PRIMORDIAL BLACK HOLES AS A PROBE TO BEYOND STANDARD MODEL PHYSICS

ARNAB CHAUDHURI

NATIONAL ASTRONOMICAL OBSERVATORY OF JAPAN

28th workshop "What comes beyond the Standard Model?"

- o Black hole vs Primordial Black Hole
- e Early Malter Domination
- o PBH Mass Distribution
- o Various Components of the Universe
- o Role of PBH
- o Entropy Release

- o Dark Malter from PBH
- o Memory Burdened PBH

Formation Mechanism:

Normal black holes: Form from the gravitational collapse of massive stars (supernovae) or by mergers of compact objects.

Primordial black holes: Hypothetically formed from high-density fluctuations in the very early universe (within fractions of a second after the Big Bang).

Formation time:

Normal black holes: Form much later in cosmic history – millions to billions of years after the Big Bang.

Primordial black holes: Could form during the radiation-dominated era, much earlier than stars or galaxies.

Possible Mass Range: Normal black holes: Typically a few solar masses (stellar) to billions of solar masses (supermassive).

Primordial black holes: Could span a huge mass range – from as tiny as $^{\sim}10^{-1}\mathrm{g}$ to thousands or millions of solar masses, depending on early-universe conditions.

Observable Environment: Normal black holes: Usually found in stellar environments, galaxies, and active galactic nuclei – associated with visible astrophysical processes like accretion disks, X-ray emission, or gravitational wave mergers.

Primordial black holes: Might exist in intergalactic space with no stellar environment — their presence is inferred indirectly, e.g., via gravitational lensing, cosmic microwave background constraints, or gravitational wave signals.

Cosmological Implications: Normal black holes: Important for galaxy evolution, star formation feedback, and gravitational wave astrophysics.

Primordial black holes: Hypothetical candidates for dark matter, seeds for supermassive black holes, and probes of early-universe physics (e.g., inflation, phase transitions).

A phase before Big Bang Nucleosynthesis (BBN) where the universe's expansion is temporarily dominated by non-relativistic matter (instead of the usual radiation domination).

- A phase before Big Bang Nucleosynthesis (BBN) where the universe's expansion is temporarily dominated by non-relativistic matter (instead of the usual radiation domination).
- Occurs after inflation but before standard radiation domination fully takes over.

How Can EMD Be Achieved?

- Massive Long-Lived Particles: EMD can happen if a heavy field or particle (e.g., moduli, scalar condensate, heavy relic) dominates the energy density because it redshifts more slowly than radiation.

Example Mechanisms:

- Oscillating scalar fields (like moduli from string theory) behave like pressureless matter.
- Decay of a massive unstable particle can delay reheating and prolong matter domination.

Why Does EMD Malter for PBHs?

- In matter domination, density perturbations grow linearly with the scale factor instead of remaining constant (as in radiation domination). This boosts the probability of PBH formation.

Why Does EMD Malter for PBHs?

- In matter domination, density perturbations grow linearly with the scale factor instead of remaining constant (as in radiation domination). This boosts the probability of PBH formation.
- Radiation pressure resists collapse but in an EMD phase, the lack of significant pressure allows overdense regions to collapse more easily into PBHs.

Why Does EMD Malter for PBHs?

- In matter domination, density perturbations grow linearly with the scale factor instead of remaining constant (as in radiation domination). This boosts the probability of PBH formation.
- Radiation pressure resists collapse but in an EMD phase, the lack of significant pressure allows overdense regions to collapse more easily into PBHs.
- Even small primordial fluctuations can produce a sizable PBH population if EMD persists long enough.

Why Are PBHs a Good Candidate in EMD?

- PBHs formed during EMD can naturally explain part (or all) of dark matter - their mass function depends on the EMD duration and decay time.

Why Are PBHs a Good Candidate in EMD?

- PBHs formed during EMD can naturally explain part (or all) of dark matter their mass function depends on the EMD duration and decay time.
- PBHs from EMD have distinct mass ranges and abundance, potentially testable via gravitational lensing, gravitational waves, or CMB distortions.

Why Are PBHs a Good Candidate in EMD?

- PBHs formed during EMD can naturally explain part (or all) of dark matter their mass function depends on the EMD duration and decay time.
- PBHs from EMD have distinct mass ranges and abundance, potentially testable via gravitational lensing, gravitational waves, or CMB distortions.
- EMD phases are generic in many beyond-the-Standard-Model (BSM) scenarios, linking PBHs to new physics (e.g., moduli, inflaton remnants).

17BH Mass Distribution

- Monochromatic Mass Distribution
 - 1. All PBHs have mass $M=M_0$,
 - 2. The mass function: $\psi(M) = f_{PBH} \delta(M M_0)$,

 - 3. Simplifies abundance calculations.
 4. Allows direct comparison with observational constraints at fixed mass M_0 .

7BH Mass Distribution

- Non Monochromatic Mass Distribution
 - 1. PBHs span a continuous range of masses,
 - 2. Typical forms include log-normal distribution, power law distribution,
 - 3. Reflects more realistic formation scenarios.
 - 4. Constraints depend on the integrated contribution across the mass range.
 - 5. Enables richer phenomenology for observational signatures.

Various Components of the Universe

Key Cosmological Components:
The energy content of the Universe can be broadly categorized into:

1. Radiation (relativistic particles, e.g., photons, neutrinos)

2. Matter (non-relativistic, e.g., baryons, dark matter)

3. Vacuum Energy (cosmological constant, dark energy, false vacuum)

Various Components of the Universe

Stage	Dominant Component	EoS w	ho(a) Scaling
Radiation-Dominated (RD)	Relativistic particles	$w=rac{1}{3}$	$ ho_R \propto a^{-4}$
Matter-Dominated (MD)	Non-relativistic matter	w = 0	$ ho_M \propto a^{-3}$
Vacuum-Dominated (VD)	Cosmological constant / false vacuum	w=-1	$ ho_{\Lambda}={ m const}$

Various Components of the Universe

o Key Equations:

$$(20: \rho_R = \frac{\pi^2}{30} g_* T^4$$

and

$$\mathcal{P}_{R} = \frac{1}{3}\rho_{R}$$

$$MD: \rho_M = nm$$

$$\mathcal{P}_{\mathbf{M}} = 0$$

$$VD: \rho_{\Lambda} = const.$$

$$\mathcal{P}_{\Lambda} = -\rho_{\Lambda}$$

COLC CONTRACTOR

Entropy production: PBHs evaporate via Hawking radiation: $T_{BH} = \frac{1}{8\pi GM} = \frac{1}{8\pi} \frac{M_{Pl}^2}{M}$

$$T_{BH} = \frac{1}{8\pi GM} = \frac{1}{8\pi} \frac{M_{Pl}^2}{8\pi}$$

- Evaporation injects energy into the surrounding plasma:
 - 1. Reheats the universe if PBHs dominate the energy density temporarily
 - 2. Increases total entropy

- Evaporation injects energy into the surrounding plasma:
 - 1. Reheats the universe if PBHs dominate the energy density temporarily
 - 2. Increases total entropy.
- Entropy density injection:

$$s = \frac{2\pi^2}{45} g_* T^3$$

- © PBHs can produce stable dark matter particles (e.g., WIMPs, gravitinos, axions) during evaporation ($m_\chi < T_{BH}$)
- Dark Matter Yield: $Y_{\chi} = \frac{n_{\chi}}{s} \approx \frac{3}{4} \frac{T_{evap}}{m_{\chi}} Br(\chi)$

COLC CONTRACTOR

o Modification of Hubble parameters:

$$H(a) = \sqrt{\frac{\rho_R(a) + \rho_{PBH}(a)}{3M_{Pl}^2}}$$

ENERCY CELEOSE

- [®] Light PBH $(M_{BH} < 10^9 \, \mathrm{g})$ can dominate the early universe and evaporate resulting in the release of entropy.
- For a monochromatic mass distribution and assuming instant decay approximation, the net release in entropy is shown:

Entropy (Calcose

Entropy release as a function of PBH initial mass. (Chaudhuri and Dolgov, JETP 133 (2021) 5, 552-566)

ENERCY CELEOSE

e For Non-Monochromatic distribution:

$$a. F_1(x) = \beta/(x_{max} - x_{min})$$

b.
$$F_2(x) = \frac{\beta}{N} a^2 b^2 (1/a - 1/x)^2 (1/x - 1/b)^2$$
.

Entropy Calcosa

Distribution a.

Distribution b.

Ingredients of DM Production from PBH distribution

o Important Parameter:

- 1. PBH initial mass (M_{BH}^{in})
- 2. Dark Matter mass (m_{DM})

3.
$$\beta = \frac{\rho_{PBH}^{ini}}{\rho_{PBH}^{ini} + \rho_{rad}^{ini}}$$

$$\frac{d\rho_{BH}}{dt} + 3H\rho_{BH} = \frac{\rho_{BH}}{M} \frac{dM}{dt},$$

$$\frac{d\rho_R}{dt} + 4H\rho_R = -\frac{\varepsilon_{SM}(M)}{\varepsilon(M)} \frac{1}{M} \frac{dM}{dt} \rho_{BH}$$

$$\frac{dn_{DM}}{dt} + 3Hn_{DM} = \frac{\rho_{BH}}{M_{BH}} \frac{dN_{DM}}{dt}$$

$$eta_c = \gamma^{-\frac{1}{2}} \left(\frac{\mathcal{G}g_{\star,H}(T_{BH})}{10640\pi} \right)^{\frac{1}{2}} \frac{M_{Pl}}{M},$$

@ Constrains from BBN, Inflation and GW Observations

Relic Contours: Single PBH Distribution

DM of mass range $(1-10^9)$ GeV produced from an evaporating monochromatic PBH distribution cannot satisfy DM relic in the PBH dominated region of parameter space due to the BBN bounds

PHYS. REV. D 105, 015023 (2022)

27BH Scenario: Formalism

- Temporally separated formation of two monochromatic PBH distributions.
- σ $T_1 > T_2$ and hence, $M_{BH1}^{in} < M_{BH2}^{in}$
- The one-PBH case is compared to the second PBH of the two-PBH scenario.

$$\beta_1 = \frac{\rho_{BH1}(T_1)}{\rho_{BH1}(T_1) + \rho_{Rad}(T_1)}, \quad \beta_2 = \frac{\rho_{BH1}(T_2) + \rho_{BH2}(T_2)}{\rho_{BH1}(T_2) + \rho_{BH2}(T_2) + \rho_{Rad}(T_2)}$$

Formalism: Evolution of components of the Universe

27BH Scenario: Relic Contours

27BH SCENATIO: RELIC

Exact window of relaxation

o We wanted to squeeze the disallowed region.

Exact window of relaxation

- o We wanted to squeeze the disallowed region.
- For $\Delta Log_{10}(M_{BH}^{in})=1.0$ in grams, the disallowed DM mass is $(7.24-8.91\times 10^7)$ GeV.
- For $\Delta Log_{10}(M_{BH}^{in})=0.5$ in grams, the disallowed DM mass is $(5.56-2.67\times10^7)$ GeV.

(Chaudhuri, Coleppa and Loho PRD 108 (2023) 3, 035040)

- The evaporation of PBH gets suppressed largely after it has lost half of its mass.
- This is called the memory burden effect (Dvali, PRD 102, 10, 103523 (2022))
- The mass $M_{BH}=qM_{in}$ and $\frac{dM_{BH}}{dt}=-\frac{\epsilon}{S(M_{BH})^k}\frac{M_P^4}{M_{BH}^2}$

- The suppression of Hawking evaporation due to the memory burden effect fundamentally reshapes constraints on PBHs, most notably for $M_0 < 10^{10}\,\mathrm{g}$ assuming it becomes relevant when the black hole has lost half its initial mass.
- Previous work has focused on the question, whether this opens up a new window for PBHs to make up the entire dark matter.
- Nowever, even much lighter PBHs that cannot explain the present dark matter density can be interesting probes of the physics of the early Universe.

Modified BBN bounds Chaudhuri, Kohri, Thoss arXiv:2506.20717

Memory Burdened 78H

Bounds on $f_{\rm PBH,0}(M_0)$ from BBN (shaded regions). The left panel displays constraints for q=0.5 and various values of k. The right panel shows bounds for k=2 and various value of q.

The bounds from BBN extend the existing constraints to lighter PBHs that do not survive to the present day - unless they leave behind relics.

- The bounds from BBN extend the existing constraints to lighter PBHs that do not survive to the present day unless they leave behind relics.
- While they are thus excluded from making up the present dark matter, light evaporating PBHs have been studied as a mechanism to produce particle DM, to address baryogenesis or as a source of gravitational waves, recently also in the context of the memory burden effect.

- For these analyses, our constraints provide important limits for the available parameter space. In particular, for k=1, PBHs have to be lighter than $M_0=10^4\,\mathrm{g}$ in order to avoid cosmological constraints and evaporate before the onset of BBN.
- 0 Observational limits on the tensor-to-scalar ratio imply that PBHs, which form from density fluctuations seeded by inflation, have a mass of at least $\sim 1\,\mathrm{g}$.

Together with our results, this imposes a bound of $k \lesssim 3$ in order to have fully evaporating PBHs that are not strongly constrained by BBN, although the precise bound will depend on the value of γ and the accretion of the black hole after horizon formation.

THANK YOU

ありがとう

Спасибо

ধন্যবাদ