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| would like to consider the question:

what happens when we put together gravity
and SM as field theories?

A mandatory issue to consider is that of anomalies, so |
would like more specifically to answer the question:

what do anomalies have to say about the interaction
between gravity and SM? Is there anything useful that
we can learn from it?

the answer is: YES



Summary: first half

« Anomalies: chiral and trace

« Consistent and covariant anomalies
 Trace anomalies: odd and even parity

« Basic subdivision: O and NO anomalies

« Obstructions (i.e. non-existence of
propagators) and family’s index theorem

« NO anomalies (propagators exist)

Partial conclusion of the analysis: the MSM does
have O anomalies that need be canceled



Summary: second half

« A L-R symmetric model

« Axial-complex analysis

« Conformal invariance

« Trace anomalies: even parity
« W.Zterms
 Renormalization and unitarity

« Connection with cosmology
L.B. Fermions and anomalies in FTs, Springer 2023
L.B. and S. Giaccari, Arxiv:2412.07470




How to compute anomalies

o Perturbative methods (Feynman diagrams, ....)
o Non-Perturbative (heat kernel like methods: Seeley-Schingwer-DeWitt, Fujikawa,....)

o Family’s index theorem (for odd parity anomalies)



Gauge anomalies In
chiral theories

(well-known things...)



‘ An anomaly is a quantum effect that violates a classical symmetry.

What are anomalies?

-

Examples:

[

# Covariant gauge anomaly. The lagrangian L = i(# + V) is invariant under

V=V +ys DA, Y= (1+950)Y A=A2)'T%  Dyu=08u+Vyu

It follows that the current jgﬁ = %157#755"‘11,{; Is classically conserved, but, at one loop,

[D*ju5]® = €pap tr (TEF”"F“‘F), F=dV + - [VV]

1672

& Consistent gauge anomaly. The lagrangian L = i;EL(@ + A)r,, where ¥, = 1_‘?&1;;
Is invariant under

Ay — Ay + X+ [Au, Al Up — YL — Ay

The current j}; = Ty, is classically conserved, but

n -
[DHj,1]" = 3 CuvrptT (T”&”(A”B“‘AP + A"A"‘“Aﬂ)

—piF



WZ consistency conditions

Given the effective action

WI[V] =Ww|o —i—Z o /Hﬂ’rdf Vi (@) O[T gy (1) - - G (20)[0)
n=1

i=1
invariance is expressed via the functional operator X“(x) defined by

5 5
Xa r) = abci),rb T
) = ey TV Sy

as follows
XY )W[V] =0
In a number of cases this WI is violated
X x)WIV] = A% (x)

Applying X"(y) to both sides and then inverting the two operations, we find a remarkable
relation of group-theoretical nature

X(x2) A (y) — X (y) A%(x) + f**A%(x)d(x — y) = 0,

that the anomaly must satisfy. These are the Wess-Zumino (WZ) consistency conditions.



The triangle diagram

The fermion propagator is ; and the vertex iv,PrT“. The Fourier transform of the three currents

amplitude (jr jr jr) is given by

~(Ia 14 1 1 -~ 1 1 —~ 1 1 —~
F'Y bc(klskz) = /—lr b TI'{__’YA W5Tb ar f}ﬁTc T nFF)Ta}

HAP

(27)4 P 2 P — ks 2 pP—d 2
— TI(TﬂTbTrjfiii(kl‘AZ)

where ¢ = k1 -+ k5. This is to be contracted with ¢g#. It is UV divergent and needs to be regularized.
The relevant Feynman diagram is

There is also a divergent quadrangle diagram. The pentagon diagram is UV convergent.



WZ consistency conditions and cohomology

Introduce the FP ghosts ¢(x) = ¢*(x)T*: the gauge trasformations become the BRST
transformations

|
ﬁv,ru, = D,ul’..'; 5C = _E[{:! f__.]?

This operation is nilpotent and the functional operator that generate them

) 0
s= [ d% (Elff(:;:)% + sc(x) ) :
/ ‘ ovVa(x) dea(x)

it is a nilpotent operator: s* = 0. Let us define the integrated anomaly

A = / d*ze*(x) A% (x)
The previous formulae are condensed as follows
sW (V] = A,
and the WZ c.c. can be written
sA. =0

§ is a coboundary operator, A, is a cocycle, it represent a cohomology class.



Descent equations and anomalies

There is a time honored formalism to construct all possible solutions of the consistency condi-
tions. Start from an order n symmetric polynomial in some representation of the Lie algebra,
P, (T, ..., T%), invariant under the adjoint transformations. In many cases these polynomials
are symmetric traces of the generators in the corresponding representation

Py(T™, .., T%) = Str(T™..T%) = -

Let V = V,dat = I)‘ETQ(I‘I‘“ and FF=dV + VAV = %F wdat N\odx¥, Then one can construct
the 2n-form

Aon(V) =P, (F,F,... F)

Then

1
P.(F,F,...F)=d (n/ dt P, (V. F“..,F)) = dAY (V)

Jo
where Vi =tV and its curvature F; = dV; + %[ " Vt]. This is the first of a sequence of equations
that can be shown to hold

r (0) A
AZ‘H(I ) - dﬁbz 1£L) =0
0 i,
sAG) (V) = dAS) ,(V,e) =0
&zn o(Vie) — {';‘A‘En 3(Vie) =0



Anomaly cancellation

First mechanism:
Both covariant and consistent anomalies in 4d are proportional to the tensor

tubf: _ StT(TﬂTEJTﬂ)

For antisymmetric T this tensor vanishes identically. This is true, for example, for the
Lorentz group SO(4).

Second mechanism.:
The anomaly coefficiemts for the various species sum up to zero.

Third mechanism.:
Introducing WZ terms (which requires new fields) or by means of the Green-Schwarz

mechanism.



Minimal Standard Model

Three families of massless quarks and leptons

G/ fields  SU(3) SU(2) U(l)

U 1 ‘ )

(d’)L ; ? ¢
UR 3 1 %
dr 3 1 ~3
HE I _ 1

( € )L 1 : ?
R 1 1 —1

The second column specifies the representations of SU(3), the third the ones of SU(2)
and the last is the list of U(1) representations, denoted by the corresponding hypercharge
eigenvalue. The hypercharge is defined by

- C1/1 0
Y_(g_’j_":_;‘ T%_E(U _1)1

here () is the electromagnetic charge and T3 the third generator of SU(2) in the doublet
representation.



MSM: gauge anomalies

o T43) 5 T5u3) 5 T43): there are two left-handed and two right-handed triplet, whose
anomalies cancel one another.

o Tu(2) 5 Tsu(2) 5 T(2) which vanishes because the tensor d*¢ vanishes in general for
1e Lie algebra :
the Lie algebra su(2

o T2 5 ou(2) 5 TN in which case we have the trace of two su(2) generators in two
doublet representations. These traces are non-vanishing because tr(7°7T?) ~ §°,
but they are multiplied by the corresponding u(l) charges, whose total value is

6(2) - 2(5) =0

o T43) 5 75uB) 5 T in which case we have the trace of two su(3) left triplet gen-
erators and two right triplet generators. These traces are again non-vanishing,
but they are multiplied by the corresponding u(l) charge, whose total value is

9 (1 2 | 1) _
3(2(5) —3+3) =0

o T 5 Tull) 5 Tul) in this case the tensor is proportional to the overall sum of the
: 213 : : :
charge products: 6 (é) '3 (%) — 3 (—%}) "9 (—%)i — (=1)* = 0.




Conjugate chiral spinors

A frequent alternative notation is to use the Lorentz covariant conjugates (ug), (dp)” and
(e)” instead of ug, dp and ep, in order to collect all the fields in a unique left-handed
multiplet.

The symbol ('5)¢ (for instance ug) can be rewritten as

(Up)" =1'Cvp = 1"CPR" = P"CY" = Pyt = (V).

Inserted into the kinetic term, it gives

T+ 20)0) = (TR P04 )0 = (T (04 24

[n this case one has to reverse the signs of the U(1) charges and replace the representation

3 of SU(3) of ug, dg with the 3 of (ug)<, (dg)".



Trace anomalies



When a metric i1s involved
When a metric is present at least two symmetries are involved: diffeomorphisms
OcGur = Vu&u + V&,
and Weyl transtormations
5&:9#!-* = 2W g

The effective action is

w [ - H + Z el /H dd"“ vV Y ) (a <G|T #WL ) s runvn £:f:“)|0>

n=1 i=1

and the Ward identity for diffeomorphims takes the form
de Wlgl =0
This relation may be violated at one-loop,
o Wlg] =
The term in the RHS is linear in & and, since 5? = (), it satisfies the consistency condition

5£A£:0



Weyl transformation and trace anomalies

The invariance under Weyl transformations, or conformal invariance, is expressed by

0 =6, W]g| = / g4 oWlg]

5 (@)

Since w is a generic infinitesimal function, this implies

(T, (x))g""(z) =0

09" () = —/ 1z w(x) (T, (x)) " (z)

where

P_;,: Z Qﬂ'n,] /Hddft"v' h'“ VI DlTT#U( ) .”fli-"'l.[:Jr ) Firmf"'?i[:;;n)|{)>

n=Il)

But we may have violations of this classical invariance
0, Wlg = A,

Due to the nilpotence of 4, the consistency condition

0y A, =0

must be satisfied,



Possible trace anomalies

The possible non-trivial cocycles of d,, with vanishing diffeomorphism partner in 4d are
well-known, they take the form

Alg,w]| = /fﬁd;r:@u T|gl, duAlg,w] =0

where the density T'[g](z) can be the quadratic Weyl density
2 L Ap ¢ L 1 2

the Gauss-Bonnet (or Euler) density,
E = Ru,R* — 4R, R" + R*,

and the Pontryagin density;,

]. Fo ot
— Lt L Ap
P — 2 (E RJI_HAPRI”.}T;’ ) 5

Other possible cocycles have densities

T.|V| = F, F", T,[V] = g Fl,Fy,.



Weyl fermion coupled to a metric

Consider again

e — L\
o= / d'z Vgivry (aﬁ 5*’*‘#) VR

where ¢ = Ppy, Pp = 1?5. The action can be rewritten as

5\' o j-l ﬂTI,.IJUH Al l #ﬂ,b{.‘r Tﬁ A~ al
- a & '\/E E{.-'JR f ap{:‘f’R - 1"5 WyabWR Ve 5 WR

where it is understood that the derivative applies to 1), and v only. We have used the relation
be\ _ ; abed,, .
{7, X%} =1 s
The classical e.m. tensor is

1— &
rfw = E'*:URTMVUH’R + {nu’ A V}

This theory is invariant under diffeomorphisms d.q,, = V, &, + V and Weyl transformations
. I (3m use vsp .
dwlur = 2w@u. As a consequence, classically,

VAT, (x) =0, T (x) =0

on shell.



Weyl fermion cont.

The fermion propagator is

;;!5+?'.E

and there is only one graviton-fermion-fermion (Vyys,) vertex given by

0 1+,
3 [(E’J +9),nw+ (p+p), "rp] 5

where p and p' are the two graviton momenta, and a two-fermion-two-graviton vertex
TE L
( f fhh,) 15

|

FE . —f , ‘I' —|_ F:FE.I
ffhh - 64 Hor'v

nea (k= k)" 5

where

tp.up'y"m}\ = Nup'€vv'wr T Nov €t + Nuv' €opred T Nup! €’k



Relevant
diagrams




The triangle diagram for the e. m. trace

~ d*p { i (1 + ’“r“:}) 0
Tw ey ki, K — / Tre — [(2p — k Ve L v —
e L R R G e

8[(23’}—2k1 ko) + (1 > v')] (1+%)

2
“GERR P h R (Hz )

i)

After regularization it becomes

T, 1 d'p dn—4¢ p+f
{‘T;iﬂf-’-;v’(k]vkE) - - 256 (2?]_)4 (2?]_)“_4 TI{ !Fﬁj — fg (Qp _ kl)u’}"y + (Ilu o U)]
(p+/1—K) o
(f— k)2 — (2 [(2p = 2kt — ko) v + (1 < V)]
LK k)

"=k - )—43% vk ﬂJ(lz%)}



The result
|7We use the expansion g, (z) =~ 7u, + huw(x). The triangle dlagramj
eventually give

(TH(x)) = "7 (8,05h], OrOrhG — 805 h], 920" hrp)

TEB?TE

The corresponding covariant expression is
the trace anomaly

. 1 1
I o 1 T Y ,u,;r,-ﬂlp aT
Therefore
B 1
153672

L .

—pA



... other calculations are possible!

The previous result corresponds, at the lowest order, to
OIT T ()T (y) Tap(2)]0) 04

One can also compute

7 (O T Lw () Ty () Tep (2)|0) 4
and get

0" O T T (2) T (y) T (2)0) 2 = 0

This is because

(O T T (@) Ty () Tas(2)]0) 9 = 0

for algebraic reasons!

So, what is the right result?



Ambiguities in trace anomaly calculations

The true reason for these contradictory results is due
to the ambiguities in the (perturbative) calculation of
the trace anomaly

There are four sources of ambiguity:
1) The divergent integrals
2) The very definition of trace anomaly

3) The cohomological ambiguity (Weyl +
diffeomorphisms)

4) The new’ ambiguity



Ambiguities

. Loop integration for a Feynman diagram is UV divergent — Solution: choose a regulariza-
sion scheme

2. Ambiguous definition of trace anomaly — Solution: Define it as:
I(z) = ¢ (x)(Tw(e)) - (Ti(z)

3. Cohomological ambiguity: — Solution: Diffeomorphims must be conserved

4. ‘New" ambiguity: — Solution: Go to higher loops or use a non-perturbative method



Trace anomaly: definition

The (gravity) effective action is defined by

111

W1[h] = +Z S /Hd 2y g (@) B (2) (0| T Ty (1) - . . Ty, (2)]0)

The one-loop one-point function is defined by

Zznnn/ Hff“‘w (27 01 T Ty () Ty (1) - - Ty () 0)

n=0

with g (x) = nuw + hu(2). The trace anomaly is

T(z) = ¢"(2) (T (x)) — (T (x)))
To the lowest order

T{Gdd](') #m(m{rﬂw( J uwl(rl)Tpgr&( J > <0|T ) #llﬂl(fl}Tﬂzrfz(I3)|0>

Since T!(x) = 0 on shell, this is the quantization of 0.



The ‘new’ ambiguity

Let us apply the same procedure to the odd-parity trace anomaly in 4D. The two ampli-

tudes in question are

~ d*p ? 1 45 1
T (R, K = ——Tr¢ — [(2p — k1) e < ‘
By ( 1 3) / (2?1_),1 1{8 [( P 1)! v+ (_,LL y)] ( 9 ) (}’j _ 5‘11)

i | 1+ s
x3 [(2p — 2Ky — ko) v + (1 < V)] ( 2 )

X(ﬁ—%j—%g@ﬁ_ﬁl ’“(H ﬁ) ;iﬁ}

and

.a--—

,uu,u o (K1, k2) / (Qﬁr { 3 [(2p — K1)y + (1 < V)] W

§ [(Qp — 2ky — ko) v + (1 < V)]

- Kl—;{. (2p — ﬁl—gt)(lz"ra);}_

Once regularized they lead to different results (like in the previous case).




cont.

The conservation of the e.m. tensor is determined by the amplitudes

1 d*p 1 L+ s 1
TV, (ki ks) = — / tr | =((2p — k1)av, + (N < ‘
;J,y,lpm:"ﬂ( 1 3) 512 (2?1_)4 I fj(( P 1)-1 f.ﬂ+( ;U)) 9 P_Kl
, 14~
X ((Qp — 2k1 — k9)oys + (a0 & ﬁ)) ( 2%)
1 L+ 75

X - (2p—q)-qm+ (2p— q)yg)) ( : )]

p—d 2
and

D) o | d'p L, .
9" T yrpap(Fr, k2) = 512 ] (@2n)t tr ﬁ((zi“ kaye + (A < .-”)) %

X ((2p — 2k1 — k2)avs + (o & B)) ﬁ (2p—q)-qv + (2p — ) (

Once regularized they both vanish.

")

Conclusion: therefore there is no way to repair the trace anomaly!



Solution for the ‘new’ ambiguity

Does it mean that we cannot compute the trace anomaly? No, it only means that this
problem cannot he solved at the lowest perturbative order.

Possible solutions:

to higher order (four-point, five-point, ... amplitudes)

use non-perturbative methods (heat kernel methods)



(Gauge-induced trace anomalies

Consider the action of a Dirac fermion coupled to a metric and an Abelian vector field

— 1 . .

with the usual notation. The vector current is j, = 1y, and the stress-energy tensor

I— & 1 |
’-".-rju;rf — _..l."i’v}!;.r,v;r;ﬂ" + ‘[‘U', — L"’}, VI—"- — DJH + il’.d“ - EI’L

4

With the same methods (both pertubative and non-perturbative) we get

1 . L/ » - l LT A
9 (Trw(2)))| = (9" TrRu(2))| = —gagemne 0"V (2)0°V*(2)
The non-Abelian version of this result is
A(odﬂ!,ﬁ’.] — —?—JEP,U),FJEI'{F”HFAF)

W 38472



Trace anomaly in chiral theories
with non-pertubative methods.

|ldea: use Bardeen’s method also for trace
anomalies



Bardeen’s method for chiral anomaly

Consider a theory of Dirac fermions coupled a vector V,, and an axial A, gauge potentials,
both valued in a Lie algebra with 7. The action is

SV, A] = ."/ 'z (J+V +vsd) o

It is invariant under two sets of gauge transformations

Vi — V) + Dy Vi, — V. + [A, 5]
A, — A+ A« A, — A, + Dy,p
v — (1 —a) P — (1 + v8)¢

] - r — . —_— a1 J— [ rs
where Dy, =0, + [V, - | and a = a®(x)T*, 5 = ()T

As a consequence there are two covariantly conserved currents, j, = jiT" and j5, =
Jg, T, where ji = ¢, T and j5, = ¥y, T".

After quantization one finds:

[DVdu)* + [A¥, 5] =0

while the axial conservation becomes anomalous:

1
Dl st + [A*, 5,0 = —cuaptr | T [ SFLE)° —F’”T”"“ . —r“” AN AP
[ Vv J"m] + [ .J‘g:] A2 H Ap Ul [ (—l + 12 G

2
- - 1“ VR — SAMFPAC ?--1#!,,-'-1&.--1%--1”)]

where FIY = rVv — g7V [VF VY], and FA = OrA” — VA + [V, AY] + [AF, V7]



Bardeen’s method, cont.

From this expression we can derive two results in particular. Setting A, = 0 we get the
covariant anomaly

1 y
Disi]” = T5emnpts (T"“F‘“‘ F{‘P)

which is the covariant anomaly.
Taking the chiral limit V' — % A= % we get

1 1
[Dy,jh* = Sttt (170" VYorVP 4 V“’V"‘W
m

i — . o 1475
where j}iu = Yy, Y, here ¢, = T i), which is the consistent non-Abelian gauge

anomaly.

The advantage of this method is that we work with Dirac fermions (as opposed to
Weyl fermions).



Axial-complex analysis
Axial-complex numbers are defined by
a— a + Y52

where a; and as are real numbers. Arithmetic is defined in the obvious way. Introducing

the chiral projectors Py = li% we can also write
a=ay P, +a_PFP_, a4+ = a; + as

I consider functions f(x) of the axial-complex variable
Tr = T + Ys5T2

defined via their Taylor expansions.
Derivatives are defined in the obvious way:

o _1(o , 9
oir 2\t " "ok

For axial-analytic functions

Integral of f(:?’)

| @z 7@

is the rapidly decreasing primitive g(z) of f{ﬁ*) And so on....



MAT (metric-axial-tensor) gravity

Introduce
Juv = Guv + V5 fuv
with
Guv = Nuv + hpuw, Juv = kuu

together with generalized vierbeins

L

€, = €, +5¢), ey = eq +r5¢q
One can define Christoffel symbols

fi\w _ FE}V)A n 75T£L2;})\
and Riemann tensor

Ruvr’ = RLIJAP + ")’57332}50



MAT (cont.)

Generalized Weyl transformation
G — 82(w+’)f5??)§”v

The volume density is

Vi = VA
= % (\/det(g + f) + Vdet(g — f)) + % (\/det(g + f) — /det(g — f))

and transforms as

\/E* . eA(wtsm) \/5

and




Fermions in MAT

The action of a fermion in a background of MAT gravity is

S

— 1~
/d4$i¢’ya5? (am, + §Qm) \/’31/)

s A 1 m 1 a
f dtzipy® (e + 15¢5") (am + 5 (oW +fy5n£3))) Vay

It is classically invariant under generalized Weyl transformations. One can define a
generalized e.m. tensor

_ 2358
V3 53

Differentiating with respect to w and n one obtains two classical Ward identities

T

T guv + T fuw = 0,
TH fuw + T g = 0,



The Schwinger-DeWitt method

To represent the determinant of the Dirac operator one can use the DeWitt method based
of the Schwinger proper time. One introduces the vacuum-to-vacuum amplitude

I — | TS|
(x,s|2",0) = (x|]e™*|z),
where F, is a differential quadratic operator, in the ordinary case the Dirac square

1
F, =V, g"V, — ZR + V,

where V = X%elel (9,V, — 9,V + [Vu,V,]). Tt follows that the functional determinant
W can be represented as

1 [ ds :
W = —Z— / —Tr (e*g "3) + const = L + const,
4Jo s

where L is the relevant effective action
L= /{id:f:L(:f:) = /dd.-;r: (x|L|x),

The trick is to use the (heat kernel) differential equation

0

a4 vy
gﬂq( ', 0},

x,s|la’, 0y = —F, (x,s



The DWS method, cont.

insert in it the ansatz

(x,s|a’,0) = — lim —\/Q(I,."L'I)Ei( o™ ’q)qi(:,r:’:f:”s}

rir—+() {41,-— ‘:) =

It follows that ®(x, x’, s) must satisfy the differential equation

oD L — 1 g B
rE—I—‘V OV, o + \/—ﬁv V. ("\/5‘11’) —(ER—".?—:'H,)‘I’—U

Expanding

e

D(x, 2’ s) = Z an(x, 2")(is)"

=[]}

one finds that the a,, must satisfy the recursive relations:

1 1 ‘
(n+ 1apy1 + V0%ap 1 Vo — x/—ﬁf"'“?“ (V ’.EJ{.!.H) + (ER -V — m"‘}) a, = 0

Using these equations one can compute the coincidence limits

lay|(x) = ﬂ}jigt_ an(x, x")



The DWS method, cont.

The appropriate elliptic operator in the MAT case is
F=7"V,3V
) L i

where vV, = ~%(ef + v5c4) (3# + % (fl;[;]} —+ ”r’5ﬂf])) '
In 4D the relevant coefficient is [az]

1w = —-m — —m R4+ —R" — —R,)"— —R,LR" + — R\, R
2] 2" T R aRR 120" 180 180 #7

]_ e P

= pv

+48R“HR
where ﬁ“p = ﬁ“,,“bzab. and the effective action is given by
L(T) = 35,2 (d — 4 4) tr (m* — 2m?[a,] + 2[as)) NG
+641‘T2 tr A ds In(4mwip~s) ‘gﬂ(i?)"* (f;‘_im |P(F, T, ‘:)])

Taking the variation with respect to @ one finds

T 1 4 =~ 15 S L
bl = — a2 / d*x t.r\/gw R RN

= / rj’dﬂ?tl'\/?f“;‘j:

odd

where T = ﬁ“”éw; = gHv ((fm,)}



The chiral limit

The collapsing limit is defined by %, — Py ku, — Eg—” What happens in
this limit?

1 1
IDP. A 2)A A
]'_‘j(_u.} - 5’}’;;1/3 F,Eu/) — §,Y‘|‘JLU
Moreover
Q(l)ab N lwab Q(2)ab . lwab (1)
iz P I iz
and
O N IRES S R®» L Llp 2)
LU A 2 HUA JT7 9 HUA

where fyﬁy, wﬁb, R,,,,? are the ordinary Christoffel, spin connection and
Riemann tensor.



The chiral limit (cont.)

And the fermion action becomes

1 _ 1 1—
S/ — /d% [i‘lﬁ}f“ 275 O, U + i W~ (am + §wm) 2'}’5 xp}

and as for the e.m. tensor, both 7% and T} become

0.5’

T (z) = 45%”(@

As a consequence the traces also collapse to the same
T(x) = (T NG = T (), Ts(z) — (T Nguw = T'(2)

Precisely to the Pontryagin density

N
(.]4(55‘) — Z E!_LUAPR_{_LUJTRA,OJT



The DWS method: the results

In conclusion the Pontryagin Weyl anomaly for left-handed Weyl fermion

!

‘T‘(I} = mf

A A
H P}zﬁumﬁ]?kﬂﬂ}-

We can easily compute also the ABJ-like anomaly, by taking the limit the (vector) limit
Gy = Gy [ = 0. The result is the anomaly

) aff
¢ pjzpuﬁﬁjzhp i

J:(1) = ¢
() 76872

which coincides with the perturbative result found above.



There are plenty of different anomalies: gauge and
trace, even- and odd-parity, consistent and covariant.

* Are they all on the same footing and of the same
Importance?

* Why some are dangerous and other are not?

* Do they have to be cancelled?

The methods considered so far do not allow us to
answer these guestions!
We need the family’s index theorem




The Dirac operator and its index

Consider a gauge field theory on a Fuclidean spacetime M. The Dirac operator
D=0 +iV
acts on the tensor product of a spinor bundle S& with a vector bundle E corresponding
to a representation p of the structure group G of P(X,G): SE @ E.
The relevant connection is the spin connection plus a gauge connection V. = V, dx"
valued in the representation p of the Lie algebra of G with antihermiten generators. The

Dirac operator acts on the space of sections of SZ(E) = SZ ® E (i.e. on the spinor fields)
and maps it to itself. Accordingly it splits into

_(0 P
P = » 0

The index of P is defined by
+ . + . -
IndD" = dim(ker D) — dim(ker D)

Ativah and Singer showed that

ch (?ﬁnrf(fjJr)) — /M ch(V) - A(TQ)

Here ©Q = % is the orbit space of connections,



The family’s index theorem

The Ativah-Singer family’s index theorem says that the index of the Dirac operator for a
Weyl fermion is given

Cq (*md{TJJr)) = /Fur ch('V) A(TQ)

d,2

where V is the gauge bundle and T'Q is the tangent bundle to the moduli space of the
theory. ch is the Chern character

a2

f ‘ 1;_3
(V) =r+ —tr F tr F2
V) =rt o ot oo™ 7 F gy

tr 3 4

and A is the A-genus

E(X) = 1+ itrR“Z-{— ! ! tI'(Rg)z—l—iter]

(47)2 12 (4m)% | 288 360

1 (?ﬁnd[fﬁj) represents an obstruction to the invertibility of P Le. ¢ (imﬂ(fﬁ)) # 0

the Weyl fermion propagator does not exist!

The Pontryagin class trR? and Chern class trF'? are obstructions to the existence of
the fermion propagator.



Here is the conundrum: anomalies are dangerous when
they prevent the existence of the fermion propagators.

| call type O the anomalies whose family’s index is
nonvanishing

| call type NO all the others

The family’s index of a self-adjoint operator vanishes
identically.

Examples: the Dirac operator for Dirac fermions; the
Maxwell operator (after gauge fixing)....




Anomaly recap

in divergence of current or of e.m. tensor

e Where do they appear:

e Local Anomalies are of two types: <

type O

e In what theories:

e Cancellation: <

type NO

type O $

in trace of e.m. tensor

¢ O prevent existence of propagators,
vpe

Yl dangerous : must be canceled
no obstruction for propagators,

tvpe NO
Vi need not be canceled

\

only in chiral theories
in any theory
4 . . .
A : group theoretical (unavailable for trace anomalies)

B : coefficient matching (unlikely for trace anomalies)

type NO {

L C : Wess—Zumino terms or Green — Schwarz mechanisms
in general not required
B : coefficient matching unlikely

for even trace anomalies
C : with Wess — Zumino terms




Thus we have to find all the type O
anomalies in the SM coupled to gravity
and make sure that they vanish.

They are:

- chiral gauge anomalies (they vanish)
- gravitational anomalies (absent)

- mixed gauge-gravity anomalies

- chiral trace anomalies




Mixed gauge-gravity anomaly

The pure gravitational anomalies in the divergence of the e.m. tensor vanish identically,
but there is a mixed gauge-gravity chiral anomaly! Consider a right-handed fermion
e A : : =) i
coupled both to a metric and to an Abelian gauge field V.
The relevant current j, = ¢pvy, 15 is classically conserved, but after quantization
Ju YRYuVR ) 1 |

1
153672

4 — LA oT
aﬁjﬁ;; - et pR;w Rﬁpar-
Its integrated form is ~ Ag(A, g) = f dix )\ etvre R,.,°" Ry 0+, which is a diffeomorphism-
invariant (trivially) consistent Abelian gauge cocycle. This cocycle can take different
forms, for instnace Ag(A, g) is equivalent to

Ag(&,9,V) = /{54:1: Ve Mt (0,2T,) Fy, (1)
where F,, = 9,V, — 0,V,, E represents the matrix =7 = 0,7 and I', represents the

matrix I . Nevertheless this anomaly vanishes in the M5M coupled to a metric:

o ¥ x X x T4 the trace tr ( E“bECd) is non-vanishing, but it is multiplied by the total
U(1) charge: 6 (3) —3(3) =3 (—3) +2(—3) +1=0.

The addition of sterile neutrinos does not alter this conclusion.



Trace anomalies in the SM

MSM trace-gravity

e The SM multiplet, when coupled to gravity, produces an overall non-vanishing
(imaginary) coefficient for the Pontryagin density in the trace anomaly.

This breakdown is naturally avoided if we add to the above MSM multiplet a right-
handed sterile neutrino.

MSM trace-gauge

e We have six units of the anomaly ~ trF? with curvature F = F*™®) and six units
with opposite sign. Therefore the MSM multiplet is free of these anomalies.

e We have instead 4 units of the same anomaly with gauge field ' = F*(2) and
positive sign, computed in the doublet representation of su(2).

e Finally we have a U(1) gauge-induced trace anomaly with vanishing total coefficient:

6(5)°-3(3)"-3(-3)"+2(-3)" ~ (-1’ =0

The addition of sterile neutrinos does not change these conclusions.
The SU(2) gauge-induced odd trace anomalies do not cancel in the MSM.



Summary: second half

A L-R symmetric model
Axial-complex analysis
Conformal invariance

Trace anomalies: even parity
WZ terms

Renormalization and unitarity
Connection with cosmology



A chirally symmetric model

The left-handed multiplet is

/fcfhfﬁ SU@3)  SU@)  U(
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(vg)° )

This multiplet couples to a left gravitational metric and connection, and to the SU(3), x

SU(2) x U(1), gauge fields.



A chirally symmetric model
The right-handed multiplet is

G/fields  SU(3) SU(2) Ul
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coupled to a right gravitational metric and connection. This multiplet couples to the
SU(3)g x SU(2) x U(1)y gauge fields.

All O-type anomalies cancel.



Axial-complex analysis
Axial-complex numbers are defined by
a— a; + Ys2

where a; and as are real numbers. Arithmetic is defined in the obvious way. Introducing

. N 14~ -
the chiral projectors Py = =, we can also write
a—=a P, +a_FP_, a4+ — ay £ as

I consider functions f(z) of the axial-complex variable
r =T + Y52

defined via their Taylor expansions.
Derivatives are defined in the obvious way:

o _1(o , 9
ozr 2 \oxt " ok

For axial-analytic functions

Integral of f{ff*)

| @z i@

is the rapidly decreasing primitive g(z) of f{:?") And so on....



MAT (metric-axial-tensor) gravity

Introduce
Juv = Guv + V5 fuv
with
Guv = Nuv + hpuw, Juv = kuu

together with generalized vierbeins

L

€, = €, +5¢), ey = eq +r5¢q
One can define Christoffel symbols

fi\w _ FE}V)A n 75T£L2;})\
and Riemann tensor

Ruvr’ = RLIJAP + ")’57332}50



MAT (cont.)

Generalized Weyl transformation
G — 82(w+’)f5??)§”v

The volume density is

Vi = VA
= % (\/det(g + f) + Vdet(g — f)) + % (\/det(g + f) — /det(g — f))

and transforms as

\/E* . eA(wtsm) \/5

and




A L-R symmetric model: the fermion action

§f = / ( \/Q"P (I)Ju + Qu) _.,) (h)
-~ R —~ i F U - ]- y | -
= /{i“ifr; (m‘.r\/gf}f (el + 5t (I),u - 5 (QE} + ﬂmﬂf])) ’{,E.f) (7)

It splits as § = S}H + 5’}_} where
i+ -~ oy a 1 =~
.S} ) — /{fi:ﬂ (1#'9':& i Poyte P, (ﬂ)“ ﬁngli}Pi) ) (Z)

More 1n detail,

S}‘l‘} — Sfﬁ = /{id.’ﬂ ( g+ :‘E"t,-'wﬂﬁfaﬁ‘.y_}u (:DL-{-} + §£'ZL+}) UJ’R) (ff,')

where 1% represents the right-handed multiplet, and

=, +gx XM + gwW, + g, Bl



A L-R symmetric model: the gauge action

The action for the SU(2) gauge fields is

l ’ﬁ""ﬁ‘"li s (1 [
5 9= "3 /rf T Tr (,ﬂﬂ\f ey ﬂwfpry:)? Fo=F,T

where Tr denotes the trace over all matrices, including 5. The coupling splits
1

’TE__P +_P_
g g+ g’

Thus the action splits as S, = S,é*j + S.tg_]

.Sréi — fl?\/_tl (giﬂ J;:U F ﬂ;’y")
4&



A L-R symmetric model: the gauge action

The action for the SU(3) x SU(3)r x U(1)1 x U(1)p gauge fields is

~ | n
Sueq = 3 [ d'TTh (?\f KE w,ﬂm) F = I}fyTﬂ

where F = dV + %[i; f;] and ﬁ =V, + 754, T* are the generators of SU(3) x U(L).
The action splits as

sc(wq g /d I\/_fl" (Jiﬁ .'F»]'EI_-LJr i I::E:f])

whete Fly) = dV®) + VE V)] and Vi = V.tA, andg=g+psh =g, P +g-P..

1
i



AE scalar doublet action

W | 2}

- [ 42715 (wﬂ@,m e

)

where D, = (3” ng us and W, is an SU(2) gauge field (notice that W, is not AE). We can
decompose HasH = Hy P, + H_P_ where HJ_r =h+tk, as well as M* = 3 ﬂfﬁﬂ + M*P.
and ) = AP+ A_P_. Then Saﬂd splits as Saﬂd = bﬂﬂd) + 8 with

aed

§ -~ I ' ‘ ' /\ :
&) = / 1'% /i {gi D,HLD,Hy ~ MEHLH, - 7 (Hiﬂi) ]

S 4 60) and ST 4 S are parity-invariant.

aed ' Yaed



AE real scalar action

Action for an axially-extended (AE) real scalar field ® = ¢+ 57, where ¢ is an ordinary
real and 7 a psudoreal scalar field

- i o - . ,.-'"n,ﬂ ’X,ﬁ.\ 1
Sies = / ' T \/? ('ﬁ“”’@”@ﬂy@ — mAe? - 4‘1’4)

We decompose Dasd = O P +P_P_ where ¢, = in as well as m* = m? P, +m* P_
and ). = APy + A_P_. Then we have the splitting bam - Saes + 5&&?5; with

A\
Sﬁg—/fih\/_(gi 0,0+0,05 — m} 0 - fq‘q)



EH-like action

The Einstein-Hilbert-like action in this context takes the form

P ]_ P
e = - /d"l’;}?Tr( ﬁﬁ) |

-~
K

where K i1s the Ricei scalar

~~

R=3"F =3 (B} +R0) = RO+ ROP.

where R = gfﬂi}'. Moreover % =-LP + %P_.

K4

The action splits as § EH = SEEJ}} + SEE}} with

1

gl _
B 9k

H

[ asvare

Remark. The previous formalism works even if there is only one metric, that is

9+ = g-.



The T theory

We define left and right Yukawa couplings
Uy S
SY&L = % /!’flj’::ﬁg_ (UdL Hd_xsﬂ) + h.c.

where 147, is a left-handed SU(2) doublet, fa}d_ is also an SU(2) doublet, while y,p is a
right-handed singlet, all of them belonging to the left-handed multiplet. Similarly,

+
. Yu P —— .-
Svip = Tﬁ /d“l:,r: O (XLER Hd+-'g-u;L) + h.c.

The total 7 action is

S{:h—sym — Sf + Sg + Saeg + (SY + SYd -+ h-fiv) + Sggs —+ Saf:d + SEH

It splits as

T=T.UTg



Standard model and Weyl invariance

In the above theory the fermion action, the gauge
actions and the Yukawa couplings are conformal
Invariant.

The scalar actions and the EH action are not conformal
Invariant.

It is possible to render the whole action conformal
iInvariant by introducing a scalar field, ¢, the dilaton.




Weyl geometry
In an ordinary gravitational background geometry the Weyl transformation is given by
Guv =+ € Gy
The Christoffel symbols transform as
Tﬁv e Ffw + 5;: O + 67 O — Gy Opw
We can construct Weyl-invariant Christoffel symbols as follows
0, =T — (00 0 + 8) 0up — Gug™9,0)
where the field ¢ (a dilaton) under Weyl transforms as
Y — P+ Ww
We can construct Weyl invariant Ricei tensor

R;.w = R]m,: + 3D1-"SH - .DJHSH -+ gppD . S <+ QS#SV —_ Qg“yg . S

o ) . . D - e
where S, = d,p. Important: ¢ is dimensionless !



Weyl geometrization

One possible Weyl invariant action for gravity and a scalar field is

Lo | e N
ngif_l_s — 5 /t’fl;;{:x/ﬁ (f_‘:_'g""g + C@)ﬁ) (R 4 cﬁ—jp)

1 o o5 A
+§ /t’fl.‘ff N7 {g#"DHfI)DHfI?' — mie ¥ P? — 1'-'1?‘1]
where
R=R+6(D-dp—dp-dp)
and

D,® = (Jp + Oup) ©

Now this has to be done for 7 and transform it into 7 WV.



Embedding 7 in Weyl geometry

Action terms that do not need Weyl embedding

.-“‘-;

— 5 J.(_;‘é{:} = ng JST(F} — Sﬂgg, S}" (ﬂ) — JST}/, Sgé = . Yd

ieg

For the remaining terms a very general Weyl invariant form is

d'T tr [ 'ﬂ“ (E’._EE + EhﬁTI? + E‘ﬁz) (ﬁ —l—?e_ﬂ’ﬁ)]

4% tr G (D“H) (D,,,H) + P - 2
15t d /7 |7D,8D,8 + e 3 - 23

2 a Ttr q g PP +m7e —1

_ /dd:,r: tr [ \/_CWAPC*”M‘G] .

. 1
()
SEH—i-aes—I—aed-l—C - 5 /

~~~

+

where C),5, 1s the Weyl tensor,

and D, = D} Py + D, P_, D* = 8, + 9, — ighV,.



Conformal invariance can be implemented in a classical field
theory by simply adding a scalar field.

At guantum level we meet the issue of conformal (trace)
anomalies. This raises two problems:

- Finding all of them
- Cancelling them

- We know that odd-parity anomalies do cancel
- Even parity anomalies are not dangerous, but if we want to
preserve Weyl invariance we must cancel them.




Possible trace anomalies

The possible non-trivial cocycles of d,, with vanishing diffeomorphism partner in 4d are
well-known, they take the form

Alg,w]| = /fﬁd;r:@u T|gl, duAlg,w] =0

where the density T'[g](z) can be the quadratic Weyl density
2 L Ap ¢ L 1 2

the Gauss-Bonnet (or Euler) density,
E = Ru,R* — 4R, R" + R*,

and the Pontryagin density;,

]. Fo ot
— Lt L Ap
P — 2 (E RJI_HAPRI”.}T;’ ) 5

Other possible cocycles have densities

T.|V| = F, F", T,[V] = g Fl,Fy,.



Other even trace anomalies

The action of a scalar field is not automatically conformal invariant, but it can be made
so. The improved energy momentum tensor for a real scalar is
T6) = 9,89, -~ PP + = (1,0 - 8,0,) 2
. MpE Vs T i”_uu AY O + 6 (”;w — U u)
which is conserved and traceless on-shell.
For instance, in a quantum theory of a Dirac fermion interacting with ®, a non-
vanishing trace pops up

1 ‘
f,-‘!‘]_ ‘:1 —JH 2
Al ayr=1 d'rw (8000 - 9,9 9"® — 9R %)

This comes from the triangle diagram with three fermion propagators and two exiting
scalars via the interaction ¢®1.
In the T theory there are several anomalies like this.



How do we cancel even trace anomalies?

- The first mechanism (anomaly polynomial
vanishes identically) is not available

- The second mechanism (vanishing overlap of
various species) is extremely unlikely

- We are left with the WZ terms.




WZ terms

Any trace anomaly can be written in the form

Aulg, fl = /rjd:f:ﬁw Flg, f]

where g = {g,,,} is the metric, w is the Weyl transformation parameter 4,9,
denotes any other field and F' is a local function of ¢ and f
The corresponding WZ term is defined as follows

Wazlog f]= | dt [ Ea/g@Fl0(0. 10)o

in terms of the dimensionless field o, with 6,0 = —w. Moreover g,,(t) =
— 5 = tﬂ' P, = — r - # J— d_g 5 el i 3
f(t)=ev9f and y = 0 a gauge field, y = 5= for a scalar field.
We have

0L Wwzlo, g, f] = —Aulg, f]

= 2W Gups |

e*’tg,,, and

For instance the WZ term for the anomaly with density ~ F),, F* takes the simple

form

WH,-'E[U-. g, V] ~ /d‘:l_"f,'x@g FppF“y



Therefore in any classically conformal invariant theory,
where Weyl invariance is broken at one-loop by trace

anomalies, we can restore invariance by adding suitable
WZ terms.

But for our TW theory there may be problems
with unitarity: the spectrum very likely contains
ghost particles (negative norm states)

Pottel-Sibold (2023-2024), Oda-Saake (2020), Oda
(2022-2024)

| personally interpret this as a signal that the T theory Is
UV incomplete, i.e. an effective field theory




Evolution of 7 =7 U7T,... basic idea

We first simplify the model by setting H, = H_, then we fix the Weyl symmetry in the
R sector by choosing ¢, = (. This operation produces masses only for H and @,

C+Cht , o (y
and M2 =m? +
LR -+ .

KR+ Ry

M} = M? +

respectively. Then we postulate an early breakdown of the L-R symmetry by setting

. 2M?
O, = vy + ps, where py is a real field and vy = }w} . a real number, denotes the

minimum of the potential, we have
Dy®: D@y = Oulvg + p4)0"(v4 + py)
The quadratic terms in %D“@?D“@ —V (V is the potential) are

1 1,
5@”;4@”;4 - §}mipi

The result is a massive scalar py.
. . — ;
Finally, the Yukawa couplings ,/g+ T"'T* Vp®., (V5)¢ + h.c., when (®,) = v, produces
a mass term proportional to vy. Here ¢, denotes the right multiplet. Since all these
masses, as well as the mass of p,, are proportional to v, they can be made arbitrarily
large.

a1 @ s oA s ¥’ - - A & 0w LR = A - -



Evolution of 7 =T U7,... cont.

After this breaking (supposed to be at very high energy) the two halves evolve almost in-
dependently, except for the common weak interaction. The symmetry SU(3),, x SU(3) p X
SU(2) x U(1)g x U(1), remains unbroken.

Tr is a theory of very heavy quarks and leptons, for which nucleation is not possible.
They are subject to the right gravity and clectromagnetism, and interact weakly with the
left sector.

7. cvolves as a conformal invariant theory until we fix the gauge ¢ = 0. When
the energy is low cnough there is room for a breakdown of the clectrowecak symmetry
SU(2) x U(1),, that generate masses for the three SU(2) gauge bosons and for H.

The masses of the gauge bosons and the Higgs field are of course the same on both
sides My, = givi = g?v® (g4 arc the SU(2) gauge couplings in the two sides) and

M:=M iJr% In this process both SU(3) and the U(1) g symmetrics remain unbroken.

It gocs without saying that, if the above makes any sense, the R model lends itsclf as
a candidate for the black matter sector and the whole T theory may harbor the ambition
to unveil the mystery of baryon asymmetry.



THANKS



