

28th International Workshop

"What Comes Beyond the Standard Models?" (July 2025)

Dr. Nader ("Nathan") Inan UC Merced / CSU Fresno / Clovis College

Resolving the Cosmological Constant problem via quantum space-time uncertainty

Relating Cosmological Constant Problem to Quantum space-time Uncertainty

IOP Institute of Physics

Unraveling the mystery of the cosmological constant: Does spacetime uncertainty hold the key? (a)

Ahmed Farag Ali^{1,2} and Nader Inan^{3,4,5}

Published 24 August 2023 • Copyright © 2023 EPLA

Europhysics Letters, Volume 143, Number 4

Citation Ahmed Farag Ali and Nader Inan 2023 EPL 143 49001

DOI 10.1209/0295-5075/acf0e5

Essay received honorable mention in the 2023 Gravity Research Foundation Competition.

Outline

- Brief review of the Cosmological Constant problem
- Planck scale $(L_{\rm Pl})$ implies quantum uncertainty in space-time metric
- Heuristic argument: Einstein power emergent from Planck scale
- Replace $L_{\rm Pl}$ cut-off with phenomenological length scale $(L_{\rm Z})$ obtained from vacuum energy causing **observed** expansion
- $L_{\rm Z}$ is geometric mean of $L_{\rm Pl}$ and the observable universe, $L_{\rm U}$
- L_Z is consistent with uncertainty in macroscopic quantum systems
- Effective QFT vacuum energy at Planck scale now matches cosmological vacuum energy
- Time-dependence of space-time uncertainty in an FLRW universe and evolution of the Cosmological "Constant"

QFT vacuum energy density

Vacuum energy density from Quantum Field Theory (QFT)

$$\rho_{\text{QFT}} = \frac{1}{(2\pi\hbar)^3} \int_0^{P_Z} \left(\frac{1}{2}\hbar\omega\right) d^3p = \frac{1}{16\pi^3 \,\hbar^3} \int_0^{P_Z} \sqrt{p^2 c^2 + m^2 c^4} \,d^3p$$

where P_Z is the cut-off momentum. (Weinberg, 1989)

• Lorentz flat space-time geometry is assumed.

$$\eta_{\mu\nu}p^{\mu}p^{\nu} = -m^2c^2 \longrightarrow E^2 = m^2c^4 + p^2c^2$$

• This vacuum energy is used to predict cosmological expansion of the universe using Einstein field equations of GR, therefore the assumption of flat space-time is inherently flawed.

Comparing QFT and GR vacuum energy

Spherical momentum space (mc << p):

$$\rho_{\text{QFT}} \approx \frac{c}{16\pi^3 \hbar^3} \int_0^{P_Z} p(4\pi p^2 d^3 p) = \frac{c}{16\pi^2 \hbar^3} P_Z^4 = \frac{\hbar c}{16\pi^2 L_Z^4}$$

where De Broglie relation, $P_Z = \hbar / L_Z$, gives L_Z as cut-off length.

• Planck scale cut-off: $L_Z = L_{\rm Pl} = \sqrt{G\hbar/c^3}$.

$$\rho_{\rm QFT} \approx \frac{c^7}{16\pi^2 G^2 \hbar} \sim 10^{111} \frac{\rm J}{\rm m^3}$$
 or $10^{71} {\rm GeV}^4$ in natural units.

• Compare to GR: $G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \rightarrow G_{\mu\nu} = \frac{8\pi G}{c^4} \left(T_{\mu\nu} + T_{\mu\nu}^{\Lambda} \right)$ where $T_{\mu\nu}^{\Lambda} \equiv -\frac{c^4 \Lambda}{8\pi G} g_{\mu\nu} \rightarrow T_{00}^{\Lambda} \approx \frac{c^4 \Lambda}{8\pi G}$

$$\rho_{\Lambda} \equiv \frac{c^4 \Lambda}{8\pi G} \sim 10^{-10} \frac{J}{m^3} \quad \text{or } 10^{-47} \text{GeV}^4 \quad \text{in natural units.}$$

Cosmological Constant problem and Planck scale

Ratio of energy densities:
$$\frac{\rho_{\rm QFT}}{\rho_{\Lambda}} \approx \frac{c^3}{Gh\Lambda} \sim \frac{10^{111} \, \text{J/m}^3}{10^{-10} \, \text{J/m}^3} = 10^{121}$$

Reasons to question this result:

- Lorentz flat space-time geometry was assumed in **expanding** universe.
- G may vary with cosmological time: $G \sim 1/t$ (Dirac, 1937)
- c (and α) may vary with cosmological time (Bekenstein, 1982.)
- Planck length scale is not necessarily fundamental.

Historically, Planck quantities are not based on physical relationships but dimensional analysis as originally done by Planck.*

$$[G] = M^{-1} L^3 T^{-2}, \quad [h] = M^1 L^2 T^{-1}, \quad [c] = M^0 L^1 T^{-1}$$

*Planck (1899), Meschini (2007), Tank (2011)

Planck quantities by Planck himself

Wählt man nun die »natürlichen Einheiten« so, dass in dem neuen Maasssystem jede der vorstehenden vier Constanten den Werth 1 annimmt, so erhält man als Einheit der Länge die Grösse:

$$\sqrt{\frac{\overline{bf}}{c}} = 4.13 \cdot 10^{-33} \text{ cm},$$

als Einheit der Masse:

$$\sqrt{\frac{bc}{f}} = 5.56 \cdot 10^{-5} \,\mathrm{gr},$$

als Einheit der Zeit:

$$\sqrt{\frac{bf}{c^5}} = 1.38 \cdot 10^{-43} \sec,$$

als Einheit der Temperatur:

$$a\left|\sqrt{\frac{c^{\delta}}{bf}}\right| = 3.50 \cdot 10^{32} \text{ Cels.}$$

M. Planck, "Über irreversible Strahlungsvorgänge," Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin (1899).

Deriving Planck quantities from physical relationships

Compton wavelength: $\lambda_{\rm C} = \frac{h}{mc}$ (length scale of a quantum particle)

Schwarzschild radius: $R_{\rm S} = \frac{2Gm}{c^2}$ (classical length scale of a black hole)

Equating λ_c (quantum scale) and R_S (classical scale) leads to Planck mass and Planck length:

$$m_{\rm PL} = \sqrt{\frac{hc}{G}} \sim 10^{-8} \, {\rm kg}$$
 $L_{\rm PL} = \sqrt{\frac{Gh}{c^3}} \sim 10^{-35} \, {\rm m}$

This is a **mesoscale** (classical) mass scale but a **miniscule** (quantum) length scale which implies an important connection between classical and quantum scales.

This implies that ignoring the quantum uncertainty of space-time could be the cause for the Cosmological Constant Problem.

Planck Mass (classical) compared to Planck Length (quantum)

Planck volume:

$$V_{\rm Pl} = L_{\rm Pl}^3 \sim 10^{-105} \,\mathrm{m}^3$$

Planck scale predicts a classical mass scale enclosed in a quantum volume scale (Planck unit cell).

Planck volume (unit cell)

Classical Einstein power emergent from Planck quantities

Planck energy:
$$E_p = m_P c^2 = \sqrt{hc^5/G} \sim 10^9 \text{ J} \sim 10^{28} \text{ eV}$$

Planck time:
$$t_{PL} = \frac{L_{PL}}{c} = \sqrt{\frac{Gh}{c^5}} \sim 10^{-43} \text{ s}$$

Planck power:
$$P_{\rm P} = \frac{E_{\rm P}}{t_{\rm P}} = \frac{\sqrt{hc^5/G}}{\sqrt{Gh/c^5}} = \frac{c^5}{G} \sim 10^{52} \,\text{W}$$

Notice Planck's constant (quantum) cancels and the Result is only in terms of G and c which are constants in classical General Relativity. Therefore, the power can be named the **Einstein** power: $P_{\rm E} = c^5 / G$

Coefficient of classical GR emergent from Planck quantities

Planck/Einstein power is related to force by $P_{\rm pl} = F_{\rm pl}c$. Then

$$F_{\rm E} = \frac{P_{\rm E}}{c} = \frac{c^4}{G} \sim 10^{44} \, N$$

Amazingly, this turns to be the constant that appears in Einstein's General Relativity (GR).

$$G^{\mu\nu} = \frac{8\pi G}{c^4} T^{\mu\nu} \quad \rightarrow \quad G^{\mu\nu} = \frac{8\pi}{F_E} T^{\mu\nu}$$

- The coefficient of GR (a classical theory) emerges from the Planck scale (which is quantum mechanical). It is "hidden" in the theory of GR.
- This may imply that ignoring the **explicit** role of **quantum** uncertainty of space-time (involving *h*) in the **classical** theory of GR is the cause of the Cosmological Constant Problem.

Newtonian space-time uncertainty

Proposal: Relate fixed cut-off to spacetime uncertainty.

- Mass distribution shapes curved space-time (GR).
- Distribution of quantum mass has fundamental uncertainty. (Example: hydrogen atom cloud.)
- It follows that curved space-time must have a fundamental uncertainty (space-time "fuzziness").*

$$\Delta g_{\rm N} \equiv \frac{U_{\rm grav}}{U_{\rm rest}} = \frac{m\phi_{\rm N}}{mc^2} = \dots = \frac{L_{\rm Pl}^2}{L^2}$$

- $\Delta g_{\rm N} \approx 0$ for $L >> L_{\rm pl}$: insignificant space-time uncertainty
- $\Delta g_{\rm N} = 1$ for $L = L_{\rm Pl}$: max uncertainty (quantum space-time foam at Planck scale)
- *Adler (2010), Regge (1958), Ng and van Dam (1995, 2000), Christiansen, et al (2011), Mead (1964, 1966), Vilkovisky (1992), DeWitt (1964), Garay (1999)

Phenomenological cut-off length scale

Equate
$$\rho_{\rm QFT} \approx \frac{\hbar c}{16\pi^2 L_z^4}$$
 and $\rho_{\Lambda} \approx \frac{c^4 \Lambda}{8\pi G}$ then solve for L_Z .

$$L_{\rm Z} \approx \left(\frac{G\hbar}{2\pi c^3 \Lambda}\right)^{1/4} \approx 2 \times 10^{-5} \,\mathrm{m}$$

This is a **phenomenological** length scale obtained using the **observed** vacuum energy determined by the expansion of the universe (via the measured value of Λ).

Interpretation: $L_{\rm Z} = \sqrt{L_{\rm Pl} L_{\rm U}}$, where $L_{\rm U}$ is the radius of the observable universe. This is the geometric mean of the smallest and largest length scales of the universe.*

^{*} Zel'dovich and Krasinski (1968), Freidel, et. al.(2023), Tello, et. al. (2023)

Uncertainty principle on macroscopic length scales

 $igcap \Delta x \, \Delta p \geq rac{\hbar}{2}$

System	Scale	Quantum Feature	Role of Uncertainty Principle
BECs	~10–100 μm	Macroscopic wavefunction coherence	Wavefunction delocalization and thermal de Broglie overlap
Optomechanics	~50–500 μm	Quantum control of mechanical motion	Limits sensitivity in displacement sensing; governs backaction
Quantum Drum	~30 µm	Quantized vibrational states	Demonstrates macroscopic quantum superposition in mechanical modes

Uncertainty principle on macroscopic length scales

SQUIDs

 $\sim 10-200 \, \mu m$

System	Scale	Quantum Feature	Role of Uncertainty Principle
Cavity QED	~100 μm cavity λ	Quantized light–matter interactions	Zero-point energy and mode fluctuations from confined fields
THz Photons	~100 μm λ	Single-photon THz quantum optics	Sets spectral linewidth and coherence time
Flux Qubits	~100 μm loop	Macroscopic current tunneling	Governs tunneling rates and coherence lifetimes
$leep \Delta\Phi\Delta Q \geq rac{\hbar}{2}$			
System	Scale	Quantum Feature	Role of Uncertainty Principle

Superposition of flux/

current states

Enables tunneling between flux states;

quantization of magnetic flux

Effective Planck scale QFT vacuum energy density due to suppression by quantum space-time uncertainty

Use
$$\rho_{QFT} \approx \frac{\hbar c}{16\pi^2 L_Z^4}$$
 and $L_Z^2 = \frac{L_{Pl}^2}{\Delta g_N}$ to obtain **effective** QFT energy density:

$$\rho_{\text{QFT}} \approx \frac{\hbar c}{16\pi^2 L_{\text{Pl}}^4} (\Delta g_{\text{N}})^2$$
 where $(\Delta g_{\text{N}})^2 = \left(\frac{L_{\text{Pl}}^2}{L_{\text{Z}}^2}\right)^2 \sim 10^{-121}$

- QFT vacuum energy at Planck scale is drastically suppressed by quantum space-time uncertainty so that it **appears** as if there is a cut-off at L_z .
- The L_z cut-off does NOT mean QFT fails below that length scale. Rather, higher energies (below L_z) are "smeared out" by this space-time uncertainty.
- Effective QFT vacuum energy at Planck scale is corrected by $(\Delta g_N)^2 \sim 10^{-121}$ and now matches observed cosmological vacuum energy so $\rho_{QFT} = \rho_{\Lambda}$.

Therefore, the Cosmological Constant problem is resolved by acknowledging the role of quantum space-time uncertainty.

Space-time metric for expanding universe

Recall: Flat (Minkowski) space-time metric:

$$ds^2 = \eta_{00}c^2dt^2 + \eta_{ij}dx^idx^j$$

Now consider **stretching** space-time:

$$ds^{2} = g_{00}(\vec{x}, t)c^{2}dt^{2} + g_{ij}(\vec{x}, t)dx^{i}dx^{j}$$

$$\eta_{\mu
u} = egin{pmatrix} -1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

Vacuum energy density in FLRW universe

Generalize invariant to **curved** space-time: $g_{\mu\nu}p^{\mu}p^{\nu} = -m^2c^2$

Solve for energy:
$$E = \frac{-cg_{0i}p^{i} + c\sqrt{(g_{0i}p^{i})^{2} - g_{00}(g_{ij}p^{i}p^{j} + m^{2}c^{2})}}{g_{00}}$$

Use FLRW metric with zero spatial curvature (k = 0) which is

$$g_{00} = -1$$
, $g_{0i} = 0$, $g_{ij} = a^2(t)\delta_{ij}$

Then energy becomes
$$E = \sqrt{m^2c^4 + a^2(t)p^2c^2}$$

Vacuum energy in spherical momentum space ($mc \le p$):

$$\rho_{\text{QFT}} = \frac{c}{8\pi^3 \, \hbar^3} \int_0^{P_Z} a(t) p \, d^3 p$$

Vacuum energy density in FLRW universe

For universe dominated by dark energy: $a(t) = a_0 e^{\pm 2\lambda t}$, where

- $\lambda = H(t_0)\sqrt{\Omega_{\Lambda}(t_0)}$ and $H = a^{-1}\frac{da}{dt}$ is Hubble parameter.
- t_0 is the current epoch of the universe.
- $\Omega_{\Lambda}(t_0) = \frac{\rho(t_0)}{\rho_c}$, where ρ_c is the critical mass density
- Since $\rho_c(t_0) \approx \rho_c$ in the current epoch, then $\lambda \approx H(t_0) \equiv H_0$

$$\rho_{\text{QFT}} = \frac{ca_0 e^{\pm 2\lambda t}}{4\pi^3 \,\hbar^3} \int_0^{P_Z} p^3 \, dp = \frac{ca_0 e^{\pm 2\lambda t}}{16\pi^2 \,\hbar^3} P_Z^4$$

Time-scale obtained from energy density

Normalize to $a_0 = 1$, use time scale $t = t_Z$, and $P_Z = \hbar / L_Z$ where $L_Z \approx 2 \times 10^{-5}$ m.

$$t_{\rm Z} = \frac{1}{2H_0} \ln \left(\frac{16\pi^2 L_{\rm Z}^4 \rho_{\Lambda}}{\hbar c} \right) \sim 10^9 \,\text{yr}$$

- Therefore, the time scale is the age of the universe.
- This is more fitting that than the Planck time, $t_{\rm Pl} \sim 10^{-44}$ s, associated with the usual choice of using a Planck cut-off momentum, $P_{Pl} = h / L_{Pl}$, where $L_{\rm Pl} = c t_{\rm Pl}$.

Proper length of a wordline in a FLRW Universe

The proper length of a wordline is given by

$$L_{\text{proper}} = \int_{0}^{L_{\text{C}}} \sqrt{-g_{\mu\nu} dx^{\mu} dx^{\nu}} = \int_{0}^{L_{\text{C}}} \sqrt{c^{2} dt^{2} - a^{2}(t) dx^{2}} = c \int_{0}^{t_{\text{C}}} \gamma_{\text{FLRW}}^{-1} dt$$

where $\gamma_{\text{FLRW}} = \left[1 - a^2(t)v^2/c^2\right]^{-1/2}$ is a Lorentz factor in FLRW space-time.

The bounds of the integral go from the start of the universe (t = 0) to a coordinate time $t_{\rm C}$ associated with a coordinate length $L_{\rm C} = c t_{\rm C}$.

Using $\lambda \approx H_0$ and $a_0 = 1$ in $a(t) = a_0 e^{2H_0 t}$, then integrating leads to

$$L_{\text{proper}} = \frac{c}{4H_0} \left[2 \left(\sqrt{1 - \beta e^{4H_0 t_C}} - \sqrt{1 - \beta^2} \right) - \ln \left(\frac{1 + \sqrt{1 - \beta^2 e^{4H_0 t_C}}}{1 - \sqrt{1 - \beta^2} e^{4H_0 t_C}} \frac{1 - \sqrt{1 - \beta^2}}{1 + \sqrt{1 - \beta^2}} \right) \right]$$

where $\beta \equiv v/c$. For slow observers ($v \lt < c$), the expression reduces to

$$L_{\text{proper}} \approx ct_{\text{C}} - \frac{c}{8H_0} \left(\frac{v}{c}\right)^2 \left(e^{4H_0t_{\text{C}}} - 1\right)$$

Space-time uncertainty in a FLRW Universe

Similar to $\Delta g_N = L_{Pl}^2 / L_Z^2$, we define the FLRW space-time uncertainty as

$$\Delta g_{\rm FLRW} \equiv L_{\rm Pl}^2 / L_{\rm proper}^2$$

Since L_{proper} is Lorentz invariant then so is Δg_{FLRW} . Using L_{proper} from the previous slide gives a coordinate-dependent expression for a moving observer:

$$\Delta g_{\text{FLRW}} = \frac{16H_0^2 L_{\text{Pl}}^2}{c^2} \left[2\left(\sqrt{1 - \beta e^{4H_0 t_C}} - \sqrt{1 - \beta^2}\right) - \ln\left(\frac{1 + \sqrt{1 - \beta^2 e^{4H_0 t_C}}}{1 - \sqrt{1 - \beta^2 e^{4H_0 t_C}}} \cdot \frac{1 - \sqrt{1 - \beta^2}}{1 + \sqrt{1 - \beta^2}}\right) \right]^{-2}$$

This has a complicated time-dependence which is plotted on the next slide. For slow observers ($v \lt< c$), the expression simplifies to

$$\Delta g_{\text{FLRW}} \approx \frac{L_{\text{Pl}}^2}{ct_{\text{C}}^2} \left[1 + \frac{1}{4H_0 t_{\text{C}}} \left(\frac{v}{c} \right)^2 \left(e^{4H_0 t_{\text{C}}} - 1 \right) \right]$$

Evolution of FLRW space-time uncertainty

In all cases, Δg starts at large values for small $t_{\rm C}$ (early universe) and decreases with cosmological time. Curves with $\beta < 0.1$ are cut off before $t = t_{\rm C} H_0$ (the age of the observable universe) because $L_{\rm proper}$ becomes imaginary.

23

Features of this model

$$\Delta g_{\text{FLRW}} \approx \frac{L_{\text{Pl}}^2}{ct_{\text{C}}^2} \left[1 + \frac{1}{4H_0 t_{\text{C}}} \left(\frac{v}{c} \right)^2 \left(e^{4H_0 t_{\text{C}}} - 1 \right) \right] \quad \text{for } v << c$$

- For an expanding FLRW universe, Δg_{FLRW} decreases with t_{C} . Thus quantum space-time fluctuations diminish with cosmological time and the universe becomes increasingly more classical.
- Observers with larger β will observe a larger Δg_{FLRW} . Such observers essentially sample larger segments of space-time and hence the effect of space-time uncertainty becomes more pronounced.
- There is no discernible distinction between curves having $\beta < 10^{-3}$. This means the model is practically independent of velocity for all observers with $v \leq 10^5$ m/s. Hence, we may simply set v = 0 and use

$$\Delta g_{\rm FLRW} \approx \frac{L_{\rm Pl}^2}{c^2 t_{\rm C}^2}$$

Revisiting the Cosmological Constant (CC) problem

Recall that we previously had $\Delta g_{\rm N} = L_{\rm Pl}^2 / L_{\rm Z}^2$ and $L_{\rm Z} = \sqrt{L_{\rm Pl} L_{\rm U}}$ which gives $\Delta g_{\rm N} = L_{\rm Pl} / L_{\rm U}$. For $t_{\rm C} \sim 1/H_0$, then $L_{\rm C} \sim c/H_0 = L_{\rm U}$ and $\Delta g_{\rm FLRW} \approx (\Delta g_{\rm N})^2$.

Thus, the QFT vacuum energy density becomes

$$\rho_{\text{QFT}} \approx \frac{\hbar c}{16\pi^2 L_{\text{Pl}}^4} (\Delta g_{\text{N}})^2 \approx \frac{\hbar c}{16\pi^2 L_{\text{Pl}}^4} \Delta g_{\text{FLRW}} \quad \text{where} \quad \Delta g_{\text{FLRW}} \approx \frac{H_0^2 L_{\text{Pl}}^2}{c^2} \sim 10^{-122}$$

The value of $\Delta g_{\rm FLRW}$ matches the CC problem within an order of magnitude: $\frac{\rho_{\rm QFT}}{\rho_{\Lambda}} \sim 10^{121}$. In fact, using $L_{\rm PL}^2 = \frac{G\hbar}{c^3}$, $\rho_{\Lambda} = \frac{c^4\Lambda}{8\pi G}$, and $\Lambda = \frac{3H_0^2}{c^2}$ leads to $\rho_{\rm QFT} \approx \frac{1}{6\pi} \rho_{\Lambda} \sim 10^{-1} \rho_{\Lambda}$.

Lastly, since $\rho_{QFT} \propto \Delta g_{FLRW}$ evolves with cosmological time, then so does $\rho_{\Lambda} \propto \Lambda$. Hence, this model predicts Λ is not a constant but more like the Hubble *parameter* (*H*) which is only a "constant" (*H*₀) in our current epoch.

Acknowledgements

My collaborator, Dr. Ahmed Farag Ali

- Helpful discussions with Dr. Lance Williams
 Professor Douglas Singleton
- 28th International Bled Workshop ("What comes Beyond the Standard Models") for the opportunity to present this research.