From SU(3) Confinement Cells to ρ_{Λ} , (\hbar, G, c) , and the Yang–Mills Gap 28th Int. Workshop: "What Comes Beyond the Standard Models"

> Ahmed Farag Ali Essex County College & Benha University

> > Bled, July 2025

Outline

- 1 Motivation & Puzzles
- (2) Key Physical Principles
- 3 Vacuum Fragmentation
- 4 Holographic Tiling
- 5 Cylinder–Forest Geometry
- 6 Force-Balance Dilution
- 7 Vacuum-Energy Match

8 Planck-Mass Core

Three Fundamental Puzzles

Cosmological Constant

Planck Units

YM Mass-Gap

 $egin{aligned} &
ho_\Lambda^{
m obs}\sim 10^{-47}\,{
m GeV}^4 \ &
ho_{
m QFT}\sim 10^{76}\,{
m GeV}^4 \end{aligned}$

$\ell_{\rm Pl} = \sqrt{rac{\hbar\,G}{c^3}}$ Why these values?

Pure SU(3)_c $\rightarrow m_{gap} > 0$? (Millennium Problem)

 \Rightarrow Seek a *single*, parameter-free mechanism linking all three.

Third Law of Thermodynamics

Nernst–Planck Statement

- $\lim_{T\to 0} S(T) = S_0 < \infty.$
- No finite process can reach T = 0.
- Specific heat $C \rightarrow 0$; irreducible quantum fluctuations remain.

In QFT, cluster decomposition theorems imply a finite correlation length $\lambda_0 = \lim_{T \to 0} \xi(T) > 0.$

Color Confinement in QCD

$$\begin{split} & \mathcal{G}_{\mathrm{SM}} = \mathrm{SU}(3)_c \times \mathrm{SU}(3)_c(2) \times \mathcal{U}(1) \xrightarrow{\langle H \rangle} \mathrm{SU}(3)_c \times \mathcal{U}(1)_{\mathrm{em}}. \end{split}$$

$$\begin{split} & \mathsf{Below} \ \mathcal{T}_c \sim 150\text{--}170 \,\mathsf{MeV}: \\ & \langle \mathcal{W}(\mathcal{C}) \rangle \sim e^{-\sigma\left(\mathcal{C}\right)}, \quad \sigma > 0. \end{split}$$

Lattice QCD (Bazavov et al. 2019): Confinement endures $\forall T < T_c$.

Meissner-like Breaking of $m{U}(1)_{ m em}$

- In superconductors: $abla^2 {f B} = m_{\gamma}^2 \, {f B}$ (London equation) from $\langle \psi \psi \rangle
 eq 0$.
- Conjecture: Dark-energy vacuum forms a Meissner condensate ightarrow photon effective mass $m_\gamma
 eq 0.$
- Long-range electromagnetic fields expelled; U(1) effectively broken as $\mathcal{T}
 ightarrow 0$.

Holographic Principle

Bekenstein–Hawking Bound

For any closed surface of area A:

$$S \leq \frac{A}{4\,\ell_{\mathrm{Pl}}^2}.$$

Saturation occurs for black holes and de Sitter horizons (Gibbons-Hawking entropy).

Cluster Theorem & Correlation Length

Connected correlator bound:

$$|\langle \mathcal{O}(x) \mathcal{O}(0) \rangle_c| \leq C e^{-|x|/\xi(T)}.$$

As
$$T \to 0$$
:
 $\lambda_0 = \lim_{T \to 0} \xi(T) = \frac{1}{m_{\text{lightest}}} > 0.$

Numerically: $\lambda_0 \approx 0.9 \pm 0.2$ fm (lattice) $\sim R_p = 0.84$ fm.

Defining the Confinement Cell

$$V_{\mathrm{cell}} = rac{4}{3}\pi R_{
ho}^3, \quad R_{
ho} pprox 0.84 \,\mathrm{fm}.$$

Observable universe radius: $R_u \approx 1.30 \times 10^{26} \,\mathrm{m}.$

$$N = \frac{\frac{4}{3}\pi R_u^3}{\frac{4}{3}\pi R_p^3} = \left(R_u/R_p\right)^3 \sim 10^{123}.$$

Entropy Saturation & Patch Area

Bulk entropy:

$$S_{\mathrm{bulk}} = N S_{\mathrm{cell}} \leq rac{A_{\mathrm{hor}}}{4 \, \ell_{\mathrm{Pl}}^2}, \quad A_{\mathrm{hor}} = 4 \pi \, R_u^2.$$

Assume saturation:

$$egin{aligned} S_{ ext{cell}} &= rac{A_{ ext{cell}}}{4\,\ell_{ ext{Pl}}^2}, & N\,A_{ ext{cell}} = A_{ ext{hor}}. \ A_{ ext{cell}} &= rac{4\pi\,R_u^2}{N} \simeq \ell_{ ext{Pl}}^2(1\pm 3\%). \end{aligned}$$

Emergence of \hbar , G, c

Since $\ell_{\rm Pl}^2 = \hbar G/c^3$, fixing the patch area to $\ell_{\rm Pl}^2$ geometrically determines the fundamental constants.

QCD Cell vs. Planck-Hubble Cylinder

- R_p : zero-T QCD correlation length (proton radius).
- $\ell_{\rm Pl}^2$: patch area from holographic saturation.
- R_u : cosmic horizon radius.

This exact identity ties together QCD, holography, and cosmology.

Why the Cell Is a Cylinder

- Problem: Minimize surface area for $\boldsymbol{\Sigma}$ that
 - encloses fixed volume $V = \ell_{\rm Pl}^2 R_u$,
 - meets the horizon in a circle of area $\ell_{\rm Pl}^2$.
- Method: Extremize $\mathcal{F} = \sigma(\Sigma) + \Lambda((\Sigma) V)$.
- $\delta \mathcal{F} = 0 \Rightarrow$ constant mean curvature.
- **Alexandrov's theorem:** Only an embedded CMC surface with a circular rim is a *right cylinder*.
- $\Sigma = cylinder of base \ell_{Pl}^2$ and height R_u .

Figure 1: Parallel Cylinders (TikZ)

Figure 2: Cylinder Forest (EPS)

Quasi-Local Stress on the Horizon

On the horizon $\mathcal{H} = S^2(R_u)$, the Brown–York tensor gives

$$T_{ab} = rac{2}{\sqrt{-\gamma}} rac{\delta S_{
m grav}}{\delta \gamma^{ab}}, \quad \gamma_{ab} = {
m induced metric}.$$

In comoving gauge:

$$T^{\theta}{}_{\theta} = T^{\phi}{}_{\phi}, \quad T^{\theta}{}_{\phi} = 0.$$

Define local surface pressure $P(\theta, \phi) = -T^{\theta}_{\theta}$. Isotropy $\rightarrow P$ constant on each Planck patch.

Force on a Single Planck Patch

Each patch of area ${\cal A}_{
m cell} = \ell_{
m Pl}^2$ feels

$$F_{\text{cell}} = |P| A_{\text{cell}} = \rho_{\text{cell}} A_{\text{cell}},$$

where $\rho_{\text{cell}} \equiv |P|$. By isotropy, this is the same for all N patches.

Force–Balance Dilution: Corrected Derivation Uniform-force condition (Eq. 5.1):

$$F_{\text{cell}} = \rho_{\text{cell}} A_{\text{cell}} = F_u \implies A_{\text{cell}} = \frac{F_u}{\rho_{\text{cell}}}.$$
 (5.1)

Summed area (Eq. 5.2):

$$A_{\rm hor} = \sum_{i=1}^{N} A_{\rm cell} = N A_{\rm cell} = N \frac{F_u}{\rho_{\rm cell}}.$$
(5.2)

Coarse-grained observer sees:

$$F_u = \rho_u A_{\rm hor}. \tag{5.3}$$

Substitute (5.2) into (5.3):

$$F_u = \rho_u \left(N \frac{F_u}{\rho_{\text{cell}}} \right) \implies 1 = \rho_u \frac{N}{\rho_{\text{cell}}} \implies \rho_u = \frac{\rho_{\text{cell}}}{N}.$$

Hence the vacuum energy is diluted by exactly 1/N.

Parallel–Circuit Analogy

Circuit mapping:	Physical quantity:
V	$\leftrightarrow F_u$ (force)
1	$\leftrightarrow A$ (area)
R	$\leftrightarrow ho_{ ext{cell}}$ (energy density)
$R_{ m eq}$	$\leftrightarrow ho_u$

$$R_{\rm eq} = rac{R}{N} \iff
ho_u = rac{
ho_{
m cell}}{N}.$$

Zero–Point Gluon Energy per Cell

Cut off at Planck momentum $P_{\rm Pl}$:

$$ho_{
m cell} = rac{1}{16\pi^2} \, rac{P_{
m Pl}^4}{\hbar^3 \, c^3} pprox 2.0 imes 10^{76} \, {
m GeV}^4.$$

Dilution:

$$\rho_{\Lambda} = rac{
ho_{\mathrm{cell}}}{N} \approx 1.1 \times 10^{-47} \, \mathrm{GeV}^4 \simeq \rho_{\Lambda}^{\mathrm{obs}}.$$

No fine-tuning, only counting of SU(3) cells.

Intersection of N Cylinders

For *n* cylinders radius *r*:

$$V_n(r) = \frac{8n}{3} \tan\left(\frac{\pi}{2n}\right) r^3 \xrightarrow[n \to \infty]{} \frac{4\pi}{3} r^3.$$

At
$$n = N$$
, $r = \ell_{\rm Pl}$:
 $V_{\rm int} = rac{4\pi}{3}\ell_{\rm Pl}^3$, $M_{\rm int} =
ho_{\rm cell} V_{\rm int} pprox M_{\rm Pl}$.

Geometry \rightarrow Planck-mass core.

Topological Sector & RG Construction

$$X = \mathbb{R}^3 \setminus \bigcup_{i=1}^N T_i, \quad \pi_1(X) \cong F_N.$$

 $\mathsf{PSU}(3)$ bundles $\cong \mathbb{Z}_3^N$. "Democratic" flux sector dominates via Peierls-contour arguments and constructive RG (Balaban, Seiler, Magnen–Rivasseau). Reflection positivity \rightarrow Osterwalder–Schrader axioms.

Hardy–Poincaré Lower Bound

Fluctuation operator in background-covariant gauge: $\mathcal{H} = -D^2[A_{cyl}] + \cdots$. Splitting the domain:

$$\langle \boldsymbol{a}, \mathcal{H} \boldsymbol{a} \rangle \geq (1 - \alpha) \frac{\pi^2}{R_u^2} \|\boldsymbol{a}\|^2, \quad \alpha = 0.346.$$

Thus

$$m_{
m gap} \geq \sqrt{0.654} \, rac{\pi}{R_u} = 3.7 imes 10^{-33} \, {
m eV} \ > 0.$$

Phenomenological Hooks

- Planck-patch birefringence: $\Delta \theta \sim 10^{-42}$ rad per Hubble.
- Dark-glueball relics: up to $\sim 1\%$ of DM.
- $\bullet\,$ Lattice verification of \mathbb{Z}_3 vortex sector dominance.

Unified Resolution

- ① QCD + Third Law \rightarrow vacuum fragments into $N \sim 10^{123}$ proton-cells.
- (2) Holography \rightarrow patch area $\ell_{\rm Pl}^2$.
- 3 Force-balance $\rightarrow \rho_{\Lambda} = \rho_{cell}/N$.
- (4) Cylinder-forest vacuum + RG $\rightarrow m_{\rm gap} > 0$.

No new fields, no adjustable parameters, purely geometry & counting.

Selected References I

- A. Bazavov et al., Phys. Rev. D 100, 094510 (2019).
- J. Glimm & A. Jaffe, Quantum Physics: A Functional Integral Point of View, Springer (1987).
- J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
- 📕 K. Osterwalder & R. Schrader, Commun. Math. Phys. 31, 83 (1973).
- A. Jaffe & E. Witten, in *The Millennium Prize Problems*, AMS (2006).

Thank You

Questions?

Ahmed Farag Ali aali29@essex.edu