
1

The twenty-eighth workshop
“What Comes Beyond the Standard Models?”

July 6–17, 2025, Bled, Slovenia

K.V.Stepanyantz
Moscow State University, Physical Faculty,

Department of Theoretical Physics

The renormalization group invariants and
exact results for various supersymmetric theories

K.V.Stepanyantz The renormalization group invariants and exact results



2

Quantum corrections as a tool for understanding nature

Investigating of quantum corrections can shed a light to the structure of the
surrounding world. For instance, the very precise agreement of the theoretical
prediction of the electron anomalous magnetic moment with the experimental
data tells us that the nature is described by quantum field theory.
The unification of running couplings and absence of divergent quantum
corrections to the Higgs boson mass can be considered as indirect indications to
the existence of supersymmetry and Grand Unification.

Some important information about new physics can be obtained from the detailed
analysis of quantum corrections to (the lightest) Higgs boson in supersymmetric
theories, anomalous magnetic moment of muon, etc.
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Renormalization group invariants

The renormalization group invariants (RGI) are the scale independent values.
Some of them are approximate, but sometimes it is possible to construct the
expressions that are RGI in all orders.

For instance, in the SM/MSSM it is possible to construct the approximate RGI
from the masses of down quarks and charged leptons

d

d lnµ

(mems

mdmµ

)
≈ 0;

mems

mdmµ
≈ 1

9
· 0.866 ≈ 1

9
.

This expression is almost protected from quantum corrections and, therefore, at
the unification scale it is impossible to reconcile this result with the prediction
of the simplest SU(5) GUT

md = me; ms = mµ; mb = mτ .

A way to solve this problem is to consider more complicated models leading, for
example, to the Georgi and Jarlskog textures

H. Georgi, C. Jarlskog, Phys. Lett. B 86 (1979), 297.
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RGIs and Georgi–Jarlskog textures

If the Yukawa matrices for the down quarks and charged leptons are chosen in
the form

Yd =

 0 B 0
B A 0
0 0 C

 ; Ye =

 0 B 0
B −3A 0
0 0 C

 ,

then for B ≪ A we obtain
mems

mdmµ
≈ 1

9
.

The factor −3 can be obtained either from from the Higgs superfield coming
from the representation 45h of the group SU(5)

5×10× 45h,

or with the help of the nonrenormalizable interaction

1

M
· 5×10× 5h × 75H ,

where 75H acquires vev breaking SU(5) down to SU(3)× SU(2)× U(1), see

S. Raby, Lect. Notes Phys. 939 (2017), 1-308 Springer, 2017.
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Superspace and superfields

In what follows we will deal with supersymmetric theories. It is convenient to
formulate them in superpace, because in this case supersymmetry is manifest.

N = 1 superspace is a space with the coordinates (xµ, θ), where θ is an auxiliary
anticommuting Majorana spinor, θ̄ = θTC. Superfields are the functions defined
on the superspace. For instance, the N = 1 chiral scalar superfield by definition
satisfies the constraint

(1− γ5)Daϕ ≡ (1− γ5)a
bDbϕ = 0,

where
Da ≡ ∂

∂θ̄a
− i(γµθ)a∂µ,

is the supersymmetric covariant derivative.

The solution can be written with the help of the chiral coordinates

yµ = xµ +
i

2
θ̄γµγ5θ

and has the form

ϕ(yµ, (1 + γ5)θ) = φ(yµ) + θ̄(1 + γ5)ψ(y
µ) +

1

2
θ̄(1 + γ5)θ f(y

µ).

where φ and f are complex scalar fields, and ψ is a Majorana spinor.
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Constructing supersymmertic actions with the help of superfields

For the components of a chiral superfield the supersymmetry transformations are
written as

δφ = ε̄(1 + γ5)ψ;

δψ = (Re f + iγ5Im f)ε− i∂µ(Reφ+ iγ5Imφ)γµε;

δf = ∂µ
[
− iε̄γµ(1 + γ5)ψ

]
and mix the bose and fermi fields.

Supersymmetric actions can be constructed integrating the real and/or chiral
superfields over the superspace,

S =

∫
d4x d4θV +

(∫
d4x d2θϕ+ c.c.

)
,

where V = V ∗ is an arbitrary real superfield and ϕ is an arbitrary
chiral superfield, (1 − γ5)Daϕ = 0. Any such structure is invariant under
supersymmetry transformations, where the integrals over the anticommuting
variables are defined as∫
d4θ ≡ 1

8

( ∂
∂θ

∂

∂θ̄

)2
;

∫
d2θ ≡ 1

4

∂

∂θ
(1+γ5)

∂

∂θ̄
;

∫
d2θ̄ ≡ 1

4

∂

∂θ
(1−γ5)

∂

∂θ̄
.
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Wess–Zumino model with mass and interaction

Choosing V = ϕ∗ϕ/4 and ϕ = mϕ2/4 + λϕ3/6, where m is a constant with
dimension of mass and λ is a dimensionless constant, we obtain the model

S =
1

4

∫
d4x d4θ ϕ∗ϕ+

(∫
d4x d2θ

[1
4
mϕ2 +

1

6
λϕ3

]
+ c.c.

)
.

In components (for real m and λ)

S =

∫
d4x

(
∂µφ

∗∂µφ+ iψ̄γµ∂µψ + f∗f −mψ̄ψ +mφf + λφ2f

+mφ∗f∗ + λ(φ∗)2f∗ − λφψ̄(1 + γ5)ψ − λφ∗ψ̄(1− γ5)ψ
)
.

This action is quadratic in the auxiliary fields f and f∗, which can be eliminated
on shell,

S =

∫
d4x

(
∂µφ

∗∂µφ+ iψ̄γµ∂µψ −mψ̄ψ − |mφ+ λφ2|2

−λφψ̄(1 + γ5)ψ − λφ∗ψ̄(1− γ5)ψ
)
.

We see that the masses of the superparners ar the same and the scalar potential
is positive.
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Supersymmetric gauge field and its gauge field strength

The gauge field is a component of the real gauge superfield V (x, θ) = V ∗(x, θ).
In the Wess–Zumino gauge it can be written as

V (x, θ) = −1

2
θ̄γµγ5θAµ(x) + i

√
2(θ̄θ)θ̄γ5λ(x) +

1

4
(θ̄θ)2D(x).

The supersymmetric analog of the gauge field strength

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ]

is the (right) spinor chiral superfield

Wa ≡ 1

32
D̄(1− γ5)D

(
e−2V (1 + γ5)Dae

2V
)
≡ 1

16
D̄2
(
e−2V (1 + γ5)Dae

2V
)
.

One of its components is the usual gauge field strength Fµν . In particular, in the
Wess-Zumino gauge this superfield is given by the expression

Wa =
1

2
(1+γ5)

{
−i

√
2λa(y)−θaD(y)+

i

2
γµνθaFµν(y)−

1√
2
θ̄(1+γ5)θ γ

µDµλa(y)
}
,

where Dµλ = ∂µλ+ i[Aµ, λ] is the covariant derivative of the gaugino field.
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N = 1 supersymmetric QCD (SQCD)

The action for (the simplified version of) quantum chromodynamics (QCD) is
given by

S =

∫
d4x

(
− 1

2e2
trF 2

µν + iΨ̄γµDµΨ−mΨ̄Ψ
)
,

where Ψ is the Dirac spinor in a certain representation R of the gauge group G.
The Dirac spinor can be constructed from two Majorana spinors ψ and ψ̃,

Ψ =
1√
2

(
(1 + γ5)ψ + (1− γ5)ψ̃

)
.

Therefore, for constructing a theory with a Dirac spinor, we need 2 chiral scalar
superfields ϕ and ϕ̃ in the representations R and R of the group G. Then, the
action of N = 1 SQCD in the superfield formulation can be presented in the
form

S =
1

2e2
Re tr

∫
d4x d2θW aWa +

1

4

∫
d4x d4θ

(
ϕ+e2V ϕ+ ϕ̃+e−2V T

ϕ̃
)

+
(1
2
m

∫
d4x d2θ ϕ̃Tϕ+ c.c.

)
,

where we took into account that the generators of the conjugated representations
differ in sign and transposing.
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N = 1 SQCD

The theory is invariant under the gauge transformations, which can be written
in the superfield form,

ϕ→ eiΛϕ; ϕ̃→ e−iΛT

ϕ̃; e2V → eiΛ
+

e2V e−iΛ; Wa → eiΛWae
−iΛ,

and are parametrized by the chiral superfield Λ = eΛATA (or Λ = eΛAtA).
After eliminating the auxiliary fields f , f̃ and D the expression for the action in
components takes the form

S =

∫
d4x

{
−1

4
(FA

µν)
2 + iΨ̄γµDµΨ−mΨ̄Ψ + iλAγµDµλ

A +Dµφ
+

×Dµφ+Dµφ̃
+Dµφ̃−m2φ+φ−m2φ̃+φ̃− e2

2

(
φ+TAφ− φ̃TTAφ̃∗

)2
+iΨ̄(1− γ5)λφ− iφ+λ̄(1 + γ5)Ψ− iφ̃T λ̄(1− γ5)Ψ + iΨ̄(1 + γ5)λφ̃

∗
}
.

We see that the masses of superpartners coincide, and the scalar potential is
positive. All this facts are typical features of supersymmetric theories.
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Supersymmetric gauge theories

RGIs can exist in certain supersymmetric theories. In N = 1 superspace these
theories are described by the action

S =
1

2e20
Re tr

∫
d4x d2θW aWa +

1

4

∫
d4x d4θ ϕ∗i(e2V )i

jϕj

+
{∫

d4x d2θ
(1
4
mij

0 ϕiϕj +
1

6
λijk
0 ϕiϕjϕk

)
+ c.c.

}
.

Here V is the gauge superfield, ϕi are the chiral matter superfields in the
representation R of the gauge group G, and

Wa =
1

16
D̄2
(
e−2V (1 + γ5)Dae

2V
)

is the supersymmetric gauge field strength.

The gauge invariant theory is obtained if the Yukawa couplings and masses satisfy
the constraints

mim
0 (TA)m

j +mmj
0 (TA)m

i = 0;

λijm
0 (TA)m

k + λimk
0 (TA)m

j + λmjk
0 (TA)m

i = 0,

where (TA)i
j are the generators of the gauge group G in the representation R.
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Nonrenormalization of the superpotential

It is important that the renormalizability requires that the superpotential

W =
1

2
mij

0 ϕiϕj +
1

3
λijk
0 ϕiϕjϕk

should not contain chiral superfields in a more than the third power.

Supersymmetric theories can be quantized in terms of superfields. Analyzing the
corresponding Feynman rules

M. T. Grisaru, W. Siegel and M. Rocek, Nucl. Phys. B 159 (1979), 429.

one can derive

The nonrenormalization theorem: The superpotential does not receive divergent
quantum corrections. (In other words, the superpotential is RGI).

Consequently, mass and Yukawa coupling renormalizations are related to the
renormalization of the chiral matter superfields. Namely, if ϕi = (

√
Z)i

jϕR,j ,
then

mij = mkl
0 (

√
Z)k

i(
√
Z)l

j ; λijk = λmnp
0 (

√
Z)m

i(
√
Z)n

j(
√
Z)p

k.
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NSVZ β-function for N = 1 supersymmetric theories

It is also possible to construct RGIs in supersymmetric theories using the exact
Novikov, Shifman, Vainshtein, and Zakharov (NSVZ) β-function

V. A. Novikov, M. A. Shifman, A. I. Vainshtein and V. I. Zakharov,
Nucl. Phys. B 229 (1983), 381; Phys. Lett. 166B(1986), 329;
D. R. T. Jones, Phys. Lett. 123B (1983), 45;
M. A. Shifman and A. I. Vainshtein, Nucl. Phys. B 277 (1986), 456

which relates the β-function and the anomalous dimension of the matter
superfields in N = 1 supersymmetric gauge theories.

For a general N = 1 supersymmetric gauge theory with a single gauge coupling
it can be written in the form

β(α, λ) = −
α2
(
3C2 − T (R) + C(R)i

j(γϕ)j
i(α, λ)/r

)
2π(1− C2α/2π)

.

Here α and λ are the gauge and Yukawa coupling constants, respectively, and
we use the notation

tr (TATB) ≡ T (R) δAB ; (TA)i
k(TA)k

j ≡ C(R)i
j ;

fACDfBCD ≡ C2δ
AB ; r ≡ δAA = dimG.
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RGIs in supersymmetric theories

For instance, for the pure N = 1 SYM theory

S =
1

2e20
Re tr

∫
d4x d2θW aWa

from the NSVZ β-function we obtain the equation

1

α2

(
1− C2α

2π

) dα

d lnµ
= −3C2

2π
.

Integrating it we obtain the all-loop RGI(µ3

α

)C2

exp
(
− 2π

α

)
= RGI.

Such expressions appear in calculating the instanton contributions to the
effective action, and the NSVZ β-function was first obtained by requiring their
renormalization group invariance, see

V. A. Novikov, M. A. Shifman, A. I. Vainshtein and V. I. Zakharov,
Nucl. Phys. B 229 (1983), 381.

For theories with chiral matter superfields the analogous invariants contain the
renormalization constants for the matter superfields or masses.
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RGIs and the reduction of couplings

The so-called P = 1
3
Q theories by definition satisfy the constraint

λ∗
imnλ

jmn − 4παC(R)i
j =

2πα

3
Qδji ,

where Q ≡ T (R)− 3C2. It was demonstrated

I.Jack, D.R.T.Jones, C.G.North, Nucl. Phys. B 473 (1996), 308

that in these theories in the first two orders of the perturbation theory the ratio
of the Yukawa couplings to the gauge coupling is RG invariant,

d

d lnµ

(λijk

e

)
= 0.

similarly to N = 2 supersymmetric theories. If this relation was exact, then it
would presumably allow to reduce a number of couplings if we set λijk = ecijk,
where cijk are certain constants, see

S. Heinemeyer, M. Mondragon, N. Tracas, G. Zoupanos, Phys. Rept. 814 (2019) 1

for more details. However, in the three-loop approximation the above relation is
not valid.
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RGIs for theories with softly broken supersymmetry

It is known that the renormalization of soft term in theories with softly broken
supersymmetry can be related to the renormalization of the rigid theory

J. Hisano, M. A. Shifman, Phys. Rev. D 56 (1997), 5475;
I. Jack, D. R. T. Jones, Phys. Lett. B 415 (1997) 383;
L. V. Avdeev, D. I. Kazakov, I. N. Kondrashuk, Nucl. Phys. B 510 (1998) 289.

For instance, the renormalization of the gaugino mass in the softly broken N = 1
SYM theory

S =
1

2e20
Re tr

∫
d4x d2θ (1 + 2mθ2)W aWa

is described by the RGI
αm

β(α)
= RGI.

Differentiating this equation with respect to lnµ and substituting the NSVZ
expression for the β-function it is possible to obtain the all-order expression for
the anomalous dimension of the gaugino mass.

The generalizations for theories containing the chiral matter superfields are also
possible.
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Scheme dependence of the NSVZ equation

Nevertheless, it is necessary to remember that the NSVZ equation is valid only
for certain renormalization prescriptions. Therefore, the all-loop renormalization
group invariance of the above expressions does not hold for a general subtraction
scheme.

Note that in the DR-scheme the NSVZ equation is not valid starting from the
order O(α4) (the three-loop approximation for the β-function and the two-loop
approximation for the anomalous dimension)

I. Jack, D. R. T. Jones and C. G. North, Phys.Lett. B 386 (1996) 138;
Nucl.Phys. B 486 (1997) 479;
R. V. Harlander, D. R. T. Jones, P. Kant, L. Mihaila and M. Steinhauser,
JHEP 0612 (2006) 024.

However, in this case it is possible to make a special redefinition of the coupling
constant which restores the NSVZ relation.

The all-loop NSVZ schemes have been constructed with the help of the higher
covariant derivative regularization

A. A. Slavnov, Nucl. Phys. B 31 (1971), 301;
Theor. Math. Phys. 13 (1972), 1064; 33 (1977), 977.
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The higher covariant derivative regularization

For constructing the regularized theory we first add to its action terms with
higher derivatives,

Sreg =
1

2e20
Re tr

∫
d4x d2θW a

(
e−2V e−2F(V )

)
Adj

R
(
− ∇̄2∇2

16Λ2

)
Adj

×
(
e2F(V )e2V

)
Adj

Wa +
1

4

∫
d4x d4θ ϕ∗i

[
F
(
− ∇̄2∇2

16Λ2

)
e2F(V )e2V

]
i

jϕj

+
[ ∫

d4x d2θ
(1
4
mij

0 ϕiϕj +
1

6
λijk
0 ϕiϕjϕk

)
+ c.c.

]
,

where the covariant derivatives are defined as

∇a = Da; ∇̄ȧ = e2F(V )e2V D̄ȧe
−2V e−2F(V ).

Gauge is fixed by adding the term

Sgf = − 1

16ξ0e20
tr
∫
d4x d4θ∇2V K

(
− ∇̄2∇2

16Λ2

)
Adj

∇̄2V.

It is also necessary to introduce the Faddeev-Popov and Nielsen–Kalosh ghosts.
The regulator functions R(x), F (x), and K(x) should rapidly increase at infinity
and satisfy the condition R(0) = F (0) = K(0) = 1.
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The Pauli–Villars determinants

For regularizing the residual one-loop divergences we insert into the generating
functional two Pauli–Villars determinants,

Z =

∫
DµDet(PV,Mφ)

−1Det(PV,M)c

× exp
{
i
(
Sreg + Sgf + SFP + SNK + Ssources

)}
,

where Dµ is the functional integration measure, and

Det(PV,Mφ)
−1 ≡

∫
Dφ1Dφ2Dφ3 exp(iSφ);

Det(PV,M)−1 ≡
∫
DΦ exp(iSΦ).

(Here we use chiral commuting Pauli–Villars superfields.)
The superfields φ1,2,3 belong to the adjoint representation and cancel one-loop
divergences coming from gauge and ghost loops. The superfields Φi lie in a
representation RPV and cancel divergences coming from a loop of the matter
superfields if c = T (R)/T (RPV). The masses of these superfields are

Mφ = aφΛ; M = aΛ,

where the coefficients aφ and a do not depend on couplings.

K.V.Stepanyantz The renormalization group invariants and exact results



20

The β-function as an integral of double total derivatives

The NSVZ equation naturally appears with the higher derivative regularization
because in this case the integrals giving the β-function defined in terms of the
bare couplings

β(α0, λ0) ≡
dα0

dlnΛ

∣∣∣
α,λ=const

are integrals of double total derivatives with respect to the loop momenta

A.V.Smilga, A.I.Vainshtein, Nucl.Phys. B 704 (2005) 445;
K.S., Nucl.Phys. B 852 (2011) 71; JHEP 10 (2019) 011.

This can be seen even in the one-loop approximation

S. S. Aleshin, A. E. Kazantsev, M. B. Skoptsov, K.S., JHEP 05 (2016), 014.

β(α0, λ0)

α2
0

=

∫
d4q

(2π)4
d

d lnΛ

∂

∂qµ
∂

∂qµ

{
− πC2

q2

[
ln
(
1 +

M2
φ

q2R2(q2/Λ2)

)
+2 ln

(
1 +

M2
φ

q2

)]
+
πT (R)

q2
ln
(
1 +

M2

q2F 2(q2/Λ2)

)}
+O(α0, λ

2
0),

where a small vicinity of the singular point qµ = 0 is excluded from the integration
region.
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Derivation of the NSVZ relation

The double total derivatives effectively cut internal lines in the supergraphs and
reduce a number of loop integrations by 1.

Then the NSVZ equation for the renormalization group functions (RGFs) defined
in terms of the bare couplings is obtained by summing singular contributions in
all orders

K.S., Eur. Phys. J. C 80 (2020) no.10, 911.

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)− 2C2γc(α0, λ0)

−2C2γV (α0, λ0) + C(R)i
j(γϕ)j

i(α0, λ0)/r
)
.

Note that qualitatively this result can be obtained with the help of a certain
modification of the one-loop calculation, namely, by replacing tree propagators
with the exact propagators.
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The nonrenormalization of the triple gauge-ghost vertices

The original NSVZ equation is reproduced after taking into account the non-
renormalization of the triple gauge-ghost vertices

K.S., Nucl.Phys. B909 (2016) 316.

This nonrenormalization theorem produces the equation

d

d lnΛ
(Z−1/2

α ZcZV ) = 0,

which allows to express the β-function in terms of the anomalous dimensions of
quantum superfields,

β(α0, λ0) = 2α0

(
γc(α0, λ0) + γV (α0, λ0)

)
.

Using this relation we obtain the NSVZ β-function in the original form

β(α0, λ0)

α2
0

= −3C2 − T (R) + C(R)i
j(γϕ)j

i(α0, λ0)/r

2π
+
C2

2π
· β(α0, λ0)

α0
.
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The NSVZ scheme for the standard RGFs

For the standard RGFs

β̃(α, λ) ≡ dα

dlnµ

∣∣∣
α0,λ0=const

; γ̃(α, λ) ≡ d lnZ

dlnµ

∣∣∣
α0,λ0=const

the all-loop NSVZ scheme turns out to be the HD+MSL scheme, when a theory
is regularized by Higher Derivatives, and divergences are removed by Minimal
Subtractions of Logarithms, because in this case

A.L.Kataev and K.S., Nucl.Phys. B875 (2013) 459

β̃(α, λ)
∣∣∣
HD+MSL

= β(α0 → α, λ0 → λ);

γ̃(α, λ)
∣∣∣
HD+MSL

= γ(α0 → α, λ0 → λ).

Therefore, for the pure N = 1 SYM theory the RGI(µ3

α

)C2

exp
(
− 2π

α

)
= RGI.

is valid in the HD+MSL scheme and is not valid in the DR scheme.
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The NSVZ relation for N = 1 SQED

Let us demonstrate the scheme dependence of the NSVZ equation in the simplest
case of N = 1 SQED with Nf flavors

S =
1

4e2
Re
∫
d4x d2θW aWa +

Nf∑
α=1

1

4

∫
d4x d4θ

(
ϕ∗
αe

2V ϕα + ϕ̃∗
αe

−2V ϕ̃α

)
.

For this theory the NSVZ β-function takes the form

β(α) =
α2Nf

π

(
1− γ(α)

)
.

M. A. Shifman, A. I. Vainshtein and V. I. Zakharov,
JETP Lett. 42 (1985) 224; Phys. Lett. B 166 (1986) 334.

Expressions for the three-loop β-function and the two-loop anomalous dimension
of the matter superfields for N = 1 SQED can be found in

A. L. Kataev and K.S., Phys. Lett. B 730 (2014) 184;
Theor. Math. Phys. 181 (2014) 1531.
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The three-loop NSVZ relation for N = 1 SQED

The HD+MSL-scheme

γ̃HD+MSL(α) = −α
π

+
α2

π2

(1
2
+Nf ln a+Nf +

NfA

2

)
+O(α3);

β̃HD+MSL(α) =
α2Nf

π

(
1 +

α

π
− α2

π2

(1
2
+Nf ln a+Nf +

NfA

2

)
+O(α3)

)
.

The MOM-scheme (The result is the same for dimensional reduction and for the
higher derivative regularization.)

γ̃MOM(α) = −α
π

+
α2(1 +Nf )

2π2
+O(α3);

β̃MOM(α) =
α2Nf

π

(
1 +

α

π
− α2

2π2

(
1 + 3Nf (1− ζ(3))

)
+O(α3)

)
.

The DR-scheme

I. Jack, D.R.T. Jones and C.G. North, Phys. Lett. B386 (1996) 138.

γ̃DR(α) = −α
π

+
α2(2 + 2Nf )

4π2
+O(α3);

β̃DR(α) =
α2Nf

π

(
1 +

α

π
− α2(2 + 3Nf )

4π2
+O(α3)

)
.
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Gauge theories with multiple gauge couplings

Let us investigate a possibility of constructing RGIs for some gauge theories with
multiple gauge couplings. In this case the gauge group is a direct product

G = G1 ×G2 × . . .×Gn,

where any Gi is either a simple group or U(1). In this case there are n gauge
coupling constants α1, α2, . . . , αn.
Such theories can be interesting for phenomenology because they include

QCD+QED

The Standard Model

The MSSM

Some Grand Unified Theories, e.g., the flipped SU(5) theory.

Following
A. L. Kataev, K.S., JETP Lett. 121 (2025) no.5, 315;
D. Rystsov, K.S., Phys. Rev. D 111 (2025) no.1, 016012,

we argue that in some N = 1 supersymmetric theories with multiple gauge
couplings one can construct all-loop RGIs from the gauge and Yukawa couplings.
We will also discuss under what renormalization prescriptions the renormalization
group invariance is valid in all orders.
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QCD+QED

The simplest example of a theory with two gauge coupling constants αs ≡ g2/4π
and α = e2/4π is QCD+QED. In the massless limit this theory is described by
the Lagrangian

L =
1

2g2
trF 2

µν − 1

4e2
F 2

µν +

Nf∑
a=1

iΨ̄aγ
µDµΨa,

which is invariant under the transformations of the gauge group G × U(1).
The Dirac spinors Ψa (where the subscript a numerates flavors) lie in a certain
irreducible representation R of the group G and have the electromagnetic charges
qa. In this case the covariant derivatives are written in the form

DµΨa = ∂µΨa +AµΨa + iqaAµΨa,

where Aµ and Aµ are the non-Abelian and Abelian gauge fields, respectively.
The corresponding gauge field strengths are given by the expressions

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]; Fµν = ∂µAν − ∂νAµ.

In quantum field theory the couplings αs and α depend on scale,

dα

d lnµ
= β(α, αs);

dαs

d lnµ
= βs(αs, α).
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N = 1 SQCD+SQED

It is convenient to formulate the supersymmetric version of the above model in
terms of superfields

S =
1

2g2
Re tr

∫
d4x d2θW aWa +

1

4e2
Re
∫
d4x d2θW aWa

+

Nf∑
a=1

1

4

∫
d4x d4θ

(
ϕ+
a e

2V +2qaV ϕa + ϕ̃+
a e

−2V T−2qaV ϕ̃a
)
,

because in this case N = 1 supersymmetry is manifest.

Here V and V are the gauge superfields corresponding to the subgroups G
and U(1), respectively. The chiral matter superfields ϕa and ϕ̃a belong to the
(conjugated) representations R and R, respectively, and have opposite U(1)
charges.

Two supersymmetric gauge superfield strengths are written in the form

Wa =
1

16
D

2
(
e−2V (1 + γ5)Dae

2V
)
; Wa =

1

8
D

2
(
(1 + γ5)DaV

)
.

Is it possible to relate running of two gauge coupling constants in this model?
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The NSVZ equations for theories with multiple gauge couplings

The NSVZ equations can also be written for theories with multiple gauge
couplings,

M. A. Shifman, Int. J. Mod. Phys. A 11 (1996), 5761;
D. Korneev, D. Plotnikov, K.S. and N. Tereshina, JHEP 10 (2021), 046.

In the particular case qa = 1 for N = 1 SQCD+SQED they take the form

βs(αs, α)

α2
s

= − 1

2π(1− C2αs/2π)

[
3C2 − 2T (R)Nf

(
1− γ(αs, α)

)]
;

β(α, αs)

α2
=

1

π
dimRNf

(
1− γ(αs, α)

)
.

Here we took into account that if the representation for the matter superfields
is irreducible, then

γ(αs, α)i
j = γ(αs, α) · δji ,

where i and j include both the indices numerating chiral matter superfields ϕa
and ϕ̃a and the indices corresponding to the representation R (or R).

Comparing the above expressions for the β-functions we see that the anomalous
dimension of the matter superfeilds can be eliminated.
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The RGI for N = 1 SQCD+SQED

After eliminating the anomalous dimension of the matter superfields we obtain
that the β-functions satisfy the all-order exact equation(

1− C2αs

2π

)βs(αs, α)

α2
s

= −3C2

2π
+
T (R)

dimR
· β(α, αs)

α2
.

Evidently, this equation is valid in the HD+MSL scheme, because the original
NSVZ equations are satisfied for this renormalization prescription.

Taking into account the boundary conditions for the HD+MSL scheme it is
possible to integrate the relation between the β-functions over µ. Then we obtain
the equation which relates running of the strong and electromagnetic couplings
in the theory under consideration.

1

αs
− 1

αs0
+
C2

2π
ln

αs

α0s
= −3C2

2π
ln

Λ

µ
+
T (R)

dimR

( 1
α

− 1

α0

)
.

This in particular implies that the expression(αs

µ3

)C2

exp
(2π
αs

− T (R)

dimR
· 2π
α

)
= RGI

is the renormalization group invariant, i.e. the expression which vanishes afer
differentiating with respect to lnµ.
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The three-loop verification, an arbitrary scheme

With the higher covariant derivative regularization, the three-loop β-functions
for the N = 1 SQCD+SQED have been calculated in

O. Haneychuk and K.S., Eur. Phys. J. C 85 (2025) no.5, 540

In the three-loop approximation the scheme dependence becomes essential, and
the result depends on both regularization parameters

A ≡
∞∫
0

dx ln x
d

dx

1

R(x)
; aφ ≡

Mφ

Λ
; aG ≡

MG

Λ
; a1 ≡

M1

Λ
.

and renormalization parameters defined by the equations

1

α0

=
1

α
−

Nf dimR

π

(
ln

Λ

µ
+ d1

)
−

αs

π2
NfC(R) dimR

(
ln

Λ

µ
+ d2

)
−

α

π2
Nf dimR

×
(
ln

Λ

µ
+ d̃2

)
+ O(α

2
s, αsα, α

2
);

1

αs0

=
1

αs
+

3C2

2π

(
ln

Λ

µ
+ b11

)
−

NfT (R)

π

(
ln

Λ

µ
+ b12

)
+

3αs

4π2
(C2)

2
(
ln

Λ

µ
+ b21

)
−

αs

2π2
NfC2T (R)

(
ln

Λ

µ
+ b22

)
−

αs

π2
NfC(R)T (R)

(
ln

Λ

µ
+ b23

)
−

α

π2
NfT (R)

(
ln

Λ

µ

+b̃21

)
+ O(α

2
s, αsα, α

2
).
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The three-loop verification, an arbitrary scheme scheme

β(αs, α)

α2
=

Nf dimR

π

{
1 +

α

π
+

αs

π
C(R) −

1

2π2

(
α + αsC(R)

)2
−

α2

π2
Nf dimR

(
ln a1

+1 +
A

2
+ d̃2 − d1

)
+

3α2
s

2π2
C2C(R)

(
ln aφ + 1 +

A

2
+ d2 − b11

)
−

α2
s

π2
NfC(R)T (R)

×
(
ln aG + 1 +

A

2
+ d2 − b12

)
+ O(α

3
s, α

2
sα, αsα

2
, α

3
)

}
;

βs(αs, α)

α2
s

= −
1

2π

(
3C2 − 2NfT (R)

)
+

α

π2
NfT (R) +

αs

4π2

(
− 3(C2)

2
+ 2NfC2T (R)

+4NfC(R)T (R)
)
−

α2

π3
(Nf )

2
T (R) dimR

(
ln a1 + 1 +

A

2
+ b̃21 − d1

)
−

1

2π3
NfT (R)

×
(
α + αsC(R)

)2
+

ααs

2π3
NfC2T (R) −

3α2
s

8π3
(C2)

3
(
1 + 3b21 − 3b11

)
+

α2
s

4π3
Nf (C2)

2

×T (R)
(
1 + 3b21 − 3b11 + 3b22 − 3b12

)
+

3α2
s

2π3
NfC2C(R)T (R)

(
ln aφ +

4

3
+

A

2

+b23 − b11

)
−

α2
s

2π3
(Nf )

2
C2T (R)

2
(b22 − b12) −

α2
s

π3
(Nf )

2
C(R)T (R)

2
(
ln aG + 1

+
A

2
+ b23 − b12

)
+ O(α

3
s, α

2
sα, αsα

2
, α

3
).

The HD+MSL scheme is obtained if

b11 = b12 = b21 = b22 = b23 = b̃23 = b̃21= 0; d1 = d2 = d̃2= 0

.
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Minimal scheme for N = 1 SQCD+SQED

The equation relating the β-function is satisfied if

b̃21 = d̃2; b21 = b11; b22 = b12; b23 = d2.

In particular, it is valid in the HD+MSL scheme independently of values of the
regularization parameters aφ, aG, a1, and A.

One can try to find a (minimal) scheme in which RGFs have the simplest form
and the exact relation between β-function is still valid. This is achieved if the
(remaining) parameters satisfy the equations

b12 = b11 + ln
aG
aφ

; d2 = b11 − ln aφ − 1− A

2
; d̃2 = d1 − ln a1 − 1− A

2
.

In this case the expressions for the three-loop β-functions take the simplest form

β(αs, α)

α2
=

Nf dimR

π

{
1 +

α

π
+

αs

π
C(R) −

1

2π2

(
α + αsC(R)

)2
+ O(α

3
s, α

2
sα, αsα

2
, α

3
)

}
;

βs(αs, α)

α2
s

= −
1

2π

(
3C2 − 2NfT (R)

)
+

(
1 +

αsC2

2π

)[ α

π2
NfT (R) +

αs

4π2

(
− 3(C2)

2
+ 2Nf

×C2T (R) + 4NfC(R)T (R)
)]

−
1

2π3
NfT (R)

(
α + αsC(R)

)2
+ O(α

3
s, α

2
sα, αsα

2
, α

3
).
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The three-loop verification, DR scheme

The three-loop RGFs in the DR scheme are given by the expressions

β(αs, α)

α2

∣∣∣∣
DR

=
Nf dimR

π

{
1 +

α

π
+

αs

π
C(R) −

1

2π2

(
α + αsC(R)

)2
−

3α2

4π2
Nf dimR

+
9α2

s

8π2
C2C(R) −

3α2
s

4π2
NfC(R)T (R) + O(α

3
s, α

2
sα, αsα

2
, α

3
)

}
;

βs(αs, α)

α2
s

∣∣∣∣
DR

= −
1

2π

(
3C2 − 2NfT (R)

)
+

α

π2
NfT (R) +

αs

4π2

(
− 3(C2)

2
+ 2NfC2T (R)

+4NfC(R)T (R)
)
−

3α2

4π3
(Nf )

2
T (R) dimR −

1

2π3
NfT (R)

(
α + αsC(R)

)2
+

ααs

2π3
NfC2

×T (R) −
21α2

s

32π3
(C2)

3
+

5α2
s

8π3
Nf (C2)

2
T (R) +

13α2
s

8π3
NfC2C(R)T (R) −

α2
s

8π3
(Nf )

2
C2T (R)

2

−
3α2

s

4π3
(Nf )

2
C(R)T (R)

2
+ O(α

3
s, α

2
sα, αsα

2
, α

3
).

Substituting these expressions we obtain
(
1 −

αsC2

2π

)βs(αs, α)

α2
s

+
3C2

2π
−

T (R)

dimR
·
β(αs, α)

α2

= −
9α2

s

32π3
(C2)

3
+

3α2
s

8π3
(C2)

2
NfT (R) + O(α

3
s, α

2
sα, αsα

2
, α

3
)̸= O(α

3
s, α

2
sα, αsα

2
, α

3
).

Thus, the expression under consideration is not RGI in the DR scheme starting
from the three loops, where the scheme dependence manifests itself.
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N = 1 SQCD+SQED with different U(1) changes

Next, let us consider the theory in which the matter superfields have different
U(1) charges qa,

S =
1

2g2
Re tr

∫
d4x d2θW aWa +

1

4e2
Re
∫
d4x d2θW aWa

+

Nf∑
a=1

1

4

∫
d4x d4θ

(
ϕ+
a e

2V +2qaV ϕa + ϕ̃+
a e

−2V −2qaV ϕ̃a
)

and investigate the limit α = e2/4π → 0. In this case the renormalization
group running of the strong coupling constant αs is exactly the same as in usual
N = 1 SQCD with the gauge group G and Nf flavors. The running of the
electromagnetic coupling constant is described by the Adler D-function

S. L. Adler, Phys. Rev. D 10 (1974), 3714,

which is related to the β-function for the coupling constant α in the limit α→ 0,

D(αs) =
3π

2
lim
α→0

β(αs, α)

α2
.
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The NSVZ-like expression for the Adler D-function

In the limit α → 0 the anomalous dimensions of the matter superfields do not
depend on α and, therefore, on qa. This implies that in this case all anomalous
dimensions of the chiral matter superfields are the same,

lim
α→0

γa(αs, α) = γ(αs).

Then the NSVZ β-function for N = 1 SQCD takes the form

βs(αs)

α2
s

= − 1

2π(1− C2αs/2π)

[
3C2 − 2T (R)Nf

(
1− γ(αs)

)]
.

The exact NSVZ-like expression for the Adler D-function in the theory under
consideration has been derived in

M. Shifman and K.S., Phys. Rev. Lett. 114 (2015) 051601;
Phys. Rev. D 91 (2015), 105008.

D(αs) =
3

2
dimR

Nf∑
a=1

(qa)
2
(
1− γ(αs)

)
≡ 3

2
q2 dimR

(
1− γ(αs)

)
,

where q2 ≡
Nf∑
a=1

(qa)
2.
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N = 1 SQCD+SQED with different U(1) changes

Therefore, the β-function of N = 1 SQCD can be expressed in terms of the
Adler D-function by the all-loop equation

βs(αs) = − α2
s

2π(1− C2αs/2π)

[
3C2 −

4T (R)NfD(αs)

3 q2 dimR

]
,

which relates the renormalization group running of the strong and
electromagnetic coupling constants in the limit α → 0. Evidently, this equation
is valid in the HD+MSL scheme in all orders.

Thus, from the NSVZ equation we see that

1. If all U(1) charges qa are the same, then in the N = 1 SQCD+SQED, which
is a theory with two gauge couplings, it is possible to relate their running.

2. If the charges qa are different, then it is possible to relate the β-function of
N = 1 SQCD to the Adler D-function. Actually, in this case the exact relation
exists only in the limit α→ 0.

3. These exact relations are valid in the HD+MSL scheme, but do not hold in
the DR scheme.
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The Minimal Supersymmetric Standard Model (MSSM)

The MSSM is the simplest supersymmetric extension of the Standard Model. It is
a gauge theory with the group SU3×SU2×U1 and softly broken supersymmetry.
Consequently, there are 3 gauge coupling constants e3, e2, and e1 in the MSSM
(their number is equal to the number of factors in the gauge group). Quarks,
leptons, and Higgs fields are components of the chiral matter superfields:

Superfield SU3 SU2 U1 (Y ) Superfield SU3 SU2 U1 (Y )

3×Q 3 2 −1/6 3×N 1 1 0

3× U 3 1 2/3 3× E 1 1 −1

3×D 3 1 −1/3 Hd 1 2 1/2

3× L 1 2 1/2 Hu 1 2 −1/2

where for the superfields which include left quarks and leptons we use the brief
notations

Q =

(
Ũ

D̃

)
; L =

(
Ñ

Ẽ

)
.
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The MSSM superpotential

The MSSM contains three gauge couplings

α3 =
e23
4π

; α2 =
e22
4π

; α1 =
5

3
· e

2
1

4π

corresponding to the subgroups SU(3), SU(2), and U(1), respectively. (The
factor 5/3 in the coupling constant α1 is introduced in order that the unification
of couplings has the form α1 = α2 = α3.) There are also dimensionless Yukawa
couplings (YU )IJ , (YD)IJ , and (YE)IJ (which are 3 × 3 matrices) inside the
superpotential

W = (YU )IJ

(
Ũ D̃

)a
I

(
0 1
−1 0

)(
Hu1

Hu2

)
UaJ

+(YD)IJ

(
Ũ D̃

)a
I

(
0 1
−1 0

)(
Hd1

Hd2

)
DaJ

+(YE)IJ

(
Ñ Ẽ

)
I

(
0 1
−1 0

)(
Hd1

Hd2

)
EJ

+µ (Hu1 Hu2)

(
0 1
−1 0

)(
Hd1

Hd2

)
.

Moreover, the superpotential includes a term with the parameter µ, which has
the dimension of mass.
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The NSVZ equations for the MSSM

The renormalization group running of the gauge couplings in the MSSM can be
described exactly in all loops with the help of the NSVZ β-functions

M. A. Shifman, Int. J. Mod. Phys. A 11 (1996), 5761.

β1
α2
1

= −3

5
· 1

2π

[
− 11 + tr

(1
6
γQ +

4

3
γU +

1

3
γD +

1

2
γL + γE

)
+

1

2
γHu +

1

2
γHd

]
;

β2
α2
2

= − 1

2π(1− α2/π)

[
− 1 + tr

(3
2
γQ +

1

2
γL
)
+

1

2
γHu +

1

2
γHd

]
;

β3
α2
3

= − 1

2π(1− 3α3/2π)

[
3 + tr

(
γQ +

1

2
γU +

1

2
γD
)]
.

They relate three gauge β-functions of the theory to the anomalous dimensions
of the chiral matter superfields. The renormalization group functions (RGFs) are
defined by the equations

βi(α, Y ) =
dαi

d lnµ

∣∣∣∣
α0,Y0=const

; γi(α, Y ) =
d lnZi

d lnµ

∣∣∣∣
α0,Y0=const

,

where the subscript 0 denotes the bare values.
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The exact equations describing the renormalization of the MSSM Yukawa

couplings

RGFs describing the renormalization of the Yukawa couplings and of the
parameter µ can also be related to the anomalous dimensions of the matter
superfields due to the nonrenormalization of the superpotential

M. T. Grisaru, W. Siegel, M. Rocek, Nucl. Phys. B 159 (1979), 429.

dYU

d lnµ
=

1

2

(
γHuYU + (γQ)

TYU + YUγU
)
;

dYD

d lnµ
=

1

2

(
γHdYD + (γQ)

TYD + YDγD
)
;

dYE

d lnµ
=

1

2

(
γHdYE + (γL)

TYE + YEγE
)
;

dµ

d lnµ
=

1

2

(
γHu + γHd

)
µ.

It is important that these equations are valid in the HD+MSL scheme because in
this scheme all renormalization constants contain only powers of lnΛ/µ, where
Λ is the dimensionful regularization parameter.

K.V.Stepanyantz The renormalization group invariants and exact results



42

The equations for the determinants of the Yukawa matrices

The renormalization group equations for the Yukawa couplings can be multiplied
by the corresponding inverse matrices. After that, it is possible to calculate traces
of the resulting equations using the formula

tr
[
M−1 dM

d lnµ

]
=

d

d lnµ
tr lnM =

d

d lnµ
ln detM,

Then (taking into account that the indices numerating generators range from 1
to 3) we see that the equations describing how the determinants of the Yukawa
matrices depend on the renormalization point µ are written as

γdetYU
≡ d ln detYU

d lnµ
= tr

[
(YU )

−1 dYU

d lnµ

]
=

1

2

(
3γHu + tr

(
γQ + γU

))
;

γdetYD
≡ d ln detYD

d lnµ
= tr

[
(YD)−1 dYD

d lnµ

]
=

1

2

(
3γHd + tr

(
γQ + γD

))
;

γdetYE
≡ d ln detYE

d lnµ
= tr

[
(YE)

−1 dYE

d lnµ

]
=

1

2

(
3γHd + tr

(
γL + γE

))
.

They can be solved together with the NSVZ equations and the equation
describing the renormalization of the parameter µ.
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The renormalization group equations for the (rigid part of the) MSSM

Collecting the above equations we obtain the system of differential equations
describing the renormalization of the MSSM parameters exactly in all orders

d

d lnµ

(5

3
·
2π

α1

)
= −11 + tr

(1

6
γQ +

4

3
γU +

1

3
γD +

1

2
γL + γE

)
+

1

2
γHu +

1

2
γHd

;

d

d lnµ

( 2π

α2
+ 2 lnα2

)
= −1 + tr

(3

2
γQ +

1

2
γL

)
+

1

2
γHu +

1

2
γHd

;

d

d lnµ

( 2π

α3
+ 3 lnα3

)
= 3 + tr

(
γQ +

1

2
γU +

1

2
γD

)
;

d ln detYU

d lnµ
=

1

2

(
3γHu + tr

(
γQ + γU

))
;

d ln detYD

d lnµ
=

1

2

(
3γHd

+ tr
(
γQ + γD

))
;

d ln detYE

d lnµ
=

1

2

(
3γHd

+ tr
(
γL + γE

))
;

d lnµ

d lnµ
=

1

2

(
γHu + γHd

)
.

The anomalous dimensions of the chiral matter superfields and µ can be
eliminated, thereby obtaining a differential equation which contains only
derivatives of the gauge and Yukawa couplings.
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Eliminating the anomalous dimensions of the matter superfields

First, we eliminate tr(γL), tr(γE), and γHu + γHd . The resulting equations
contain γQ, γD, and γU only in the combination tr(2γQ + γU + γD),

d

d lnµ

( 2π

α3

+ 3 lnα3

)
= 3 +

1

2
tr
(
2γQ + γU + γD

)
;

d

d lnµ

( 2π

α2

+ 2 lnα2 +
5

3
·
2π

α1

− 2 lnµ − 2 ln detYE + 2 ln detYD

)
= −12 +

4

3
tr
(
2γQ + γU + γD

)
;

d

d lnµ

(
ln detYD + ln detYU − 3 lnµ

)
=

1

2
tr
(
2γQ + γU + γD

)
.

This allows either eliminating the one-loop constants or eliminating the parameter
µ. The resulting equations take the form

d

d lnµ

( 2π

α3
+ 3 lnα3 +

π

2α2
+

1

2
lnα2 +

5π

6α1

−
1

2
ln detYE −

7

6
ln detYD −

5

3
ln detYU +

9

2
lnµ

)
= 0,

d

d lnµ

( 2π

α3
+ 3 lnα3 −

π

α2
− lnα2 −

5π

3α1

+ ln detYE −
2

3
ln detYD +

1

3
ln detYU − 9 lnµ

)
= 0,

respectively.
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The all-loop RGIs for the MSSM

Integrating the first equation we obtain the expression RGI1, which does not
explicitly depend on the scale µ, but contains the parameter µ. Integrating the
second equation gives the expression RGI2 independent of µ, but containing the
scale µ,

RGI1 =
µ9/2 (α3)

3 (α2)
1/2(

detYE

)1/2 (detYU

)5/3 (detYD

)7/6 exp
(2π
α3

+
π

2α2
+

5π

6α1

)
;

RGI2 =
(α3)

3 detYE

(
detYU

)1/3
µ9 α2

(
detYD

)2/3 exp
(2π
α3

− π

α2
− 5π

3α1

)
.

Instead of the renormalization group invariants (RGI1, RGI2) it is possible to use
the equivalent set (RGI3, RGI4), where the expressions

RGI3 ≡
(RGI1

RGI2

)2/3
=

µ3 µ6 α2(
detYE

) (
detYU

)4/3 (detYD

)1/3 exp
( π
α2

+
5π

3α1

)
;

RGI4 ≡
(
RGI1

)2/3(RGI2
)1/3

=
µ3 (α3)

3

µ3 detYU detYD
exp

(2π
α3

)
also have a rather simple form.
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The three-loop check

Differentiating ln(RGI3) and ln(RGI4) with respect to lnµ we obtain the
equations

0 =
( 1

α2
− π

α2
2

)
β2 −

5π

3α1
2
β1 + 6 + 3γµ − γdetYE

− 4

3
γdetYU

− 1

3
γdetYD

;

0 =
( 3

α3
− 2π

α2
3

)
β3 − 3 + 3γµ − γdetYU

− γdetYD
.

The scheme dependence of these equations becomes essential starting from the
order O(α2, αY 2, Y 4) corresponding to the three-loop approximation for the β-
functions and to the two-loop approximation for the anomalous dimensions.
In the HD+MSL scheme they should be satisfied in all orders independently of
the regularization parameters

A ≡
∞∫
0

dx lnx
d

dx

1

R(x)
; aφ,3 ≡

Mφ,3

Λ
; aφ,2 ≡

Mφ,2

Λ
;

B ≡
∞∫
0

dx lnx
d

dx

1

F 2(x)
; a3 ≡

M3

Λ
; a2 ≡

M2

Λ
; a1 ≡

M1

Λ
,

where R(x) and F (x) are the higher derivative regulator functions, and Mi are
the Pauli–Villars masses.
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The three-loop verification, the HD+MSL scheme

The three-loop β-functions for the MSSM in the HD+MSL scheme have been
calculated in

O. Haneychuk, V. Shirokova, K.S., JHEP 09 (2022), 189.

β1(α, Y )

α2
1

= −
1

2π
·
3

5

{
− 11 −

199α1

60π
−

9α2

4π
−

22α3

3π
+

1

8π2
tr
( 13

3
YUY

+
U +

7

3
YDY

+
D + 3YEY

+
E

)

+
1

2π2

[
5131α2

1

3600
+

27α2
2

16
+

88α2
3

9
+

23α1α2

40
+

137α1α3

45
+ α2α3 +

2189α2
1

100

(
ln a1 + 1 +

A

2

)
+

9α2
2

4

(
7 ln a2 − 6 ln aφ,2 + 1 +

A

2

)
− 22α

2
3

(
3 ln aφ,3 − 2 ln a3 + 1 +

A

2

)]
+

1

8π3
tr
(
YUY

+
U

)
×
[
2α2 + 2α3 + (B − A)

( 169α1

180
+

13α2

4
+

52α3

9

)]
+

1

8π3
tr
(
YDY

+
D

)[ α2

2
+ 2α3 + (B − A)

×
( 49α1

180
+

7α2

4
+

28α3

9

)]
+

1

8π3
tr
(
YEY

+
E

)[ 3α2

2
+ (B − A)

( 27α1

20
+

9α2

4

)]
−

1

(8π2)2

[
15

4

× tr
(
(YUY

+
U )

2
)
+

11

4
tr
(
(YDY

+
D )

2
)
+

9

4
tr
(
(YEY

+
E )

2
)
+

19

6
tr
(
YDY

+
D YUY

+
U

)
+

17

4

(
tr(YUY

+
U )

)2

+
5

4

(
tr(YDY

+
D )

)2
+

5

4

(
tr(YEY

+
E )

)2
+

25

6
tr
(
YEY

+
E

)
tr
(
YDY

+
D

)]}
+ O(α

3
, α

2
Y

2
, αY

4
, Y

6
);

β2(α, Y )

α2
2

= . . . + O(α
3
, α

2
Y

2
, αY

4
, Y

6
);

β3(α, Y )

α2
3

= . . . + O(α
3
, α

2
Y

2
, αY

4
, Y

6
).
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The three-loop verification, the HD+MSL scheme

The two-loop anomalous dimensions in the HD+MSL scheme can be calculated
starting from the anomalous dimensions of the chiral matter superfields

γdet YU
(α, Y ) =

1

2

(
3γHu (α, Y ) + tr γQ(α, Y ) + tr γU (α, Y )

)
= −

13α1

20π
−

9α2

4π
−

4α3

π
+

1

16π2
tr
(
12YUY

+
U + YDY

+
D

)
+

1

2π2

[
169α2

1

1200
+

27α2
2

16
+

16α2
3

3

+
3α1α2

8
+

17α1α3

15
+ 3α2α3 −

27α2
2

2

(
ln aφ,2 + 1 +

A

2

)
− 36α

2
3

(
ln aφ,3 + 1 +

A

2

)
+

429α2
1

100

(
ln a1 + 1 +

A

2

)
+

63α2
2

4

(
ln a2 + 1 +

A

2

)
+ 24α

2
3

(
ln a3 + 1 +

A

2

)]
+

1

16π3

× tr(YUY
+
U )

[
7α1

10
+

3α2

2
+ 12α3 + (B − A)

( 13α1

5
+ 9α2 + 16α3

)]
+

1

16π3
tr(YDY

+
D )

×
[
α1

10
+ (B − A)

( 7α1

60
+

3α2

4
+

4α3

3

)]
−

1

(16π2)2

[
31 tr

(
(YUY

+
U )

2
)
+ 2 tr

(
(YDY

+
D )

2
)

+11 tr
(
YDY

+
D YUY

+
U

)
+ 9

(
tr(YUY

+
U )

)2
+ 3

(
tr(YDY

+
D )

)2
+ tr(YEY

+
E ) tr(YDY

+
D )

]
+O

(
α
3
, α

2
Y

2
, αY

4
, Y

6
)
;

γdet YD
(α, Y ) =

1

2

(
3γHd

(α, Y ) + tr γQ(α, Y ) + tr γD(α, Y )
)

= . . . + O(α
3
, α

2
Y

2
, αY

4
, Y

6
);

γdet YE
(α, Y ) =

1

2

(
3γHd

(α, Y ) + tr γL(α, Y ) + tr γE(α, Y )
)

= . . . + O(α
3
, α

2
Y

2
, αY

4
, Y

6
);

γµ(α, Y ) =
1

2

(
γHu (α, Y ) + γHd

(α, Y )
)

= . . . + O(α
3
, α

2
Y

2
, αY

4
, Y

6
).
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The three-loop verification, the HD+MSL scheme

Substituting the above expressions for RGFs in the HD+MSL scheme we see
that in the considered approximation the derivatives of the expressions RGI3 and
RGI4 vanish independently of the values of the regularization parameters,[( 1

α2
− π

α2
2

)
β2 −

5π

3α2
1

β1 + 6 + 3γµ − γdetYE

−4

3
γdetYU

− 1

3
γdetYD

]
HD+MSL

= O
(
α3, α2Y 2, αY 4, Y 6

)
;

[( 3

α3
− 2π

α2
3

)
β3 − 3 + 3γµ − γdetYU

− γdetYD

]
HD+MSL

= O
(
α3, α2Y 2, αY 4, Y 6

)
.

Therefore, in the considered approximation the expressions RGI1 and RGI2 also
do not depend on the renormalization point µ in the HD+MSL scheme.

Certainly, this is quite expected because the HD+MSL scheme is NSVZ in all
orders.
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Dimensional technique in the supersymmetric case

However, the most popular renormalization prescription in the supersymmetric
case is the DR scheme. The matter is that dimensional regularization

G. ’t Hooft and M. J. G. Veltman, Nucl. Phys. B 44 (1972), 189;
C. G. Bollini and J. J. Giambiagi, Nuovo Cim. B 12 (1972), 20;
J. F. Ashmore, Lett. Nuovo Cim. 4 (1972), 289;
G. M. Cicuta and E. Montaldi, Lett. Nuovo Cim. 4 (1972), 329

explicitly breaks supersymmetry, because the numbers of boson and fermion
degrees of freedom differently depend on the space-time dimension.
That is why in the supersymmetric case it is more convenient to use its
modification called dimensional reduction

W. Siegel, Phys. Lett. B 84 (1979), 193.

In this case the γ-matrices are taken in the integer dimension (usually, D = 4),
while the loop integrals are calculated in the dimension D = 4− ε.

The DR scheme is obtained if the dimensional reduction is supplemented by
modified minimal subtraction.
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The three-loop verification, the DR scheme

The three-loop β-functions for the MSSM in the DR scheme have been calculated
in

I. Jack, D. R. T. Jones, A. F. Kord, Annals Phys. 316 (2005), 213.

β1(α, Y )

α2
1

= −
1

2π
·
3

5

{
− 11 −

199α1

60π
−

9α2

4π
−

22α3

3π
+

1

8π2
tr
( 13

3
YUY

+
U +

7

3
YDY

+
D + 3YEY

+
E

)

+
1

2π2

( 32117α2
1

1800
+

27α2
2

8
−

121α2
3

18
+

23α1α2

40
+

137α1α3

45
+ α2α3

)
+

1

8π3
tr
(
YUY

+
U

)( 169α1

360

+
29α2

8
+

44α3

9

)
+

1

8π3
tr
(
YDY

+
D

)( 49α1

360
+

11α2

8
+

32α3

9

)
+

1

8π3
tr
(
YEY

+
E

)( 27α1

40
+

21α2

8

)
−

1

(8π2)2

[
7 tr

(
(YUY

+
U )

2
)
+

9

2
tr
(
(YDY

+
D )

2
)
+

9

2
tr
(
(YEY

+
E )

2
)
+

29

6
tr
(
YDY

+
D YUY

+
U

)
+

15

2

(
tr(YUY

+
U )

)2
+ 3

(
tr(YDY

+
D )

)2
+ 2

(
tr(YEY

+
E )

)2
+ 7 tr

(
YEY

+
E

)
tr
(
YDY

+
D

)]}
+O(α

3
, α

2
Y

2
, αY

4
, Y

6
);

β2(α, Y )

α2
2

= . . . + O(α
3
, α

2
Y

2
, αY

4
, Y

6
);

β3(α, Y )

α2
3

= . . . + O(α
3
, α

2
Y

2
, αY

4
, Y

6
).
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The three-loop verification, the DR scheme

Again, the two-loop anomalous dimensions in the DR scheme can be calculated
starting from the anomalous dimensions of the chiral matter superfields

γdet YU
(α, Y ) =

1

2

(
3γHu (α, Y ) + tr γQ(α, Y ) + tr γU (α, Y )

)
= −

13α1

20π
−

9α2

4π
−

4α3

π
+

1

16π2
tr
(
12YUY

+
U + YDY

+
D

)
+

1

2π2

[
2743α2

1

1200
+

45α2
2

16
−

2α2
3

3

+
3α1α2

8
+

17α1α3

15
+ 3α2α3

]
+

1

16π3
tr(YUY

+
U )

[
7α1

10
+

3α2

2
+ 12α3

]
+

1

16π3
tr(YDY

+
D )

×
α1

10
−

1

(16π2)2

[
31 tr

(
(YUY

+
U )

2
)
+ 2 tr

(
(YDY

+
D )

2
)
+ 11 tr

(
YDY

+
D YUY

+
U

)
+ 9

(
tr(YUY

+
U )

)2

+3
(
tr(YDY

+
D )

)2
+ tr(YEY

+
E ) tr(YDY

+
D )

]
+ O

(
α
3
, α

2
Y

2
, αY

4
, Y

6
)
;

γdet YD
(α, Y ) =

1

2

(
3γHd

(α, Y ) + tr γQ(α, Y ) + tr γD(α, Y )
)

= . . . + O(α
3
, α

2
Y

2
, αY

4
, Y

6
);

γdet YE
(α, Y ) =

1

2

(
3γHd

(α, Y ) + tr γL(α, Y ) + tr γE(α, Y )
)

= . . . + O(α
3
, α

2
Y

2
, αY

4
, Y

6
);

γµ(α, Y ) =
1

2

(
γHu (α, Y ) + γHd

(α, Y )
)

= . . . + O(α
3
, α

2
Y

2
, αY

4
, Y

6
).

However, in the DR scheme the derivatives of lnRGI3 and lnRGI4 with respect
to lnµ do not vanish in that orders where the scheme dependence becomes
essential.
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The three-loop verification, the DR scheme

[( 1

α2

−
π

α2
2

)
β2 −

5π

3α2
1

β1 + 6 + 3γµ − γdet YE
−

4

3
γdet YU

−
1

3
γdet YD

]
DR

=
1

2π2

( 1243α2
1

400
+

17α2
2

16
− 5α

2
3

)
+

1

16π3
tr(YUY

+
U )

( 143α1

180
+

11α2

4
+

44α3

9

)
+

1

16π3
tr(YDY

+
D )

( 14α1

45
+ 2α2 +

32α3

9

)
+

1

16π3
tr(YEY

+
E )

( 9α1

10
+

3α2

2

)
−

1

(16π2)2

[
11 tr

(
(YUY

+
U )

2
)
+ 8 tr

(
(YDY

+
D )

2
)
+ 6 tr

(
(YEY

+
E )

2
)
+

19

3
tr
(
YDY

+
D YUY

+
U

)
+11

(
tr(YUY

+
U )

)2
+ 8

(
tr(YDY

+
D )

)2
+ 2

(
tr(YEY

+
E )

)2
+

26

3
tr
(
YEY

+
E

)
tr
(
YDY

+
D

)]
+O

(
α
3
, α

2
Y

2
, αY

4
, Y

6
)̸
= O

(
α
3
, α

2
Y

2
, αY

4
, Y

6
)
;

[( 3

α3

−
2π

α2
3

)
β3 − 3 + 3γµ − γdet YU

− γdet YD

]
DR

=
1

2π2

( 363α2
1

400
+

9α2
2

16
−

21α2
3

8

)
+

1

16π3
tr(YUY

+
U )

( 13α1

30
+

3α2

2
+

8α3

3

)
+

1

16π3
tr(YDY

+
D )

( 7α1

30
+

3α2

2
+

8α3

3

)
−

1

(16π2)2

[
6 tr

(
(YUY

+
U )

2
)
+ 6 tr

(
(YDY

+
D )

2
)
+ 6

(
tr(YUY

+
U )

)2
+ 6

(
tr(YDY

+
D )

)2

+2 tr
(
YEY

+
E

)
tr
(
YDY

+
D

)
+ 4 tr

(
YDY

+
D YUY

+
U

)]
+ O

(
α
3
, α

2
Y

2
, αY

4
, Y

6
)

̸= O
(
α
3
, α

2
Y

2
, αY

4
, Y

6
)
.
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The NMSSM

The parameter µ in the MSSM superpotential should be of the order of the
electroweak scale, which is impossible to explain in MSSM. The µ problem can
be solved in the Next-to-Minimal Supersymmetric Standard Model (NMSSM)

M. Maniatis, Int. J. Mod. Phys. A 25 (2010), 3505;
U. Ellwanger, C. Hugonie, A. M. Teixeira,Phys. Rept. 496 (2010), 1,

which contains an additional chiral matter superfield S. This superfield is a singlet
with respect to SU(3)×SU(2)×U(1). Then it is possible to replace the µ term

∆WMSSM = µ (Hu1 Hu2)

(
0 1
−1 0

)(
Hd1

Hd2

)
by the gauge invariant expression

∆WNMSSM = λS (Hu1 Hu2)

(
0 1
−1 0

)(
Hd1

Hd2

)
+
κ

3
S3,

in which λ and κ are new dimensionless couplings. In this case the effective value
of µ is equal to the vacuum expectation value of (the lowest component of) S
multiplied by λ and can have an order of the electroweak scale.
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RGIs for the NMSSM

Due to the nonrenormalization of the superpotential, the anomalous dimensions
of λ and κ satisfy the all-loop equations

γκ ≡ d lnκ

d lnµ
=

3

2
γS ; γλ ≡ d lnλ

d lnµ
=

1

2

(
γS + γHu + γHd

)
.

Therefore, the sum which for the MSSM gives γµ can be written as

1

2

(
γHu + γHd

)
= γλ − 1

3
γκ.

The NSVZ relations for NMSSM are the same as for MSSM (although the
anomalous dimensions are different). The equations describing the running of
the Yukawa couplings YE , YU , and YD also remain unchanged. That is why RGIs
for NMSSM can be obtained from the ones for MSSM after the replacement

µ → λκ−1/3.

The expression RGI2 does not depend on µ and, therefore, is also RGI for
NMSSM. The RGI1 after this replacement takes the form

R̃GI1 =
λ9/2 (α3)

3 (α2)
1/2

κ3/2
(
detYE

)1/2 (detYU

)5/3 (detYD

)7/6 exp
(2π
α3

+
π

2α2
+

5π

6α1

)
.
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6D, N = (1, 0) supersymmetic theories in the harmonic superspace

Usual supersymmetric theories in higher dimensions are not renormalizable,
because the degree of divergence increases with the number of loops. However, in
this case it is possible to consider theories with higher derivatives. We will consider
a model analogous to the 6D, N = (1, 0) higher derivative supersymmetric
theory proposed in

E. A. Ivanov, A. V. Smilga and B. M. Zupnik, Nucl. Phys. B 726 (2005), 131.

It is convenient to formulate it in 6D, N = (1, 0) harmonic superspace

P. S. Howe, G. Sierra and P. K. Townsend, Nucl. Phys. B 221 (1983), 331;
P. S. Howe, K. S. Stelle and P. C. West, Class. Quant. Grav. 2 (1985), 815;
B. M. Zupnik, Sov. J. Nucl. Phys. 44 (1986), 512;
E. A. Ivanov and A. V. Smilga, Phys. Lett. B 637 (2006), 374;
I. L. Buchbinder and N. G. Pletnev, Nucl. Phys. B 892 (2015), 21,

which is similar to the usual 4D, N = 2 harmonic superspace

A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky and E. Sokatchev,
Class. Quant. Grav. 1 (1984), 469;
A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky and E. S. Sokatchev,
“Harmonic superspace”, Cambridge, UK: Univ. Pr. (2001) 306 p..
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The 6D, N = (1, 0) harmonic superspace

The harmonic superspace is especially convenient for formulating 6D, N = (1, 0)
supersymmetric theories because it makes N = (1, 0) supersymmetry manifest.

The 6D, N = (1, 0) harmonic superspace is parametrized by the coordinates
(xµ, θai , u

±i), where µ = 0, . . . , 5, θai (with a = 1, . . . , 4 and i = 1, 2) are the
anticommuting left-handed spinors, and the harmonic variables u±i satisfy the
relations

u−
i = (u+i)∗, u+iu−

i = 1, u±
i = εiju

±j .

It contains the analytic subspace closed under supersymmetry transformations
with coordinates

xµA = xµ +
i

2
θ−γµθ+, θ+a = u+

i θ
ai, u±

i .

The gauge superfield and the hypermultiplet (in the adjoint representation) are
described by the analytic superfields V ++ = e0V

++AtA and q+ = e0q
+AtA,

respectively,
D+

a V
++ = 0; D+

a q
+ = 0,

where D+
a = u+

i D
i
a. Also we will need the harmonic derivatives

D++ = u+i ∂

∂u−i
, D−− = u−i ∂

∂u+i
.
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The 6D, N = (1, 0) higher derivative theory

Following the paper

I. L. Buchbinder, A. S. Budekhina, E. A. Ivanov and K.S.,
Phys. Rev. D 111 (2025) no.12, 125014.

we consider the theory which in the 6D, N = (1, 0) harmonic superspace is
described by the action

S = ± 1

2e20
tr
∫
dζ(−4)(F++)2 − 2

e20
tr
∫
dζ(−4)q̃+∇++q+.

Here ∇++q+ ≡ D++q+ + i[V ++, q+], and the integration measure is given by
the expression ∫

dζ(−4) ≡
∫
d6x d4θ+ du.

In particular, this measure contains the integration over harmonics. The harmonic
superspace analog of the gauge field strength is defined by the equations

F++ ≡ (D+)4V −−, where

V −−(z, u) ≡
∞∑

n=1

(−i)n+1

∫
du1 . . . dun

V ++(z, u1)V
++(z, u2) . . . V

++(z, un)

(u+u+
1 )(u

+
1 u

+
2 ) . . . (u

+
nu+)

.

K.V.Stepanyantz The renormalization group invariants and exact results



59

The 6D, N = (1, 0) higher derivative theory

In components this action contains the term with higher derivatives of the gauge
field (and its superpartners)

S = tr
∫
d6x

{
± 1

e20
(DµF

µν)2 + . . .

}
.

Due to the higher derivatives the degree of divergence does not increase with a
number of loops.

The theory could contain quadratic and logarithmical divergences, but the
quadratic divergences cancel each other in the one-loop approximation (and
presumably in all loops) due to the presence of the hypermultiplet in the adjoint
representation. Moreover, due to the presence of the hypermultiplet, the theory
is not anomalous

A. V. Smilga, Phys. Lett. B 647 (2007), 298

and seems to be renormalizable.

The hypermultiplet and ghosts do not receive divergent quantum corrections
because the corresponding parts of the action are not given by the integrals over
the total harmonic superspace. (This is analogous to the nonrenormalization of
the superpotential in the 4D case.)
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The higher covariant derivative regularization

Let us regularize the theory under consideration by higher covariant derivatives.
The higher derivative term is constructed with the help of the operator

□ ≡ 1

2
(D+)4(∇−−)2,

(where ∇−− = D−−+ iV −−), which is analogous to the Laplace operator when
acting on analytic superfields. The sum of the original action and the higher
derivative term can be written in the form

Sreg = ± 1

2e20
tr
∫
dζ(−4)F++R

( □
Λ2

)
F++ − 2

e20
tr
∫
dζ(−4)q̃+∇++q+,

where R(0) = 1 and R(x) → ∞ at x → ∞. For regularizing the one-loop
divergences it is also necessary to add the Pauli–Villars superfields with the mass
M = aΛ. (For simplicity, we do not present the explicit expression for their
action.) Then the generating functional of the regularized theory takes the form

Z[sources] =
∫
Dv++Dq̃+Dq+DbDcDφDet1/2

[
□□□2R

( □□□
Λ2

)]
×Det(PV,M) exp

(
iSreg + iSgf + iSFP + iSNK + iSsources

)
.
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The divergent supergraphs giving the β-function

The renormalization of the coupling constant is determined by the following
harmonic supergraphs:

The solid lines correspond to the hypemultiplet;
the wavy lines correspond to the gauge superfield;
the dashed lines denote propagators of the Faddeev–Popov ghosts;
the dotted lines denote propagators of the Nielsen–Kallosh ghosts.

Quadratic divergences in these superdiagrams cancel each other, while the
logarithmical divergences determine the β-function β(α0) (defined in terms of
the bare coupling constant), where α0 ≡ e20/4π.
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The one-loop β-function

The result for the β-function obtained after calculating the above superdiagrams
can be written in the form

β(α0)

α2
0

= ∓2πC2

∫
d6q

(2π)6
d

d lnΛ

∂

∂qµ

∂

∂qµ

[
1

q4
ln
(
1+

M4

q4R(q2/Λ2)

)]
+O(α0).

We see that exactly as in the 4D case the β-function is given by integrals of
double total derivatives with respect to the loop momentum. Note that, due to
the presence of an arbitrary regulator function R(x), this fact is highly nontrivial.
Calculating the integrals we obtain the one-loop result

β(α0) = ∓α
2
0C2

2π2
+O(α3

0).

This expression agrees with the results of the calculations made with dimensional
reduction in

E. A. Ivanov, A. V. Smilga and B. M. Zupnik, Nucl. Phys. B 726 (2005), 131;
L. Casarin and A. A. Tseytlin, JHEP 08 (2019), 159;
I. L. Buchbinder, E. A. Ivanov, B. S. Merzlikin and K.S., JHEP 08 (2020), 169;
Nucl. Phys. B 961 (2020), 115249

by various methods if one takes into account the contribution of the
hypermultiplet in the adjoint representation.
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The NSVZ-like exact (?) β-function

The resemblance in the structure of the one-loop results for 4D, N = 1
supersymmetric Yang–Mills theory and for the considered 6D, N = (1, 0) higher
derivative theory allows to suggest that it may be possible to write down the
all-loop exact expression for the β-function. It can be constructed by replacing
the tree propagators by the exact ones in the one-loop singular contributions.
(For 4D, N = 1 theories the similar procedure gives the NSVZ expression.) In
the 6D case the result has the form

β(α0) = ∓ α2
0C2

2π2
(
1∓ α0C2/8π2

) .
Certainly, this derivation is not rigourous and should be verified by explicit
multiloop calculations. (If possible), it would be also expedient to construct its
rigorous all-order proof analogous to the one for the 4D, N = 1 case.

Similarly to the pure 4D, N = 1 SYM theory, it is possible to integrate the
renormalization group equation and obtain the expression that does not receive
quantum corrections in any order of the perturbation theory,( α

µ4

)C2

exp
(
± 8π2

α

)
= RGI.
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Conclusion

In certain N = 1 supersymmetric theories with multiple gauge couplings one
can construct such combinations of various couplings that do not depend on
scale in all orders or, in other words, RGIs.

In particular, in N = 1 SQCD interacting with N = 1 SQED RGI can be
constructed from the strong and electromagnetic coupling constants (if the
matter superfields have the same absolute values of the electromagnetic
charges). Therefore, in this theory two gauge couplings do not run
independently.

For the MSSM and NMMSM one can construct two independent RGIs from the
gauge couplings, Yukawa couplings and the µ parameter. They are scale
independent in all orders in the HD+MSL scheme, when a theory is regularized
by higher covariant derivatives, and divergences are removed by minimal
subtractions of logarithms.

The explicit three-loop calculations confirm the renormalization group invariance
of the constructed expressions in the HD+MSL scheme. However, in the DR
scheme they start to depend on scale in such an approximation where the
scheme dependence becomes essential.

Presumably, there is an exact NSVZ-like β-function for a certain 6D, N = (1, 0)
supersymmetric theory with higher derivatives. Due to this exact β-function,
this theory also possesses an RGI.

K.V.Stepanyantz The renormalization group invariants and exact results



65

Thank you for the attention!
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