28th International workshop "What comes beyond the standard models"

Stable multicharged particles in the early Universe

Author: Danila O. Sopin +,x

- + National Research Nuclear University MEPhI 115409 Moscow, Russia
- x Research Institute of Physics, Southern Federal University, 344090 Stachki 194, Rostov on Don, Russia

sopindo@mail.ru sopin@sfedu.ru

Dark atom model

- Stable lepton-like multicharged heavy particles X^{-2n} arise in several models [1,2].
- Only even values of charge are allowed [3].
- Such particles should form neutral bound states with ordinary matter nuclei.

$$X^{-2n} + n He^{+2} \rightarrow XHe + \gamma$$

Outline

- Bound states and their description
 - Inner structure of dark ions
 - Estimations and applications
- Nuclear reactions with dark ions
 - Using analogies
 - Accurate calculation
- Primordial concentrations
 - Anomalous isotopes
 - Primordial metals
- Conclusions

Isotopes produced in primordial nucleosynthesis [4]:

Isotopes produced in primordial nucleosynthesis [4]:

• What structure do dark XN ions have?

Inner structure of dark ions

$$a = \frac{r_N}{r_B} \approx Z_X Z_N \, \alpha \, m_N \, r_0 \, A_N^{1/3}$$

Inner structure of dark ions

$$a = \frac{r_N}{r_B} \approx Z_X Z_N \,\alpha \, m_N \, r_0 \, A_N^{1/3}$$

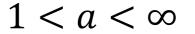
- Point-like particles
- ➤ Analogy with ordinary hydrogen:

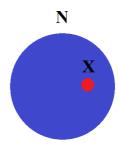
$$E_{X-N}^{\text{Bohr}} = 2n^2 Z^2 \alpha^2 m_N = \frac{1}{2m_N r_B^2}$$

Inner structure of dark ions

$$a = \frac{r_N}{r_B} \approx Z_X Z_N \alpha \, m_N \, r_0 \, A_N^{1/3}$$







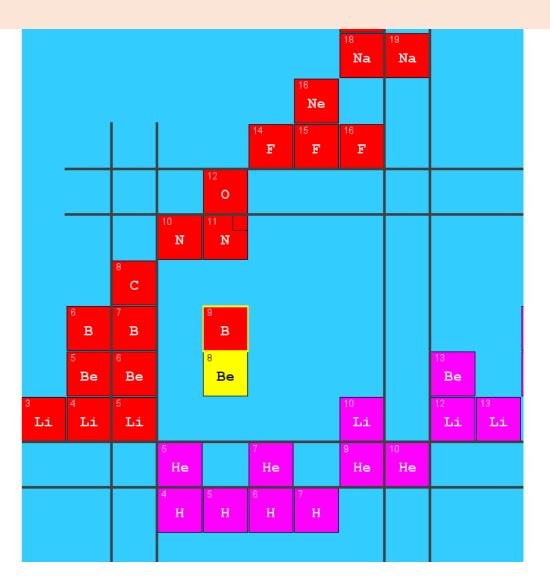
- Point-like particles
- ➤ Analogy with ordinary hydrogen:

$$E_{X-N}^{\text{Bohr}} = 2n^2 Z^2 \alpha^2 m_N = \frac{1}{2m_N r_B^2}$$

- Non-point nucleus in a shell
- ➤ Nuclear analogies should be used.
- \triangleright Binding energies: $E_{X-N}^{Thomson}$ and Q_N

Inner structure of dark ions

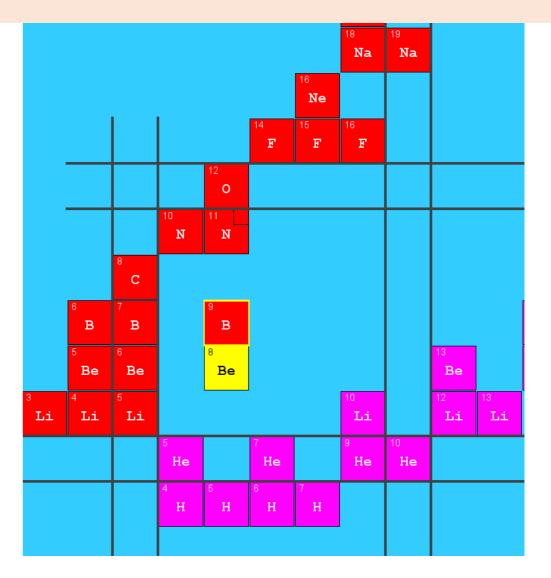
Isotope stabilization



Inner structure of dark ions

Isotope stabilization

• New stable-in-shall isotopes? $(Xp_4 \text{ for instance})$



The most states are Thomson-like.

• There are a lot of $E_{X-N}^{Thomson}$ estimations [5,6,7], but no Q_N estimations.

$$\mathcal{H} = egin{dcases} rac{p^2}{2m_N} - rac{Z_X Z_N lpha}{2r_N} \left(3 - rac{r^2}{r_N^2}
ight), & r < r_N \ rac{p^2}{2m_N} - rac{Z_X Z_N lpha}{r}, & r > r_N \end{cases}$$

$$E_{X-N}^{\text{Glashow}} = \begin{cases} \frac{3}{2} \frac{Z_X Z_N \alpha}{r_N} \left(1 - \sqrt{\frac{1}{a}} \right), & a \gtrsim 2\\ \frac{1}{m_N r_N} \lambda \left(a \right), & a \approx 1\\ \frac{1}{2} (Z_X Z_N \alpha)^2 m_N, & a < 1 \end{cases}$$

n	A			
	H	He	Li	Be
1	В	4	3	T
2	4	3	Т	Т
3	3	Т	Т	Т
4	3	Т	Т	Т
5	2	Т	Т	Т

^[6] Akhmedov E. Nuclear fusion catalyzed by doubly charged scalars: Implications for energy production // Phys. Rev. D – 2022. – Vol. 106, No. 03

- In [7] was used E_{X-N} instead of Q_N
- The simplest estimation of ΔQ_N

$$\Delta m \to \Delta m + 0.711 \frac{Z(Z-1)}{A^{1/3}}$$

- In [7] was used E_{X-N} instead of Q_N
- ullet The simplest estimation of ΔQ_N

$$\Delta m \to \Delta m + 0.711 \frac{Z(Z-1)}{A^{1/3}}$$

- Reaction: $XN_1 \rightarrow XN_2 + N_3$
- Energy: $(Z_1m_p + (A_1-Z_1)m_n \Delta m_1^{shell}) (Z_2m_p + (A_2-Z_2)m_n \Delta m_2^{shell}) (Z_3m_p + (A_3-Z_3)m_n)$

Estimations and applications

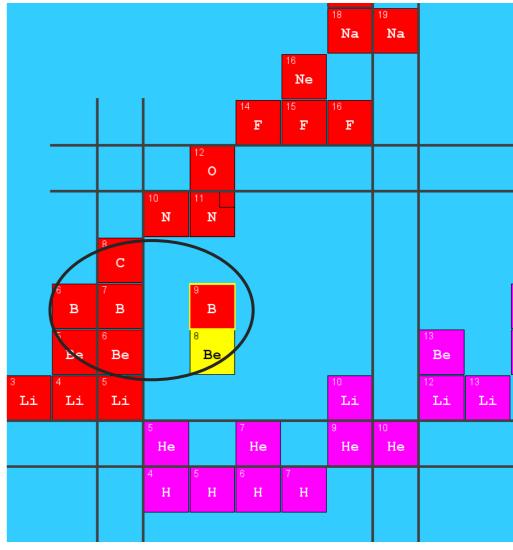
- In [7] was used E_{X-N} instead of Q_N
- The simplest estimation of ΔQ_N

$$\Delta m \to \Delta m + 0.711 \frac{Z(Z-1)}{A^{1/3}}$$

• Prediction:

•
$$\begin{bmatrix} ^6Be, \ ^8Be \\ ^6B, \ ^7B, \ ^9B \end{bmatrix}$$
 are stabilizing $^8\mathcal{C}$

n-emission is not prevented



Estimations and applications

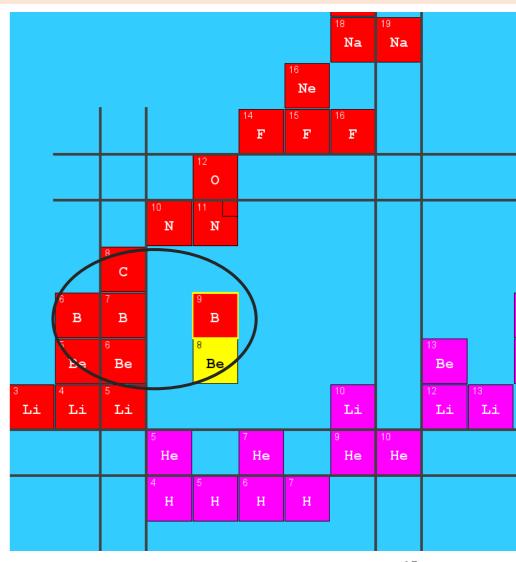
- In [7] was used E_{X-N} instead of Q_N
- The simplest estimation of ΔQ_N

$$\Delta m \to \Delta m + 0.711 \frac{Z(Z-1)}{A^{1/3}}$$

• Prediction:

•
$$\begin{bmatrix} ^{6}Be, \ ^{8}Be \\ ^{6}B, \ ^{7}B, \ ^{9}B \end{bmatrix}$$
 are stabilizing ${}^{8}C$

- n-emission does not prevented
- An error should be rather large

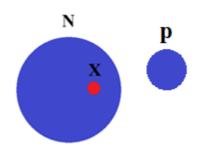


- Cluster approach:
 - Consider nucleus as a bound state of n, p, α clusters
 - Use **experimental** $V_{\alpha-\alpha}$, $V_{\alpha-N_{,}}$ and $V_{N-N_{,}}$ potentials to improve predictions for Li, Be, C isotopes

Estimations and applications

- Cluster approach:
 - Consider nucleus as a bound state of n, p, α clusters
 - Use **experimental** $V_{\alpha-\alpha}$, $V_{\alpha-N_{,}}$ and $V_{N-N_{,}}$ potentials to improve predictions for Li, Be, C isotopes

m	A			
$\mid n \mid$	H	He	Li	Be
1	В	4	3	Т
2	4	3	Т	Т
3	3	Т	T	Т
4	3	Т	Т	T
5	2	Т	Т	T



- Cluster approach:
 - Consider nucleus as a bound state of n, p, α clusters
 - Use **experimental** $V_{\alpha-\alpha}$, $V_{\alpha-N_{i}}$ and $V_{N-N_{i}}$ potentials to improve predictions for Li, Be, C isotopes
- + Analogy with ordinary / bosonic atoms [8,9]
 - Use Hartree-Fock method to describe nonstandard states like Xp_2

- Cluster approach:
 - Consider nucleus as a bound state of n, p, α clusters
 - Use **experimental** $V_{\alpha-\alpha}$, $V_{\alpha-N_{i}}$ and $V_{N-N_{i}}$ potentials to improve predictions for Li, Be, C isotopes
- + Analogy with ordinary / bosonic atoms [8,9]
 - Use Hartree-Fock method to describe nonstandard states like Xp_2

- Expected results:
 - \triangleright the energy of p-, α separation
 - > wave functions of bound states

How to describe XN more accurate?

Cluster approach

> Expected results:

- \triangleright the energy of p-, α separation
- > wave functions of bound states

➤ Potential problems:

- ➤ Is not applicable on high charges (n>1) because of non-point helium
- ➤ Bad predictions for spherical nuclei (???)

- Ab-initio approach [10,11]
 - Simulate nucleus by solving a many-body quantum problem
 - Use mesonic potential, modified by Coulomb term arising from the interaction with X^{-2n}

Nuclear reactions with dark ions

$$(1) X + N \to XN + \gamma$$

(2)
$$XN_1 + N_2 \rightarrow XN_3 + N_4/\gamma$$

(3)
$$XN_1 + XN_2 \rightarrow X_2N_3 + N_4/\gamma$$

- (1) The first stage of dark atom recombination
- (2) Nuclear interaction of ordinary matter with dark ions
- (3) Dark chemistry: interaction of two dark ions

Nuclear reactions with dark ions

$$(1) X + N \to XN + \gamma$$

(2)
$$XN_1 + N_2 \rightarrow XN_3 + N_4/\gamma$$

(3)
$$XN_1 + XN_2 \rightarrow X_2N_3 + N_4/\gamma$$

- (1) The first stage of dark atom recombination
- (2) Nuclear interaction of ordinary matter with dark ions
- (3) Dark chemistry: interaction of two dark ions

What does we need?

- ➤ List (network) of reactions
- ➤ Cross sections/rates

(1)
$$X + N \rightarrow XN + \gamma$$

Bohr states (point-like nucleus!):
 Recombination of hydrogen-like atom [13]

The exact analogy can be used for capturing of:

$$\circ$$
 n=1: $p, d, t, {}^{3}He$

$$\langle \sigma v \rangle_{\text{rec}} = \frac{32}{3} \sqrt{\frac{2\pi E_{X-N}}{3 m_N}} (Z_X Z_N \alpha)^3 r_B^2 \cdot \left(\frac{E_{X-N}}{T}\right)^{\frac{1}{2}} \left(\ln \left(\frac{E_{X-N}}{T}\right) + \gamma\right)$$

	A			
n	H	He	Li	Be
1	В	4	3	Т
2	4	3	Т	Т
3	3	Т	Т	Т
4	3	Т	Т	T
5	2	Т	Т	T

(1)
$$X + N \rightarrow XN + \gamma$$

Bohr states (point-like nucleus!):
 Recombination of hydrogen-like atom [13]

$$\langle \sigma v \rangle_{\text{rec}} = \frac{32}{3} \sqrt{\frac{2\pi E_{X-N}}{3 m_N}} (Z_X Z_N \alpha)^3 r_B^2 \cdot \left(\frac{E_{X-N}}{T}\right)^{\frac{1}{2}} \left(\ln\left(\frac{E_{X-N}}{T}\right) + \gamma\right)$$

Thomson states (non-point-like nucleus)
 The picture changes completely.
 it is impossible to use the hydrogen-like wave function, and therefore the cross section must change.

	A			
$\mid n \mid$	H	He	Li	Be
1	В	4	3	Т
2	4	3	Т	Т
3	3	Т	Т	T
4	3	Т	Т	T
5	2	Т	Т	Т

(2)
$$XN_1 + N_2 \rightarrow XN_3 + N_4/\gamma$$

• If the similar ordinary reaction is exist [4]

$$\langle \sigma v \rangle^{ij} (T) = \frac{2}{T} \sqrt{\frac{2}{\pi T} \frac{m_i + m_j}{m_i m_j}} \int_0^\infty \sigma^{ij}(E) E e^{-\frac{E}{T}} dE$$

$$\sigma^{ij}(E) = \frac{S^{ij}(E)}{E} e^{-2\pi\eta_{ij}},$$

$$\eta_{ij} = Z_i Z_j \alpha \sqrt{\frac{1}{2E} \frac{m_i m_j}{m_i + m_j}}$$

(2)
$$XN_1 + N_2 \rightarrow XN_3 + N_4/\gamma$$

• If the similar ordinary reaction is exist [4]

$$\langle \sigma v \rangle^{ij} (T) = \frac{2}{T} \sqrt{\frac{2}{\pi T} \frac{m_i + m_j}{m_i m_j}} \int_0^\infty \sigma^{ij}(E) E e^{-\frac{E}{T}} dE$$

$$\sigma^{ij}(E) = \frac{S^{ij}(E)}{E} e^{-2\pi\eta_{ij}},$$

$$\eta_{ij} = \left(Z_i Z_j\right) \alpha \sqrt{\frac{1}{2E} \left(\frac{m_i m_j}{m_i + m_j}\right)}$$

(2)
$$XN_1 + N_2 \rightarrow XN_3 + N_4/\gamma$$

• If the similar ordinary reaction is exist [4]

$$\langle \sigma v \rangle^{ij} (T) = \frac{2}{T} \sqrt{\frac{2 m_i + m_j}{m_i m_j}} \int_0^\infty \sigma^{ij}(E) E e^{-\frac{E}{T}} dE$$

$$\sigma^{ij}(E) = \frac{S^{ij}(E)}{E} e^{-2\pi \eta_{ij}},$$

$$\eta_{ij} = Z_i Z_j \alpha \sqrt{\frac{1}{2E} \frac{m_i m_j}{m_i + m_j}}$$

In [7] the accurate calculations for X^- [14] was rescaled. Is it any difference and why?

(2)
$$XN_1 + N_2 \rightarrow XN_3 + N_4/\gamma$$

• If the similar ordinary reaction is exist [4]

$$\langle \sigma v \rangle^{ij} (T) = \frac{2}{T} \sqrt{\frac{2}{\pi T} \frac{m_i + m_j}{m_i m_j}} \int_0^\infty \sigma^{ij}(E) E e^{-\frac{E}{T}} dE$$

$$\sigma^{ij}(E) = \frac{S^{ij}(E)}{E} e^{-2\pi \eta_{ij}},$$

$$\eta_{ij} = Z_i Z_j \alpha \sqrt{\frac{1}{2E} \frac{m_i m_j}{m_i + m_j}}$$

- If not:
 - rough analogies [15]:

$$(XN_1)^0 + N_2^{+q} \to (XN_3)^{+q} + \gamma$$
 and $n + p \to d + \gamma$
$$\langle \sigma v \rangle = \frac{f\pi\alpha}{m_p^2} \frac{3}{\sqrt{2}} \left(\frac{Z}{A}\right)^2 \frac{T}{\sqrt{Am_p E}},$$

(2)
$$XN_1 + N_2 \rightarrow XN_3 + N_4/\gamma$$

• If the similar ordinary reaction is exist [4]

$$\langle \sigma v \rangle^{ij} (T) = \frac{2}{T} \sqrt{\frac{2}{\pi T} \frac{m_i + m_j}{m_i m_j}} \int_0^\infty \sigma^{ij}(E) E e^{-\frac{E}{T}} dE$$

$$\sigma^{ij}(E) = \frac{S^{ij}(E)}{E} e^{-2\pi \eta_{ij}},$$

$$\eta_{ij} = Z_i Z_j \alpha \sqrt{\frac{1}{2E} \frac{m_i m_j}{m_i + m_j}}$$

- If not:
 - rough analogies [15]:

$$(XN_1)^0 + N_2^{+q} \to (XN_3)^{+q} + \gamma$$
 and $n + p \to d + \gamma$

$$\langle \sigma v \rangle = \frac{f\pi\alpha}{m_p^2} \frac{3}{\sqrt{2}} \left(\frac{Z}{A}\right)^2 \frac{T}{\sqrt{Am_p E}},$$

$$OHe + He \rightarrow OBe + \gamma$$

Nuclear reactions with dark ions Accurate calculation

- Accurate calculation of reaction rates [6,14] requires to know wave functions of particles
- To find it
 - In [6] the variation method was used
 - In [14] the quantum three-body problem was solved

1)
$$O^{--} + {}^{4}\text{He} \rightarrow OHe + \gamma$$
;

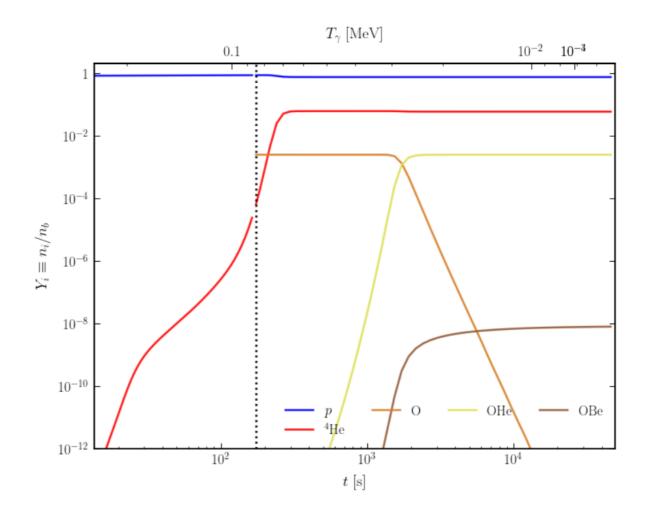
2)
$$OHe + {}^{4}He \rightarrow OBe + \gamma$$
.

$$\langle \sigma v \rangle_{\text{rec}} = \frac{32}{3} \sqrt{\frac{2\pi E_{X-N}}{3 m_N}} (Z_X Z_N \alpha)^3 r_B^2 \cdot \left(\frac{E_{X_N}}{T}\right)^{\frac{1}{2}} \left(\ln \left(\frac{E_{X_N}}{T}\right) + \gamma\right),$$

$$\langle \sigma v \rangle = \frac{f \pi \alpha}{3} \left(\frac{Z}{T}\right)^2 \frac{T}{T}.$$

$$\langle \sigma v
angle = rac{f\pi lpha}{m_p^2} rac{3}{\sqrt{2}} \left(rac{Z}{A}
ight)^2 rac{T}{\sqrt{Am_p E}},$$

$$\frac{n_O}{n_b} \approx 8.7 \cdot 10^{-19}, \qquad \frac{n_{OHe}}{n_b} \approx 2.5 \cdot 10^{-3}, \qquad \frac{n_{OBe}}{n_b} \approx 8.1 \cdot 10^{-9}.$$

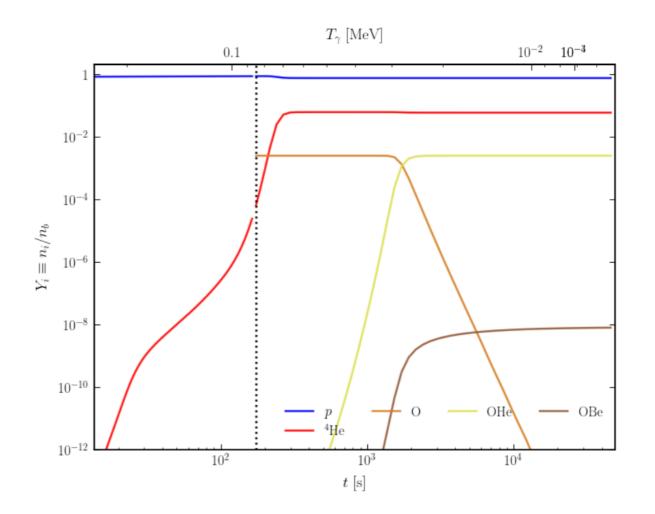


1)
$$O^{--} + {}^{4}\text{He} \rightarrow OHe + \gamma$$
;

2)
$$OHe + {}^{4}He \rightarrow OBe + \gamma$$
.

$$\begin{split} \left\langle \sigma v \right\rangle_{\rm rec} &= \frac{32}{3} \sqrt{\frac{2\pi E_{X-N}}{3 \, m_N}} \left(Z_X Z_N \, \alpha \right)^3 r_B^2 \cdot \left(\frac{E_{X_N}}{T} \right)^{\frac{1}{2}} \left(\ln \left(\frac{E_{X_N}}{T} \right) + \gamma \right), \\ \left\langle \sigma v \right\rangle &= \frac{f \pi \alpha}{m_p^2} \frac{3}{\sqrt{2}} \left(\frac{Z}{A} \right)^2 \frac{T}{\sqrt{A m_p E}}, \end{split}$$

$$\frac{n_O}{n_b} \approx 8.7 \cdot 10^{-19}, \qquad \frac{n_{OHe}}{n_b} \approx 2.5 \cdot 10^{-3}, \qquad \frac{n_{OBe}}{n_b} \approx 8.1 \cdot 10^{-9}.$$

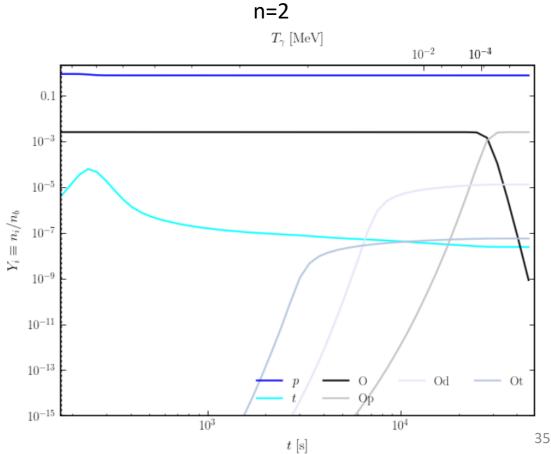


Exact rates are known only for capturing of:

o n=1: $p, d, t, {}^{3}He$

o n=2: *p, d, t*

n=1 $T_{\gamma} [\text{MeV}]$ 10^{-2} 10^{-3} 0.1 10^{-3} 10^{-5} $Y_i \equiv n_i/n_b$ 10^{-11} 10^{-13} 10^{-13} 10^{3} 10^{4}



$$T_{\text{rec}} = E_{X-N} \left(\ln \left(\frac{g_X g_N}{g_{XN}} \left(\frac{m_N T_{\text{now}}^2}{2\pi E_{X-N}} \right)^{\frac{3}{2}} \frac{1}{n_N^{\text{now}}} \right) \right)^{-1}$$

$$E_{X-N}^{\text{Bohr}} = 2n^2 Z^2 \alpha^2 m_N = \frac{1}{2m_N r_D^2}$$

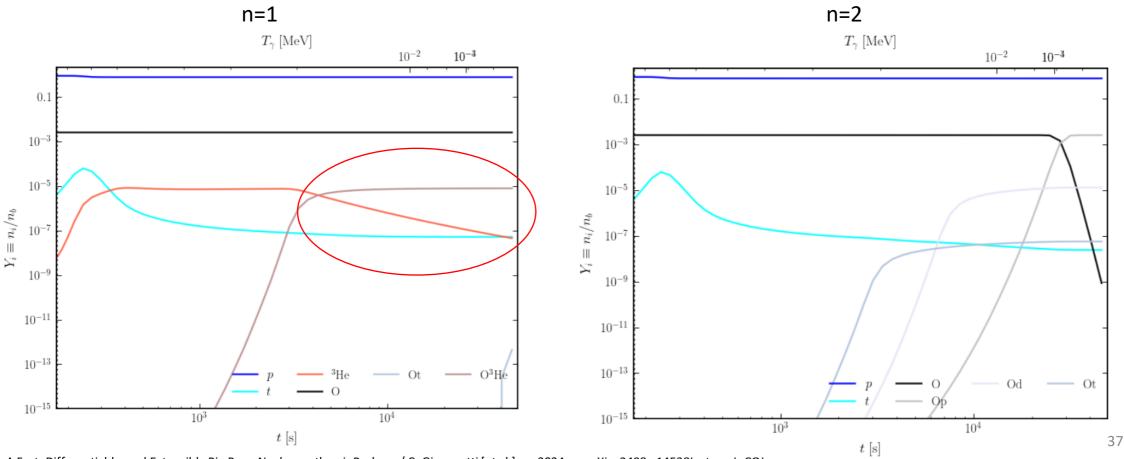
$$E_{W-N}^{\text{Thompson}} = \frac{3}{2} \frac{Z_X Z_N \alpha}{r_N} \left(1 - \sqrt{\frac{r_B}{r_N}} \right)$$

	$T_{ m rec},$ кэ ${ m B}$				
$ ^n $	p	D	3He	4He	
1	3 (B)	4 (B)	28 (B)	37 (B)	
2	13 (B)	19 (B)	~ 42 (T)	85 (T)	
3	29 (B)	44 (B)	$\sim 116 \; (T)$	180 (T)	
4	54 (B)	79 (B)	$\sim 198 \; (T)$	285 (T)	
5	86 (B)	$\sim 126 \; (B)$	$\sim 286 \; (T)$	395 (T)	

Exact rates are known only for capturing of:

o n=1: $p, d, t, {}^{3}He$

o n=2: *p, d, t*



[16] LINX: A Fast, Differentiable, and Extensible Big Bang Nucleosynthe-sis Package / C. Giovanetti [et al.]. — 2024. — arXiv: 2408 . 14538[astro-ph.CO].

$$m_X \approx 2 \ TeV \Rightarrow \Delta Y_p = 4 \frac{\Delta n_{He}}{n_b} = 4 \frac{m_b}{m_X} \frac{\Omega_{DM}}{\Omega_b} \approx 0.01$$

$$m_X \approx 2 \ TeV \Rightarrow \Delta Y_p = 4 \frac{\Delta n_{He}}{n_b} = 4 \frac{m_b}{m_X} \frac{\Omega_{DM}}{\Omega_b} \approx 0.01$$
[17]: $Y_p = 0.2448 \pm 0.0033 \Rightarrow m_X > 6 \ TeV$?

$$m_X \approx 2 \ TeV \Rightarrow \Delta Y_p = 4 \frac{\Delta n_{He}}{n_b} = 4 \frac{m_b}{m_X} \frac{\Omega_{DM}}{\Omega_b} \approx 0.01$$
[17]: $Y_p = 0.2448 \pm 0.0033 \Rightarrow m_X > 6 \ TeV$?

 Can we distinguish between the shell of dark atoms and ordinary nuclei in the observational data?

$$m_X \approx 2 \ TeV \Rightarrow \Delta Y_p = 4 \frac{\Delta n_{He}}{n_b} = 4 \frac{m_b}{m_X} \frac{\Omega_{DM}}{\Omega_b} \approx 0.01$$
[17]: $Y_p = 0.2448 \pm 0.0033 \Rightarrow m_X > 6 \ TeV$?

- Can we distinguish between the shell of dark atoms and ordinary nuclei in the observational data?
- Y_p is usually estimated from
 - Reionisation specters of gas in dwarf galaxies

$$m_X \approx 2 \ TeV \Rightarrow \Delta Y_p = 4 \frac{\Delta n_{He}}{n_b} = 4 \frac{m_b}{m_X} \frac{\Omega_{DM}}{\Omega_b} \approx 0.01$$
[17]: $Y_p = 0.2448 \pm 0.0033 \Rightarrow m_X > 6 \ TeV$?

- Can we distinguish between the shell of dark atoms and ordinary nuclei in the observational data?
- Y_p is usually estimated from
 - Reionisation specters of gas in dwarf galaxies NO REIONISATION

$$m_X \approx 2 \ TeV \Rightarrow \Delta Y_p = 4 \frac{\Delta n_{He}}{n_b} = 4 \frac{m_b}{m_X} \frac{\Omega_{DM}}{\Omega_b} \approx 0.01$$
[17]: $Y_p = 0.2448 \pm 0.0033 \Rightarrow m_X > 6 \ TeV$?

- Can we distinguish between the shell of dark atoms and ordinary nuclei in the observational data?
- Y_p is usually estimated from
 - Reionisation specters of gas in dwarf galaxies NO REIONISATION
 - Calculations based on CMB data

$$m_X \approx 2 \ TeV \Rightarrow \Delta Y_p = 4 \frac{\Delta n_{He}}{n_b} = 4 \frac{m_b}{m_X} \frac{\Omega_{DM}}{\Omega_b} \approx 0.01$$
[17]: $Y_p = 0.2448 \pm 0.0033$ $\Rightarrow m_X > 6 \ TeV$?

- Can we distinguish between the shell of dark atoms and ordinary nuclei in the observational data?
- Y_p is usually estimated from
 - Reionisation specters of gas in dwarf galaxies NO REIONISATION
 - Calculations based on CMB data requires careful analysis

$$m_X \approx 2 \ TeV \Rightarrow \Delta Y_p = 4 \frac{\Delta n_{He}}{n_b} = 4 \frac{m_b}{m_X} \frac{\Omega_{DM}}{\Omega_b} \approx 0.01$$
[17]: $Y_p = 0.2448 \pm 0.0033$ $\Rightarrow m_X > 6 \ TeV$?

- Can we distinguish between the shell of dark atoms and ordinary nuclei in the observational data?
- Y_p is usually estimated from
 - Reionisation specters of gas in dwarf galaxies NO REIONISATION
 - Calculations based on CMB data requires careful analysis
- Gamma-ray spectrum analysis?

Conclusions

- To predict the primordial concentrations of dark ions, it is necessary to describe both the reactions of nuclear shell formation and the internal structure:
 - kinetic equations require reaction rates, which for the most part can be found by rescaling
 - Both binding energies E_{X-N} and Q_N are needed to create an accurate network of reactions
 - The nuclear shell can be described using the methods of modern nuclear physics.
- The overproduction of anomalous isotopes and primordial metals may constrain the dark atom model, but the standard model of nucleosynthesis should be revised

28th International workshop "What comes beyond the standard models"

Stable multicharged particles in the early Universe

Author: Danila O. Sopin +,x

- + National Research Nuclear University MEPhI 115409 Moscow, Russia
- x Research Institute of Physics, Southern Federal University, 344090 Stachki 194, Rostov on Don, Russia

sopindo@mail.ru