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Motivation Positron Anomaly

Increased positron concentration in cosmic rays

Fig. 1: [Adriani et al., 2009]
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Motivation Positron Anomaly

Increased positron concentration in cosmic rays

Fig. 2: [Adriani et al., 2009]
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Motivation Positron Anomaly

Possible explanations for the positron anomaly

1. DM-driven mechanisms

1.1 Spatial distribution effects: distibuted near Earth DM (disks, clusters, ...) —
suppress gamma. (this talk) [Alekseev et al., 2016], [Belotsky et al., 2017], [Belotsky et al., 2018]

1.2 DM interaction physics: models have decays with gamma suppression
(ex. X++ → e+e+, in next talk) [Barak et al., 2023]

2. Astrophysical sources

2.1 Pulsars.
[Hooper et al., 2017]

2.2 Supernova and SNR.
[Malkov et al., 2016]

Kalashnikov Dmitry (MEPhI) N-body for SIDM 6 / 41



Motivation Positron Anomaly

Fig. 3: [Cirelli et al., 2024]
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Motivation Constraints on dark matter models
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Motivation Constraints on dark matter models

High-energy positrons do not reach us from large distances, unlike gamma rays. Let us
distribute their sources around us.
Using different dark matter self interaction cross-sections ⇒ dark matter structures ⇒
DM spatial distribution.
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Motivation Constraints on dark matter models

Dark matter interactions ⇒ dark matter structures

Fig. 4: Positron fraction from DM particles distributed in disk.
[Belotsky et al., 2018]

Kalashnikov Dmitry (MEPhI) N-body for SIDM 10 / 41



Motivation Self-Interacting Dark Matter (SIDM)

Cold dark matter (CDM)

The simplest assumption about dark matter is that it has no interactions.
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Motivation Self-Interacting Dark Matter (SIDM)

CDM issues at galactic scales

Fig. 5: ”Missing satellite” problem,
[Klypin et al., 1999]

Fig. 6: ”Core-cusp” problem,
[Moore, 1994], [Blok, 2010]
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Motivation Self-Interacting Dark Matter (SIDM)

Evidences for SIDM

Self-Interacting Dark Matter (SIDM) — additional interaction only between
dark matter particles. [Spergel et al., 2000]

Solves issues of the standard cosmological model at galactic scales.
[Davé et al., 2001], [Zavala et al., 2013], [Elbert et al., 2015]

Mergers of SMBHs: resolves the final parsec problem [Alonso-Álvarez et al., 2024]

Early galaxies excess (JWST): enhanced early collapse [Kurmus et al., 2022], [Roberts et al., 2025]

Non-halo structures: disks, spirals etc. (this work)

This work considers a model where SIDM particles make up a small fraction/a
subcomponent of CDM.
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Motivation Self-Interacting Dark Matter (SIDM)

Idea

A small fraction of interacting dark matter forms non-halo structures (disks, spirals...).
The main dark matter component is non-interacting. It forms halo-like structures
consistent with ΛCDM on large scales.

Example: charged DM which partly recombines
and creates two-component dark matter

Interacting dark matter is unstable and has annihilation/decay channels into Standard
Model particles ⇒ solves the positron anomaly
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Goals and Objectives

Goal — to develop a mechanism for the formation of structures from
self-interacting dark matter.

An important task is to determine the parameters of interacting dark matter that
define the shape of the resulting structures.
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Goals and Objectives

Example of morphological table

Structure σ/m = 0.01, cm2/g σ/m = 0.1, cm2/g σ1(v)/m, cm2/g

Halo ✓ ✓ ✓

Disk ✗ ✗ ✓

Spirals ✗ ✗ ✓

Bars ✗ ✗ ✗

Compact cores ✗ ✓ ✓
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How do galactic structures form with self-interacting DM?

How do galactic structures form with self-interacting

DM?
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How do galactic structures form with self-interacting DM?

How can we find the answers?

Analytically: using equations developed for structures made of ordinary matter.

Numerically:

Using N-body simulations with SIDM models enabled.
Modifying existing baryonic N-body simulations as a basis for SIDM.
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How do galactic structures form with self-interacting DM? Analytical approaches

There is no general theory of structure formation.

The primary method is modeling, where initial conditions are essential.

Inner structure is influenced by competing effects: SIDM collisions, dynamical
friction, and adiabatic evolution due to baryonic feedback.

Complex structures (bars, spirals, etc.) are studied under specific initial conditions.
[Naab et al., 2017]

Ref: David Goodstein, Adventures in Cosmology
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How do galactic structures form with self-interacting DM? N-body for studying SIDM models

Simulation codes used for SIDM in the literature

Main code: GADGET (2/3/4) — nearly half of
all simulations.
[Springel, 2005] Bhattacharyya, J., et al. (2022); Driskell, T., et al. (2024), Fischer,

M., et al. (2024)

GIZMO is used for hydrodynamical simulations
(FIRE).

About 30% of studies use custom-built SIDM
codes — often for frequent/anistropic scattering
. [Ghigna et al., 2000], [Randall et al., 2015], [Shen et al., 2021]

The rest use AREPO, TreeSPH, BAHAMAS, etc.
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How do galactic structures form with self-interacting DM? N-body for studying SIDM models

Brief history of SIDM simulations: Why historical context

matters?

Historical context helps us to understand how our current ideas and models
evolved, and how they became widely accepted in the cosmological community.

It is important to emphasize that N-body simulations in cosmology have a much
longer history, dating back to the pioneering works by Aarseth, White, and Peebles
in the 1960s–1970s.

Here, I specifically focus on the evolution of numerical methods and models for
self-interacting dark matter (SIDM).

Reviewing how the SIDM approach has evolved over the last 25 years allows us to
appreciate the current achievements and identify key open questions.

Kalashnikov Dmitry (MEPhI) N-body for SIDM 21 / 41



How do galactic structures form with self-interacting DM? N-body for studying SIDM models

SIDM simulations: early phase (2000–2012)

First simulations using GADGET and custom schemes show the formation of
central cores in SIDM halos
[Yoshida et al., 2000] [Davé et al., 2001].

The concept of gravothermal collapse in SIDM halos is introduced
[Balberg et al., 2002].

Development of velocity-dependent models: σ(v) ∝ 1/v
[Coĺın et al., 2002].

Bullet Cluster is used to constrain σ/m
[Randall et al., 2008].

Comparison of hydrodynamics and N-body approaches shows good agreement
[Koda et al., 2011].
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How do galactic structures form with self-interacting DM? N-body for studying SIDM models

SIDM simulations: intermediate phase (2012–2020)

Emergence of zoom-in simulations with well-calibrated SIDM modules
[Rocha et al., 2013].

SIDM provides a solution to the “too big to fail” and “missing satelite” problem
[Zavala et al., 2013], [Elbert et al., 2015].

Inclusion of baryons: GIZMO + FIRE-2 show differences in density profiles between
SIDM and CDM
[Robles et al., 2017].

Development of frequent scattering models
[Sameie et al., 2018].

First large-scale simulations with lensing and SIDM — BAHAMAS-SIDM
[Robertson et al., 2018].
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How do galactic structures form with self-interacting DM? N-body for studying SIDM models

SIDM simulations: taking into account

more physical effects (2021–2025)

Shift to realistic cosmological zoom-in series with baryons
[Vargya et al., 2022], [Nadler et al., 2023].

Development of drag-force SIDM models
[Fischer et al., 2023].

Use of GADGET-4 and model comparison in the Dianoga project
[Ragagnin et al., 2024].

SIDM exhibits new subhalo phenomenology and asphericity in the presence of
frequent scatterings
[Ragagnin et al., 2024].

Kalashnikov Dmitry (MEPhI) N-body for SIDM 24 / 41



How do galactic structures form with self-interacting DM? N-body for studying SIDM models

SIDM numerical simulations: clue conclusions

SIDM numerical methods significantly evolved: from simple tests to physically
realistic simulations.

SIDM transitioned from solving basic cosmological issues (core-cusp, missing
satellites) to complex models with rich phenomenology (velocity-dependent
scattering, baryonic feedback, drag-force).

Many open questions remain, making SIDM an active and promising research area.
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Working with GADGET-2

Working with GADGET-2
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Working with GADGET-2

Containerization and reproducibility

To ensure reproducibility, portability, and ease of installation, a convenient Docker
image was built, which automatically installs:

All necessary libraries: MPI, FFTW, GSL;

The GADGET-2 simulator with key make-options: PERIODIC, PMGRID,
DOUBLEPRECISION, TREEPM;

The yt module and auxiliary Python scripts for analysis and visualization.

The image is published in an open GitHub repository and is accompanied by a script
that checks:

successful compilation;

successful run of a minimal test — growth of perturbations in an expanding
universe.

Kalashnikov Dmitry (MEPhI) N-body for SIDM 27 / 41



Working with GADGET-2

First probe CDM simulations

N-body simulation with only dark
matter.
Box size = 50 Mpc.
Number of particles = 1283.

Fig. 7: V. Springel et al. (2021)
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Working with GADGET-2

Test CDM simulations

N-body simulation of two colliding
galaxies (disk + halo).
Box size = 500 kpc.
Number of particles = 104.
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Working with GADGET-2

Fig. 8: 3D density distribution of the disk during the galaxy collision (by simulation steps).

Kalashnikov Dmitry (MEPhI) N-body for SIDM 30 / 41



Working with GADGET-2

Fig. 9: Evolution of the spatial density distribution of the dark matter halo during the galaxy
collision.
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Working with GADGET-2

Comparison of halo and disk
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Conclusion

Conclusion
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Conclusion

Conclusion

In this work:

A convenient Docker build with pre-installed GADGET-2 and support for visualization via
yt was created;

Test simulations were conducted and visualization modules were implemented;

The next step is to implement SIDM interactions based on the existing code;

A morphological table of possible structures in different SIDM models is planned.
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Thank you for attention!
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backup

Kinematics and particle density

Fig. 10: Rotation curves v(r) Fig. 11: Density profile ρ(r)
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Phase diag for Disk and Halo
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