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- Outline I

* Brief review of the Cosmological Constant problem
* Planck scale (Lp)) implies quantum uncertainty in space-time metric
* Heuristic argument: Einstein power emergent from Planck scale

* Replace L;, cut-off with phenomenological length scale (L)

obtained from vacuum energy causing observed expansion
* [, 1s geometric mean of L, and the observable universe, L,
* L, 1s consistent with uncertainty in macroscopic quantum systems

» Effective QFT vacuum energy at Planck scale now matches

cosmological vacuum energy

* Time-dependence of space-time uncertainty in an FLRW universe
and evolution of the Cosmological “Constant”
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QFT vacuum energy density

Vacuum energy density from Quantum Field Theory (QFT)
1 Py 2 4 43
‘cc+mict d

PZ
where P, 1s the cut-off momentum. (Weinberg, 1989)

* Lorentz flat space-time geometry is assumed.
1% 2 2
Uﬂvpﬂp =-m'c 5 E’=m’c*+p’c’

e This vacuum energy 1s used to predict cosmological expansion of
the universe using Einstein field equations of GR, therefore the
assumption of flat space-time is inherently flawed.
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Comparing QFT and GR vacuum energy

Spherical momentum space (mc << p):

Paorr * 16 C3h3_[ p(477p d p):

C hc
167°h° 167°L),
where De Broglie relation, P, =#/L,, gives L, as cut-off length.

P, =

* Planck scale cut-off: [, =1, = JGh/ .

7
C

Pt = 62’ G
» Compareto GR: G, +Ag,, =T, — G, 8”G(T +TA)

~ 10" é or 10""GeV* in natural units.

A — c*A i A ~ c4A )
where TW— s Sy > Ty~
4
c'A _ . .
Pa = o 10 1o$ or 10 GeV* in natural units.
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Cosmological Constant problem and Planck scale

PoFT ~ ¢’ _ 10111%113 — 10"
py  GhA 1077V,

Ratio of energy densities:

Reasons to question this result:

 Lorentz flat space-time geometry was assumed in expanding universe.
* G may vary with cosmological time: G ~ 1/t (Dirac, 1937)

* ¢ (and o) may vary with cosmological time (Bekenstein, 1982.)
 Planck length scale 1s not necessarily fundamental.

Historically, Planck quantities are not based on physical
relationships but dimensional analysis as originally done by Planck.”

[G]=MTL3T>2, [A]=M'L°T!, [c]=M'L'T!
*Planck (1899), Meschini (2007), Tank (2011)
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Planck quantities by Planck himself

Wihlt man nun die »natiirlichen Einheiten« so, dass in
dem neuen Maasssystem jede der vorstehenden vier Con-
stanten den Werth 1 annimmt, so erhdrt man als Einheit
der Lange die Grosse:

l/%? = A 310" chi,
als Einheit der Masse:

/% —5.56-107 gr,
als Einheit der Zeit: i

}/f_sf —1.38-107% sec,

als Einheit der Temperatur:

a M/C_—O = 3,50-1032 Cels.
bf

M. Planck, “Uber irreversible Strahlungsvorginge,” Sitzungsberichte der
Koniglich Preussischen Akademie der Wissenschaften zu Berlin (1899).
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Deriving Planck quantities from physical relationships

h
Compton wavelength: A = e Schwarzschild radius: R, = 2G2m
(length scale of a (classical length scale ‘
quantum particle) of a black hole)

Equating 4. (quantum scale) and R (classical scale) leads to Planck
mass and Planck length:

| he _ Gh .
Mp = E~108kg Ly =4—~10 “m

C

This 1s a mesoscale (classical) mass scale but a miniscule (quantum)
length scale which implies an important connection between classical
and quantum scales.

This implies that ignoring the quantum uncertainty of space-time
could be the cause for the Cosmological Constant Problem.
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Planck Mass (classical) compared to Planck Length (quantum)

Planck volume:
3
VPl — LPl

Planck scale predicts a

- 10—105 m3

102kg

mPl ~ 10_8 kg % G

classical mass scale enclosed
in a quantum volume scale

(Planck unit cell).

Planck volume
(unit cell)

1014 kg —

1027 kg ~

—lﬂm

-
&
&
¥

atomic nucleus
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Classical Einstein power emergent from Planck quantities

Planck energy: Ep — mP62 — \/th /G ~10°T~10"%eV

L _ G—Sh~10_43s

C C

Planck time: tor

E, ~Nh’/G ¢
Planck power: PP=—P—\/ d & 107w

tr NGhic® G
Notice Planck’s constant (quantum) cancels and the
Result 1s only 1n terms of G and ¢ which are constants 1n

classical General Relativity. Therefore, the power can be
named the Einstein power: P, = /G
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Coetticient of classical GR emergent from Planck quantities

Planck/Einstein power is related to force by P, = F,,c. Then
Fy ¢’ 44
F,="E="_—10"N
c G
Amazingly, this turns to be the constant that appears in Einstein’s
General Relativity (GR).

856 1, g ST g
c* .
» The coefficient of GR (a classical theory) emerges from the Planck scale
(which 1s quantum mechanical). It 1s “hidden” in the theory of GR.

G" =

* This may imply that ignoring the explicit role of quantum uncertainty of
space-time (involving /) 1n the classical theory of GR 1is the cause of the
Cosmological Constant Problem.
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Newtonian space-time uncertainty

Proposal: Relate fixed cut-off to spacetime uncertainty.
* Mass distribution shapes curved space-time (GR).

* Distribution of quantum mass has fundamental

uncertainty. (Example: hydrogen atom cloud.)
It follows that curved space-time must have a
fundamental uncertainty (space-time “fuzziness”).*
2
U. mc L

where we use ¢ =Gm /L, E =mc?, and E=hc/L.

* Agy ~ 0 for L >> L ;: insignificant space-time uncertainty

Hydrogen Atom

Agy =

* Agy = 1 for L = Lp: max uncertainty (quantum space-time foam at Planck scale)

*Adler (2010), Regge (1958), Ng and van Dam (1995, 2000), Christiansen, et al (2011),
Mead (1964, 1966), Vilkovisky (1992), DeWitt (1964), Garay (1999)
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Phenomenological cut-off length scale
fic c*A

Equate IOQFT ~

1622 LL; and p, = Py then solve for L,.
G 1/4
L,~| —=—| =2x10°m
2 c’ A

This 1s a phenomenological length scale obtained using the observed
vacuum energy determined by the expansion of the universe (via the
measured value of A).

Interpretation: L, = \/ L, L , where Ly is the radius of the observable
universe. This 1s the geometric mean of the smallest and largest length
scales of the universe.*

* Zel’dovich and Krasinski (1968), Freidel, et. al.(2023), Tello, et. al. (2023)
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Uncertainty principle on macroscopic length scales

® Az Ap > 3—‘
System

BECs
Optomechanics

Quantum Drum

Scale

~10-100 pm

~50-500 pm

~30pm

Quantum Feature

Macroscopic wavefunction

coherence

Quantum control of

mechanical motion

Quantized vibrational states

Role of Uncertainty Principle

Wavefunction delocalization and thermal

de Broglie overlap

Limits sensitivity in displacement sensing;

governs backaction

Demonstrates macroscopic quantum

superposition in mechanical modes
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Uncertainty principle on macroscopic length scales

AEAt > 1

System Scale Quantum Feature Role of Uncertainty Principle

Cavity QED ~T100 pum cavity A Quantized light-matter Zero-point energy and mode fluctuations
interactions from confined fields

THz Photons ~100um A Single-photon THz Sets spectral linewidth and coherence time
guantum optics

Flux Qubits ~100 um loop Macroscopic current Governs tunneling rates and coherence
tunneling lifetimes

B APAQ =12

System Scale Quantum Feature Role of Uncertainty Principle

SQUIDs ~10-200 pm Superposition of flux/ Enables tunneling between flux states;
current states quantization of magnetic flux
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Effective Planck scale QFT vacuum energy density due to

suppression by quantum space-time uncertainty
2

L : . :
Use Pger ® 6L and L, = A;N to obtain effective QFT energy density:
hic o) LZ 2
0 ~ Ag 2 _ | e | -2
QFT e 2 L ( N) where (AgN) (—Lzz ) 10

* QFT vacuum energy at Planck scale is drastically suppressed by quantum
space-time uncertainty so that it appears as if there 1s a cut-off at L.

* The L, cut-off does NOT mean QFT fails below that length scale. Rather,
higher energies (below L,) are “smeared out” by this space-time uncertainty.

« Effective QFT vacuum energy at Planck scale is corrected by (Agy)? ~ 10-12!
and now matches observed cosmological vacuum energy so popr = O

Therefore, the Cosmological Constant problem is resolved by
acknowledging the role of quantum space-time uncertainty.
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Space-time metric for expanding universe

Recall: Flat (Minkowski) space-time metric: (1 0 0 0)
ds® =1y,c dt” +m,dx’dx’ _— 0 100
LV
Now consider stretching space-time: 0 0 10
.0 0 0 1)

ds* = g, (%,¢)c*dt’ + g, (%, ¢ )dx'dx’
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Vacuum energy density in FLRW universe

. : : 2 2
Generalize invariant to curved space-time: g v pﬂ pV =—m C

i i\ i
—CgyP +c\/ (¢0r' ) — 20lg,p'p’ +m*c?)
&0
Use FLRW metric with zero spatial curvature (k= 0) which 1s

g0 =—1 g, =0, g =Cl2(t)§ij

Solve for energy: E =

Then energy becomes £ = \/m204 +a’ (t)p202

Vacuum energy in spherical momentum space (mc << p):

C Fy
/OQFT = 872'3 h3 j. d(t)p d3p

0

Ea— e [
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Vacuum energy density in FLRW universe

For universe dominated by dark energy: a(t) =a,e”", where

e A=H(t,)\JQ,(t,) and H=a" % 1s Hubble parameter.

* ¢, 1s the current epoch of the universe.

[
. Q,(t)= 2] , where p, 1s the critical mass density

Pe
* Since p, (,) ® p, in the current epoch, then A ~ H(t,)= H,
2]t 2]t
Do = ca,e P, D dp = Cae "
= — Z
Y 167° 1
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Time-scale obtained from energy density

Normalize to a, = 1, use time scale t =1,, and P, =%/ L,
where L, ~2x10”°m.

2 14
f = | 7L |0y
2H, hic

* Therefore, the time scale is the age of the universe.

» This is more fitting that than the Planck time, #,; ~ 104 s,
associated with the usual choice of using a Planck cut-off
momentum, Py, = h /Ly, where Ly, = ctp.
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Proper length of a wordline in a FLRW Universe
The proper length of a wordline 1s given by

L oper = _[OLC \/ — g, dx"dx" = IOLC \/ c’dt* —a’*(t)dx® =c j Viirwdt
where Vrrw = [1 —a*(t)v? /e ]_1/2 1s a Lorentz factor in FLRW space-time.

The bounds of the integral go from the start of the universe (r=0) to a
coordinate time 7 associated with a coordinate length L = cf..

Using A= H, and @, = 1 in a(t)=a,e*™’, then integrating leads to
g 0 0 g g

- 2(\/1—,364’{”0 —W)—l {H\/l e 1-41-5

L
proper 4 HO

—J1=-pete 1441- 5 ]

where ff=v/c. For slow observers (v << ¢), the expression reduces to
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Space-time uncertainty in a FLRW Universe
Similar to Ag,, = L;, / L,, we define the FLRW space-time uncertainty as

Agrrw = L%l /L

proper

Since L., is Lorentz invariant then so is Agp gw- Using L .. from the

previous slide gives a coordinate-dependent expression for a moving observer:

- ~4-2
16H, L} ; 1+4/1= BPe*re 1-4J1- B
Y { T p——_— 2(\/1—,Be4H°C—1/1—,82)—1n ‘/ — -
c 1—y1- %" 14+.1-B

This has a complicated time-dependence which 1s plotted on the next
slide. For slow observers (v << ¢), the expression simplifies to

L 1 )’
A ~— |1+ — | le*e —1
ErLrw ct’|  4H . (cj ( )
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Evolution of FLRW space-time uncertainty

Family of Agr rw curves vs tcHq for several B =v/c
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In all cases, Ag starts at large values for small ¢ (early universe) and decreases
with cosmological time. Curves with f < 0.1 are cut off before ¢ = ¢-H,
(the age of the observable universe) because L becomes 1maginary.
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eatu_res of this mod_el

L 1 )’
A ~— 1+ Z | (e*le —1)| forv<<c
S FLRW Cté 4H, 1. (C] ( )

* For an expanding FLRW universe, Agg, pw decreases with 7.
Thus quantum space-time fluctuations diminish with cosmological
time and the universe becomes increasingly more classical.

* Observers with larger £ will observe a larger Agg; rw-
Such observers essentially sample larger segments of space-time and
hence the effect of space-time uncertainty becomes more pronounced.

« There is no discernible distinction between curves having £/ <10 .
This means the model 1s practically independent of velocity for all
observers with v < 10° m/s. Hence, we may simply set v =0 and use

Ly

Ag ~
FLRW 2.2
Cc't
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Revisiting the Cosmological Constant (CC) problem

Recall that we previously had Ag, = L7, /L, and L, = /L, L, which gives
Agy =L, /L. Fort.~1/H,,then L ~ ¢/Hy= L; and Ag,, ., ~(Ag\ ).

Thus, the QFT vacuum energy density becomes

he e HiLy
Porr = 167 LP] (Ag N) ~ 167 LP] Agrrw| Where Ag FLRW C— ~10
The value of Agg; rw matches the CC problem within an order of :
magnitude: £ /fiT ~10"", In fact, using 12 :Cj_fl, DOy = 87;(\;, and A =2 g 0

leads to Porr = g Pr ~ 107 p,.

Lastly, since pupr o Agpry €volves with cosmological time, then so does
P, < A.Hence, this model predicts A is not a constant but more like the
Hubble parameter (H) which 1s only a “constant” (/) in our current epoch.
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Comparison to other models

10° :
10~} §
= :
= -
D
E lﬂ—d L
o
=
-
O
= ]_D—E: i
ID—B-
0 ! 2 3
tc H,
Our model —— DESI DR2: w = -1.02 (4.20 evidence for evolving DE)
=== CPL: w(z) =-1 + 0.2:2/(142) == toHo = 0.8
—-= Quintessence: w = -0.9 === pA[pPl=10-2.4¢

~~~~~ Phantom: w = -1.1
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