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We study the extension of the tensor products of the “basis
vectors”, describing the internal spaces of fermions and

boson second quantised fields by the superposition of odd,
for fermion, and even, for boson, products of the operators

γa with the basis in ordinary space-time to strings.

The boson fields gain the space index α, which is equal to
µ = (0, 1, 2, 3) for vector fields and σ ≥ 5 for scalar fields.

For any symmetry SO(d − 1, 1), d even, of the internal
spaces, the point representing the central position of the
second quantised either fermion or boson field in ordinary

space — with the momenta non zero only in d = (3+ 1) — is
extended to strings.



In the lowest energy level, the extended fields manifest as
the point fields,

with the number 2d−1 of fermion fields — they appear in
families and have their Hermitian conjugated partners in a

separate group;

equal to the number 2d−1 of boson fields — appearing in
two orthogonal groups, both carrying the space index α —

manifesting a kind of supersymmetry.



The Spin-Charge-Family theory,

assuming the description of the internal spaces of fermions
and bosons with the “basis vectors”, which are superposition

of products of

▶ odd number of γa for fermions and

▶ even number of γa for bosons,

offers an unique description of boson and fermion second
quantized fields.

If the internal space involved in creating our universe has
d ≥ (13 + 1)

and the ordinary space is active in d = (3 + 1) and no
symmetry is broken,

then both “basis vectors” have the same number of
elements.

The same number of fermion and boson second quantized
fields, manifests a kind of supersymmetry.



▶ Making a choice that all “basis vectors” are eigenvectors
of the chosen Cartan subalgebra members,

S03,S12,S56, · · · ,Sd−1 d ,

S̃03, S̃12, S̃56, · · · , S̃d−1 d ,

Sab = Sab + S̃ab .

and arrange the “basis vectors” to be products

nilpotents,
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▶ the “basis vectors” of fermions have an odd number of
nilpotents , the “basis vectors” of bosons have an even
number of nilpotents .



▶ There are two kinds of the Clifford algebra objects
in any d. I recognized that in Grassmann space.

J. of Math. Phys. 34 (1993) 3731

▶ The Dirac γa (recognized 90 years ago in d = (3 + 1)).

▶ The second one: γ̃a,

References can be found in
Progress in Particle and Nuclear Physics,
http://doi.org/10.1016.j.ppnp.2021.103890 .



▶ The two kinds of the Clifford algebra objects
anticommute as follows

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+,
{γa, γ̃b}+ = 0,

▶ the postulate

(γ̃aB = i(−)nBBγa ) |ψ0 >,

(B = a0 + aaγ
a + aabγ

aγb + · · ·+ aa1···adγ
a1 . . . γad )|ψo >,

with (−)nB = +1,−1, if B has a Clifford even or odd
character, respectively,
|ψo > is a vacuum state on which the operators γa apply,
reduces the Clifford space for fermions and bosons for
the factor of two, from 2× 2d to 2d ;

▶ Consequently, the operators γ̃aγ̃b = −2i S̃ab define the
family quantum numbers.



▶ These description is elegant and simple to use.

▶ Analysing the “basis vectors” with respect to the
symmetry of the standard model groups
SO(3, 1), SU(2),SU(2), SU(3),U(1), they manifest in
d = (3 + 1) all the second quantized boson fields
observed in d = (3 + 1), and all the second quantized
fermion fields observed in d = (3 + 1) with the second
quantized graviton fields included.

▶ There are additional fields:
The additional SU(2) vector boson fields,
The additional scalar boson fields,
The additional boson fields, responsible for masses of
quarks and leptons and antiquarks and antileptons and
SU(2) vector (and scalar) gauge fields
The right handed neutrinos and left handed
antineutrinos
The fourth family to the observed three families, The
additional four families at higher energies.



▶ Choosing the simplest action for fermions and bosons,
we can describe all the properties of the observed fields.



The application of Sab and S̃ab gives:
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▶ There are the 2
d
2
−1 Clifford odd ”basis vectors”

appearing in 2
d
2
−1 families and the same number of their

Hermitian conjugated partners; 2
d
2
−1 × 2

d
2
−1.

▶ There are 2
d
2
−1 × 2

d
2
−1 Clifford even ”basis vectors”

appearing in two orthogonal groups.



▶ Let us see how does one family of odd ”basis vector” in
d = (13 + 1) look like, if spins in d = (13 + 1) are
analysed with respect to the Standard Model groups:
SO(3, 1)× SU(2)× SU(2)× SU(3)× U(1).

▶ One irreducible representation of one family contains

2
(13+1)

2
−1 = 64 members which include all the family

members, quarks and leptons with the right handed
neutrinos included, as well as all the antimembers,
antiquarks and antileptons, reachable by either Sab (or
by CN PN on a family member).

Jour. of High Energy Phys. 04 (2014) 165
J. of Math. Phys. 34, 3731 (1993),
Int. J. of Modern Phys. A 9, 1731 (1994),
J. of Math. Phys. 44 4817 (2003), hep-th/030322 .



Sab generate all the members of one family. The eightplet
(represent. of SO(7, 1)) of quarks of a particular colour charge. All
are Clifford odd ”basis vectors” , with SU(3)× U(1) part
(τ 33 = 1/2, τ 38 = 1/(2

√
3), and τ 41 = 1/6)

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 Y τ4

Octet, Γ(7,1) = 1, Γ(6) = −1,
of quarks
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γ0γ7 and γ0γ8 transform uR of the 1st row into uL of the 7th row, and dR of the 4rd row into dL of the 6th row,

doing what the Higgs scalars and γ0 do in the standard model.



Sab generate all the members of one family of quarks,
leptonsantiquarks, antileptons. Here is the eightplet (represent. of
SO(7, 1)) of the colour chargeless leptons. The SO(7, 1) part is
identical with the one of quarks, while the SU(3)× U(1) part is:
τ 33 = 0, τ 38 = 0, τ 41 = − 1

2 .
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Octet, Γ(7,1) = 1, Γ(6) = −1,
of leptons
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γ0γ7 and γ0γ8 transform νR of the 1st line into νL of the 7th line, and eR of the 4rd line into eL of the 6th line,

doing what the Higgs scalars and γ0 do in the standard model.



Sab generate also all the anti-eightplet (repres. of SO(7, 1)) of
anti-quarks of the anti-colour charge belonging to the same family
of the Clifford odd basis vectors . (τ 33 = −1/2, τ 38 = −1/(2

√
3),

τ 41 = −1/6).
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Antioctet, Γ(7,1) = −1, Γ(6) = 1,
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γ0γ7 and γ0γ8 transform d̄L of the 1st line into d̄R of the 5th line, and ūL of the 4rd line into ūR of the 8th line.



▶ The Clifford odd ”basis vector” describing the internal
space of quark uc1†↑R , ⇔ b1†1 :=
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separate groups.



Anticommutation relations for Clifford odd ”basis vectors”,
representing the internal space of fermion fields of
quarks and leptons (i = (uc,f ,↑,↓R,L , dc,f ,↑,↓

R,L , νf ,↑,↓R,L , ef ,↑,↓R,L )) ,
and anti-quarks and anti-leptons, with the family quantum

number f .

▶ {bmf ,b
k†
f‘ }∗A+|ψo > = δf f′ δ

mk |ψo > ,

▶ {bmf ,bkf‘}∗A+|ψo > = 0·|ψo > ,
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f ,bk†f′ }∗A+|ψo > = 0·|ψo > ,

▶ bmf |ψo > = 0·|ψo > ,

▶ bm†
f |ψo > = |ψm

f > ,

|ψo > =
03

[−i]
12

[−]
56

[−] · · ·
13 14

[−] | 1 >
define the vacuum state for quarks and leptons and
antiquarks and antileptons of the family f .



▶ Clifford even ”basis vectors”, having an even number of
nilpotents, describe the internal space of the
corresponding boson field. The gluon field, for example,
I Â†

gl uc1R →uc2R
, which transforms the uc1R into uc2R looks

like: I Â†
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IÂ†

gl uc1R →uc2R
= uc2†R ∗A (uc1†R )† ,

I Â†
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▶ The gluons I Â†
gl uciR→ucjR

= ucj†R ∗A (uci†R )† transforming

quarks of a particular colour charge to quarks of all the
rest colour charges,
they all are expressed as the algebraic products of a
family member and one of the Hermitian conjugated
partner.

▶ The the weak boson I Â†
weak uciR→dci

R

= dci†
R ∗A (uci†R )†

transform quarks of a particular weak charge to quarks
of another weak charge (keeping the colour charges
unchanged).



The second kind of the Clifford even ”basis vectors”, we call them
IIÂ†m

f , having as well an even number of nilpotents, and
consequently commute, describe the internal space of boson fields;
they are orthogonal to allIÂ†m

f .
IIÂ†m

f transform a family member of a particular family of
fermions to the same family member of all the rest families
of quarks and leptons and antiquarks and antileptons.
We namely find
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Also IIÂ†m
f , like all boson fields,

can be expressed as algebraic products of the Hermitian
conjugate fermion fields and one of the Clifford odd “basis
vector’.

▶ photon II Â†
phe−†e−

= (e−†
L )† ∗A e−†

L =

photon II Â†
phe+†e+

= (e+†
R )† ∗A e+†

R



Let be recognized again:

▶ All bosons “basis vectors”, I Âm†
f and II Âm†

f (describing
internal spaces of boson fields) are expressible as
algebraic products of fermion “basis vectors” and their

Hermitian conjugated partners, that is as b̂m
′†

f ‘ ∗A (b̂m
′′†

f ‘′ )†

or as (b̂m
′†

f ‘ )† ∗A b̂m
′′†

f “ .

▶ Knowing “basis vectors” of fermions appearing in
families we know all the boson fields as well.



The even “basis vectors” belonging to two different groups
are orthogonal.

I Âm†
f ∗A II Âm†

f = 0 = II Âm†.f ∗A I Âm†
f .

The members of each of these two groups have the property

iÂm†
f ∗A iÂm′†

f ‘ →
{

iÂm†
f ‘ , i = (I , II )

or zero .



The algebraic application, ∗A, of even “basis vectors” I Âm†
f

on odd “basis vectors” b̂m
′†

f ‘ and the odd “basis vectors” b̂m†
f

on II Âm†
f , gives

I Âm†
f ∗A b̂m

′†
f ‘ →

{
b̂m†
f ‘ ,

or zero ,

b̂m†
f ∗A II Âm′†

f ‘ →
{

b̂m†
f “ ,

or zero ,



Let us point out:

The odd ”basis vectors” — with odd number of nilpotents
— and even ”basis vectors” — with even number of

nilpotents differ essentially in their properties:

▶ The odd ”basis vectors” in even dimensional spaces

appear in 2
d
2
−1 families, each family having 2

d
2
−1

members, and have their Hermitian conjugated partners

in a separate group, with 2
d
2
−1 × 2

d
2
−1 contributions.

The even ”basis vectors” in even dimensional spaces

appear in two groups, each with 2
d
2
−1 × 2

d
2
−1 members,

having the Hermitian conjugated partners within the
same group. They have no families.



▶ The odd ”basis vectors” in even dimensional spaces
carry the eigenvalues of the Cartan subalgebra members
± i

2 or ±1
2 .

The even ”basis vectors” in even dimensional spaces
carry the eigenvalues of the Cartan subalgebra members
(±i , 0) or (±1, 0).

▶ There are two kinds of even ”basis vectors” and
correspondingly two kinds of vector bosons and two
kinds of scalar bosons.

There are 2
d
2
−1 families with the same number of

members.

▶ Fermions anticommute and bosons commute without
potulates.



If the spin-charge-family theory offers the right way to
describe the second quantized fermion and boson fields,

can the extension of points in ordinary space-time,
representing either fermions or bosons to strings, help to
achieve renormalizability of the proposed spin-charge-family

theory?



To extend the points in ordinary space-time to strings we
must define the “basis vectors” on a string with coordinates

(σ, τ).
We have, in this case, two odd and two even “basis vectors”

the eigenvectors of the Cartan subalgebra members

S01, S̃01, Sab= (S01 + S̃01).

Clifford odd

b̂1†1s =
01

(+i)s , b̂11s =
01

(−i)s ,

Clifford even

IA1†
1s =

01

[+i ]s ,
IIA1†

1s =
01

[−i ]s .

The two nilpotent “basis vectors” are Hermitian conjugate

to each other. Making a choice that b̂1†1 =
01

(+i)s is the ‘basis
vector”, the second odd object is then its Hermitian
conjugated partner.



There is only one family (2
d
2
−1 = 1) with one member.

The vacuum state is for this choice equal to

|ψocs >=
01

[−i ]s | 1 >= (
01

(+i)s)
† ∗A

01

(+i)s | 1 >.

There is only one family (2
d
2
−1 = 1) with one

member (2
d
2
−1 = 1).

The eigenvalue S01 of b̂1†1s (=
01

(+i)s) is i
2 .

Each of the two even “basis vectors” is self adjoint
((I ,IIA1†

1s)
† = I ,IIA1†

1s),
with the eigenvalues S01= (S01 + S̃01) equal to 0, since

S01
01

[±i ]s= ±i
01

[±i ]s and S̃01
01

[±i ]s= ∓i
01

[±i ]s .

It follows that

IA1†
1s =b̂1†1s ∗A (b̂1†1s)

† , IIA1†
1s =(b̂1†1s)

† ∗A b̂1†1s.



To find the “basis vectors” for second quantized fermion and
boson fields extended to strings, we need to make a tensor

product, ∗T ‘, of “basis vectors” of internal space in
d = 2(2n + 1) and the “basis vectors” on a string.



We can define the “basis vector” of a gravitino as a tensor
product, ∗T ‘ , of a photon “basis vector”

I Â†
phuc1L →uc1L

(≡
03

[−i ]
12

[+] |
56

[+]
78

[−] ||
9 10

[+]
11 12

[−]
13 14

[−] )

(having spins and charges in internal space equal to zero),

with b̂1†1s (≡
01

(+i)s) on a string:

b̂1†1gravitino (≡
03

[−i ]
12

[+] |
56

[+]
78

[−] ||
9 10

[+]
11 12

[−]
13 14

[−] ∗T ‘

01

(+i)s).

This is an anti-commuting object and manifests gravitino if
the photon “basis vector” I Â†

phuc1L →uc1L
is in a tensor product

with basis in ordinary space-time, carrying the space index
µ = (0, 1, 2, 3).



The extensions of all the other “basis vectors” — either
the ones with an odd number of nilpotents describing in

d = 2(2n+ 1) the internal spaces of fermions, or with an even
number of nilpotents describing the internal spaces of bosons

— by the tensor product, ∗T ′, with the two commuting self
adjoint “basis vectors” describing the internal space on the

string, iA1†
1s , i = (I , II ), do not change commutation
properties of “building blocs”:

The extended “basis vectors” keep commutation properties
of the “basis vectors” of anticommuting fermions and

commuting bosons .

The extensions of “basis vectors” describing fermions and
bosons by the tensor product, ∗T ′, with the nilpotent b̂1†1s do
change the commutation relations:The commuting ones
become anti-commuting, the anti-commuting become

commuting.



Let us try to see general properties of tensor products, ∗T ′,

of the “basis vectors” with an odd number of nilpotents
— describing the internal spaces of the second quantized

fermion fields — b̂m†
f ,

and of the “basis vectors” with an even number of
nilpotents — describing the internal spaces of the second

quantized boson fields — I ,IIAm†
f

with the “basis vectors” of a string.

There are four possibilities:



i.

b̂m†
f ∗T′ IA1†

1s

represents the anti-commuting “basis vectors” —
representing the internal space of fermions — extended

with a bosonic string offering the description of the internal
spaces of fermions in d = 2(2n + 1).

ii.

I,IIAm†
f ∗T′ IA1†

1s

represents the commuting “basis vectors” — representing
the internal space of bosons — extended with a bosonic
string, offering the description of the internal spaces of

bosons in d = 2(2n + 1).

Since IIA1†
1s defines the vacuum state |ψocs >=

01

[−i ]s | 1 > for

b̂1†1s , only
IA1†

1s is used in a tensor product ∗T ′ with the
string.



iii.

I,IIAm†
f ∗T′ b̂1†1s

represents the internal space of boson “basis vectors” in
d=2(2n+1), extended by the anti-commuting “basis

vectors” of a string, offering to the
anti-commuting objects — I ,IIAm†

f *T ′ b̂1†1s the description of
the internal spaces with the quantum numbers of bosons in

d = 2(2n + 1).

iv.

b̂m†
f ∗T′ b̂1†1s

represents the commuting “basis vectors” extended with a
string offering the description of the internal spaces of bosons

with the quantum numbers of fermions in d = 2(2n + 1)..



We recognize the supersymmetry:

Each I,IIAm†
f ∗T′ IA1†

1s and each b̂m†
f ∗T ′ IA1†

1s

has a supersymmetric partner in either
I ,IIAm†

f ∗T ′ b̂1†1s or in b̂m†
f ∗T ′ b̂1†1s .

The extension of the 2
d
2
−1 “basis vectors” with an odd

number of nilpotents appearing in 2
d
2
−1 families with their

Hermitian conjugated partners in a separate group, and of
the “basis vectors” of an even number of nilpotents

appearing in two orthogonal groups, in a tensor extension by
b̂1†1s needs further studies to be understood.



Questions for Norma and Holger:
Does the bosonic extension of fermion “basis vector” to a string
need that in the tensor product of both with the basis in ordinary

space, the bosonic part achieves the string index σ?
The extending object represents in d = 2(2n + 1) a fermion,

extending to a string.
Does the bosonic extension of boson “basis vector” to a string

need that in the tensor product of both with the basis in ordinary
space, the boson “basis vector” describing the internal space of

bosons achieve the space index α while the string part achieve the
string index σ?

In this case the tensor product ∗T of a boson “basis vector” with
the basis vectors in ordinary space-time requires the space index for

a boson while both achieve the dependence on momenta or
coordinates in both spaces, the ordinary and strings.



Now I need to write the action for iÂm†
f

ICm
f α, i = (I , II ), and for

fermion part, both extended by strings, as described above. Wuat
differs from the ordinary strings is that my internal apace is
different from the known approaches, that supersymmetry is
different from the known approaches and that I wont that the

ordinary space has only d = (3 + 1).

and each b̂m†
f ∗T′ IA1†

1s

and in have a supersymmetric partner I ,IIAm†
f ∗T ′ b̂1†1s .
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