might be able to derive the weak value
quantum theory. Of course, it looks too wild to hope to find such a scenario. But,
if one could, it would be using the weak value to “derive” quantum mechanics,
and one needs strongly some derivation from very little of quantum mechanics in
random dynamics.
This manuscript is organized as follows. In section 2, we explain some mild
assumptions that we make in a general model based on the random dynamics, and
define a specific “action” SP[q]. In section 3 we give a phenomenological example
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of the “action” SP[q] and argue that a favorable path could fit the cosmology. In
section 4 we introduce a beating “clock” in a subsystem, and argue that, by the
beating “clock”, a kind of interference could be caused in the other subsystem.
In section 5, after briefly explaining the CAT and the weak value, we argue that
the effect of the “clock” could give us the weak value complex path integral. In
addition, we discuss how we could add a phase to the logarithm of the action
so that our general formalism matches the weak value expression. Section 6 is
devoted to discussion.

14.2 Formulation of general model via random dynamics

We start from the formulation of general model via random dynamics. We do not
put in say quantum mechanics, but do not exclude it either. Such a formulation is
a rather empty framework as described below:

• Variables and time
A lot of dynamical variables are described for short as just one

q = (q1, q2, ..., qN), (14.6)

which is taken as functions of time

q(t) = (q1(t), q2(t), ..., qN(t)). (14.7)

Here N may be infinite or finite or even the q’s could be fields. N could be
Card(R).

• Probability distribution for paths
We assume that details of the theory should give us a functional probability
distribution P on the space of all histories q : {time} → RN thinkable:

P[q] = probability distribution on sets of functions q. (14.8)

P[q] gives probabilities for paths q.

Hoping to obtain quantum mechanics, we make very mild assumptions:

0.) We shall make very mild assumptions, mostly mathematically almost always
assumed by physicists. The assumptions are about the “distributional” P such as
continuity, differentiability, Taylor expandability, and that sort of things.

1.) In addition we make a little less general assumption: P is exponentially strongly
varying, as if of the form

P[q] = exp
(
1

h̄
SP[q]

)
(14.9)

with
1

h̄
∼ very large.



i
i

“j” — 2024/12/10 — 17:17 — page 211 — #225 i
i

i
i

i
i

14 Could random dynamics derive quantum mechanics via the weak value? 211

Fig. 14.1: Various paths

2.) Furthermore, we make a mild assumption: There exists weak “interaction” with
roughly periodically moving “clock”.

Even almost empty assumptions and formulations may have drastic implications.
Our formulation is so general that it also would accept a theory in which one has
laws for what shall happen at some moment of time. It allows the future to be
guiding for what happens or the past, as it seems to be in reality. If we wish, we
could impose that every initial conditions would be equally likely; but in reality
we have some ideas about the initial state (big bang, inflation, etc.). But making
P[q] or 1

h̄
SP[q] = ln(P[q]) some nice smooth function might guide us towards

getting such “initial state predictions” not coming from a single moment but being
some compromise coming in a bit at all times.

14.3 Phenomenological example of the specific form of SP

14.3.1 Our formalism determines a favored path

In functional integrals for quantum mechanics we have an action in the exponent

“Functional integral” =

∫
exp

(
i

h̄
S[q]

)
Dq. (14.10)

The introduction of SP in Eq.(14.9) tells us that it is not SP but −iSP that corre-
sponds to an action S[q]. We can put in our own favorite action for −iSP[q] = S[q]
and get our own equations of motion, but let us consider some system of particles



i
i

“j” — 2024/12/10 — 17:17 — page 212 — #226 i
i

i
i

i
i

212 Holger Bech Nielsen, Keiichi Nagao

as a typical example of the specific form of SP:

−iSP[q] =

∫
L(q̇(t), q(t))dt

=

∫
(K(q̇) − V(q(t)))dt, (14.11)

where K(q̇) and V(q(t)) could be usual kinetic and potential energies respectively,
say e.g.,

K(q̇) =
∑
i

1

2
miq̇

2
i , (14.12)

V(q(t)) = “potential”(that could have peaks and valleys etc.). (14.13)

When one seeks the path (= history) qmax with the highest probability P[qmax], one
gets that the variation for it there, i.e., the functional derivative of the action, is zero,
and derives an equation of motion (classically at least). We note that an overall sign
or a constant multiplying the whole action does not change the equation of motion.
But the relative weight of different paths (= histories) is violently influenced. Thus,
our formalism determines a favored path to be realized.

14.3.2 Does the favorite path fit the cosmology?

For simplicity, we restrict ourselves to the uppermost V-potential favored case.
Then the best path stands on the highest mountain. But, if there is a so broad
distribution of path around the one with very highest SP[q] that they cannot all
just stand on the peak, then there will be a flow down. Among the flow down
paths the most favorable one for getting high SP would go up to another peak
quickly.

Fig. 14.2: Inflaton potential with two peaks
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Let us consider the behavior of the inflaton field in the inflation universe model
by supposing a generic potential as drawn in Fig.14.2 for the inflaton potential.
We discuss it as follows:

• Waiting on an almost highest peak till it falls down by accident
The inflaton field is standing on a peak in the potential so long that the physi-
cists consider the famous long-staying problem: “the slow roll problem”.

• It seeks quickly to find up to another similar peak to convert kinetic energy to
potential energy.
The Universe did after inflation expand with an enormous Hubble-Lemaitre
constant, meaning that it brought quickly massive or massless particles away
from each other, so that, in Newtonian gravity say, the gravitational potential
energy should begin to raise as quickly as possible.

• It should stay again long on the next peak.
The Hubble-Lemaitre has slowed down and the time scale of the development
is now huge, compared to the one in the beginning (just after inflation stopped).

We speculate that the above picture could be one of solutions to the slow roll
problem. See also Ref. [36].

14.4 Introducing a beating “clock”

In this section we discuss mainly how interference, which is one of the important
properties of quantum mechanics, could be realized by considering a beating
“clock” in our formalism.

14.4.1 A beating “clock” and interference

We begin with considering a couple of important properties of quantum mechanics.
They are summarized as follows:

• The system/ the particle can be several places at a time.
We already have that in our formalism from the point of view of the path
integral.

• When it can go two (or more) ways, the probability is not just additive, but
depending on each phase, it could be bigger or smaller. This is an interference.
We obtain a kind of interferece by speculating a “clock” interacting with the
system.

In the following we discuss how quantum interference is realized in our formalism.
Sometimes there are deviations from determinism, i.e., an optimal path could
be separated into two paths as drawn in Fig.14.3. In addition, even if there is
a beating “clock” on a path and it is disconnected as drawn in Fig.14.4, it does
not matter. But, if the “clock” goes faster on one of the separated tracks than
on the other one, as drawn in Fig.14.5, what happens? Really, there could be
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Fig. 14.3: Separated paths

Fig. 14.4: A “clock” beating disconnected

Fig. 14.5: Clocks beat differently on paths
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no separation then. Next, what happens in case of different beating rates in the
two separate ways? Remembering that the deterministic (classical) tracks really
represent narrow bundles of tracks - narrow because the coefficient 1

h̄
is very large

-, one must imagine that small deviations from the best “classical” path just have
a lower probability than the best classical track itself. So, at least small problems
of the “clock” not beating consistently would lead to such probability decrease.
But, if the difference of the times on the two tracks is just a shift by an integer
number times the beating period, there would be no decrease. This sounds like
interference. We expect that it gives an imaginary term in the exponent of the
functional integral, even though it might look tricky. It would be interesting to
calculate the suppression of probabilities from more or less consistent matching of
the “clock” beating on various tracks.

14.4.2 Local version of the “clock” and a charged particle

To see that we hopefully are on the right track towards a realistic model, we could
make the “clock” be replaced by a separate little clock in each point of space.
The model with only one of these “clock”s would not be truly local, so having
clocks distributed all over space would be better from such a principle of locality.
We have had in mind that these “clock”s run so fast that we shall not be able to
consider it for us achievable knowledge where they are in their cyclic running.
Now let us imagine a pattern of “clock”s all over in space, and for simplicity, a
system just with the degrees of freedom of a non-relativistic particle. If we say
that we only have access to the difference in progression along different paths in
space time between the same two events but not to how far the different clocks
have reached at given moments, we have strong similarity to the knowledge of
electromagnetic fields, while not knowing the gauge. In other words we propose to
look at a system of infinitely many “clocks” (one at every space point) developing
a little bit differently here and there, as representing a possibility of different
behaviors just in correspondence with electromagnetic fields in space time.
It is not difficult to prove that, if the different phase deviations for the many
different loops of curves in Minkowski space shall be consistent in the sense
that, when one loop is composable from two, of course the phase deviation for
that loop must be the sum of those of the two components, then we can find
electromagnetic fields describing the phases for the various loops. The simplest
realization of the just mentioned idea would be to simply call the rate of running of
the “clock” clock(x) at position x forA0(x), meaning identifying it with the electric
potential. Then we could look at a gauge transformation in a purely electrostatic
theory which is an addition of the same constant to A0(x) at every point x in
space, as a general increase in the running speeds of the small clocks. Well, the
idea we seek here to put forward is that there is hope for getting the mysterious
i in quantum mechanics connected with clocks that really are connected with
the electric properties of the particle. But if so, we might think that, if we had
chargeless particles, which would typically be Majorana particles, then we should
have real wave function for them. That is indeed true that single particle wave
functions for Majorana fermions are real.
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14.5 The weak value and our general formalism

Our formalism with P[q] = exp(1
h̄
SP[q]) was originally inspired from and also is

most easy connected to the formalism of quantum mechanics by means of the
weak value:

Oweak value(t) =
⟨f|O(t)|i⟩

⟨f|i⟩ (Heisenberg representation) (14.14)

where one is so to speak to know or put in some information on the initial state |i⟩
given at the initial time ti and on the final state |f⟩ given at the final time tf. O is
an operator, say Hermitian. In the Schrödinger representation, the weak value is
expressed as

Oweak value(t) =
⟨f| exp(− i

h̄
H(tf − t))O exp(− i

h̄
H(t− ti))|i⟩

⟨f| exp(− i
h̄
H(tf − ti))|i⟩

(14.15)

where H is a given Hamiltonian, and the states |i⟩ and |f⟩ are supposed to time-
develop according to the Schrödinger equation for a state |ψ⟩: ih̄ d

dt
|ψ⟩ = H|ψ⟩.

Weak value is the most useful when we have complex action and in principle know
even the future. We worked on such complex action theories, and the weak value
formalism seemed very natural for the hypothesis we worked on that the action
was complex. Indeed, in the Wenzel-Dirac-Feynman functional integral expression,
the weak value of qi(t) is symbolically expressed as

qi weak value(t) =

∫
exp( i

h̄
S[q]) ∗ qi(t)Dq∫

exp( i
h̄
S[q])Dq , (14.16)

which is much simpler than the expression of the usual expectation value of qi(t).
Our great result was that we would get similar equations of motion as for real
action, but only in addition to getting some predictions about the “initial condi-
tions”. We could say that complex action unites equations of motion with “initial
conditions”.

14.5.1 Our maximizing overlap assumption and classical interpretation

The choice of the final state |f⟩ and initial state |i⟩ will in most cases with com-
plex action be determined by requiring that the absolute value of the transition
amplitude from the initial state to the final state is maximized:

|⟨f|i⟩| is maximal. (Heisenberg) (14.17)

|⟨f| exp
(
−
i

h̄
H(tf − ti)

)
|i⟩| is maximal. (Schrödinger) (14.18)

In real action case we get from this (14.17) still an undetermined set of states but
we get

|⟨f|i⟩|max = 1 for usual real action case.

(Heisenberg)

|⟨f| exp
(
−
i

h̄
H(tf − ti)

)
|i⟩|max = 1 for usual real action case.

(Schrödinger).
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One would wonder how we can think classically in complex action and weak
value. It is summarized as follows:

• With complex action, typically all that happens in universe at all times gets
predestined (because it is a theory also for the “initial conditions”).

• In the large 1
h̄

approximation only one or very few classical paths are realized,
and the one with highest probability wins.

• Paths have a few times where they split up into two or more.
• If we arrange by the “clock” story to make “interference”, it can modify

the total probability of the path with the splitting that has the “interference”
correction.

• Such “interference” corrections may cause an otherwise winning path to get
beaten by a slightly less probable competing path. (presumably we shall
imagine a sample of near competitors clear to take over if a path gets too much
destructive interference.)

• For a dominant path, i.e., in the classical approximation, the weak value for an
operator is simply the value of the corresponding dynamical variable at the
time t.

• So we can look at the weak value as just a way to extract the classical path,
which is determined by our imaginary part of the action.

• Different (bunches of) paths have different probabilities; a path with highest
probability is the likeliest to be realized as our history.

Fig. 14.6: Competing paths

14.5.2 Interpreting the effect of the “clock” as giving us the weak value with
complex path integral

Now we want to formulate the result of our general formulation including the
“clock” to lead to that expectation value of one of the q variables or a combination
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of them being the weak value

qi weak value(t) = ⟨qi(t)⟩ =
∫

exp( i
h̄
S[q]) ∗ qi(t)Dq∫

exp( i
h̄
S[q])Dq . (14.19)

If the probability density P[q] contains much information on the initial and final
states, it will not be so serious to ignore the boundary conditions, because this
information will then be transfered into S[q] used in this formula (14.16).
We compare our general formulation with the weak value in quantum mechanics.
An average of one of the q-variables qi(t) at time t is expressed as

qi(t)weak value = ⟨qi(t)⟩ =
∫

exp( i
h̄
S[q]) ∗ qi(t)Dq∫

exp( i
h̄
S[q])Dq , (14.20)

⟨qi(t)⟩our formalism =

∫
P[q]qi(t)Dq∫
P[q]Dq (14.21)

where the denominator
∫
P[q]Dq is just a normalization. This will not be needed if

P[q] is already normalized.
We see an important difference: the weak value consists of complex integrals, while
in our formalism everything is real numbers. The similarity gets even bigger
formally when we remember that we want to assume as a helping assumption
that SP[q] is supposed rather smooth, so that the form

P[q] = exp
(
1

h̄
SP[q]

)
(14.22)

is called for. Remember also that q stands for a set of functions, so it really means
what we would call a track, a path, or a history of the universe. But, to make the
agreement between the two expressions, we would need to provide our expression
with an artificially invented phase.

Remembering the q variables are supposed real by themselves, we see that, if only
one history or track q dominates, then weak value becomes real for the different qi
which are assumed real/ Hermitian as operators, because, for a single dominating
path, there is a reality theorem for the weak value. Even if we have a history with
some separation from time to time, but we ask for the weak value for qi(t) at a
time outside the separation period, then the weak value for this qi(t) will be real.
Thus the weak value gives perfect description in classical case, meaning one track
or history dominates. If physicists make double slit experiments where a particle
goes through two slits simultaneously, the weak value still gives averages, but
now the average will usually be complex, as we know that asking a stupid question
like “Through which slit did the particle go?” in an interference experiment gives
a stupid / complex answer. On the other hand, our formalism - before we modify
it very artificially - cannot give complex answer, because it is made so, as if it
never heard about complex numbers. Therefore, our formalism gives a priori real
numbers even for the average while the particle is passing through the double slit
experiment.
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Fig. 14.7: Double slit experiment paths

14.5.3 Adding a phase to P(q) in our formalism

To have our general formalism match the weak value, we have to provide our
expression with an artificially invented phase, i.e., we need to add a phase formally
to our P[q] to make it look like the integrand in the Feynman-Dirac-Wentzel
functional integral. For this purpose, we define a “clock” delay ratio for any
path/history q at any moment of time t:

δ[q, t] = “time delay ratio in period”

=
c standard[q, t] − c[q, t]

period
, (14.23)

where3

c standard[q, t] = t, (14.24)

c[q, t] = the stand of the “clock”on path q at time t. (14.25)

Then we are first suggested to put

iS[q] = SP[q] + iδ[q, t]. (14.26)

Remember that Sp[q] is the logarithm of the probability in our model formulation
and thus of course real, while we like the complex action theory (CAT), in which
S[q] is complex - while in usual theory real -. By putting in the real δ[q, t] with an
i, we obtain the right hand side of (14.26) being complex with both a real and an
imaginary part.
We imagine the “clock” to have very short “period”, so the time of the clock is
not so important if we use some average period or one about the time t. In fact,
we expect the probability for a path with a split time, as represented by a double
slit experiment, to be somewhat reduced, because of the interaction of the other
degrees of freedom with the “clock” by means of the action SP[q] that is purely

3 δ and the c’s are functionals of q, but functions of t.
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imaginary from a usual point of view in our formulation, i.e., because of the not
matching of the “clock” and the rest of the system. We hope to have our model
give quantum mechanics such that this reduction turns out to be equal to the effect
of having the phase addition as we suggested. So, in order not to have it doubled,
we improve our suggestion to

iS[q] = SP[q]|with “clock” removed” + iδ[q, t]. (14.27)

Here SP[q]with “clock” removed” is a modified SP[q] in our model where we hope that
the “clock” is removed, and so only the rest is left.
We hope to calculate that removing “clock” and adding the phase just cancel each
other. For two numerically equally high probability paths during the separation
seems likely by the probability proportional to |1+ ei∆|2 ∝ cos2(1

2
∆), where ∆ is

an average of δ[q, t] over separation. We will argue for that, at least being right in
the small deviation between the delay in the two separate paths case.

14.6 Discussion

We have put up a very general formalism, in which we may reproduce rather
usual classical actions although it comes with the imissing relative to the usual
functional integral. But for the action in classical physics an overall sign as e.g. an
i does not matter. In the very general model just having probability density P[q]
as a functional that we can adjust phenomenologically, describing the probability
density for all histories a priori still to be evaluated by the Taylor expansion and
the like, we have one property of quantum mechanics already:

• The system/the world can go through different paths, so the state at a moment
t is not quite unique.

• Only after assuming the exponent SP[q], when P[q] = exp(1
h̄
SP[q]) is very

large, we obtain classical physics: only one path is realized with high probabil-
ity.

The weak value for a quantity (= dynamical variable) and the expectation value in
our general formalism with P[q] = exp(1

h̄
SP[q]) only deviate by an i, as seen by

comparing the weak value expression and our expectation value one:

⟨O(q(t))⟩ =
∫

exp(1
h̄
SP[q])O(q(t))Dq∫

exp(1
h̄
SP[q])Dq

(Our average), (14.28)

⟨O(q(t))⟩weak value =

∫
exp( i

h̄
S[q])O(q(t))Dq∫

exp( i
h̄
S[q])Dq (The weak value),

(14.29)

provided we identify the “actions” as follows:

SP = iS. (14.30)
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We note that classical equations of motion are not sensitive to this i. The classical
approximation or equations of motions for both of them become the same in spite
of the i separating them. However, our general formalism has a very strong - and
not shared by the weak value with the i - prediction about the initial state conditions.
The features being favored by our formalism may be matched with the very
strongest features of cosmology: slow inflation, huge expansion in the beginning
after the “reheating”, and much slower expansion in the long run. But we have the
problem that our model tends to make a decision about the initial conditions. We
proposed a way to - by not quite finished calculations - obtain a relation between
our general formulation and the weak value formulation of quantum mechanics,
especially in the case of an action being complex, i.e., our complex action theory. In
the short run, we could easily arrange by choosing SP that one would not notice in
short terms the tendency of the model to give information on the initial conditions
(and possibly also on the future being selected). But the interference needed an
extra story: the “clock”. We shall hopefully prove that with this“clock” we can
obtain the usual quantum mechanics with its mysterious complex numbers. The
density operator that we introduced in the future-included CAT [37] would be
useful for the study. As a by-product - but may be most interesting - we found
that the path favored in probability had some similarities in general properties of
escaping as fast as possible not being at the maximal potential energy. This could
be interpreted as a model behind slow roll and fast Lemaitre-Hubble expansion in
the beginning.
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Abstract. We briefly review how it is possible to derive some exact expressions for the
renormalization constants for the MS-like renormalization prescriptions using the argu-
ments based on the renormalization group. These expressions are obtained for a version of
the dimensional technique in which the dimensionful parameter Λ differs from the renor-
malization scale µ. They encode the equations relating the coefficients at higher ε-poles,
powers of lnΛ/µ, and mixed terms of the structure ε−q lnpΛ/µ to the coefficients of the
renormalization group functions (i.e. of the β-function and the anomalous dimension). The
general results are verified by some multiloop calculations.

Povzetek: Avtor na kratko predstavi izpeljavo nekaterih natančnih izrazov za konstante
renormalizacije, pri katerih lahko uporabi argumente, ki temeljijo na renormalizacijski
grupi, kadar se dimenzionalni parameter Λ razlikuje od renormalizacijske skale µ. Izrazi
vsebujejo enačbe, ki povezujejo koeficiente višjih polov ε, potence ln(Λ/µ) in izraze oblike
ε−q(lnp(Λ/µ)) s koeficienti renormalizacijskih grupnih funkcij (to je funkcij β in anomalne
dimenzije). Splošne izraze preverja z izrazi, ki jih dobi s perturbacijskimi metodami višjih
redov.

15.1 Introduction

Quantum corrections are very important for understanding nature. For example,
a very precise agreement of the electron anomalous magnetic moment value with
the theoretical prediction is one of the most convincing arguments in favour of
the fact that nature is described by quantum field theory [1]. The unification of
running couplings is an indirect evidence in favour of supersymmetry and Grand
Unification [2] obtained by combining the experimental values of the coupling
constants and theoretical calculations of quantum corrections [3–5].
In most quantum field theory models quantum corrections diverge in the ultravio-
let (UV) region, so that a theory for which they are investigated should be properly
regularized [6]. The most popular method for this purpose is dimensional regular-
ization [7–10] when a theory is considered in the non-integer dimensionD ≡ 4− ε.
In this case divergences appear as ε-poles. These ε-poles should removed by the
renormalization of some parameters, e.g., couplings, masses, fields, etc. This is
possible in the renormalizable theories.
However, in the supersymmetric case the dimensional regularization is not conve-
nient because supersymmetry is explicitly broken [11]. That is why for supersym-
metric theories it is more convenient to use a modification of this technique called
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dimensional reduction [12]. Nevertheless, sometimes it is better to use the regula-
tions of the cutoff type, e.g., the higher covariant derivative regularization [13–15].
In this case (logarithmic) divergences are given by powers of lnΛ/µ, where Λ is a
dimensionful regularization parameter, and µ is the renormalization point. The su-
perfield formulation of the higher covariant derivative method [16,17] is especially
useful for supersymmetric theories, because it does not break supersymmetry and
reveals some interesting features of quantum corrections [18]. For instance, the
exact Novikov, Shifman, Vainshtein, and Zakharov (NSVZ) β-function [19–22]
is naturally obtained with this regularization. According to [23–25], the NSVZ
β-function is valid in all loops if a supersymmetric theory is regularized by Higher
covariant Derivatives and renormalization is made by Minimal Subtraction of
Logarithms (the so-called HD+MSL scheme), see [26] and references therein. In the
Abelian case this result was derived earlier in [27, 28]. Note that in the DR-scheme
the NSVZ equation is not valid starting from the approximation where the scheme
dependence becomes essential [29–31]. However, in this case the NSVZ relation
can be restored in each order of the perturbation theory with the help of a finite
renormalization of the coupling constant, because some scheme-independent con-
sequences of the NSVZ equation are satisfied [32, 33]. This implies that the NSVZ
equation is valid only for a special class of renormalization prescriptions [34],
some of them being naturally constructed with the help of the higher covariant
derivative regularization.
Note that the ε-poles in the renormalization constants obtained with the help of
the dimensional technique are analogs of lnΛ/µ in the corresponding expressions
for the renormalization constants derived using the regularizations of the cutoff
type. The relation between the simple poles and the first power of this logarithm
has a very simple form, e.g.,

lnZα = −

∞∑
L=1

αLβL

( 1
Lε

+ ln
Λ

µ

)
+ higher poles and logarithms, (15.1)

where L is a number of loops [35]. However, the coefficients at higher poles and
logarithms are related in a rather nontrivial way and no simple relations are seen
at the first sight. In this paper the corresponding relations will be constructed in
all orders. For this purpose we will use the arguments based on the structure of a
group formed by finite renormalizations.

15.2 The group formed by finite renormalizations

In renormalizable quantum field theory models UV divergences can be removed
by the renormalization, e.g.,

α0 = α0(α(µ), lnΛ/µ); φ = Z(α, lnΛ/µ)φR, (15.2)

where µ is a renormalization point andΛ is the dimensionful parameter introduced
by a regularization. However, the way of making the renormalization is not
uniquely defined. In general, various renormalization prescriptions are related by
the finite renormalizations [36–38] of the form
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α ′ = α ′(α); Z ′(α ′, lnΛ/µ) = z(α)Z(α, lnΛ/µ). (15.3)

Note that the renormalization group functions (RGFs) nontrivially transform
under these finite renormalizations [39]. Namely, two first coefficients of the
gauge β-function and the first coefficient of the anomalous dimension are scheme
independent, while the other coefficients depend on a specific choice of the renor-
malization prescription.
It is easy to see that finite renormalizations (15.3) form an infinite dimensional
Lie group. Following [40], to describe it, we first construct its algebra using the
exponential map [41]. For this purpose we recall that if G is a Lie group, then
in a certain vicinity of the identity element 1 it is possible to present the group
element ω̂ ∈ G as the exponential of the corresponding Lie algebra A element
â ∈ A, ω̂ = exp(â). Therefore, it is expedient to consider an infinitesimal finite
renormalization of the coupling constant α→ α ′(α) and present it as the series

δα = −

∞∑
n=1

anα
n+1 ≡

∞∑
n=1

anL̂nα ≡ âα, (15.4)

where an are arbitrary real parameters. The operators L̂n with n ≥ 1 are the gener-
ators of the group of finite renormalizations. In the explicit form these generators
(acting on an arbitrary function of α) are written as

L̂n = −αn+1
d

dα
(15.5)

and satisfy the commutation relations of the Witt algebra1

[L̂n, L̂m] = (n−m)L̂n+m. (15.6)

However, in the Witt algebra n is an arbitrary integer, while in the case under
consideration n ≥ 1 due to the use of the perturbation theory. Therefore, the Lie
algebra of the group formed by finite renormalizations (for the renormalization of
charge) is a subalgebra of the Witt algebra spanned by L̂n with n ≥ 1.
The exponential map allows obtaining the non-infinitesimal transformations,

α ′ = ω̂α = exp
( ∞∑
n=1

anL̂n

)
α = exp

(
−

∞∑
n=1

anα
n+1 d

dα

)
α. (15.7)

The explicit form of these transformations in the lowest approximations can be
found in [40].
The finite renormalizations that include the renormalization of the matter fields
and masses can be considered similarly. According to (15.3), they are determined
by the functions α ′(α) and z(α). For the infinitesimal finite renormalizations z(α)
can be presented in the form

1 The relation between the renormalization group and the Witt algebra was also discussed
in [41].
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z(α) = 1−

∞∑
n=1

znα
n +O(az, z2). (15.8)

This implies that the renormalized fields change as

φ ′
R = z−1(α)φR =

(
1+

∞∑
n=1

znα
n+O(z2)

)
φR ≡ φR+

∞∑
n=1

znĜnφR+O(z
2), (15.9)

where we have introduced the operators

ĜnφR ≡ αnφR, (15.10)

which satisfy the commutation relations

[L̂n, L̂m] = (n−m)L̂n+m; [Ĝn, Ĝm] = 0; [L̂n, Ĝm] = −mĜn+m, (15.11)

where n,m ≥ 1.
The non-infinitesimal transformations can again be constructed with the help of
the exponential map,

z(α) = exp
( ∞∑
n=1

anL̂n

)
exp

(
−

∞∑
n=1

anL̂n −

∞∑
n=1

znĜn

)
. (15.12)

15.3 Rescaling subgroup

An important particular case of the finite renormalizations is the transformations
changing the renormalization scale.

α(µ) → α(µ ′) ≡ α ′(µ);

Z
(
α(µ), lnΛ/µ

)→ Z ′(α(µ ′), lnΛ/µ ′) ≡ z
(
α(µ)

)
Z
(
α(µ), lnΛ/µ

)
(15.13)

parameterized by t = lnµ ′/µ. Evidently, these transformations form an Abelian
group, which is a subgroup of the group composed of finite renormalizations. For
the infinitesimal transformations for which µ ′ is close to µ (or, equivalently, the
parameter t is small)

α ′ − α = β(α)t+O(t2)

= t

∞∑
n=1

βnα
n+1 +O(t2) = −t

∞∑
n=1

βnL̂nα+O(t2);

φ ′
R −φR = −δzφR +O(t2) = −γ(α)tφR +O(t2)

= −t

∞∑
n=1

γnα
nφR +O(t2) = −t

∞∑
n=1

γnĜnφR +O(t2), (15.14)
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so that the generator of the rescaling transformations is the operator

L̂ = −

∞∑
n=1

(
βnL̂n + γnĜn

)
. (15.15)

Applying the exponential map for constructing the non-infinitesimal transforma-
tions of the coupling constant we obtain that an arbitrary function of the coupling
constant changes as [42, 43].

f(α ′) = exp
(

ln
µ ′

µ
β(α)

∂

∂α

)
f(α). (15.16)

However, it is easy to see that under the rescaling transformations RGFs remains
unchanged.

15.4 Exact expresssions for the renormalization constants

As well known, in various renormalization constants the coefficients at higher ε-
poles are related to the coefficients of RGFs [44] by the ’t Hooft pole equations, see
[45] for review. This is also valid for the coefficients at higher powers of logarithms
[46]. The argumentation based on the algebraic structure of the rescaling subgroup
allows to construct simple and beautiful expressions for renormalization constants
that relate them to the renormalization group functions.
It is especially interesting to consider such a regularization when both ε-poles
and logarithms are present in the renormalization constants. This structure of
divergent contributions can be obtained for a special modification of dimensional
regularization. In the dimension D ̸= 4 the bare gauge coupling constant α̃0 has
the dimension mε and can, therefore, be presented as α̃0 = α0Λ

ε, where α0 is
dimensionless andΛ is a parameter with the dimension of mass. Then the coupling
constant can be renormalized according to the prescription

α0 =
( µ
Λ

)ε
αZα

−1(α, ε−1), (15.17)

where µ is a renormalization point and α is the renormalized gauge coupling.
For the MS scheme the renormalization constants include only ε-poles in the case
Λ = µ. The MS-scheme [47] is obtained by redefining the renormalization point

µ→ µ exp(γ/2)√
4π

, (15.18)

where γ ≡ −Γ ′(1) ≈ 0.577. For Λ ̸= µminimal subtraction is obtained if the renor-
malization constants include only ε-poles and powers of lnΛ/µ. Some multiloop
calculations with this regularization can be found in [48–50]
To define a field renormalization constant Z(α, ε−1), we require the finiteness of
the corresponding renormalized Green’s function GR in the limit ε→ 0,

GR

(
α, ln

µ

P

)
= lim
ε→0Z(α, ε−1)G

[(µ
P

)ε
αZα

−1(α, ε−1), ε−1
]
. (15.19)

In D-dimensions RGFs are defined according to the prescription
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β(α, ε) ≡ dα(α0(Λ/µ)
ε, ε−1)

d lnµ

∣∣∣∣
α0=const

;

γ(α) ≡ d lnZ(α, ε−1)

d lnµ

∣∣∣∣
α0=const

. (15.20)

(In our notations they are denoted in bold.)
Alternatively, it is possible to perform the renormalization in the four-dimensional
form

1

α0
=
Zα(α, ε

−1, lnΛ/µ)
α

;

GR

(
α, ln

µ

P

)
= lim
ε→0Z(α, ε−1, lnΛ/µ)

×G
[(Λ
P

)ε
αZ−1

α (α, ε−1, lnΛ/µ), ε−1
]
. (15.21)

In this case the renormalization constants Zα and Z should not contain positive
powers of ε, but include powers of lnΛ/µ. In this case RGFs are defined as

β(α) ≡ dα(α0, ε
−1, lnΛ/µ)
d lnµ

∣∣∣∣
α0=const

;

γ(α) ≡ d lnZ(α, ε−1, lnΛ/µ)
d lnµ

∣∣∣∣
α0=const

(15.22)

and are related to the D-dimensional ones by the equations

β(α, ε) = −εα+ β(α); γ(α) = γ(α). (15.23)

It is important that RGFs β(α) and γ(α) do not depend on both ε and lnΛ/µ. From
this requirement it is possible to relate the coefficients at higher ε-poles and higher
powers of lnΛ/µ to the coefficients of the β-function and anomalous dimension.
For the regularization considered here the corresponding equations are encoded
in the all-order exact formulas [51]

lnα0 = exp
(

ln
Λ

µ
β(α)

∂

∂α

){
−

α∫
0

dα

α

β(α)

β(α) − εα
+ lnα

}
; (15.24)

α−S
0 = exp

(
ln
Λ

µ
β(α)

∂

∂α

)
α−S exp

{
S

α∫
0

dα

α

β(α)

β(α) − εα

}
; (15.25)

lnZ−

α∫
a

dα
γ(α)

β(α)
= exp

(
ln
Λ

µ
β(α)

∂

∂α

)

×
[ α∫
0

dα
γ(α)

β(α) − εα
−

α∫
a

dα
γ(α)

β(α)

]
, (15.26)
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where the constant a in the last equation can be arbitrary.
This form reveals the renormalization group origin of the considered equations. For
this purpose, let us first investigate the case of the cutoff type regularizations (like
the regularization by higher covariant derivatives [13, 14]), which is obtained by
removing ε-poles in the formal limit ε→ ∞. Then, a renormalization prescription
analogous to minimal subtraction is the HD+MSL scheme [28], in which the
renormalization constants include only powers of lnΛ/µ. Therefore, choosing
µ ′ = Λ and taking into account that α ′(µ) = α(Λ) = α(α0, lnΛ/µ = 0) = α0 for
an arbitrary function f(α) in the HD+MSL scheme we obtain

f(α0) = exp
(

ln
Λ

µ
β(α)

∂

∂α

)
f(α). (15.27)

This equation exactly reproduces the expressions (15.24), (15.25), and (15.26) for
lnZα, (Zα)S, and lnZ if

f(α0) = lnα0; f(α0) = α
−S
0 ; f(α0) =

α0∫
a

dα
β(α)

γ(α)
, (15.28)

respectively.
Next, let us consider a more complicated case of the dimensional regularization
with Λ ̸= µ. In this version of dimensional regularization the renormalization
constants contain not only ε-poles, but also powers of lnΛ/µ and various mixed
terms. In the standard case µ = Λ from the above equations we see that [44]

α exp
{
−

α∫
0

dα

α

β(α)

β(α) − εα

}∣∣∣∣
µ=Λ

= α0 = αZ
−1
α (α, ε−1, 0). (15.29)

Using the exponential map, for an arbitrary value of the renormalization point µ
we obtain

f(α0) = exp
(

ln
Λ

µ
β(α)

∂

∂α

)
f

(
α exp

{
−

α∫
0

dα

α

β(α)

β(α) − εα

})
. (15.30)

In the particular case f(α0) = 1/α0 this equation gives

Zα(α, ε
−1, lnΛ/µ) = α exp

(
ln
Λ

µ
β(α)

∂

∂α

)(
α−1Zα(α, ε

−1, 0)
)
, (15.31)

where

Zα(α, ε
−1, 0) = exp

( α∫
0

dα

α

β(α)

β(α) − εα

)
. (15.32)

After some transformations (see [51] for details) the expression (15.31) can be cast
in the form
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Zα(α, ε
−1, lnΛ/µ) = exp

{
ln
Λ

µ

[
β(α)

∂

∂α
−
β(α)

α

]}
Zα(α, ε

−1, 0)

= exp
{

ln
Λ

µ

[
β(α)

∂

∂α
− γα(α)

]}
exp

( α∫
0

dα

α

β(α)

β(α) − εα

)
, (15.33)

where we took into account that γα(α) ≡ d lnZα/d lnµ = β(α)/α.
This expression is a particular case of the general equation for an arbitrary renor-
malization constant,

Z(α, ε−1, lnΛ/µ) = exp
{

ln
Λ

µ

(
β(α)

∂

∂α
− γ(α)

)}
Z(α, ε−1, 0)

= exp
{

ln
Λ

µ

(
β(α)

∂

∂α
− γ(α)

)}
exp

{ α∫
0

dα
γ(α)

β(α) − εα

}
. (15.34)

As a correctness test, in [51] it was verified that this equation exactly reproduces
the five-loop expression for lnZ presented in [52]. Here write down only the
four-loop expression, because it is essentially smaller,

lnZ = −αγ1

(1
ε
+ ln

Λ

µ

)
−
α2

2

[
γ2

(1
ε
+ 2 ln

Λ

µ

)
+ γ1β1

(1
ε
+ ln

Λ

µ

)2]

−
α3

3

[
γ3

(1
ε
+ 3 ln

Λ

µ

)
+ γ1β2

( 1
ε2

+
3

ε
ln
Λ

µ
+
3

2
ln2

Λ

µ

)
+ γ2β1

( 1
ε2

+
3

ε
ln
Λ

µ
+ 3 ln2

Λ

µ

)
+ γ1β

2
1

(1
ε
+ ln

Λ

µ

)3]

−
α4

4

[
γ4

(1
ε
+ 4 ln

Λ

µ

)
+ γ1β3

( 1
ε2

+
4

ε
ln
Λ

µ
+ 2 ln2

Λ

µ

)
+ γ2β2

(1
ε

+2 ln
Λ

µ

)2
+ γ3β1

( 1
ε2

+
4

ε
ln
Λ

µ
+ 6 ln2

Λ

µ

)
+ 2γ1β1β2

( 1
ε3

+
4

ε2
ln
Λ

µ

+
5

ε
ln2

Λ

µ
+
5

3
ln3

Λ

µ

)
+ γ2β

2
1

( 1
ε3

+
4

ε2
ln
Λ

µ
+
6

ε
ln2

Λ

µ
+ 4 ln3

Λ

µ

)

+γ1β
3
1

(1
ε
+ ln

Λ

µ

)4]
+O(α5). (15.35)

Using Eq. (15.34) it is possible to compare coefficients at higher poles and log-
arithms. Namely, according to [52–54] the coefficients at higher logarithms for
the cutoff type regularizations and at higher ε-poles in the case of using the
dimensional technique can be written as

lnZα(α, lnΛ/µ) = −

∞∑
q=1

∞∑
k1,k2,...,kq=1

1

Kq
· Kq!
q!
βk1βk2 . . . βkq α

Kq lnq
Λ

µ
;

lnZα(α, 1/ε) = −

∞∑
q=1

∞∑
k1,k2,...,kq=1

1

Kq
βk1βk2 . . . βkq α

Kq ε−q, (15.36)
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where Km ≡
m∑
i=1

ki; Km! ≡ K1K2 . . . Km; K0! ≡ 1.
Moreover, it is possible to find some other features of the renormalization constant
structure. The simplest one is the relation between coefficients at simple ε-poles
and at the first power of lnΛ/µ given by Eq. (15.1). The coefficients at higher poles
and logarithms are related in a much more complicated way, but some features
can nevertheless be noted [52]. As an example, here we consider the expression
for lnZα, in which all terms proportional to 1/ε2, ε−1 lnΛ/µ, and ln2Λ/µ are
factorized into perfect squares,

lnZα = −

∞∑
L=1

αLβL

( 1
Lε

+ ln
Λ

µ

)
−
1

L

∞∑
L=2

αL
L−1∑
k=1

βkβL−k

(1
ε
+
L

2
ln
Λ

µ

)2

+ higher poles and logarithms. (15.37)

It can also be noted that some terms have a rather simple structure

lnZα = −

∞∑
m=1

∞∑
k=1

(
βkα

k
)m

m
k
(1
ε
+ k ln

Λ

µ

)m
+ the other terms. (15.38)

Some features have also been found for Zα, (Zα)S, and lnZ, for instance,

lnZ = −

∞∑
L=1

αL

L

L∑
k=1

γL−k+1(β1)
k−1εL−k

(1
ε
+ ln

Λ

µ

)L∣∣∣∣
εs→0 for all s>0

+ terms containing βi with i ≥ 2. (15.39)

Thus, it is possible to construct simple all-loop equations for the renormalization
constants and, using them, analyse the coefficients at higher poles and logarithms.

15.5 Conclusion

Investigation of various renormalization prescriptions is very important, because
some exact relations (e.g., the NSVZ equation) are satisfied only in certain sub-
traction schemes. Different subtraction schemes can be related by finite renormal-
izations which form a Lie group. The infinitesimal finite renormalizations of the
gauge coupling constant form a certain subalgebra of the Witt algebra (the central
extension of which is the Virasoro algebra widely used in string theory). It is also
possible to construct the commutation relations for the algebra of the infinitesimal
finite renormalizations which involve the matter field renormalizations. The non-
infinitesimal finite renormalizations can be obtained in standard way with the help
of the exponential map. An important particular case of finite renormalizations is
the ones that shift the renormalization point µ. They do not change RGFs and can
be used for constructing simple formulas for the renormalization constants. This
has been done for a version of dimensional regularization in which the dimension-
ful regularization parameter Λ is different from the renormalization point µ. The
main advantage of this technique is that it has features of both usual dimensional
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regularization and the regularizations of the cutoff type. In this case the formu-
las for the renormalization constants relate the coefficients at ε-poles, powers of
lnΛ/µ, and the mixed terms to the coefficients of RGFs, i.e. of the β-function and
anomalous dimension. After setting Λ = µ they reproduce the corresponding
results for the usual dimensional regularization, and after removing ε-poles give
the expressions for the cutoff type regularizations. They also allow establishing
the relation between the coefficients at higher poles and at higher logarithms in a
simple way, although at the first sight this relation is highly nontrivial. Using the
general equations for the renormalization constants we present the corresponding
expressions in the lowest approximations and discuss some general features of
the results.
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16 A curious example of dimensionality reduction in
the E8 lattice

Elia Dmitrieff

No Institute Given

Abstract: We investigated influence of the Elser-Sloane rotation matrix on the infi-
nite E8 root lattice and found out that we got three orthogonal spaces - a 3D fractal
quasi-crystal, a 2D square lattice and a 3D space in which nodes are concentrated
in a finite three-dimensional polyhedral base. The size of base specifies the degree
of 3D fractal’s detail, so it can be taken small using self-similarity. We interpret
this effect as a 8D to (3+2)D dimensional reduction. Further, one can get down to
(3+1)D by choosing a path along the nodes of square lattice.

Povzetek: Avtor raziskuje vpliv Elser-Sloanove rotacijske matrike na neskončno
korensko mrežo E8 in ugotovi, da se pojavijo trije ortogonalni prostori: fraktalni
trirazsežni kvazikristal, kvadratna dvorazsežna mreža in trirazsežni prostor, v
katerem so vozlišča zgoščena v končno trirazsežno poliedrsko strukturo. Po-
drobnosti na fraktalu določajo velikost baze. Če je fraktal videti majhen, avtor
interpretira kot zmanjšanje osem razsežne na (3+2) razsežno, ali celo na (3+1) tedaj,
kadar izbere poti vzdolž vozlišč kvadratne mreže.
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17 Techniques that allow the implementation of a 4D
borderless lattice model in the form of a 3D hardware
device

Elia Dmitrieff

No Institute Given

Abstract: We propose a practical way to construct a computing environment in the
form of a cellular automaton on a four-dimensional lattice. Specific folding allows
us to obtain a logical seamless and borderless 4D network as a 3D hardware device.
We believe that the use of such a framework, together with a special reversible
computational rule, will make it possible to realistically simulate the behavior of
fundamental particles.

Povzetek: Avtor predlaga vzpostavitev računalniškega okolja v obliki celičnega
avtomata na štirirazsežni mreži, na kateri vspostavi logično brezšivne in brezrobne
štiri razšežne povezave kot tri razsežne hardverske naprave. Avtor meni, da bo
uporaba tega okolja omogočila drugačno razumevanje osnovnih gradnikov snovi.
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18 Fermion masses, mixing and FCNC’s within a
gauged SU(3) family symmetry

Albino Hernandez-Galeana ⋆⋆

Departamento de F´ısica, ESFM - Instituto Polit´ecnico Nacional. U. P. ”Adolfo L´opez
Mateos”. C. P. 07738, Ciudad de M´exico, M´exico

Abstract: Within a gauged SU(3) family symmetry model, we address the prob-
lem of mass generation for ordinary fermions. In this framework right handed
neutrinos are needed in order to cancel anomalies. We also introduce a set of SU
(2)L weak singlet vector-like fermions U,D,E,N, with N a neutral lepton. These
vector- like fermions allow the implementation of See-saw mechanisms at tree
level to generate the masses of the top and bottom quarks and the tau lepton.
Light fermions obtain masses from loop corrections mediated by the massive SU(3)
gauge bosons. We show a parameter space region for simultaneous solutions
of quark and lepton masses and FCNC’s suppression, trying to keep as low as
possible the SU(3) gauge boson masses.

Povzetek: Avtor uporabi model SU(3) za določanje lastnosti treh družin kvarkov
in leptonov. Vključi desnoročne nevtrine in doda levoročni šibki singlet U,D,E,N,
kjer je N lepton brez naboja. Ti šibki singleti določajo mase kvarkov top in bottom
ter leptona tau že na drevesnem nivoju z mehanizmom “Sea-saw”. Maso lahkih
kvarkov določa interakcija kvarkov z družinskimi bozoni v popravkih višjih redov.
Avtor predstavi tudi parametrični prostor, znotraj katerega so mase kvarkov in
leptonov skladne z izmerjenimi in v soglasju z mejami, ki preprečujejo direktne
prehode iste vrste fermionov med družinami. Poskrbi, da so mase družinskih
bozonov čim nižje.

⋆⋆ ahernandez@ipn.mx
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19 Virtual Institute of Astroparticle physics
as the online support for studies of BSM physics and cosmology

Maxim Khlopov1,2,3

e-mail khlopov@apc.univ-paris7.fr

1 Centre for Cosmoparticle Physics ”Cosmion”
National Research Nuclear University MEPHI”, 115409 Moscow, Russia
2 Virtual Institute of Astroparticle physics, 75018, Paris, France
3 Institute of Physics, Southern Federal University
Stachki 194, Rostov on Don 344090, Russia

Abstract. We review the experience of the unique complex of Virtual Institute of As-
troparticle Physics (VIA) in presentation online for the most interesting theoretical and
experimental results, participation online in conferences and meetings, various forms of
collaborative scientific work as well as programs of education at distance, combining online
videoconferences with extensive library of records of previous meetings and Discussions on
Forum. Since 2014 VIA online lectures combined with individual work on Forum acquired
the form of Open Online Courses. Aimed to individual work with students the Course
is not Massive, but the account for the number of visits to VIA site can convert VIA in
a supplementary tool for MOOC activity. VIA sessions, being a traditional part of Bled
Workshops’ program, became the platform of the XXVII Bled Workshop ”What comes
beyond the Standard models?” Their interactive format preserved the traditional creative
nonformal atmosphere of Bled Workshop meetings. We openly discuss the state of art of
VIA platform.

Keywords: astroparticle physics, physics beyond the Standard model, e-learning,
e-science, MOOC

19.1 Introduction

Studies in astroparticle physics link astrophysics, cosmology, particle and nuclear
physics and involve hundreds of scientific groups linked by regional networks
(like ASPERA/ApPEC [1, 2]) and national centers. The exciting progress in these
studies will have impact on the knowledge on the structure of microworld and
Universe in their fundamental relationship and on the basic, still unknown, physi-
cal laws of Nature (see e.g. [3, 4] for review). The progress of precision cosmology
and experimental probes of the new physics at the LHC and in nonaccelerator
experiments, as well as the extension of various indirect studies of physics beyond
the Standard model involve with necessity their nontrivial links. Virtual Institute
of Astroparticle Physics (VIA) [5] was organized with the aim to play the role of
an unifying and coordinating platform for such studies.
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Starting from the January of 2008 the activity of the Institute took place on its web-
site [6] in a form of regular weekly videoconferences with VIA lectures, covering
all the theoretical and experimental activities in astroparticle physics and related
topics. The library of records of these lectures, talks and their presentations was
accomplished by multi-lingual Forum. Since 2008 there were 220 VIA online lec-
tures, VIA has supported distant presentations of 192 speakers at 32 Conferences
and provided transmission of talks at 78 APC Colloquiums.
In 2008 VIA complex was effectively used for the first time for participation
at distance in XI Bled Workshop [7]. Since then VIA videoconferences became a
natural part of Bled Workshops’ programs, opening the virtual room of discussions
to the world-wide audience. Its progress was presented in [8–22].
Here the current state-of-art of VIA complex is presented in order to clarify the way
in which discussion of open questions beyond the standard models of both particle
physics and cosmology were supported by the platform of VIA facility at the XXVII
Bled Workshop. Even without pandemia, there appear other obstacles, preventing
participants to attend offline meeting and in this situation VIA videoconferencing
supported in 2024 traditions of open discussions at Bled meetings at distant talks,
involving distant participants in these discussions.

19.2 VIA structure and activity

19.2.1 The problem of VIA site

The structure of the VIA site was initially based on Flash and is virtually ruined
now in the lack of Flash support. The original structure is illustrated by the Fig.
19.1. The home page, presented on this figure, contained the information on the
coming and records of the latest VIA events. The upper line of menu included
links to directories (from left to right): with general information on VIA (About
VIA); entrance to VIA virtual rooms (Rooms); the library of records and presenta-
tions (Previous), which contained records of VIA Lectures (Previous → Lectures),
records of online transmissions of Conferences (Previous → Conferences), APC
Colloquiums (Previous → APC Colloquiums), APC Seminars (Previous → APC
Seminars) and Events (Previous → Events); Calendar of the past and future VIA
events (All events) and VIA Forum (Forum). In the upper right angle there were
links to Google search engine (Search in site) and to contact information (Con-
tacts). The announcement of the next VIA lecture and VIA online transmission of
APC Colloquium occupied the main part of the homepage with the record of the
most recent VIA events below. In the announced time of the event (VIA lecture or
transmitted APC Colloquium) it was sufficient to click on ”to participate” on the
announcement and to Enter as Guest (printing your name) in the corresponding
Virtual room. The Calendar showed the program of future VIA lectures and events.
The right column on the VIA homepage listed the announcements of the regularly
up-dated hot news of Astroparticle physics and related areas.
In the lack of Flash support this system of links is ruined, but fortunately, they
continue to operate separately and it makes possible to use VIA Forum, by direct
link to it, as well as direct inks to virtual Zoom room for regular Laboratory and
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Fig. 19.1: The original home page of VIA site
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Seminar meetings (see Fig 19.2). The necessity to restore all the links within VIA
complex is a very important task to revive the full scale of VIA activity.

19.2.2 VIA activity

In 2010 special COSMOVIA tours were undertaken in Switzerland (Geneva),
Belgium (Brussels, Liege) and Italy (Turin, Pisa, Bari, Lecce) in order to test stability
of VIA online transmissions from different parts of Europe. Positive results of these
tests have proved the stability of VIA system and stimulated this practice at XIII
Bled Workshop. The records of the videoconferences at the XIII Bled Workshop
were put on VIA site [23].
Since 2011 VIA facility was used for the tasks of the Paris Center of Cosmological
Physics (PCCP), chaired by G. Smoot, for the public program ”The two infinities”
conveyed by J.L.Robert and for effective support a participation at distance at
meetings of the Double Chooz collaboration. In the latter case, the experimentalists,
being at shift, took part in the collaboration meeting in such a virtual way.
The simplicity of VIA facility for ordinary users was demonstrated at XIV Bled
Workshop in 2011. Videoconferences at this Workshop had no special technical
support except for WiFi Internet connection and ordinary laptops with their
internal webcams and microphones. This test has proved the ability to use VIA
facility at any place with at least decent Internet connection. Of course the quality
of records is not as good in this case as with the use of special equipment, but still
it is sufficient to support fruitful scientific discussion as can be illustrated by the
record of VIA presentation ”New physics and its experimental probes” given by
John Ellis from his office in CERN (see the records in [24]).
In 2012 VIA facility, regularly used for programs of VIA lectures and transmission
of APC Colloquiums, has extended its applications to support M.Khlopov’s talk at
distance at Astrophysics seminar in Moscow, videoconference in PCCP, participa-
tion at distance in APC-Hamburg-Oxford network meeting as well as to provide
online transmissions from the lectures at Science Festival 2012 in University Paris7.
VIA communication has effectively resolved the problem of referee’s attendance
at the defence of PhD thesis by Mariana Vargas in APC. The referees made their
reports and participated in discussion in the regime of VIA videoconference. In
2012 VIA facility was first used for online transmissions from the Science Festival
in the University Paris 7. This tradition was continued in 2013, when the transmis-
sions of meetings at Journées nationales du Développement Logiciel (JDEV2013)
at Ecole Politechnique (Paris) were organized [26].
In 2013 VIA lecture by Prof. Martin Pohl was one of the first places at which the
first hand information on the first results of AMS02 experiment was presented [25].
In 2014 the 100th anniversary of one of the foundators of Cosmoparticle physics, Ya.
B. Zeldovich, was celebrated. With the use of VIA M.Khlopov could contribute the
programme of the ”Subatomic particles, Nucleons, Atoms, Universe: Processes and
Structure International conference in honor of Ya. B. Zeldovich 100th Anniversary”
(Minsk, Belarus) by his talk ”Cosmoparticle physics: the Universe as a laboratory of
elementary particles” [27] and the programme of ”Conference YaB-100, dedicated
to 100 Anniversary of Yakov Borisovich Zeldovich” (Moscow, Russia) by his talk
”Cosmology and particle physics”.
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Fig. 19.2: The current home page of VIA site
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In 2015 VIA facility supported the talk at distance at All Moscow Astrophysical
seminar ”Cosmoparticle physics of dark matter and structures in the Universe”
by Maxim Yu. Khlopov and the work of the Section ”Dark matter” of the Interna-
tional Conference on Particle Physics and Astrophysics (Moscow, 5-10 October
2015). Though the conference room was situated in Milan Hotel in Moscow all
the presentations at this Section were given at distance (by Rita Bernabei from
Rome, Italy; by Juan Jose Gomez-Cadenas, Paterna, University of Valencia, Spain
and by Dmitri Semikoz, Martin Bucher and Maxim Khlopov from Paris) and its
proceeding was chaired by M.Khlopov from Paris. In the end of 2015 M. Khlopov
gave his distant talk ”Dark atoms of dark matter” at the Conference ”Progress of
Russian Astronomy in 2015”, held in Sternberg Astronomical Institute of Moscow
State University.
In 2016 distant online talks at St. Petersburg Workshop ”Dark Ages and White
Nights (Spectroscopy of the CMB)” by Khatri Rishi (TIFR, India) ”The information
hidden in the CMB spectral distortions in Planck data and beyond”, E. Kholupenko
(Ioffe Institute, Russia) ”On recombination dynamics of hydrogen and helium”,
Jens Chluba (Jodrell Bank Centre for Astrophysics, UK) ”Primordial recombination
lines of hydrogen and helium”, M. Yu. Khlopov (APC and MEPHI, France and
Russia)”Nonstandard cosmological scenarios” and P. de Bernardis (La Sapiensa
University, Italy) ”Balloon techniques for CMB spectrum research” were given
with the use of VIA system. At the defense of PhD thesis by F. Gregis VIA facility
made possible for his referee in California not only to attend at distance at the
presentation of the thesis but also to take part in its successive jury evaluation.
Since 2018 VIA facility is used for collaborative work on studies of various forms
of dark matter in the framework of the project of Russian Science Foundation
based on Southern Federal University (Rostov on Don). In September 2018 VIA
supported online transmission of 17 presentations at the Commemoration day for
Patrick Fleury, held in APC.
The discussion of questions that were put forward in the interactive VIA events
is continued and extended on VIA Forum. Presently activated in English,French
and Russian with trivial extension to other languages, the Forum represents a
first step on the way to multi-lingual character of VIA complex and its activity.
Discussions in English on Forum are arranged along the following directions:
beyond the standard model, astroparticle physics, cosmology, gravitational wave
experiments, astrophysics, neutrinos. After each VIA lecture its pdf presentation
together with link to its record and information on the discussion during it are
put in the corresponding post, which offers a platform to continue discussion in
replies to this post.

19.2.3 VIA e-learning, OOC and MOOC

One of the interesting forms of VIA activity is the educational work at distance. For
the last eleven years M.Khlopov’s course ”Introduction to cosmoparticle physics”
is given in the form of VIA videoconferences and the records of these lectures and
their ppt presentations are put in the corresponding directory of the Forum [28].
Having attended the VIA course of lectures in order to be admitted to exam
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students should put on Forum a post with their small thesis. In this thesis students
are proposed to chose some BSM model and to study the cosmological scenario
based on this chosen model. The list of possible topics for such thesis is proposed
to students, but they are also invited to chose themselves any topic of their own on
possible links between cosmology and particle physics. Professor’s comments and
proposed corrections are put in a Post reply so that students should continuously
present on Forum improved versions of work until it is accepted as admission for
student to pass exam. The record of videoconference with the oral exam is also
put in the corresponding directory of Forum. Such procedure provides completely
transparent way of evaluation of students’ knowledge at distance.
In 2018 the test has started for possible application of VIA facility to remote
supervision of student’s scientific practice. The formulation of task and discussion
of progress on work are recorded and put in the corresponding directory on Forum
together with the versions of student’s report on the work progress.
Since 2014 the second semester of the course on Cosmoparticle physics is given in
English and converted in an Open Online Course. It was aimed to develop VIA
system as a possible accomplishment for Massive Online Open Courses (MOOC)
activity [29]. In 2016 not only students from Moscow, but also from France and Sri
Lanka attended this course. In 2017 students from Moscow were accompanied by
participants from France, Italy, Sri Lanka and India [30]. The students pretending
to evaluation of their knowledge must write their small thesis, present it and, being
admitted to exam, pass it in English. The restricted number of online connections
to videoconferences with VIA lectures is compensated by the wide-world access
to their records on VIA Forum and in the context of MOOC VIA Forum and
videoconferencing system can be used for individual online work with advanced
participants. Indeed Google Analytics shows that since 2008 VIA site was visited
by more than 250 thousand visitors from 155 countries, covering all the continents
by its geography (Fig. 19.3). According to this statistics more than half of these
visitors continued to enter VIA site after the first visit. Still the form of individual

Fig. 19.3: Geography of VIA site visits according to Google Analytics

educational work makes VIA facility most appropriate for PhD courses and it
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could be involved in the International PhD program on Fundamental Physics,
which was planned to be started on the basis of Russian-French collaborative
agreement. In 2017 the test for the ability of VIA to support fully distant education
and evaluation of students (as well as for work on PhD thesis and its distant
defense) was undertaken. Steve Branchu from France, who attended the Open
Online Course and presented on Forum his small thesis has passed exam at
distance. The whole procedure, starting from a stochastic choice of number of
examination ticket, answers to ticket questions, discussion by professors in the
absence of student and announcement of result of exam to him was recorded and
put on VIA Forum [31].
In 2019 in addition to individual supervisory work with students the regular
scientific and creative VIA seminar is in operation aimed to discuss the progress
and strategy of students scientific work in the field of cosmoparticle physics.
In 2020 the regular course now for M2 students continued, but the problems of
adobe Connect, related with the lack of its support for Flash in 2021 made neces-
sary to use the platform of Zoom, This platform is rather easy to use and provides
records, as well as whiteboard tools for discussions online can be solved by accom-
plishments of laptops by graphic tabloids. In 2022 the Open Online Course for M2
students was accompanied by special course ”Cosmoparticle physics”, given in
English for English speaking M1 students. In 2023 the practice of Open Online
Course for M2 students was continued.

19.2.4 Organisation of VIA events and meetings

First tests of VIA system, described in [5, 7–9], involved various systems of video-
conferencing. They included skype, VRVS, EVO, WEBEX, marratech and adobe
Connect. In the result of these tests the adobe Connect system was chosen and
properly acquired. Its advantages were: relatively easy use for participants, a pos-
sibility to make presentation in a video contact between presenter and audience, a
possibility to make high quality records, to use a whiteboard tools for discussions,
the option to open desktop and to work online with texts in any format. The lack
of support for Flash, on which VIA site was originally based, made necessary to
use Zoom, which shares all the above mentioned advantages.
Regular activity of VIA as a part of APC included online transmissions of all the
APC Colloquiums and of some topical APC Seminars, which may be of interest
for a wide audience. Online transmissions were arranged in the manner, most
convenient for presenters, prepared to give their talk in the conference room in a
normal way, projecting slides from their laptop on the screen. Having uploaded
in advance these slides in the VIA system, VIA operator, sitting in the conference
room, changed them following presenter, directing simultaneously webcam on
the presenter and the audience. If the advanced uploading was not possible, VIA
streaming was used - external webcam and microphone are directed to presenter
and screen and support online streaming. This experience has found proper place
in the current weakening of the pandemic conditions and regular meetings in real
can be streamed. Moreover, such streaming can be made without involvement of
VIA operator, by direction of webcam towards the conference screen and speaker.
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19.2.5 VIA activity in the conditions of pandemia and after

The lack of usual offline connections and meetings in the conditions of pandemia
made the use of VIA facility especially timely and important. This facility sup-
ports regular weekly meetings of the Laboratory of cosmoparticle studies of the
structure and dynamics of Galaxy in Institute of Physics of Southern Federal Uni-
versity (Rostov on Don, Russia) and M.Khlopov’s scientific - creative seminar and
their announcements occupied their permanent position on VIA homepage (Fig.
19.2), while their records were put in respective place of VIA forum, like [33] for
Laboratory meetings.
The platform of VIA facility was used for regular Khlopov’s course ”Introduction
to Cosmoparticle physics” for M2 students of MEPHI (in Russian) and in 2020
supported regular seminars of Theory group of APC.
The programme of VIA lectures continued to present hot news of astroparticle
physics and cosmology, like talk by Zhen Cao from China on the progress of
LHAASO experiment or lecture by Sunny Vagnozzi from UK on the problem of
consistency of different measurements of the Hubble constant.
The results of this activity inspired the decision to hold in 2020 XXIII Bled Work-
shop online on the platform of VIA [19].
The conditions of pandemia continued in 2021 and VIA facility was successfully
used to provide the platform for various online meetings. 2021 was announced
by UNESCO as A.D.Sakharov year in the occasion of his 100th anniversary VIA
offered its platform for various events commemorating A.D.Sakharov’s legacy in
cosmoparticle physics. In the framework of 1 Electronic Conference on Universe
ECU2021), organized by the MDPI journal ”Universe” VIA provided the platform
for online satellite Workshop ”Developing A.D.Sakharov legacy in cosmoparticle
physics” [34].

19.3 VIA platform at the XXVII Bled Workshop

VIA sessions at Bled Workshops continued the tradition coming back to the first
experience at XI Bled Workshop [7] and developed at XII, XIII, XIV, XV, XVI, XVII,
XVIII, XIX, XX, XXI and XXII Bled Workshops [8–18]. They became a regular
but supplementary part of the Bled Workshop’s program. In the conditions of
pandemia it became the only form of Workshop activity in 2020 [19] and in 2021
[20], as well as substantial part of the hybrid Memorial XXV Bled Workshop in
2022 [21] and XXVI Bled Workshop in 2023 [22].
During the XXVII Bled Workshop the announcement of VIA sessions was put on
VIA home page, giving an open access to the videoconferences at the Workshop
sessions. The preliminary program as well as the corrected program for each day
were continuously put on Forum with the slides and records of all the talks and
discussions [35].
Starting from its official opening (Figs. 19.5 and 19.6) VIA facility tried to preserve
the creative atmosphere of Bled discussions in the format videoconferences as at
the talk ”How far can we understand nature with the spin-charge-family theory,
describing the internal spaces of fermions and bosons with the Clifford algebra” by
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Fig. 19.4: M.Khlopov’s talk ”Multimessenger probes for new physics in the light of
A.D.Sakharov legacy in cosmoparticle physics” at the satellite Workshop ”Devel-
oping A.D.Sakharov legacy in cosmoparticle physics” of ECU2021.

Fig. 19.5: Opening the XXVII Bled Workshop by Norma Mankoc-Borstnik
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Fig. 19.6: Opening the XXVII Bled Workshop by Maxim Yu. Khlopov

Norma Mankoc-Borstnik (Fig. 19.7) or talks ”Status of the DAMA project” given
by R.Bernabei, (Fig. 19.8), from Rome University, Italy (see records in [35]).

Fig. 19.7: VIA talk ”Can the “basis vectors”, describing the internal spaces of
fermion and boson fields with the Clifford odd (for fermion) and Clifford even
(for boson) objects, explain interactions among fields, with gravitons included? A
short overview of the spin-charge-family theory and its achievements so far” by
Norma Mankoc-Borstnik at XXVII Bled Workshop
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Fig. 19.8: VIA talk ”Status of the DAMA project” by R.Bernabei from Rome at
XXVII Bled Workshop

During the Workshop the VIA virtual room was open, inviting distant participants
to join the discussion and extending the creative atmosphere of these discussions to
the world-wide audience. The participants joined these discussions from different
parts of world. The talk ”Cosmological inflation and High-scale SUSY as the
Origin of Dark Matter” was given by Sergey Ketov from Japan (Fig. 19.9), by A.
Hernandez-Galeana from Mexico (Fig. 19.11), by S. Roy Chowdhury - from India,
by Stan Brodsky ”New Perspectives for Hadron Spectroscopy and Dynamics
and the QCD Running Coupling from Color-Confining Holographic Light-Front
QCD” - from USA, by D.Fargion from Italy. M.Y. Khlopov gave his talk ”Open
questions of Beyond the Standard model cosmology” from France, while H.B.
Nielsen gave his talks ”Approximate SU(5), Several Fundamental Scales, Fine
Structure Constants”, ”Random Dynamics, Deriving ? Quantum Mechanics” and
”Dark matter from Domain walls” from Croatia (Fig. 19.10) .
VIA talks highly enriched the Workshop program and involved distant partici-
pants in fruitful discussions. The use of VIA facility has provided remote presenta-
tion of students’ scientific debuts in BSM physics and cosmology. The records of
all the talks and discussions can be found on VIA Forum [35].
VIA facility has managed to join scientists from Mexico, USA, France, Italy, Russia,
Slovenia, India, China and many other countries in discussion of open problems
of physics and cosmology beyond the Standard models. In the current situation,
hindering visits of Russian scientists, to Europe it made possible Russian students
to present their results and participate in these discussions

19.4 Conclusions

The Scientific-Educational complex of Virtual Institute of Astroparticle physics
provides regular communication between different groups and scientists, working
in different scientific fields and parts of the world, the first-hand information
on the newest scientific results, as well as support for various educational pro-
grams at distance. This activity would easily allow finding mutual interest and
organizing task forces for different scientific topics of cosmology, particle physics,
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Fig. 19.9: VIA talk ”Cosmological inflation and High-scale SUSY as the Origin of
Dark Matter” by Sergey Ketov at XXVII Bled Workshop

Fig. 19.10: VIA talk ”Dark matter from Domain walls” by Holger Bech Nielsen at
XXVII Bled Workshop



i
i

“j” — 2024/12/10 — 17:17 — page 251 — #265 i
i

i
i

i
i

19 VIA at XXVII Bled Workshop 251

Fig. 19.11: VIA Discussion at the talk ”Fermion masses, mixing and FCNC’s within
a gauged SU(3) family symmetry” by Albino Hernandez-Galeana at XXVII Bled
Workshop

astroparticle physics and related topics. It can help in the elaboration of strategy of
experimental particle, nuclear, astrophysical and cosmological studies as well as in
proper analysis of experimental data. It can provide young talented people from
all over the world to get the highest level education, come in direct interactive
contact with the world known scientists and to find their place in the fundamental
research. These educational aspects of VIA activity can evolve in a specific tool for
International PhD program for Fundamental physics. Involvement of young scien-
tists in creative discussions was an important aspect of VIA activity at XXVII Bled
Workshop. VIA applications can go far beyond the particular tasks of astroparticle
physics and give rise to an interactive system of mass media communications.
VIA sessions, which became a natural part of a program of Bled Workshops,
maintained in 2024 the platform for online discussions of physics beyond the
Standard Model involving distant participants from all the world in the fruitful
atmosphere of Bled offline meeting. This discussion can continue in posts and
post replies on VIA Forum. The experience of VIA applications at Bled Workshops
plays important role in the development of VIA facility as an effective tool of
e-science and e-learning.
One can summarize the advantages and flaws of online format of Bled Workshop.
It makes possible to involve in the discussions scientists from all the world (young
scientists, especially) free of the expenses related with meetings in real (voyage,
accommodation, ...), but loses the advantage of nonformal discussions at walks
along the beautiful surrounding of the Bled lake and other places of interest. The
improvement of VIA technical support by involvement of Zoom provided better
platform for nonformal online discussions, but in no case can be the substitute
for offline Bled meetings and its creative atmosphere in real, which as we hope
will be revived at the future Bled Workshops. One can summarize that VIA facility
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provides the online platform of Bled Workshop, involving world-wide participants
in its creative and open discussions of BSM physics and cosmology.
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20 Code

A. Kleppe

(... a poem)

There is a code here,
only visible at night
and only now and then, by chance
But sometimes you wake up
and see it all, revealing
every second, every speck of dust
That tiny moment
when the veil is lifted
Everything is true
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The publication was financially supported by the Slovenian Research And
Innovation Agency from the funds of the state budget from the tender for the
co-financing of domestic projects scientific periodicals.

To delo je ponujeno pod licenco Creative Commons Priznanje avtorstva-Deljenje
pod enakimi pogoji 4.0 Mednarodna licenca (izjema so fotografije).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (except photographs).

Digital copy of the book is available on: https://ebooks.uni-lj.si/

Prva e-izdaja. Knjiga je v digitalni obliki dostopna na: https://ebooks.uni-lj.si/

DOI: 10.51746/9789612974848
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