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Outline
• Brief review of the Cosmological Constant problem

• Planck scale (LPl) implies quantum uncertainty in space-time metric

• Heuristic argument: Einstein power emergent from Planck scale

• Replace LPl cut-off with phenomenological length scale (LZ) 

obtained from vacuum energy causing observed expansion

• LZ is geometric mean of LPl and the observable universe, LU

• LZ is consistent with uncertainty in macroscopic quantum systems

• Effective QFT vacuum energy at Planck scale now matches 

cosmological vacuum energy

• Time-dependence of space-time uncertainty in an FLRW universe 

and evolution of the Cosmological “Constant”
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QFT vacuum energy density
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Vacuum energy density from Quantum Field Theory (QFT)
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where PZ is the cut-off momentum. (Weinberg, 1989)
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• Lorentz flat space-time geometry is assumed.    

•  This vacuum energy is used to predict cosmological expansion of 
the universe using Einstein field equations of GR, therefore the 
assumption of flat space-time is inherently flawed.
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Comparing QFT and GR vacuum energy
Spherical momentum space (mc << p):

where De Broglie relation,                 , gives LZ as cut-off length.

• Planck scale cut-off:
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• Planck scale cut-off:

or                    in natural units.

• Compare to GR:

where

or                     in natural units.
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Ratio of energy densities:

Reasons to question this result:
• Lorentz flat space-time geometry was assumed in expanding universe.
• G may vary with cosmological time: G ~ 1/t (Dirac, 1937)

Cosmological Constant problem and Planck scale
121
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• G may vary with cosmological time: G ~ 1/t (Dirac, 1937)
• c (and ) may vary with cosmological time (Bekenstein, 1982.)
• Planck length scale is not necessarily fundamental.

Historically, Planck quantities are not based on physical 
relationships but dimensional analysis as originally done by Planck.*

[G] = M−1 L3 T−2, [h] = M1 L2 T−1, [c] = M0 L1 T−1

*Planck (1899), Meschini (2007), Tank (2011)
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Planck quantities by Planck himself
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M. Planck, “Über irreversible Strahlungsvorgänge,” Sitzungsberichte der
Königlich Preussischen Akademie der Wissenschaften zu Berlin (1899).



Equating c (quantum scale) and RS (classical scale) leads to Planck 
mass and Planck length:

Deriving Planck quantities from physical  relationships
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R Compton wavelength:

(length scale of a

quantum particle)

Schwarzschild radius:

(classical length scale 
of a black hole)

This is a mesoscale (classical) mass scale but a miniscule (quantum) 
length scale which implies an important connection between classical 
and quantum scales.

This implies that ignoring the quantum uncertainty of space-time 
could be the cause for the Cosmological Constant Problem.
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Planck Mass (classical) compared to Planck Length (quantum)

Planck volume:

Planck scale predicts a 
classical mass scale enclosed 
in a quantum volume scale 
(Planck unit cell).

31053
PlPl m10~  LV

102 kg

10-14 kg

10-27 kg

mPl ~ 10-8 kg 
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(Planck unit cell). 10-27 kg

 LPl ~ 10-35 m

Planck volume
(unit cell)



Classical Einstein power emergent from Planck quantities

Planck energy:

Planck time: 
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Planck power:

Notice Planck’s constant (quantum) cancels and the 
Result is only in terms of G and c which are constants in 
classical General Relativity. Therefore, the power can be 
named the Einstein power: 
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Coefficient of classical GR emergent from Planck quantities

Planck/Einstein power is related to force by Ppl = Fplc. Then

Amazingly, this turns to be the constant that appears in Einstein’s 
General Relativity (GR).
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• The coefficient of GR (a classical theory) emerges from the Planck scale 
(which is quantum mechanical). It is “hidden” in the theory of GR.

• This may imply that ignoring the explicit role of quantum uncertainty of 
space-time (involving h) in the classical theory of GR is the cause of the    
Cosmological Constant Problem.



Newtonian space-time uncertainty
Proposal: Relate fixed cut-off to spacetime uncertainty.

• Mass distribution shapes curved space-time (GR). 

• Distribution of quantum mass has fundamental 
uncertainty.  (Example: hydrogen atom cloud.)

• It follows that curved space-time must have a 
fundamental uncertainty (space-time “fuzziness”).*
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fundamental uncertainty (space-time “fuzziness”).*

where we use N = Gm / L,  E = mc2, and  E = hc / L.
• ΔgN ≈ 0 for L >> Lpl: insignificant space-time uncertainty

• ΔgN = 1 for L = LPl: max uncertainty (quantum space-time foam at Planck scale)

*Adler (2010), Regge (1958), Ng and van Dam (1995, 2000), Christiansen, et al (2011), 

Mead (1964, 1966), Vilkovisky (1992), DeWitt (1964), Garay (1999)
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Equate and then solve for LZ.

This is a phenomenological length scale obtained using the observed

Phenomenological cut-off  length scale
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This is a phenomenological length scale obtained using the observed
vacuum energy determined by the expansion of the universe (via the 
measured value of ).

Interpretation:                          , where LU is the radius of the observable 
universe. This is the geometric mean of the smallest and largest length 
scales of the universe.*

* Zel’dovich and Krasinski (1968), Freidel, et. al.(2023), Tello, et. al. (2023)
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Uncertainty principle on macroscopic length scales
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Uncertainty principle on macroscopic length scales
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Use                        and                to obtain effective QFT energy density:

where

• QFT vacuum energy at Planck scale is drastically suppressed by quantum 

Effective Planck scale QFT vacuum energy density due to 
suppression by quantum space-time uncertainty
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• QFT vacuum energy at Planck scale is drastically suppressed by quantum 
space-time uncertainty so that it appears as if there is a cut-off at Lz.

• The Lz cut-off does NOT mean QFT fails below that length scale. Rather, 
higher energies (below LZ) are “smeared out” by this space-time uncertainty.

• Effective QFT vacuum energy at Planck scale is corrected by (gN)2 ~ 10-121

and now matches observed cosmological vacuum energy so QFT = .

Therefore, the Cosmological Constant problem is resolved by 
acknowledging the role of quantum space-time uncertainty.
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Recall: Flat (Minkowski) space-time metric:

Now consider stretching space-time:

Space-time metric for expanding universe
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Generalize invariant to curved space-time:

Solve for energy:

Use FLRW metric with zero spatial curvature (k = 0) which is

Vacuum energy density in FLRW universe
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Use FLRW metric with zero spatial curvature ( = 0) which is

Then energy becomes

Vacuum energy in spherical momentum space (mc << p):
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Vacuum energy density in FLRW universe
For universe dominated by dark energy:                        where

•                                and                     is Hubble parameter.

•  t0 is the current epoch of the universe.

  ,2
0

teata 

   00 ttH 
dt

da
aH 1

 t

19

• , where c is the critical mass density

• Since c (t0) ≈ c in the current epoch, then

   
c

t
t


 0

0 

  00 HtH 

4
Z32

2
0

0

3
33

2
0

QFT 164

Z

P
eca

dpp
eca t

P
t

 


 

 



Normalize to a0 = 1, use time scale t = tZ, and

where

Time-scale obtained from energy density
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• Therefore, the time scale is the age of the universe.

• This is more fitting that than the Planck time, tPl ~ 10-44 s, 
associated with the usual choice of using a Planck cut-off 
momentum, PPl = h / LPl , where LPl = ctPl.
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Proper length of a wordline in a FLRW Universe
The proper length of a wordline is given by

where is a Lorentz factor in FLRW space-time.

The bounds of the integral go from the start of the universe (t = 0) to a 
coordinate time t associated with a coordinate length L = c t .
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coordinate time tC associated with a coordinate length LC = c tC.

Using  ≈ H0  and a0 = 1 in then integrating leads to

where   v/c. For slow observers (v << c), the expression reduces to
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Space-time uncertainty in a FLRW Universe
Similar to we define the FLRW space-time uncertainty as

Since Lproper is Lorentz invariant then so is gFLRW. Using Lproper from the

previous slide gives a coordinate-dependent expression for a moving observer:
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This has a complicated time-dependence which is plotted on the next 
slide. For slow observers (v << c), the expression simplifies to
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Evolution of FLRW space-time uncertainty

g (exact)
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In all cases, Δg starts at large values for small tC (early universe) and decreases
with cosmological time. Curves with  < 0.1 are cut off before t = tCH0

(the age of the observable universe) because Lproper becomes imaginary.

tC H0



Features of this model

for v << c

• For an expanding FLRW universe, gFLRW decreases with tC.
Thus quantum space-time fluctuations diminish with cosmological
time and the universe becomes increasingly more classical.

• Observers with larger  will observe a larger gFLRW.
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• Observers with larger  will observe a larger gFLRW.
Such observers essentially sample larger segments of space-time and
hence the effect of space-time uncertainty becomes more pronounced.

• There is no discernible distinction between curves having  < 10 –3.
This means the model is practically independent of velocity for all
observers with v 105 m/s. Hence, we may simply set v = 0 and use
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Recall that we previously had                      and                    which gives 

For tC ~ 1/H0 , then LC ~ c/H0 = LU and

Thus, the QFT vacuum energy density becomes

where

Revisiting the Cosmological Constant (CC) problem
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The value of gFLRW matches the CC problem within an order of 

magnitude: In fact, using

leads to

Lastly, since evolves with cosmological time, then so does
Hence, this model predicts  is not a constant but more like the 

Hubble parameter (H) which is only a “constant” (H0) in our current epoch.
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Comparison to other models
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Our model
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