

The Gravitational-Wave Aspect of PBH-Catalyzed Phase Transitions

Jiahang Zhong

University of Science and Technology of China

Bled Workshop on BSM Physics, 2025

Outline

Cosmological Phase Transitions

PBH's Catalytic Effect

Gravitational Waves

Insights from PTA SGWB

Cosmological Phase Transition

Motivations for First-order Phase Transitions

Theoretical points:

Fundamental theory, dark sector theory, baryon asymmetry,

To probe BSM via GWs:

Since BSM is necessary for FOPT

To probe the early universe via GWs:

Phase Transition is a result of competition between cosmic expansion and bubble nucleation rate

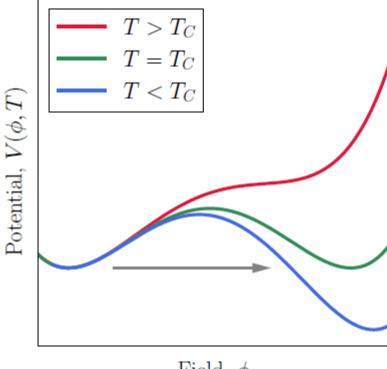
Thermal Phase Transitions

- potential changed by temperature
- Need quantum tunneling (pure universe)

Tunneling Rate per unit time and volume

$$\Gamma(T) \approx T^4 \left(\frac{S_3}{2\pi T}\right)^{\frac{3}{2}} \exp\left(-\frac{S_3}{T}\right)$$

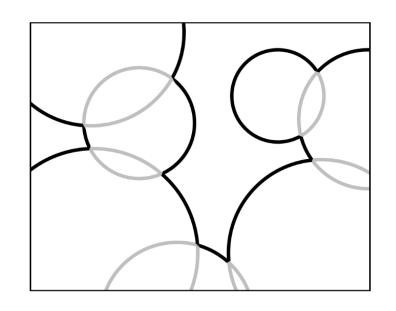
 $S_3(T)$ is instanton solution correspond to bubble profile



Field, ϕ

Could be solved numerically, e.g. **CosmoTransitions**, or analytically with thin-wall approximation

Bubbles in First-order PT (FOPT)



Critical bubble radius

$$R_c \sim 1/\Delta \langle \phi \rangle$$

Bubble wall velocity

$$v_{wall} \sim c$$

For strong PT

Bubble wall profile

Movement of high energy bubble wall

Bubble Collision Gravitational Waves

Parameters

Nucleation temperature T_n : One bubble in unit Hubble volume

$$\int_{t_c}^{t_n} dt' \frac{\Gamma(t')}{H^3(t)} = 1 \sim \Gamma(T_n) = H^4(T_n)$$

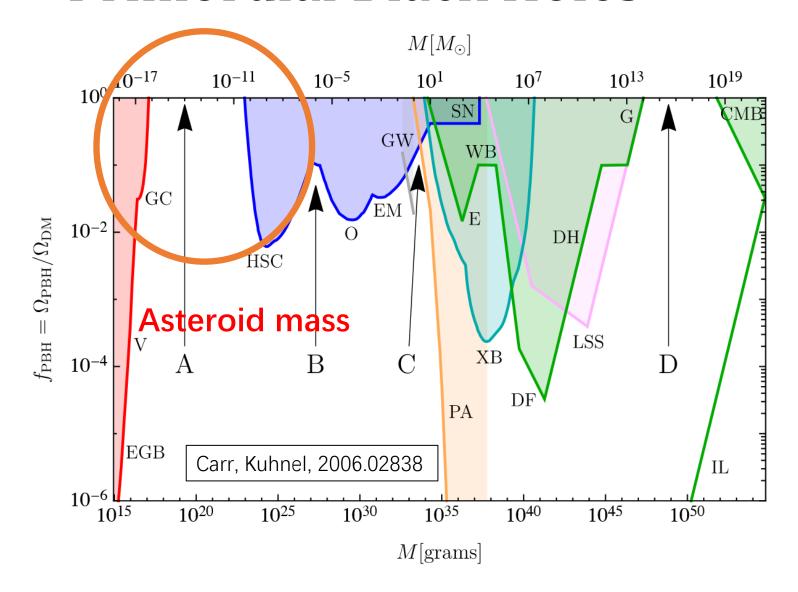
Vacuum energy density ρ_V Radiation energy density $\rho_{rad} \sim T^4$

Inverse duration:
$$\beta$$
: $\beta = \frac{d \ln(\Gamma)}{dt} \Big|_{T_n}$

Near T_n $\Gamma = H^4(T_n)e^{\beta(t-t_n)}$

PBH's catalytic effect

Primordial Black Holes

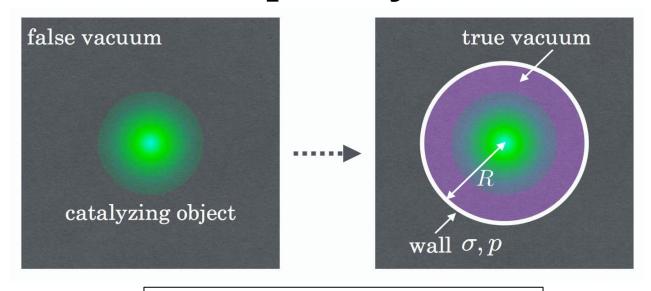


Dark matter candidate

PBHs are formed in the early universe

May formed before a PT

Catalytic Effect: Impurity in the universe



Oshita, Yamada, Yamaguchi, 1808.01382

Scalar Field: from False Vacuum to True Vacuum

Schwarzschild-de Sitter spacetime $ds^2 = -f_{SdS}(r)dt^2 + \frac{dr^2}{f_{SdS}(r)} + r^2d\Omega$, **Metric Field:**

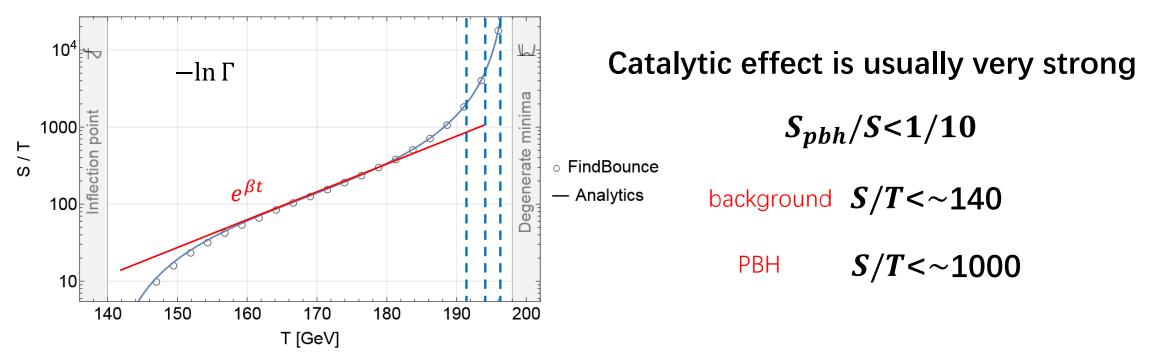
$$\mathrm{d}s^2 = -f_{\mathrm{SdS}}(r)\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{f_{\mathrm{SdS}}(r)} + r^2\mathrm{d}\Omega,$$

from
$$\Lambda_+$$
 to $\Lambda_ \rho_V = \Lambda_+ - \Lambda_ f_{\text{SdS}}(r) = 1 - \frac{M_{\text{BH}}}{4\pi r} - \frac{\Lambda r^2}{3}$,

$$f_{\text{SdS}}(r) = 1 - \frac{M_{\text{BH}}}{4\pi r} - \frac{\Lambda r^2}{3}$$

Catalytic Effect

Catalytic strength depend on PBH mass M_{PBH} , vacuum energy density ρ_V , and bubble wall tension σ_W .



Approximation: Each PBH induce one bubble at critical temperature T_c

Catalytic Effect

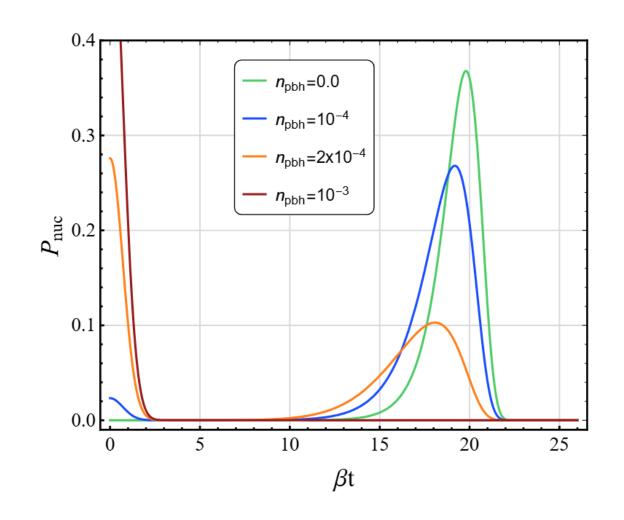
Nucleation Rate

$$\Gamma = \Gamma_b + \Gamma_{PBH}$$

$$\Gamma_b = H^4(T_n)e^{\beta(t-t_n)}$$

$$\Gamma_{PBH} = n_{pbh} H^3 \delta(t - t_c)$$

Averaged PBH number per unit Hubble patch



Gravitational Waves

The approximate form on dimension ground:

$$E_{GW} \sim G v_w^3 \kappa^2 \rho_V^2 \beta^{-5}$$

$$E_V \sim \rho_V v_w^3 \beta^{-3}$$

$$\alpha = \rho_V / \rho_{rad}$$

$$\rho_{tot} = \rho_V + \rho_{rad}$$

$$H = \sqrt{\rho_{tot}} / M_{pl}$$

$$\frac{\rho_{GW}}{\rho_{tot}} \sim \frac{\rho_V}{\rho_{tot}} \frac{E_{GW}}{E_V} \sim \kappa^2 \left(\frac{\alpha}{1+\alpha}\right)^2 \left(\frac{\beta}{H}\right)^{-2}$$

$$\Omega_{GW} = \frac{1}{\rho_{tot}} \frac{d\rho_{GW}}{d \ln f} \sim \kappa^2 \left(\frac{\alpha}{1+\alpha}\right)^2 \left(\frac{\beta}{H}\right)^{-2} g(f\beta^{-1})$$

Strong PT:

$$\alpha \gg 1$$

$$\kappa \sim 1$$

PBHs affect the PT GW only through affect the bubble nucleation rate

 v_w , ρ_V , κ will not be affected PBHs

Only the timescale β^{-1} will be affected

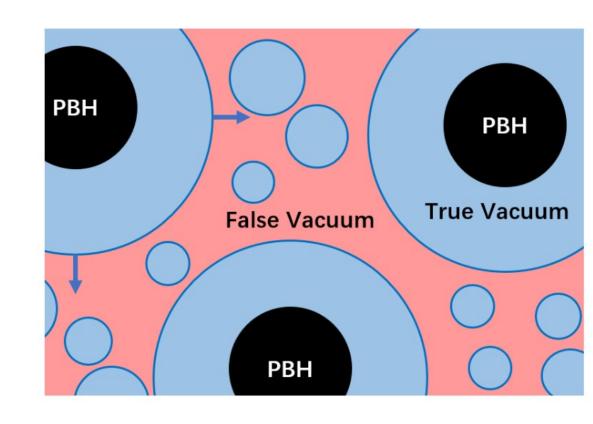
In strong PT, $v_w \sim c = 1$ and $\beta^{-1} \sim R_{sep}$ Mean bubble separation

$$R_{sep} = (n_{bubble})^{-1/3} = \left(\int_{t_c}^{t_p} dt \ \Gamma(t) F(t)\right)^{-1/3}$$

F(t) is false vacuum fraction

 t_p is percolation time: $F(t_p) \approx 0.7$

$$\frac{\beta}{\beta (n_{pbh} = 0)} = \left(\frac{R_{sep}}{R_{sep}(n_{pbh} = 0)}\right)^{-1}$$



$$\frac{\Omega_p}{\Omega_p(n_{pbh}=0)} = \left(\frac{\beta}{\beta(n_{pbh}=0)}\right)^{-2} \qquad \frac{f_p}{f_p(n_{pbh}=0)} = \frac{\beta}{\beta(n_{pbh}=0)}$$

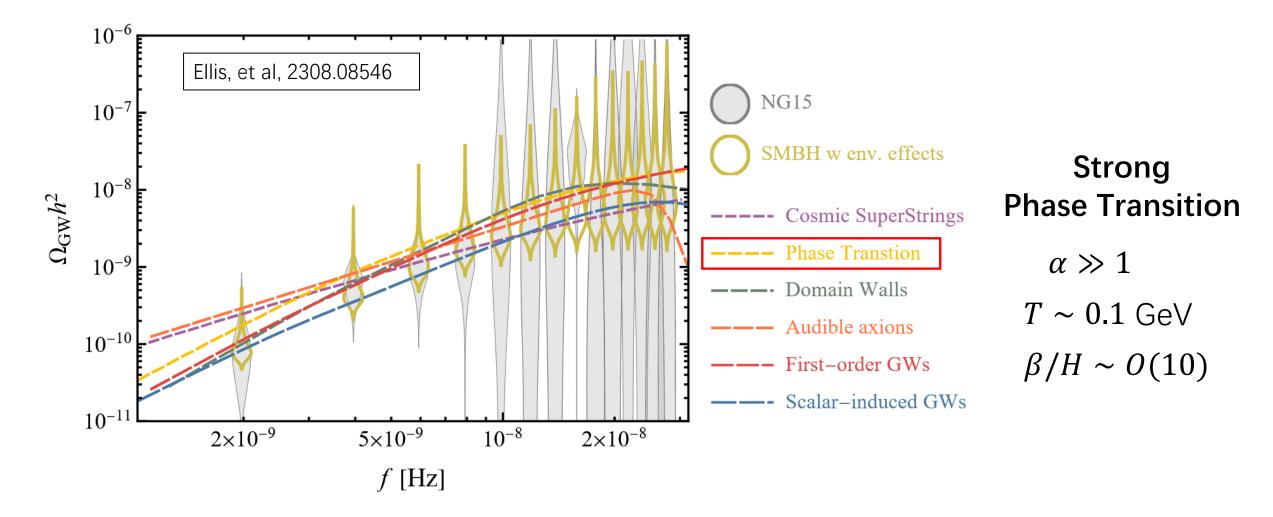
In high PBH number density limit:

$$\frac{\beta}{\beta(n_{pbh}=0)} \approx 4 n_{pbh}^{\frac{1}{3}} H/\beta(n_{pbh}=0)$$
 Leading to suppressed GW signals

Insight from PTA SGWB

SGWB Observed by PTA

The NANOGrav 15-Year Data Set



Number Density of PBHs

$$n_{pbh} \approx 1.3 \times 10^{-8} \left(\frac{M_{sun}}{M_{PBH}}\right) \left(\frac{f_{PBH}}{1.0}\right) \left(\frac{0.1 GeV}{T}\right)^3 \left(\frac{g_*}{100}\right)^{-1/2}$$

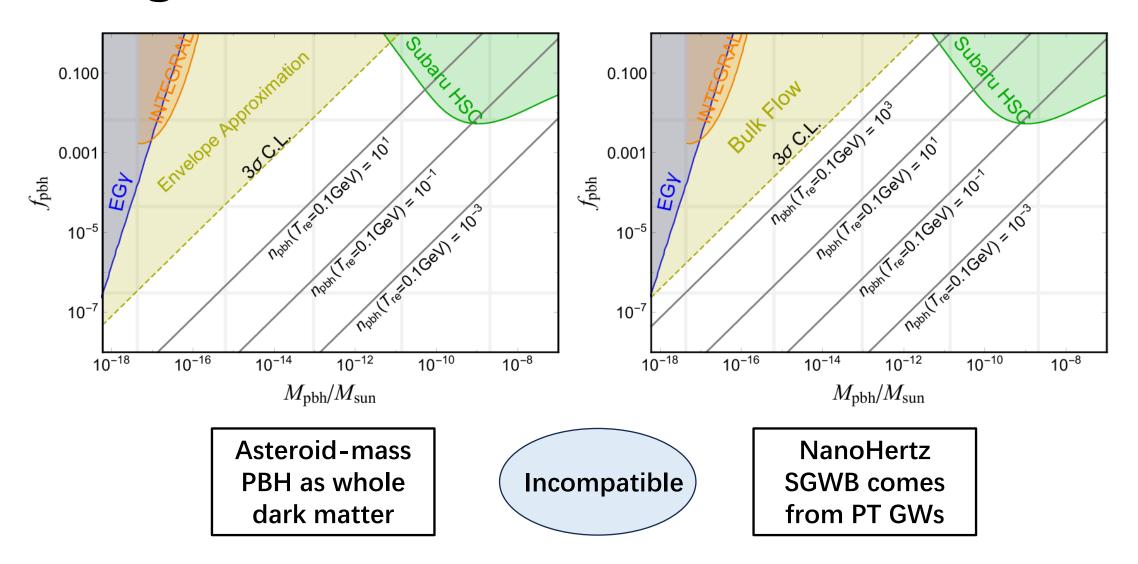
0.1 GeV Asteroid-mass PBH as whole dark matter

M_{PBH}	n_{pbh}
$10^{-14}M_{sun}$	10^6
$10^{-16} M_{sun}$	10 ⁸

High number density

Suppressed GW signals

Insight from PTA data



Summary

• PBH can affect PT GWs through catalytic effect

 Asteroid-mass PBH as whole dark matter conflict with PT interpretation of PTA data

Thank you!

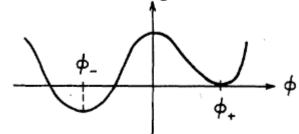
Instanton

Field equation at Euclidean space:

$$\left(\frac{\partial^2}{\partial \tau^2} + \nabla^2\right)\phi = +U'(\phi)$$

Bounce solution:

$$\phi(\tau = \pm \infty) = \phi_+$$



Boundary choose to be at t = 0

$$\frac{d\phi}{d\tau}(t=0)=0$$

$$O(4)$$
 symmetry: $\rho = \sqrt{x^2 + \tau^2}$

$$\frac{d^2\phi}{d\rho^2} + \frac{3}{\rho} \frac{d\phi}{d\rho} = U'(\phi)$$

$$\phi(\rho = \infty) = \phi_+, \frac{d\phi}{d\rho}(\rho = 0) = 0$$

$$B = S_E = 2\pi^2 \int_0^\infty \rho^3 d\rho \left[\frac{1}{2} \left(\frac{d\phi}{d\rho} \right)^2 + U \right]$$

$$\Gamma/V = A \exp\left(-\frac{B}{\hbar} \right) \left(1 + O(\hbar) \right)$$

Thermal correction to potential: EWPT as an example

Masses depend on Higgs, e.g. $m_h^2 \sim \lambda (3h^2 - v_{ew}^2)$, $m_f \sim g_Y h$.

 $V = V_0(h) + f_{plasma}(h, T)$ Free energy of thermal particle in equilibrium Coleman-Weinberg potential

$$f_{plasma} = T^4 \left[\sum_B J_B \left(\frac{M_B}{T} \right) + \sum_F J_F \left(\frac{M_F}{T} \right) \right]$$
, B, F denote for bosons and fermions

$$J_{B}\left(\frac{m}{T}\right) = -\frac{\pi^{2}}{90} + \frac{1}{24}\left(\frac{m}{T}\right)^{2} - \frac{1}{2(4\pi)^{2}}\left(\frac{m}{T}\right)^{4}\left(\ln\left(\frac{1}{\pi}\frac{m}{T}e^{\gamma_{E}}\right) - \frac{3}{4}\right) + O\left(\left(\frac{m}{T}\right)^{6}\right),$$

$$m = m(h)$$

$$J_{F}\left(\frac{m}{T}\right) = -\frac{7}{8}\frac{\pi^{2}}{90} + \frac{1}{48}\left(\frac{m}{T}\right)^{2} - \frac{1}{2(4\pi)^{2}}\left(\frac{m}{T}\right)^{4}\left(\ln\left(\frac{1}{\pi}\frac{m}{T}e^{\gamma_{E}}\right) - \frac{3}{4}\right) + O\left(\left(\frac{m}{T}\right)^{6}\right),$$

$$V = \frac{D}{2}(T^2 - a)h^2 - \frac{A}{3}(T + b)h^3 + \frac{\lambda}{4}h^4 - g_{eff}\frac{\pi^2}{90}T^4$$

Finite-temperature field theory

precise formula also including thermal loop contribute have impact on D, a, A, b

GW Spectrum Shape

Sources:

- Sound Waves
- Bubble collision
- magnetohydrodynamic (MHD) turbulence

Typical frequency: $f_{\star} \sim \beta \sim H_{\star} \frac{\beta}{H_{+}}$

$$f_0 = \frac{a(t_{\star})}{a(t)} f_{\star} \sim 10^{-5} \left(\frac{g_{\star}(T_{\star})}{106}\right)^{\frac{1}{6}} \left(\frac{T_{\star}}{100 \text{GeV}}\right) \frac{\beta}{H_{\star}} \text{ Hz}$$

