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Three Fundamental Puzzles

Cosmological Constant
ρobs

Λ ∼ 10−47 GeV4

ρQFT ∼ 1076 GeV4

Planck Units
ℓPl =

√
ℏG
c3

Why these values?

YM Mass-Gap
Pure SU(3)c → mgap > 0?

(Millennium Problem)

⇒ Seek a single, parameter-free mechanism linking all three.
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Third Law of Thermodynamics

Nernst–Planck Statement
lim

T→0
S(T ) = S0 < ∞.

No finite process can reach T = 0.
Specific heat C → 0; irreducible quantum fluctuations remain.

In QFT, cluster decomposition theorems imply a finite correlation length
λ0 = limT→0 ξ(T ) > 0.
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Color Confinement in QCD

GSM = SU(3)c × SU(3)c(2) × U(1) ⟨H⟩−−−−−→
T<TEW

SU(3)c × U(1)em.

Below Tc ∼ 150–170 MeV:
⟨W (C)⟩ ∼ e−σ (C), σ > 0.

Lattice QCD (Bazavov et al. 2019): Confinement endures ∀ T < Tc .
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Meissner-like Breaking of U(1)em

In superconductors: ∇2B = m2
γ B (London equation) from ⟨ψψ⟩ ≠ 0.

Conjecture: Dark-energy vacuum forms a Meissner condensate → photon effective mass
mγ ̸= 0.
Long-range electromagnetic fields expelled; U(1) effectively broken as T → 0.
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Holographic Principle

Bekenstein–Hawking Bound
For any closed surface of area A:

S ≤ A
4 ℓ2Pl

.

Saturation occurs for black holes and de Sitter horizons (Gibbons–Hawking entropy).
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Cluster Theorem & Correlation Length

Connected correlator bound: ∣∣⟨O(x) O(0)⟩c
∣∣ ≤ C e−|x |/ξ(T ).

As T → 0:
λ0 = lim

T→0
ξ(T ) = 1

mlightest
> 0.

Numerically: λ0 ≈ 0.9 ± 0.2 fm (lattice) ∼ Rp = 0.84 fm.
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Defining the Confinement Cell

Vcell = 4
3π R3

p , Rp ≈ 0.84 fm.

Observable universe radius: Ru ≈ 1.30 × 1026 m.

N =
4
3π R3

u
4
3π R3

p
=

(
Ru/Rp

)3 ∼ 10123.
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Entropy Saturation & Patch Area

Bulk entropy:
Sbulk = N Scell ≤ Ahor

4 ℓ2Pl
, Ahor = 4π R2

u .

Assume saturation:
Scell = Acell

4 ℓ2Pl
, N Acell = Ahor.

Acell = 4π R2
u

N ≃ ℓ2Pl(1 ± 3%).
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Emergence of ℏ, G , c

Since ℓ2Pl = ℏG/c3, fixing the patch area to ℓ2Pl geometrically determines the fundamental
constants.
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QCD Cell vs. Planck–Hubble Cylinder

Vcell︸︷︷︸
QCD cell

(proton-volume)

= 4π
3 R3

p , Vcyl︸︷︷︸
holographic

cylinder

= Acell Ru = ℓ2Pl Ru.

4π
3 R3

p = ℓ2Pl Ru ⇐⇒ Vcell = Vcyl.

Rp: zero-T QCD correlation length (proton radius).
ℓ2Pl: patch area from holographic saturation.
Ru: cosmic horizon radius.

This exact identity ties together QCD, holography, and cosmology.
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Why the Cell Is a Cylinder

Problem: Minimize surface area for Σ that
▶ encloses fixed volume V = ℓ2

PlRu,
▶ meets the horizon in a circle of area ℓ2

Pl.
Method: Extremize F = σ (Σ) + Λ((Σ) − V ).
δF = 0 ⇒ constant mean curvature.
Alexandrov’s theorem: Only an embedded CMC surface with a circular rim is a right
cylinder.
Σ = cylinder of base ℓ2Pl and height Ru.
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Figure 1: Parallel Cylinders (TikZ)

Ai = ℓ2
Pl Ai = ℓ2

Pl Ai = ℓ2
Pl

Ru

SU(3) Units

figureSU(3) confinement cells as cylinders of base
area ℓ2Pl and height Ru.
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Figure 2: Cylinder Forest (EPS)

figureUniverse as a sphere
filled with Planck-radius cylinders; their bases tile the horizon, and their overlap encloses a

Planck-mass core.
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Quasi-Local Stress on the Horizon

On the horizon H = S2(Ru), the Brown–York tensor gives

Tab = 2√
−γ

δSgrav
δγab , γab = induced metric.

In comoving gauge:
T θ

θ = T ϕ
ϕ, T θ

ϕ = 0.

Define local surface pressure P(θ, ϕ) = −T θ
θ. Isotropy → P constant on each Planck patch.
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Force on a Single Planck Patch

Each patch of area Acell = ℓ2Pl feels

Fcell = |P| Acell = ρcell Acell,

where ρcell ≡ |P|. By isotropy, this is the same for all N patches.
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Force–Balance Dilution: Corrected Derivation
Uniform-force condition (Eq. 5.1):

Fcell = ρcell Acell = Fu =⇒ Acell = Fu
ρcell

. (5.1)

Summed area (Eq. 5.2):

Ahor =
N∑

i=1
Acell = N Acell = N Fu

ρcell
. (5.2)

Coarse-grained observer sees:
Fu = ρu Ahor. (5.3)

Substitute (5.2) into (5.3):

Fu = ρu
(
N Fu
ρcell

)
=⇒ 1 = ρu

N
ρcell

=⇒ ρu = ρcell
N .

Hence the vacuum energy is diluted by exactly 1/N.
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Parallel–Circuit Analogy
Fu

ρcell

Fu

ρcell

Fu

ρcell

Fu

ρu

Fu

Circuit mapping: Physical quantity:
V ↔ Fu (force)
I ↔ A (area)
R ↔ ρcell (energy density)
Req ↔ ρu

Req = R
N ⇐⇒ ρu = ρcell

N .
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Zero–Point Gluon Energy per Cell

Cut off at Planck momentum PPl:

ρcell = 1
16π2

P4
Pl

ℏ3 c3 ≈ 2.0 × 1076 GeV4.

Dilution:
ρΛ = ρcell

N ≈ 1.1 × 10−47 GeV4 ≃ ρobs
Λ .

No fine-tuning, only counting of SU(3) cells.
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Intersection of N Cylinders

For n cylinders radius r :

Vn(r) = 8n
3 tan

( π
2n

)
r3 −−−→

n→∞
4π
3 r3.

At n = N, r = ℓPl:
Vint = 4π

3 ℓ3Pl, Mint = ρcell Vint ≈ MPl.

Geometry → Planck-mass core.
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Topological Sector & RG Construction

X = R3 \
N⋃

i=1
Ti , π1(X ) ∼= FN .

PSU(3) bundles ∼= ZN
3 . “Democratic” flux sector dominates via Peierls-contour arguments and

constructive RG (Balaban, Seiler, Magnen–Rivasseau). Reflection positivity →
Osterwalder–Schrader axioms.
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Hardy–Poincaré Lower Bound

Fluctuation operator in background-covariant gauge: H = −D2[Acyl] + · · ·. Splitting the
domain:

⟨a,H a⟩ ≥ (1 − α) π
2

R2
u

∥a∥2, α = 0.346.

Thus
mgap ≥

√
0.654 π

Ru
= 3.7 × 10−33 eV > 0.
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Phenomenological Hooks

Planck-patch birefringence: ∆θ ∼ 10−42 rad per Hubble.
Dark–glueball relics: up to ∼ 1% of DM.
Lattice verification of Z3 vortex sector dominance.
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Unified Resolution

1 QCD + Third Law → vacuum fragments into N ∼ 10123 proton-cells.
2 Holography → patch area ℓ2Pl.
3 Force-balance → ρΛ = ρcell/N.
4 Cylinder-forest vacuum + RG → mgap > 0.

No new fields, no adjustable parameters, purely geometry & counting.
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Thank You

Questions?

Ahmed Farag Ali
aali29@essex.edu
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